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Preface

Putting data in order is an intellectual activity that is perhaps one of the oldest prob-
lems of applied mathematics. The wall of the corridor of Abydos Temple in Egypt
is padded with a chronologically ordered list (Gallery of the List of Kings). Dating
back to around 1250 B.C., this display allegedly lists the Pharaohs who had preceded
Siti I (modern research proves that the list makes some false historical claims; a few
rulers of Egypt before Siti I are omitted from that list!) The Inakibit-Anu Babylonian
tablets, dating back to 200 B.C., contain a sorted list of what seems to be several
hundred records, of which only a little over 100 records are preserved. Alphabetical
ordering of words dates at least as far back as Western dictionaries. Over the mil-
lennia people have been yearning to find fast efficient sorting algorithms. With the
appearance of computers in the twentieth century, sorting occupied a central position
among computing problems for its numerous business and administrative potentials.

This is a book about sorting methods with a general focus on their analysis. We
concentrate on well-known algorithms that are widely used in practice. Of course,
to the basic skeleton of any such algorithm small improvements have been pro-
posed. We present these algorithms in their simplest form, even when a modifica-
tion is known to improve them. This choice is motivated by a desire to make the
material lucid. While they may affect lower-order terms, the modifications usually
do not change the dominant asymptotic behavior. The analysis techniques are as
varied as the sorting algorithms themselves, giving rise to a fascinating variety of
methods, ranging from standard treatment such as elementary probability theory,
combinatorial counting, and graph-theoretic methods, to instances of more modern
techniques such as martingales, Poissonization, Wasserstein’s metric space, and the
Mellin transform.

We discuss a variety of standard sorting methods that can be readily implemented
on a conventional computer. The book takes the following algorithmic view. When a
deterministic algorithm runs on a set of data of size n, certain computing resources
are committed. Among standard resources are the running time and the amount of
memory needed to support the algorithm. A suitable combination of these computing
resources may be referred to as the cost. Running the deterministic algorithm on the
same data set will always give the same results. However, running the determinis-
tic algorithm on a different data set of size n may result in different cost. Putting a
reasonable probability measure on the set of inputs of size n renders the cost a ran-
dom variable. Interpreting costs as random variables provides some understanding

Xi



xii Preface
of the behavior of the algorithm over the variety of data sets the algorithm may face.
Probabilistic analysis addresses the natural questions one usually asks about random
variables. What are the average, variance, higher moments, and exact distributions?
In many cases it may be prohibitive to get exact answers. Even when such answers
are obtained they may give little insight into the algorithm’s behavior. Exact answers
often take the form of multifolded sums of products or similar complicated forms.
Insight is gained by simplifying such expressions asymptotically, that is, finding a
simple representation of the leading terms in the form of elementary functions of r,
when n gets large. Asymptotics then provide quick ways of estimating how the mean
and other moments grow with n, and how probabilities change. Limiting distribu-
tions give ways to approximate probabilities from standard distributions that may
be well known and tabulated. A question of interest to the practitioner is how large
n should be before one can consider limit distributions as reliable approximations.
This is a question of finding rates of convergence. We give a few examples of rates
of convergence in the book. It is fascinating to find that some phenomena in sorting
algorithms may have essential periodic fluctuations in leading asymptotic terms or
in rates of convergence to such terms.

The issue we consider is how a deterministic algorithm may behave when it is
presented with random data. This is to be distinguished from an area of algorith-
mics that deals with randomized algorithms, where the algorithm itself may follow
different paths to obtain the same result, or even produce different results when it
is run repeatedly on the same data set. Such variability is intrinsic to a random-
ized algorithm as the algorithm makes its decisions based on random outcomes (like
generating random numbers or flipping coins). We touch in passing on the area of
randomized algorithms in a few exercises, but it is not the main focus of this book.

The book is intended to be used as a reference by computer professionals, scien-
tists, mathematicians, and engineers. The book may also be used for teaching. The
material is accessible to first-year graduate students in fields like computer science,
operations research, or mathematics. At least a portion of each chapter is accessible
to advanced undergraduates. A reading course or a special topics seminar may be
based on the book. If used in this fashion, a one-year course in probability and a
one-year course in algorithms are recommended.

The developments that led to this book are numerous. Many research contribu-
tions were made toward a distribution theory of sorting algorithms over the past
quarter century. These contributions are mostly published in highly specialized re-
search outlets such as scientific journals and conference proceedings. The aim of
the book is to organize this massive and esoteric body of research that i‘s a‘cces‘si-
ble only to a few specialized researchers into a coherent, well-founded dl‘str‘lbutlon
theory and make it accessible to a wider audience by clarifying and unifying the
research and bringing it down a notch to be understood by students and other less-
specialized interested readership. This is accomplished via the slower—paced‘presen-
tation of a textbook, the patient construction of a logical framework for sorting, and
careful explanation that appeals to intuition as closely as possiblg. It 1s hopgd that
the manuscript is written in a lively style, starting at the basic principles and bu1.ld1ng
from the ground up, integrating in the process some of the most modern techniques
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that have succeeded in cracking some long-standing open problems in sorting, like
the distributions associated with QUICK SORT.

The book is organized as follows. It opens with a chapter on the general area of
complete and partial sorting (identification of order statistics). The opening chapter
sets the tone for the entire monograph: broad meaning, motivation, and applications.
The opening sends a message to the reader about the level of complexity of the
material and what is expected as background. The opening chapter outlines general
methodology (analytic, probabilistic, and combinatorial methods used in later chap-
ters of the book).

The rest of the book dedicates one chapter for every standard sorting algorithm
with a careful explanation of the mechanics of the algorithm both as code, for the
specialized computer science audience, and verbal description, for the broader read-
ership of scientists, mathematicians, and engineers. A typical chapter delves into the
domain of analysis. A broad array of classical and modern techniques converge hand
in hand to substantiate a distribution theory of sorting.

Each chapter provides exercises. Chapter 1 is a collection of peripheral topics
that are somewhat disparate; the exercises on each topic of this chapter come at
the end of the topic. Each of the remaining chapters has exercises at the end of the
chapter. The exercises touch on peripheral concepts and even instill new material in
small doses. The exercises vary in complexity from the elementary, only reinforcing
the basic definitions, to the very challenging, bordering on the threshold of recently
understood problems.

HosaM M. MAHMOUD
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1

Sorting and Associated Concepts

1.1 SORTING

Sorting a list of items is a very mundane task. The term generally refers to arranging
the items of the list in ascending or descending order according to some ordering
relation. Sometimes this activity is desired for its own sake such as the case in rank-
ing Olympic contenders by sorting their scores in an event, or the scores of a class
to determine letter grades. Sorting is often intended to facilitate searching, another
fundamental activity in data processing. Imagine how difficult it would be to consult
a dictionary on the meaning of a word, if the dictionary is not organized in some
order to guide our search. With relative ease we can find a word in a dictionary or
a person’s phone number in a directory when its entries are kept in the standard
alphabetical order.

Sorting is a more convoluted task than searching. Generally it is more expensive
and time consuming. Nonetheless, we view it as a long-term investment—we take
the time and effort to sort a file once to repeatedly search quickly in it for items.

The general problem of sorting can be stated as follows. Say we have a list of
items

X1, X2, ..., Xn

that we intend to rearrange in increasing order. Our goal is to design efficient algo-
rithms to create a permutation

X(l), X(z), ceey X(n)

where X (;y is the ith smallest (or ith order statistic) among the items on our list.
The term smallest refers to relative smallness according to an ordering relation often
denoted by <. For example, X1, X3, ..., X, may be real numbers and < is the usual
arithmetic comparison. The final sorted list in this case will be X1y, X(2), ..., X(n)>
with X(1) < X(2) <... = X(n), that is, the numbers arranged in increasing order.

Another way to view the situation is the following. Note that X1y may turn out
to be any of the n numbers—there is an index i1 so that X(jy = X;,. Generally, the
same is true for any other order statistic: X(;) = X, for some index i;. We can
think of sorting as an attempt to come up with a map
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I, : {1,2,...,n} = {1,2,..., n}, (1.1)

where I1,(1) = m, I11,(2) = 7, ..., I,(n) = m,, with the integers 7y, ..., m,
being all distinct, and

Xny £ Xmy =000 < Xpp (1.2)

In other words, 7y, ..., m, is a permutation of the integers {1, 2, ..., n}, with X,,j

being the jth smallest item. We shall use the notation I1, = (my, ..., m,) to rep-

resent such a permutation. Permutations can be represented in a number of ways.
A standard two-line representation helps in visualizing where the numbers go. This
representation consists of a top row of indexes and a bottom row of correspond-
ing values; under each index i, we list w;. For example, the permutation I1g =
(7 6 831 25 4)can also be represented as

(12345678)
7 6 8 3 1 2 5 4/

Producing the sorted list is an act of actual rearrangement. The task of sorting
n elements may effectively be accomplished without moving any elements (if so
desired) by specifying the permutation I, of the construction (1.2) as a separate list.
For in this case the knowledge of 7y, ..., m, can effectively be used to obtain any
order statistic. For example, we can print the still-unsorted list X, ..., X, in sorted
order by printing

Xryr X r X

n*

EXERCISES

1.1.1  Sort each of the following lists in “ascending” order:
(i) 2.6 1.3 7.1 4.4 3.4 2.9.
(ii) 60 33 17 84 47 29 71 56.
(iii) Jim Beatrice Philip Alice Johnny Elizabeth.

1.1.2 For each list in the previous exercise, construct a permutation to effectively
sort the list without changing its composition.

1.1.3 Interpret the mapping (1.1) when the list contains repeated elements.

1.2 SELECTION

Another problem of practical interest is that of the selection of some order statistics
either ordered by rank or as a set known to have some predesignated ranks but not
necessarily in order. An example of finding an ordered group of ranked order statis-
tics is common in competitive sports. It is often the case that from the scores obtained
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by the competing athletes the top three contenders with the highest three scores (in
order) are to be selected for medals.

To emphasize the distinction between sorting and selection, sorting is sometimes
referred to as complete sorting, whereby all the elements are moved to their correct
positions (or indexes are created to indicate these positions). By contrast, selection is
referred to as partial sorting, as the selection process imparts only partial information
on the correct position of some elements.

Statistics based on a few order statistics (with known orders) abound in the litera-
ture of statistical inference. For example, weighted averages of tertiles and quartiles!
of a sample X, X», ..., X,, are in common use in estimating the center of the dis-
tribution from which the sample was gathered. Two such statistics with different
weights are Gastwirth’s estimator

3 2 3
Gn = oXws+n T 3Xwan + gXa-13n-

and Tukey’s tri-mean

1 1
§<X<%) X))+ 3Xe
T, = +%<X(3,,)+X(3,,+1)>, if n is a multiple of 4;

3 3
1 1 1 .
ZX(L%J)-{-—Q-X(L%J)—I—ZX('-%—D, otherwise.

The book by Andrews, Bickel, Hampel, Huber, Rogers, and Tukey (1972) gives
many other statistical applications involving only a few order statistics. Efficient al-
gorithms for finding quantiles are needed for quick computation of these statistics.
Many other applications in statistics need such algorithms to find few order statistics,
typically less than six, for a statistical design.

Another flavor of the problem of finding order statistics may request finding a
group of unranked order statistics without necessarily knowing the relative ranks in
the group. For example, a university that intends to admit 1000 students may want
to find the 1000 students with the top 1000 scores (not necessarily in order) among
the applicants whose number typically exceeds 10000 each academic season. An
example from statistics where an unordered group of order statistics is required is
the a-trimmed mean. The «-trimmed mean is a statistic that throws out the upper
and lower « proportion of the (sorted) data deeming them unreliable outliers, with
0 < a < 1. The a-trimmed mean is given by

1 n—lan]

n= 2Lan-‘ i=|an|+1

! An @-quantile of a sample having no duplicates is a real number so that proportion & of the data is
less than it; the rest are greater. When # is an exact multiple of 3, the %- and %-quamiles are called tertiles.
The proportions % and % of the data are interpreted respectively as | 3] and LZT”J of the points when n is
not a multiple of 3. With a similar interpretation of “fourth,” “half,” and “three-fourths,” the %-quamiles

are called quartiles, for k = 1, 2, 3 and the %-quamile is called the sample median.
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We may design an algorithm to identify the two bounding order statistics X ||
and X,,_|on+1 and in the process place all intermediate order statistics in the list
between positions (lan] + 1), ..., (n — |an]) in any order, not necessarily sorted.
For the computation of the a-trimmed mean we need not sort these intermediate
order statistics since we are only seeking their average.

Algorithms for finding a predesignated number of order statistics (ordered or un-
ordered) are generally called selection algorithms. Sorting itself is the special case
of a selection algorithm, when the selection algorithm finds all order statistics.

One can find order statistics by sorting a data file. The item at position ; is then the
ith order statistic. This may be much more work than necessarys; it is often the case
that a more efficient algorithm can be designed for the direct selection of specified
order statistics as we shall see. Several sorting algorithms discussed in this book can
be adapted for general purpose selection.

EXERCISES

1.2.1 Write an algorithm to find the maximum element in a list. How many com-
parisons does your algorithm make to pick the largest number in a list of n
numbers?

1.2.2 Write an algorithm to simultaneously find the maximum and minimum ele-
ments in a list of n elements using no more than 3n/2 comparisons.

1.3 JARGON

A sorting algorithm is comparison based if it sorts an input (a collection of data
items called keys) by making a series of decisions relying on comparing pairs of the
input data. (Many algorithms in this book are comparison based.) Nonetheless, there
are sorting algorithms that are not comparison based. For instance, RADIX SORT,
an algorithm discussed in a later chapter, bases its decisions on another operation
different from comparing pairs of data—this operation is the extraction of digits of
the input keys; RADIX SORT makes decisions according to these digits. RADIX
SORT is a digital non-comparison-based sorting method.

Broadly speaking, sorting algorithms fall in two categories. The class of naive
sorting algorithms, the ones that occur first in a natural way to most people, is a class
of algorithms with ® (n?) running time? when they sort most inputs of size n and that
tend to have an average running time of order ®(n?). On close examination we re-
alize that naive algorithms do not effectively use information gained from the earlier
stages of the algorithm and may tend to perform redundant or repetitious tasks. Care-
ful parsimonious design that avoids redundancy can introduce a substantial reduction
in the order of magnitude of the running time of an algorithm, leading to an algo-

ZFor definition of the asymptotic symbols ©, O, 0, ~, and 2 see the appendix.
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rithm in the second class of parsimonious algorithms. We shall see shortly that the
best comparison-based algorithm must take at least Q(nInn) time3 on some input
of size n. That 1s, the best comparison-based sorting algorithm must take Q(n Inn)
time on its worst case of size n, or comparison-based sorting is inherently bounded
from below by Q(n Inn) for some input. There are practical algorithms that do take
O(nlnn) time on all inputs. A parsimonious sorting algorithm is one that possesses
an average running time that is of the order @(nInn). A parsimonious algorithm
performs on most inputs as the best comparison-based sorting algorithm would on
its worst-case instance.

Parsimonious algorithms are often recursive and use the paradigm of divide-and-
conquer, whereupon the list to be sorted is split into two or more segments according
to some splitting criterion, then the parts which are typically smaller than the input
list itself are recursively attacked individually. The process continues until very small
lists are considered (typically of size 1 or 0) for which the sorting task is trivial or
has a directly obvious answer. The solution to the original sorting problem is then
assembled by combining the solutions of the parts.

A sorting algorithm is called stable if equal elements in the raw data maintain their
relative position in the final sorted list. For example, if X5 = X727 = X47 are the only
keys equal to 18 in an unsorted list of integers, a stable sorting algorithm may move
X5 to position 3, X9 to position 4, and X47 to position 5. Stability is desired when
satellite information is present alongside the primary keys. For example, suppose
we have an alphabetically sorted list of passengers out of an international airport on
some day. When a stable sorting algorithm is applied to the flight number field of
the records, the alphabetical order is not disturbed within one flight; we get the day’s
activity sorted by flight numbers, and within each flight the passenger names will be
sorted alphabetically.

A desirable feature of a sorting algorithm is the capability to finish the job with-
out creating large secondary data structures to hold copies of the data at some stage.
Several algorithms discussed in this book are capable of sorting using only a chief
host container of data, such as an array. When performing on n data items, the sort-
ing task is accomplished by moving data around within the container, that is, making
swaps via a few additional intermediate swap variables (typically O (1) extra space).
Recursive sorting algorithms may set up a hidden stack of small size, typically aver-
aging to O(Inn) additional space. An algorithm that sorts a list of » items “in place”
without allocating data structures of size comparable to the list it is sorting—that is,
the secondary storage is no more than o(n) on average, is said to sort in situ.

EXERCISES

1.3.1 Study the algorithm of Figure 1.6 first. Is this algorithm comparison based?
Is it stable? Does it operate in situ?

3See the appendix for the convention for the base of the logarithm.
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1.4 ALGORITHMIC CONVENTIONS

We specify many algorithms in this book in pseudocode. It is essentially similar to
standard conventions of a pedagogical programming language, except that we occa-
sionally take the liberty of relaxing the syntax when convenient or more readable.
For example, exponential expressions like 2% are easier to read than the usual repre-
sentation by double asterisks or computation via logarithms. Most of such algebraic
symbolism is represented within pseudocode in standard mathematical notation. For
example, ceils and floors are inserted in our pseudocode and division in the form of
a two-level fraction, as in

a-t+b
c+d’

is preferred -to the parenthesized expression (a + b)/(c + d), because the former is
more readable and uses fewer symbols.

We also give a brief verbal explanation for each algorithm to make the material
accessible to nonprogramming readership of scientists, mathematicians, and engi-
neers.

The reader is assumed to be familiar, at least conceptually, with basic data struc-
tures such as arrays and linked lists. Data to be sorted will most of the time be as-
sumed to be already loaded in a typical array structure like the following:

global A: array [1 .. n] of real;

As an algorithm progresses with its tasks we shall often need to specify a partic-
ular stretch (subarray) on which the algorithm operates next. Such a subarray will
typically extend from a lower index £, to an upper index u. The convenient notation
Al€ .. u] will refer to this subarray (and to its content).

Arrays and subarrays will be depicted as vertical columns with lower indexes
near the top. Sometimes it is more convenient for the typography to depict an array
horizontally. In horizontal representation the lower indexes will be on the left.

Many sorting algorithms perform by swapping array elements. In the background
of sorting algorithms that need to swap data we shall assume the presence of a pro-
cedure

swap(x, y)

that interchanges the contents of the two variables x and y. A typical call in the
context of array sorting will be

call swap(Alil, ALj])

to interchange the data at positions i and j. Generally, the background swap proce-
dure will be assumed to be capable of handling whatever data type is being sorted.
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EXERCISES

1.4.1 Implement the sorting algorithm discussed in Section 1.7 on a computer.

1.4.2 Implement a swap procedure on a computer to interchange the content of two
variables.

1.5 ORDER

Central to the analysis of sorting and selection is the notion of partial order. We shall
briefly review the basic concepts of order. Let A and B be two sets. The Cartesian
product A x B is the set of all pairs {(a, ) |a € A and B € B}; anelementof A x B
is an ordered pair. A relation R from A to B is a subset of A x B. A relation from
A to A is simply called a relation on A and is thus a subset of A x A. Let R be a
relation on A. If (x, y) € R we say that x and y are related by R and in infix notation
we write x R y.

A relation < (commonly called less than or equal to) on a set A is a partial order
if the relation is:

(i) Reflexive, thatis,a < a,forall a € A.
(i1) Antisymmetric, thatis,a <bandb <aimplya = b, foralla, b € A.
(iii) Transitive, thatis,a < b and b < cimplya < ¢, foralla, b, c € A.

Two related elements a and b are said to be comparable (eithera < b, or b < a).
The notation a < b is called a true comparison when a < b is in the partial order.
For the comparable pair a < b, we use expressions like a is less than or equal to
b, a has a rank lower than b, a is below b, or a precedes b in the partial order, and
so on. Similarly, we often use expressions like b is larger or has rank higher than
a, b is above a, or follows a in the partial order. When two elements a and b are
not comparable, that is, neither a < b nor b < a is in the partial order, we say a
and b are incomparable. The set A and the ordering relation < together are called
a partially ordered set denoted by (A, <), also called a poset. A true comparison is
equivalent to an ordered pair and the partial order may be represented as a set of true
comparisons.

A partial order on the universe A is a rotal order, when every pair of the elements
of the universe are comparable. For example, the set of integers and the usual <
arithmetic comparison is a total order.

The following example illustrates several definitions discussed in the preceding
paragraphs. Suppose we have the universe {X|, ..., Xg}. The set of true comparisons

O=1{X;<X;li=1...,8U{X] <X, X| <X3, X <Xy, X =<Xs,
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18 a partial order on the universe and is a subset of the total order induced by indexing,
that is, the ordering relation X; < Xj wheneveri < j. If it is not known whether a
total indexing order exists, the partial order Q gives only partial information on the
relative ranking of some elements.

The goal of a comparison-based sorting algorithm on a finite totally ordered set
is to discover the total order. The algorithm does that by asking questions in steps.
Every step reveals more information and a larger partial order is attained. The sorting
process starts with the empty partial order, as there is no prior information available,
then goes on to build nested posets. The algorithm terminates when enough informa-
tion is gathered to construct the total order.

The set of minima in a poset P = (A, <) is the set

{a € A|the only elementin A that is <ais a};

a member in the set of minima is a minimum or minimal element. We similarly define
the set of maxima of P as

{b € A|the only element x € A satisfying b < x is b};

a member in the set of maxima is a maximum or maximal element.

Often a poset is very conveniently represented pictorially by a diagram of the
objects of the poset with an arrow going from a to b for any true comparisona < b
between two different elements a # b. (The self-loops corresponding to reflexivity
are usually not shown but implicitly understood.) As a visual aid to the essence of the
relation, the minima are drawn at the bottom of the diagram. Higher-ranked elements
usually appear in the drawing above lower-ranked elements of the poset. Figure 1.1
shows the partial order Q of display (1.3).

With every minimal element of a poset (A, <) there are associated chains of the
partial order, where each chain is formed by the following procedure. If a; € A is
a minimum, the chains starting at a| are formed by first formally writing the string
a;. Whenever ay, is at the rightmost end of a string a; < ay < ... < ag, and gy, is
below b1, ..., b; in the partial order, the string is cloned into j strings; the symbol
< is added at the right end of each clone followed by one of the elements by, ..., b;

X X/
\\\X// X
| |

Figure 1.1. A poset.
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this step in the process yields

ap <a»r < <ag < by,
ay <ay < <a; < by,
ay Say <. Zap < by

The rules apply recursively to every clone until it is no longer possible to add any
elements. Strings that are obtained by removing symbols from longer strings are then
discarded. Each remaining formal string is a chain that starts at a minimal element
and ends at a maximal element of the partial order. Together, the chains reflect how
much order is known. A total order has only one chain.

Finally, suppose A is a subset of some universal set §. The set A is said to be
compatible with a partial order (S, <), if whenevera < b, anda € Athenb € A.
Informally, if @ is a member of a chain and a € A, then all the elements of the chain
higher than a all the way up to the maximal element of that chain are in A. None of
the elements of A is known to be below an element from the complement set S — A.

To fix the ideas, let us consider again the partial order Q of display (1.3). The
set of minima of Q is {X;, Xg, Xg}. The set of maxima is {X4, X5, X7, Xg}. The
elements X, and X5 are comparable; but X| and X7 are incomparable. The chains
of Qare X| < Xy < X3 < X5, X| < X < X4, X¢ < X7, and Xg. The set
{X2, X3, X4, X5, Xg} is compatible with Q, but the set { X7, X5, Xg} is not.

The following lemma is important in deriving lower bounds on sorting and selec-
tion.

Lemma 1.1 A comparison-based algorithm for finding the jth order statistic must
implicitly determine the set of j — 1 items of lower ranks. Consequently the set of
n — j items of higher ranks is also determined.

Proof. We prove the lemma by contradiction. Suppose we have an algorithm that
finds the jth smallest in the data set {X, ..., X,} of distinct elements, without
determining the sets {X(j),....X(j—1} of smallest j — 1 order statistics and
{X(j+1ys---» X} of largest n — j order statistics. There are indexes k, £, and
m such that the algorithm does not know whether X3 = X¢ < X(j) = Xy, or vice
versa. No chain of the partial order discovered by the algorithm contains both X,
and X,,; the existence of such a chain would make Xy and X,, comparable. We can
then construct an ordering of the input, starting with a chain containing X,,. In this
chain let a < X, be the last element that is known to be below X, and let b be the
first element known to be above Xy such that X,, < b; one or both of the elements a
or b may not exist. In a manner consistent with the partial order, we can complete a
linear order by first inserting Xy anywhere between a and b. (If @ does not exist and
h does, we can place X, anywhere below b. Similarly, if b does not exist and a does,
we can place X, anywhere above . If both do not exist we are at liberty to put X
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anywhere as we completely lack any information on its relative rank in the chain.)
Specifically, we insert X; nextto X,,, which is presumed to be at position ;. The rest
of the elements not already in the chain are then added in any way consistent with
the partial order. Transposing X, and X,, changes the position of X,, in the listing,
but remains to be an ordering consistent with the partial order. This uncertainty of
the position of X,,, supposedly the jth smallest in the final linear order, contradicts
the assumption that the algorithm has identified the jth order statistic. [ ]

EXERCISES

1.5.1 Lettheset A = {2,3,4, ...} be partially ordered by divisibility—for x, y €
A, the ordered pair (x, y) is in the partial order if x divides y. What are the
minima of A? What are the maxima of A? What are the chains of the poset?
Is the set of odd numbers in A compatible with the partial order?

1.6 BINARY TREES

The binary tree is a hierarchical structure of nodes (also called vertices) that underlies
many sorting and other combinatorial algorithms. The nodes of the structure are
arranged in levels. The level count begins at 0. The only node at level O is called the
root node. A node may have up to two nodes above it (viewed as children) that are
put on the next level—a node (also viewed as a parent) may have no children, one
left child, one right child, or two children (one left and one right). The children of a
node are joined to their parent by links called edges or branches. It is customary to
represent the tree by a drawing in which nodes are black bullets or circles of various
sizes to illustrate different purposes, and edges are straight lines. The depth of a node
in the tree is the node’s distance from the root, that is, its level.

Historically trees are drawn upside down with the root at the top of the drawing.
We adopt this convention in this book. If a tree has n nodes we say it is of size or
order n. Figure 1.2 shows an example of a binary tree of size 8. We shall continue
to use this historical convention; nevertheless, the language of the text will more

Figure 1.2. A binary tree on § nodes.
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closely comport with the growth direction of natural trees—the root is at the bottom
and tracing a path starting from the root is a process of moving “up” in the tree or
climbing it, etc.

It is sometimes useful to think of the binary tree structure in terms of the following
inductive definition. A binary tree is either empty, or has two substructures (called
subtrees) distinguished as a left subtree and a right subtree, with the left and right
subtrees both being binary trees. The collection of nodes in the subtree rooted at
a node (excluding the node itself) is referred to as its descendants. By a parallel
terminology, the collection of nodes encountered by climbing down a path from a
node to the root of the whole tree is the node’s ancestors or predecessors.

Often the parent-child links in a binary tree are given an orientation with sense
leading from parent to child. Thus each node has only one link leading to it, or the so-
called indegree is 1 for each node (except the root, whose indegree is 0). Each node
may have up to two edges emanating out of it leading to its children. The number of
edges coming out of a node is called the outdegree of the node. The outdegree of any
node in a binary tree is at most 2. Level 1 can have up to two nodes; level 2 can have
up to 4 nodes, and so forth. The maximum number of nodes that can appear on level
i is 2. If level £ has 2¢ nodes, we say that this level is saturated. The root is at the
lowest level (level 0). As we climb up the branches of the tree moving away from the
root we move toward higher levels (further down in the inverted drawing).

It is very helpful in many analyses to consider an extension of a binary tree. The
extended binary tree is obtained by adding to each original node, 0, 1, or 2 children
of a new distinct type (called external nodes or leaves) to make the outdegree of
all the original nodes (now called internal) exactly equal to 2. Figure 1.3 shows the
extension of the tree of Figure 1.2, with internal nodes shown as bullets and leaves
as squares.

The extended tree has a number of properties that will be of great use in the
analysis of sorting algorithms and will be frequently encountered later in this book.
These are invariant properties that are true for all trees of a given size regardless of
their shape. We discuss these properties in the following definitions and propositions.

Figure 1.3. An extended binary tree on § internal nodes.
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Figure 1.4. A complete binary tree on 8 nodes.

When all the levels of a tree, except possibly the highest level, are saturated, we
say the tree is complete. The tree of Figure 1.2 is not complete, whereas that in
Figure 1.4 is. Furthermore, when all the leaves appear on the same level the tree
is said to be perfect. The complete tree is so termed because its extension has no
“holes” in the levels containing only internal nodes; all these levels are saturated.

The height of a binary tree is the length of the longest root-to-leaf path in the tree.
So, the height is also the level of the highest leaf. The height of a binary tree T,, on
n nodes is denoted by A (7},) or simply A, when it is understood which tree is being
considered.

Proposition 1.1  The height h,, of a binary tree on n nodes satisfies:

[lgn + D] < by < 1.

Proof. The upper bound is trivial. The given tree is at least as high as a complete tree
on n nodes; see Exercise 1.6.3. The complete tree is an instance of the lower bound.
Letting /4 be the height of the complete tree, we have just argued that 4} < h,,. In
a complete binary tree of height A, levels 0, 1, ..., A} — 2 are saturated, and there
are internal nodes on level 4} — 1, and no internal nodes on any higher levels:

1424 4202 cp<1 424 421
or
2=t <1 < 2P
Taking base-two logarithms:
hr—1<lgn+1) <hj.

However, 4 must be an integer. So, ) = flg(n + 1)-,. u

Proposition 1.2  An extended binary tree on n internal vertices has n + 1 leaves.
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Proof. Let L, be the number of leaves in an extended tree with n internal nodes. The

tree has a total of n + L, nodes. Every internal node has two children (may be both

internal, both external, or one of each). Thus the number of nodes (of any type) that

are children is 2n. Except the root, every node in the tree is a child of some parent.

Therefore another count of the childrenisn + L, — 1. Equating the two counts:

n + Ln - 1 = 2”,
and so

Ln:n+1. | |

Suppose the internal nodes of a binary tree 7,, on n nodes are labeled 1, ..., n in
any manner. Let ¢; be the level of node i. The internal path length is defined as

I(Ty) =) ¢
j=I

Analogously, suppose that the leaves of the same tree are also labeled 1, ..., n + 1
in some arbitrary manner, and that their corresponding depths in the tree are
di, ..., dy41. The external path length is defined as
n+l
X(Ty) =Y _dj.
et

When it is understood which tree is considered we may use simpler notation for
I(T,) and X(T,) such as I,, and X,. The internal and external path length play a
major role in modeling the cost of sorting under many algorithms. They are related
by the following.

Proposition 1.3  Ler I, and X, be the internal and external path lengths of a binary
tree of size n. Then

Xn - Ill +2I’l.

Proof. We prove this proposition by induction on n. At n = 1 the statement obvi-
ously holds. Suppose the statement is true for some n > 1, and T},4 is a tree of size
n + 1, with internal and external path lengths 7,4+ and X, respectively. There is
at least one internal node u whose two children are external. Remove u and the two
leaves above it. Replace u with an external node. This operation transforms 7}, into
anew binary tree T, of size n. Let I,, and X, be the respective internal and external
path lengths of 7,,. Suppose the level of u in T}, is £. There are two corresponding
leaves in Ty, at level £ + 1 that are lost in the transformation from 7,1 into T},.
The loss of these two leaves reduces the external path length by 2(¢ + 1), whereas
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the gain of a new leaf in 7,, at level £ increases the external path length by £. Thus,
Xpr1=Xn+2042 - 4.

By the induction hypothesis X, = I,, + 2n. Therefore,
Xpr1 =1L +2n+ 204 2.

The transformation from 7,4 to T}, also reduces the internal path length by £:

In+1 == In +£.

So,

Xp+1 = Iny1 +2(n+ 1),

completing the induction. [ ]

A binary tree is called a binary search tree when its nodes are labeled in a spe-
cial way to satisfy a search property. Any data type may be assumed for the labels,
with integer, real, and character strings being the most common in application. The
labeling set must be a totally ordered set, that is, any two elements x and y can be
compared by an ordering or a ranking relation denoted by <. For numeric labels <
has the usual arithmetic meaning of less than or equal to; for strings it means lexico-
graphically less than or equal to, etc. The labels are attached to the nodes so that each
node receives one label and all the labels in the left subtree are less than or equal to
the root label and all the labels in the right subtree are greater than the root label;
this property then propagates to every subtree. In other words, we have a recursive
definition of binary search trees: A binary search tree is either empty or

(a) All the labels in the left subtree are less than or equal to the root label.
(b) All the labels in the right subtree are greater than the root label.
(¢) The left and right subtrees are binary search trees.

A binary search tree is built from a sequence of data items from an ordered set, the
set of numbers say, by allocating a node as the root and attaching the first number as
its label. The second number is compared to the root label; if it is less than or equal to
(greater than) the root label, it is guided to the left (right); a node is allocated to hold
it and linked as a left (right) child of the root. The process repeats on subsequent
keys in the same manner. To insert a key a comparison is made at the root; if the
key is less than or equal to (greater than) the root label, the key is inserted in the
left (right) subtree recursively until termination at an empty tree. That is where the
key is adjoined to the tree by allocating a new node to hold the key and linking it
as a left (right) child of the node involved in the last comparison before termination
according as the key is less than or equal to (greater than) the content of that last
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1/6 1/6 1/3 1/6 1/6
3 3 2 1 I
2 I 1/\3 3 2
1 2 2 3
3,21 (31,2 8;?; (1,3, (1,2,3)

Figure 1.5. Random binary search trees and their probabilities.

node. Figure 1.5 illustrates all binary search trees of order 3 built from a permutation
of {1, 2, 3}. The top row of numbers lists the probabilities, and the bottom row shows
the permutations corresponding to each tree.

Several models of randomness may be imposed on binary trees. The model most
relevant to the use of binary trees as data structures and as an analysis tool for many
sorting algorithms is the random permutation model. In this model of randomness,
we assume that all n! permutations of {1, ..., n} are equally likely. These permu-
tations are therefore called random permutations (discussed in some detail in Sec-
tion 1.10). A tree is then built from a random permutation. Binary search trees are
not equally likely under this model of randomness. That is, the uniform model on
permutations does not induce a uniform probability distribution on binary search
trees. For example, there are six permutations of {1, 2, 3} of which four permuta-
tions correspond to four linear or zig-zag shaped distinct binary search trees each
having probability %; but the two permutations (2, 1, 3) and (2, 3, 1) give the same
perfect tree (which has probability 1/3) as illustrated in Figure 1.5 by the top row of
numbers. Unless otherwise explicitly stated, the term random binary search tree will
refer to a binary search tree grown by the successive insertion of the elements of a
random permutation.

The number of descendants of a node in a random binary search tree is instrumen-
tal in modeling some sorting algorithms. We shall derive next the distribution of the
number of descendants of the node of a given rank in a random binary search tree.

Proposition 1.4 (Lent and Mahmoud, 1996a). Let Sf-") be the number of descen-
dants of the node labeled with j in a binary search tree grown from a random per-
mutation of {1, ...,n}. Fork =0,...,n =2,

Prob(s™ =k} = a + 2b
b = A Dk k+Dh+ DGk 13

with a and b given by
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a=0, b=k+1, ifk<min{j —2,n—j—1};
a=1, b:_}—l, lf}—lSkSI’l—j—l,
a=1, b=n-—], ifn—j<k=<j-—2;

a=2, b=n—-k-2, ifmax{j—1l,n—j}<k<n-2.

Furthermore

Pmb{sg") —n—1)=-.

Proof. The event {Sj(.") = n — 1} is the same as the event {j appears first in the
permutation}, which has probability 1/#.

We find the probabilities for the rest of the feasible values of k,ie.,k =0, ...,
n — 2, by counting the number of permutations giving binary trees in which the node
labeled with j has k& descendants. We shall construct a permutation IT of {1, ..., n}
that gives rise to a tree with exactly k£ descendants of j. As in exercise 1.6.7, in such
a permutation the subtree rooted at j must contain k + 1 consecutive integers, say

x,x+1,...,x + k, and j is one of these integers. According to the same exercise,
all the descendants must lie after j in IT and whichever of the two numbers x — 1,
X + k + 1 is feasible (in the set {1, ..., n}) must occur before j in IT.

Consider first the case when k is small enough and j is not too extremal so that
x — 1 and x + k + 1 are both feasible, thatis, k < j —2andk < n—j — 1.
We can reserve k + 3 positions in IT for the integers x — 1, ..., x 4+ k + 1. These
positions can be chosen in (ki}) ways. Place j at the third reserved position, put
x — 1 and x + k + 1 at the first two reserved positions (in two ways), and permute the
numbers x, ..., j—1, j+1,..., x +k over the last k reserved positions in k! ways.
To complete the construction of I1, permute the rest of the numbers (not in the set
{x—1,..., x+k+1}) over the unreserved positions. So, the number of permutations

that give k descendants of j, with a fixed x being the smallest such descendant, is

2
T EF DRI DG

(ki3>xlx2xk!x(n—k—3)! (1.4)

The integer x can be any of the numbers j —k, ..., j; there are £ + 1 such choices.

As we have a total of n! permutations,

2

Pl’Ob{j has & descendants} = m

We shall consider a similar construction for the case when & exceeds j — 2 but is

not large enough for j + k + | to exceed n (that is, x — | may not be feasible). We
consider again a set {x, ..., X + k + 1} including j to be in the subtree rooted at j.
By the condition j + k + | < n, the integer x +k + | is always feasible. The integer
x — 11is feasible only if x > 2. Each of the j — | choices x = 2,3, ..., j givesus a

number of permutations given by (1.4). Here k is large enough for the particular set
{L,.... k} to be considered in the construction. With x = I, the number x — | is not
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feasible (but x + & + 1 is). A counting argument similar to that which led to (1.4)
oIves

1
( " >><1><1></<! Xk = I
k+2 (k+ 1)(k+2)

permutations in this case. It follows that

1 2 =D

Prob{j has k descendants} = + .
U b=y T ar ke )

The two other cases are when x — 1 is feasible but x + & + 1 may not be, and the
case when both x — I and x + k£ 4+ 1 may not be feasible. These cases are argued
symmetrically. -

EXERCISES

1.6.1 In terms of levels, where are the leaves of a complete binary tree of size n?

1.6.2 Show that the number of leaves on level [lg(n + 1)] in a complete binary tree
of size n, is 2(n + 1 — 2L187)),

1.6.3 Show that any binary tree is at least as high as a complete tree of the same
size. (Hint: Argue carefully that if the given tree has unsaturated levels, we
can transfer nodes from higher levels to fill the holes until it is no longer
possible.)

1.6.4 Suppose the n + 1 leaves of a binary search tree are numbered 1, ..., n + 1
from left to right. Prove that the insertion of a new key into this tree falls at
the jthleaf, j = 1,...,n + 1, if and only if the new key ranks j among all
the data items in the new tree.

1.6.5 Let Sj(.") be the number of descendants of the node labeled with j in a ran-
dom binary search tree constructed from a random permutation of {1, ..., n}.
Show that

E [S;-n)] =Hy_j+1+Hj -2,
and

2
E [(S;")) ] =2n+ DH,p1 +2n+ 2] ~2n — 7)Hn—j+2

3 3
_ (2 : 10 .
2j +5)Hjp1 + et T

1.6.6 Let D(") be the depth (number of ancestors) of the node labeled with
in a mndom binary search tree constructed from a random permutation of
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{1, ..., n}. Show that Df.") has the same average as the number of descen-
dants of the node labeled j, even though it has a different distribution.

1.6.7 (Devroye, 1991) Let I1,, be a permutation of {1, ..., n} and let T}, be the tree
constructed from it. Prove that the following two statements are equivalent:
(a) the subtree rooted at j consists of nodes labeled with the numbers d| <
< di1-
(b) Let D be the set of consecutive integers {d;, ..., dg+1} < {l,...,n}.
The set D includes j and all its other members follow j in I1,;ifdj~1 €
{1,...,n},1itprecedes j in [1,, and if dp+1 + 1 € {1, ..., n}, it precedes
JinIT,.

1.6.8 Show that the external path length of any binary tree of order n is at
least nlgn.

1.6.9 The m-ary tree is a generalization of the binary tree. An m-ary tree is either
empty, or has a root and m subtrees distinguished by their position under the
root; in turn the m subtrees are m-ary trees. Generalize Propositions 1.1-1.3
to m-ary trees.

1.7 DECISION TREES

A comparison-based sorting algorithm can be modeled by a labeled binary tree,
which we shall call the decision tree, in the following way. Assume as before that
the sorting method is to be applied to the list

X1, X2, ..., X

Suppose the sorting method makes the first comparison between X; and X ;. This
first comparison is represented by the root node of a binary tree. The root carries the

label X; ; X ;. There are only two outcomes for the first comparison: either X; < X;
or not. The sorting method may have a different potential routine to follow for each
outcome. For example, the algorithm may decide to compare the pair (X, X,,), if
X; < X, and alternatively check (X, X;), if X; > X ;. The potential continuations
are represented by two internal nodes at level 1 in the binary tree (thus, the two nodes

?
are children of the root): a left child labeled X, < X,, (corresponding to the outcome

)
Xi < Xj),anda right child labeled X < X, (corresponding to the alternative out-
come X; > X ). The construction of the tree continues in this fashion—with up to
four nodes at level 2, each node represents a possible outcome of the second com-
parison, then up to eight nodes at level 3, each representing an outcome of the third
comparison, and so forth. Each node in this construction represents a comparison of
a pair {X;, X ;} and carries this information as its label.

As we climb up a path in the tree, after a node u at level & is reached and the query
therein is carried out, X 4+ | queries have been made with each query of the form of a



Decision Trees 19

X1 X3X2|| X3 X1 X2[| X2 X1 X3(| X2 X3 X

Figure 1.6. The decision tree of an algorithm for sorting three items.

comparison of a particular pair of entries in the list. After these Kk + 1 comparisons,
if a certain outcome (say the branch corresponding to less than or equal to (greater
than)) provides enough information to sort the list, the sorted list labels an external
node attached as a left (right) child of the node .

As an example, consider the following set of queries to sort a list of three elements
X1, X2, X3. We begin with the comparison of X| and X7 (the root node). If X| <
X2, we proceed with comparing X2 to X3 (we go left in the tree to level 1 where

a node represents the query X2<X 3). If the latter query is true, we realize from
combining the two queries by the transitivity of the relation < that X| < X, < X3,
completing the sorting task. This is represented by an external node labeled with the
ordered list X | X,X3; see Figure 1.6. On the other hand, if X, < X3 turns out to be
false, we do not have enough information to make an inference about the relationship
between X| and X3; we only know that X» is the largest element among the three.
One additional question must be asked to determine the relative order of X and
X3; each outcome is sufficient to decide the sorted list; each outcome is represented
by a labeled leaf. Mirror-image queries give a symmetric right subtree as shown in
Figure 1.6.

An algorithm that works for arbitrary n defines a family of decision trees
D1, Dy, . ... Each root-to-leaf path in D, represents the action the algorithm takes
on a particular input of size n, that is, the series of queries the algorithm performs on
that input. The height of D, represents the worst-case performance of the algorithm
on any input of size n.
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Selection algorithms can be modeled by decision trees, too. These trees may be
constructed in the same way as sorting decision trees; the only difference is that
the leaves of the tree are labeled by the group of order statistics requested from
the algorithm. For example, suppose we want to find the maximum among three
elements. We may use an algorithm derived from that of Figure 1.6 which sorts three
elements. The maximal selection algorithm terminates as soon as enough questions
have been asked to identify the maximum and a leaf containing the maximal data
element is adjoined to the tree. Figure 1.7 shows the decision tree of this maximal
selection algorithm. Note that this is not a worst-case optimal algorithm. By changing
the question we ask in the case of a negative answer to our first query, we can obtain
the worst-case optimal algorithm of Figure 1.8.

In the decision tree of any complete or partial comparison-based sorting algo-
rithm, every node induces a partial order reflecting how much information has been
gathered in climbing up the tree starting at the root. For instance, in any decision tree,
the root corresponds to the trivial reflexive partial order {X| < X1, X2 < X5, X3 <
X3}; no useful information is available prior to climbing up the tree. In the tree
of Figure 1.7 the underlying universe is {X|, X2, X3}. The root’s right child corre-

4
sponds to the partial order {X| < X1, X2 < X5, X3 < X3,X2 < X}, as X1<X>
is the only question answered negatively prior to reaching that node; the rightmost
leaf labeled with X corresponds to the partial order {X| < X1,Xy < X5, X3 <
X3, X2 < X1,X3 < X5, X3 < X1}. This partial order is sufficient to claim X as
the maximum.

IA

X3

X3 X

Figure 1.7. The dccision tree of an algorithm for finding the maximum of three numbers,
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Figure 1.8. The decision tree of an optimal algorithm for finding the maximum of three numbers.

EXERCISES

1.7.1 Devise an iterationless algorithm to find the minimum of four numbers by
making only a series of pair comparisons. Illustrate your algorithm by draw-
ing its decision tree.

1.7.2 What partial order corresponds to a leaf of a decision tree of a complete
sorting algorithm?

1.7.3  What is the minimum height of the decision tree of any comparison-based
sorting algorithm for n keys?

1.7.4  Choose a leaf in the decision tree of Figure 1.6 and determine the partial order
induced by every node on the path from the root to that leaf.

1.8 BOUNDS ON SORTING

This book takes a distribution point of view of sorting. It is therefore of interest to
identify lower and upper bounds on sorting algorithms so as to put in perspective the
range of a random variable associated with a particular sorting algorithm.

In the analysis of algorithms one should be aware of the distinction between the
analysis of a specific algorithm for a problem and the complexity of the problem
itself, which is a statement about the best algorithm in the whole class of possi-
ble algorithms for that problem. For example, while we shall consider some © (n%)
comparison-based sorting algorithms, the complexity of sorting by comparisons is
®(n Inn), as we shall demonstrate in the following subsection by the existence of a
universal lower bound Q2 (n1nn), and by the existence of comparison-based sorting
algorithms upper bounded by O (n In n), with detailed proofs in later chapters.
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1.8.1 Lower Bounds on Sorting

Let W, be the worst-case number of comparisons needed to sort an input sample
of size n by some comparison-based sorting algorithm. That is, W,, is the largest
number of comparisons the algorithm uses on any input whatever of size n.

We assume our algorithm does not ask any redundant questions, that is, when a

0
node v labeled with the query a < b is reached in the decision tree, this query did
not appear before as a label for any node on the path from the root up to v’s parent; a
and b are not comparable in the partial order induced by v. (Obviously, an algorithm
with redundant queries will have more comparisons than one without; the desired
lower bound can be established by considering only the class of comparison-based
algorithms without redundancy.)

There are n! possible permutations of the ranks of any given sample from an
ordered set. The task of sorting is to determine which of these n! permutations of
ranks is at hand. Each of the n! permutations is the left-to-right sequence of indexes
of the data items contained in a leaf of the decision tree representing the algorithm;
there are n! leaves. According to Proposition 1.2, the decision tree has n! — 1 internal
nodes. The height of the decision tree then represents the number of comparisons of
data pairs to determine a permutation corresponding to a leaf at the highest level in
the tree; that is, W), is the height of the decision tree. In view of Proposition 1.1, the
height #; of a tree on k nodes is bounded from below by

hy > (gl + 1),
Hence for the decision tree of our sorting algorithm

Wy = hpi—
> [lgn!]
> lgn!. (1.5)

The logarithm can be approximated accurately by Stirling’s asymptotic formula:
n\”n 1
n!=+2nn (—> (1 + O(—)).
e n
Applying the standard calculus inequality
In(l1 +x) < x, for x > 0,
to Stirling’s asymptotic form of the factorial, we get
n 1 |
| =nlgn— =+ > lgn+1gv/27 +1g(] +0(+))
lgn!l=nlgn 1n2+2 gn+lg g -

n 1 1
— —_— — ¥ ¥ - . 1.6
=nlgn ln2—|—2lén+lg\/2ﬂ+0(n> (1.6)
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Hence, by (1.5),

n | |
Wy>nlgn— — 4+ -lgn+lgVv2r + O(—).
In2 2 n
The algorithm considered in this discussion is an arbitrary comparison-based algo-
rithm. We thus have the following important result.

Theorem 1.1 Any comparison-based algorithm must make at least [lgn!] =
Q(nlnn) comparisons on at least one input instance of size n.

This lower bound on sorting has been common folklore in the literature of infor-
mation theory since the 1940s. It was probably first popularized into the literature of
sorting in Knuth (1973).

According to Theorem 1.1, each of the many possible comparison-based sort-
ing algorithms will experience 2 (n In n) on some input of size n. There are practical
comparison-based algorithms like MERGE SORT that actually make O(n1nn) com-
parisons on any input of size n. Thus, we expect that there may exist a worst-case
optimal comparison-based algorithm that sorts all inputs of size n in O(nlnn). Ac-
cording to Theorem 1.1, such an optimal algorithm must also experience Q2 (n Inn)
on some input. A worst-case optimal algorithm achieves the theoretical lower bound
and sorts in ® (n Inn) on its worst instance of size n.

It is important to understand that Theorem 1.1 is a statement concerning the com-
plexity of comparison-based algorithms only. It is a statement on the worst behavior
of any (including the best possible) comparison-based algorithm, and not on the com-
plexity of sorting at large. Some algorithms like RADIX SORT use some other basic
operations on the digits of data to accomplish the task of sorting. Theorem 1.1 does
not apply to such algorithms. Indeed there are sorting algorithms that are not entirely
comparison based and take o(n Inn) time. For instance, INTERPOLATION SORT
hag behavior that is asymptotically linear in n.

A lower bound on the average number of comparisons for a comparison-based
sorting algorithm is amenable to similar considerations.

Theorem 1.2 Any comparison-based sorting algorithm requires S2(nlgn) com-
parisons on average.

Proof. Consider a comparison-based sorting algorithm and its decision tree T,. Let
Ay, be the algorithm’s average number of comparisons, taken over all equally likely
input permutations. As discussed at the beginning of this section, 7, has n! leaves,
one corresponding to each input permutation of input ranks. Let the n! leaves of T,
be labeled in any arbitrary manner. The enumeration of leaves is also an enumeration
of the permutations, with I1; the permutation associated with the jth leaf. If the jth
leaf is at depth d; in the decision tree, the permutation IT; requires d; comparisons



24 Sorting and Associated Concepts

by the algorithm. The algorithm’s average number of comparisons is

n! n!

1 1
An = ;derob{nj} = ;dj =~ X(Ty),

where X(7,) is the external path length of the decision tree. According to Ex-
ercise 1.6.8, the decision tree’s external path is at least n! lgn! long. Therefore,
A, > lgn!. The proof is completed by the asymptotic development via Stirling’s
formula as in the transition from (1.5) to (1.6). ]

1.8.2 Upper Bounds on Sorting

Theorem 1.1 gives a good benchmark for measuring the efficiency of a comparison-
based algorithm. If for, example, a comparison-based algorithm always takes © (n?)
on any input of size n, the algorithm is not efficient, and even if the algorithm has
other advantages, its use may be recommended only for small or moderate-size files.
If a comparison-based algorithm makes cnlgn + o(nlnn) on most inputs of size
n, for some small constant ¢ > 1, the algorithm is considered quite good. For-
tunately there are several practical comparison-based algorithms that achieve an
average behavior of ®(nlgn), with cnlgn + o(nlnn) behavior on most inputs,
and an occasional worse behavior on some rare inputs. For example, at the ex-
pense of space, MERGE SORT al/ways makes nlgn + O(n) comparisons, whereas
the in-situ QUICK SORT has an average of 2nlgn + O(n), with ®(n?) behavior
on some bad inputs. The existence of algorithms like HEAP SORT and MERGE
SORT with O(nlnn) behavior for all inputs of size n shows that the complexity
of comparison-based sorting algorithms is O(nIn n). This together with the lower
bound of Q(nlnn) of Theorem 1.1 shows that the complexity of sorting by com-
parisons is ©(n Inn). Detailed discussion and proof of the upper bound O(n Inn)
for HEAP SORT and MERGE SORT and other related results will be found in later
chapters of this book.

EXERCISES

1.8.1 Isthe algorithm discussed in Section 1.7 for sorting three numbers worst-case
optimal?

1.8.2 Interpret the following situation in the light of Theorem 1.1. A sorting algo-
rithm first runs a scan on the input to check whether the input of size n is
in increasing order or not. The scan obviously takes n — 1 comparisons. If
the input is in increasing order, the algorithm announces its completion and
leaves the input intact claiming it is sorted. If the input is not in increasing
order, the algorithm switches to some standard comparison-based algorithm.
Does not such an algorithm take n — | comparisons on some input?
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1.8.3  (Demuth, 1956) The lower bound W,, > [lgn!] suggests that there may be
a worst-case optimal comparison-based algorithm to sort 5 elements with
at least [1g5!T = 7 comparisons on some input. Design an algorithm that
takes at most 7 comparisons for all 5-element inputs. (Hint: After enough
comparisons are made to rank any three elements, try to compare the other
elements with “middle” data.)

9
1.8.4 Suppose a sorting algorithm’s decision tree contains the query a<b occur-
ring more than once on some root-to-leaf path. Argue that there is a derived
algorithm that runs faster on average.

1.9 BOUNDS ON SELECTION

The problem of selection has its inherent limitations, too. For a long time it was
believed that the complexity of the selection of the ith item in a list of size n by
comparisons is 2 (n In n). The rationale underlying this belief was based on the view
that for general i no good algorithms other than complete sorting then picking the
clement that lands in position i were known until the 1970s. In the 1970s a num-
ber of ingenious designs were considered to show that the selection of the ith item
from among n items can take place in O(n) time. The first of these designs was de-
vised by Blum, Floyd, Pratt, Rivest, and Tarjan in 1973. Algorithms that select the
ith item were devised to achieve the selection in time bounded from above by ¢;n,
for some constant ¢; > 0 that depends on i. Since the 1970s research concerning the
development of algorithms with lower constants occupied a central position in the
attention of computational sciences. For example, the first upper bound of 5.43n by
Blum, Floyd, Pratt, Rivest, and Tarjan (1973) on the complexity of median finding
by comparisons was improved to about 3n in Schénhage, Paterson, and Pippenger
(1976) and more recently to 2.95r in Dor and Zwick (1996a). Though these im-
proved algorithms are very interesting from a theoretical point of view they may
not be particularly practical because of the intricacy of their design and their large
overhead. We shall discuss a couple of such algorithms in a later chapter.

On a parallel research axis, various techniques of mathematical proof were de-
vised to argue lower bounds and improvements therein. Clearly, partial sorting by
comparisons must subject each of the n elements to some comparison, and the com-
plexity of the selection of the ith item from among n keys by a comparison-based
algorithm must be at least [n/2] = Q(n). After the discovery of O(n) comparison-
based selection algorithms for all inputs of size n, the only remaining question in
determining the lower bound now concerns the constant in the (n) lower bound.
Such a constant depends on i, the rank of the selected item. Extensive literature on
various interesting results and proof techniques concerning specific ranges of i is
available. For example, there are exact results for several small fixed values of i stat-
ing a lower bound on the exact number of comparisons taken by some algorithm
provably known to be worst-case optimal. There are asymptotic results for fixed i, as
n — oo. There are asymptotic results on i = |an]. for constant 0 < o < 1: most
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of the research along this direction particularly concentrates on lower bounds for the
median and quartiles. There are results on uniform bounds for all ;. Such uniform
bounds may not be the best possible in given ranges of i. There are also algorithms
for upper bounds and arguments for lower bounds for the companion problem of
finding a subset of keys of given ranks among a list of size n.

It is not our intention to present every known lower bound for every range of i;
this may require a separate volume by itself as some of these proofs work by literally
considering hundreds of cases. We intend only to present snapshots of some lower

bound proof techniques—each snapshot is chosen to illustrate either a simple result
or an interesting technique.

1.9.1 Lower Bounds on Selection

Among the proof techniques that were devised for establishing lower bounds on the
selection problem are techniques based on the analogy with tournaments, adversary
arguments, and techniques based on decision trees. We shall review each of these
techniques in the context of a particular selection problem in this subsection.

The area of bounds on selection continues to thrive as an exciting area of re-
search because many natural questions have not yet been completely answered. The
complexity of complete sorting by comparisons, whose leading term is nlgn, is
considered to be satisfactorily determined because of the universal lower bound of
Mgn!l = nlgn + o(nlnn), and the presence of algorithms (like HEAP SORT) in
this class that take n lgn + o(n Inn) comparisons on any input of size n. Unlike this
state of affairs in complete sorting, in several selection problems there are gaps be-
tween the known lower and upper bounds. For example, today the best known lower
bound on median selection by comparisons is about 2n, and the best known upper
bound is about 3n. This gap leaves room for speculation by curious minds. It is pos-
sible for the lower bound to come up and for the upper bound to come down. Some
believe the correct complexity of median selection by comparisons will turn out to
be somewhere in between these two bounds, that is, around 2.5x.

Selection of the largest number in a set of n numbers is analogous to determining
the winner of a tournament of some sporting event (like tennis) with n contenders.
The players have inherent strength and the pairings of the tournament (analogous
to the comparisons of a ranking algorithm) should decide the best player. Obviously,
every player except the winner must lose at least one match against some other player
and no two players may lose simultaneously. This forces at least 7 — 1 matches. In the
language of sorting algorithms, at leastn—1 comparisons must be made to determine
the largest number. The simple-minded algorithm for finding the maximum by a
linear scan takes n — | comparisons, and this cannot be improved as we have just
discussed. Hence, the linear scan algorithm is optimal.

Finding the worst case for a comparison-based algorithm for the second best in
the tournament has been an enduring challenge in the twentieth century, with his-
tory going back to concerns voiced by Lewis Carroll in the late ninteenth century
on the organization of tennis tournaments. Today, the standard practice in major
tournaments, such as the Wimbledon Tennis Tournament and soccer’s World Cup,
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uncquivocally qualifies the best player or tcam (assuming transitivity of the relation
“petter than™). However, not enough guarantees are built into the ladder system of
these tournaments to guarantee the fairness of the second, third, and lower prizes.
IF'or example, if the best tennis player meets the second best at the first match in a
single-elimination ladder tournament, the second best is eliminated and the best will
march victoriously from match to match all the way to the final to defeat a player
ranked lower than second. This other player receives the second prize according to
modern organization of tournaments.

The complexity of the number of comparisons (matches) for second number
(player) was found in two stages: determining a lower bound (worst number of com-
parisons for the best algorithm) and then an upper bound (number of comparisons
taken by the best algorithm for all inputs). The two bounds coincide giving an exact
result!

Finding the second best in a tournament is equivalent to determining a player
who can beat all the other players except one, and must lose against that one (the
best). In finding the second best, any algorithm must also find the best; as stated
in Lemma 1.1. This requires at least n — 1 matches. Suppose the algorithm’s work
for finding the best and second best among n players pairs the eventual champion
against k < n — | contenders. We shall argue in the next lemma that & is at least
[lg n], providing a key point for the lower bound on the complexity of finding the
second largest in a list of n numbers by comparisons.

The proof of the following lemma uses an adversary argument. We shall discuss
the essentials of this kind of argument in the next few paragraphs before considering
the special adversary argument for the selection of the second largest.

The adversary is an opponent of an algorithm who is always determined to chal-
Icnge the algorithm to do a lot of work. The adversary (also called the oracle in some
books) does that by contriving a special input that she thinks is particularly bad for
this algorithm. For instance, an adversary for a sorting or selection algorithm may try
to choose an input that corresponds to the longest path in the decision tree. A perfect
adversary is always able to do that for any algorithm. She will then be able to make
a correct estimate of the lower bound on all the worst cases of all the algorithms
in the class. Adversaries are not always perfect and may not be able to identify the
longest possible path in the decision tree of every algorithm in the class. By simpler
arguments, less perfect adversaries may still be able to find paths that are nearly the
longest in every decision tree given to them. They will thus still be able to identify
lower bounds, but perhaps not the sharpest.

It is perhaps best to describe an adversary by an example from pattern recognition
games. One popular such pattern recognition game is the two-player game of Master
Mind, where a player chooses and hides a pattern consisting of a linear arrangement
of four objects. Each player can have one of six colors: Blue (B), Green (G), Purple
(P), Red (R), Yellow (Y), or White (W). For example, this player may choose the
pattern

R Y w w. (1.7)
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The other player’s role is to recognize the given pattern in the least possible number
of queries. A query is a guess on the hidden pattern. The first player is obliged by
the rules of the game to truthfully answer a query, indicating the number of hits
(objects identified by the second player with correct colors and position) as well as
the number of near hits (objects identified only by the color, but out of position). For
example, if the second player’s first guess is the arrangement

R B B Y,

the first player must answer that the guess hit one position (no obligation to say
which position), the leftmost red object in this case, and that there is one near hit
(the yellow object). The second player takes the information (one hit and one near
hit) and tries to come up with a closer guess, and so on until she eventually gets the
hidden pattern (in the official game, there is a limit of 8 tries).

The adversary takes the role of the first player in this game. He actually does
not choose any pattern at the beginning but rather keeps a list of possible patterns
consistent with his answers up to any point in the game. The adversary is not out
there to give his opponent peace of mind. If at some point in the game the second
player guesses one of those patterns remaining on the list, the adversary would insist
that this was not the pattern, and gives a truthful answer about colors and positions.
This answer disqualifies the guessed pattern and possibly a number of other patterns
in the remaining list. The adversary, who is truthful in his own way, crosses out all
the disqualified patterns. His answer still consistently pertains to any of the patterns
remaining on the list. The stubborn adversary admits that a guess is correct only
when one pattern consistent with all his answers remains on his list and the second
player correctly guesses that last pattern.

Another way to view the adversary’s strategy is to think that he actually chooses
a pattern, but when guessed correctly by the second player he replaces the pattern
by another consistent with all his answers so far. The adversary then claims that
the guessed pattern was wrong and gives a correct answer relating to his substituted
pattern forcing the unsuspecting second player to go more rounds. (The honest reader
is advised not to play Master Mind this way.) At the end of the game, the uninitiated
second player has no way of telling that the adversary has been cheating as all the
answers given appear consistent with the hidden pattern when finally guessed after
sweating.

According to the second view, if the adversary chooses the pattern (1.7) and the
second player’s first guess is (1.7), the adversary will claim that this pattern is not
the correct one, and may give an answer like “no hits or near hits.” The adversary
then crosses out from the 6* possible patterns 34 patterns with the colors R, Y, or W
appearing in any position, depriving the second player from the pleasure of having
a deserved lucky one-shot win. (Of course, this strategy of complete denial right out
is not the only way (o prolong the game, and may not even be the best choice for the
adversary to baffle the second player.)

According to the first view (which has a less cynical outlook toward game play-
ing), if the second player’s first guess is (1.7), the adversary has not actually com-



Bouuds on Selection 29

mitted to any pattern yet. The adversary sees himself in a perfectly honest position to
claim that (1.7) is not the pattern, and may still give an answer like “no hits or near
hits.” The adversary will remember throughout the rest of the game not to slip into
any mistakes like answers forcing ¥ to appear at some position.

In the context of lower bounds on sorting by comparisons the adversary argument
works in the following way. The sorting algorithm is supposed to put in order, via
comparisons, a set of data with ranks. An adversary challenges a sorting algorithm
by not choosing any particular permutation. The adversary waits to see the progress
of the algorithm, always rearranging for himself the input in a way consistent with
the partial order observed by the comparisons made up to any stage, and forcing
the algorithm to follow longer paths in the tree. In the language of tournaments, the
adversary has the capability of choosing the result of any match or controlling who
wins in any manner consistent with the results of all previous matches in view of
the transitivity of the relation “better than.” For example, suppose that in sortlng 10

numbers the algorithm reaches a node at depth 13 labeled with the query Xg< <X 3 and
whose left subtree is a leaf, but the right subtree is not. For an input with Xg < X3,
the algorithm terminates (in 14 comparisons) on the left leaf, which is labeled by a
sorted input with Xg appearing before X3 in the permutation. The astute adversary
is aware that choosing an input with Xg < X3 terminates in 14 steps according to
all the comparisons made so far, and also sees the opportunity that choosing an input
with Xg > X3 will force the algorithm to visit the right internal node dictating at
least 15 comparisons. The adversary then records for himself that his input is one
with Xg > Xj. In future challenges the adversary will remain consistent with this
choice and all other true comparisons necessitated by the transitivity of the ordering
relation in climbing up the right subtree.

Theorem 1.3  (Kislitsyn, 1964). Any algorithm for determining the second largest
in a list of n numbers by comparisons must exercise at least n + [lgn| — 2 compar-
isons on some input of size n.

Proof. Consider any algorithm for choosing the second best in a tennis tournament.
Lemma 1.1 dictates that such an algorithm finds the best and second best. As simply
argued, the algorithm requires at least n — 1 comparisons to determine the champion;
n — | players must lose at least once (each against some player that may or may not
be the champion). Suppose the champion meets and defeats k players on his way
to the trophy. Every player who loses to the champion is a candidate for the second
position. At least £k — 1, and possibly all £, players who lost to the champion must
lose another match to go out of contention for second position. Thus, the number of
matchesisatleast(n — 1)+ (k—1)=n+k — 2.

We shall show that there is an adversary who can always force k to be at least
[lgn] by a specially contrived partial order on the input. In the process of reaching
the top, the champion has to prove that he is better than all the other players. The
strength of the champion, and any other player is recognized in stages. This process
is slowed down if a player’s recognized strength grows slowly. Let us define the
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strength of a player at some stage of the game as the number of players known to be
at least as bad as himself. At the beginning, in the absence of any prior information
every player’s recognized strength is 1. The adversary reserves to himself the right
of arranging the input (choosing any arbitrary linear total order). His strategy is to
choose an order that guarantees slow growth in players’ strength. Suppose at some
stage the incomparable players A and B, respectively with strength ¢ and b, are
about to play a match. The outcome of the match will change the strength: if A
wins, A’s strength grows to a + b, and b’s strength remains the same at b with a
relative growth of (a + b)/a in A’s strength; if B wins, B’s strength grows to a + b,
and a’s strength remains the same at a, with a relative growth of (a + b)/b in B’s
strength. The adversary’s strategy then assigns a result to the match according to a
and b in whichever manner that minimizes the winner’s relative growth in strength.
The adversary chooses to let A win if (a + b)/a < (a + b)/b, that is, if b < a.
Alternatively, the adversary lets B win if (a + b)/b < (a + b)/a, thatis,ifa < b. If
a = b, it make no difference, and an arbitrary choice can be made, say by flipping a
coin. The adversary allows the player known to be stronger so far to win again!

If a > b, then2a = a + a > a + b. The new strength assigned to A at most
doubles; the argument is of course symmetric for player B. After k matches, the
champion’s & matches will give him strength of at most 2K, The champion’s strength
must grow to at least n, for he must prove at least as good as n players (including
himself). If k is the minimum number of matches necessary according to this strategy,
then

k=1 < 2k,

Taking logarithms to base 2, we see that k = [lgn]. n

The complexity of determining the median in a list of size n has received tremen-
dous attention in the last quarter of the twentieth century. Intensive research efforts
contributed good ideas and proof methods. The problem has a number of variants
and we choose the simplest: the problem of selecting the two medians in a list of
numbers of size n even.* We shall work with even 1 to simplify the algebra and
eliminate the need for ceils and floors. The proof technique involved is based on the
decision tree. The proof stands as a good representative for a class of proof methods.
Adaptations of the proof can be made to work for other variants of the problem.

We shall show that asymptotically at least 2n comparisons are required for finding
the two medians among even n numbers. This result means that by the state-of-the-
art proof techniques, we can show that for even n, any algorithm for finding the two
medians requires at least about 2n comparisons on some input of size n. The result
was established in the mid-1980s by Bent and John, then was slightly improved in
1996 by Dor and Zwick to (2 — ¢)n. The proof given here is that of Dor and Zwick
(1996b), who devised a straightforward technique that gives the best known result for

4“When a sample {X...., X,.} is of even size, we often define the order statistics X2y and X241
as the two medians. Technically speaking. any number in between these two meets the criterion for being
a median value. It is customary to define (X /21 + X(uy241,)/2 as the sample median for even 2.
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finding the two medians. after many elaborate and less direct techniques had given
weaker results!

For every node in the tree we shall assign a weight depending on the partial order
(information) determined by the node. In what follows, r will denote the root of the
tree.

Suppose we have chosen a weight function W satisfying the following properties:

Pl: W(r) > 22700,
P2: W(¢) < 2°™ for any leaf ¢;

P3: W(ur) + W(ug) > W(u), for any internal node u and its left and right
children, respectively, u; and ug.

Property P3 implies that each internal node « has a child v such that W(v) > %W(u).
If such a function is at our disposal, then by climbing up the tree along a special

path r = ug,uy, ..., up, always choosing the child with the larger weight until the
leaf u p (atdepth D) is reached, the chosen properties of the function will ensure that
Wi(ug) Wi(u) " W(uy) . W(up_1)
W(up) W) W) W(up)

<2X2X:o X2, by Property P3

D times

= 2P,

The point here is that, by the properties of the chosen weight function, there is a leaf
in the decision tree at depth

D> lg(VVVV((:[O)))) > 1g(

there must be a particular arrangement of data ranks that when given to any median
pair finding algorithm as input will force the algorithm to perform at least 2n — o(n)
comparisons.

It only remains to construct a weight function satisfying properties P1-P3 on the
nodes of a decision tree of any median pair finding algorithm. It aids presentation
in concise form to introduce additional notation. Denote the partial order associated
with a node v by P, and denote the set of minima and maxima of P, in a set A by
min, (A) and max,(A) respectively.

22n—0(n)

s ) > 2n — o(n);

Lemma 1.2 (Dor and Zwick, 1996b). Let (S, <) be a total order with |S| = n even.
Let A C S with |A| = n/2. Let u be a node in the decision tree of an algorithm for
determining the two medians of S. Define the node’s relative weight function (with
respect to A) by

2l miny (A)I+Imaxo(AD| £ A is compatible with P,

w =
Al) 0, otherwise.
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The absolute weight function associated with a node v is defined as

W) =Y Wp),
B

where the sum is taken over every subset B of size n/2. The weight function W(v)
satisfies properties P1-P3.

Proof. At the root r of the decision tree no information is available, except self-
reflexivity. So, P = {(s,s) : s € S}. Any set B is compatible with this initial
partial order, and min, (B) = B and max,(B¢) = B¢. The weight associated with
any set B of size n/2 at the root is therefore Wg(r) = 2!BIFIBl — 2ISI — on,
Property P1 is established by the relation

n n
W(r) = EB:WBM =2 (n /2),

whose asymptotic equivalent 227 %) follows from Stirling’s approximation for bi-
nomial coefficients.

When the two medians are determined, the two sets of order statistics {X (1)s+ -+
Xwm2} and {X(n/241), ..., X(n)} are determined (Lemma 1.1). Let £ be a leaf in
the decision tree. Any set compatible with the partial order P, with an element from
{X()s -+, X(n/2)} must also contain the two medians and all the higher order statis-
tics. Such a set will be of size larger than n/2. The only set of size n/2 that is compat-
ible with Py is the set B = {X(,1/2)+1 , X(n/2)+2, ceey X(n)}. The element X(n/2+1) is
known at this time to be smaller than all the elements in B. And so, | ming(B)| = 1.
Similarly, X, /2y is known at this time to be the only maximal element in the com-
plement set B¢ = {X(1), ..., X(n/2)}. And so, [max¢(B€)| = 1. Subsequently, the
absolute weight W(¢) = 21T — 4 < pot), Property P2 is established.

?

Let v be a node in the decision tree labeled with the query @ < b, and let vz, and
vg be its left and right nodes, respectively. Let A be a compatible set of P, of size
n/2. We distinguish four cases:

(1) a,b e A.

(ii) a € A, and b € A€.
(iii) a € A%, and b € A.
(iv) a,b € AC.

As assumed in the discussion on lower bounds for sorting, our algorithm does not
ask any redundant questions; a query is made only about incomparable elements.

In case (i), the set A is compatible with P,, and P,,. At the beginning of the
algorithm, no information is available, other than reflexitivity: in the initial partial
order associated with the root, every element is in a chain by itself; every element
is @ minimum and a maximum. All members of A are minimal elements. As we ask
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(uestions, more information is revealed and the number of elements in A that are
known to be minima will go down. If b is already a member in the set of minima

of Py. a positive answer to the query « < b removes b from the set of minima in A.
{f b is not known to be a minimal element, the set of minima does not change. In all
cases

|min(A)| > |min(A)| — 1.
vy v

By a similar argument, a negative answer may remove a from the minima in A, and
| min(A)| > | min(A)] — 1.
VR v

”
Regardless of the outcome of the query a < b, | max,, (A°)| and | max,, (A°)| will
be the same as | max, (A)| because both @ and b are in A (if the query reveals that a
or b is a new maximum in A, this new maximum is not in A¢). Thus

Walv) = 2! min, (A)|+| max, (A%)|

< ol miny, (A)+14] max,, (4°)]
= 2Wa(vp).

By summing the relative weights over every set of size n/2, we have the absolute
weight W(v) < 2W(vy). Similarly, W(v) < 2W(vg). Property P3 is established in
case (i).

In case (ii), a set compatible with Py, for a vertex v, is also compatible with Py,
but not with Py, . By counting arguments similar to those in case (i), we can quickly
find | min,,(A)| = |min,(A)|, and | max,,(A°)| = | maxy(A)|. Thus Wy (vg) =
Wa (v), and W4 (vz) = 0. Summing over all subsets A of size n/2 we find W(vy) +
W(vgr) = W(v), establishing Property P3 in case (ii).

Cases (iii) and (iv) are argued symmetrically. n

Order statistics can be found by formulas involving elementary arithmetic func-
tions as in Exercises 1.9.3 and 1.9.4, which constitute other non-comparison-based
algorithms. But as one might expect, the number of arithmetic operations involved
in finding a particular order statistic grows very fast with the size of the list.

1.9.2 Upper Bounds on Selection

As discussed in some detail in the introductory paragraphs of Section 1.9, the area of
bounds on selection is rather vast. Our purpose in this section is to selectively present
results indicating that linear upper bounds on selection exist.

To complete the story of choosing the second best, we shall show that Kislitsyn’s
lower bound (Theorem 1.3) is also an upper bound.
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Theorem 1.4 (Schreier, 1932). There is a comparison-based algorithm that takes
at most n + [lgn] — 2 comparisons for determining the second largest number in
any list of n numbers.

Proof. Suppose we have n contestants of strengths ay, ap, ..., a, in a knock out
tournament. (We shall refer to the players by their strength.) Construct a ladder for
the best player in the following way: Consider the n contestants as terminal nodes in
atree (of n — | internal nodes and height [Ign]). In the first round match consecutive
pairs to come up with |n/2] winners. In the second round match pairs of winners as
well as those who moved to this round without playing, and so on till the champion
of the tournament is identified. Each internal node represents a match (a comparison)
between two players and is labeled with the strength of the winner among the two.
One of the internal nodes must represent a match between the best and second best
(this is how the second best got knocked out).

Suppose a; is the champion. Now recompute the labels on the path joining the
root to the terminal node a;. Discard a;: The player who met a; in a;’s first match
now gets a free ride, she goes up to her parent node (which was previously labeled
a ;). This player is paired against the player who competed againsta; in a;’s second
match. The winner goes up to a node at distance two from a; (and was previously
labeled a ), and so forth. At some point a winner along the path will meet the second
strongest, and will lose to him. The second strongest will go up, and will continue
winning all the way to the root (because the strongest player has been eliminated).
At the end of this recalculation along the path, the second strongest contestant will
be identified. The number of relabeling operations (comparisons) along that path is
at most one less than the height of the tree.

This algorithm finds the champion in n — 1 comparisons, then finds the second-
best player in at most [lgrn] — 1 comparisons. n

Figures 1.9 and 1.10 illustrate the proof of Theorem 1.4 on the data set
21 30 16 24 19 17 15

which say are the measures of strength of participants in some scoring scheme. These
numbers are shown as the terminal nodes of a binary tree in Figure 1.9. The strongest
player’s strength is 30, and appears at the root of the tree. The darkened edges show
the root to the terminal node containing 30. In the second stage of Schreier’s al-
gorithm, the strongest player is removed as in the tree of Figure 1.10 and the la-
bels along that path are recomputed. In this instance the player with strength 21 is
not paired in the first round against any one (preferential treatment!) then meets the
player with strength 24 (second strongest) in the second round; the second strongest
wins the match and all subsequent matches to appear at the root of the tree.

The constructive proof of Theorem 1.4 exhibits an algorithm that selects the sec-
ond largest in a file of 7 numbers using no more comparisons than the amount stated
in the theorem for whatever input arrangement of these n numbers. The method can
be generalized to efficiently find the third best, fourth best, etc. Finding all order



Bounds on Selection 35

Figure 1.9. The champion selection round in Schreier’s algorithm.,

statistics by this method is the genesis of a sorting method called HEAP SORT,
which will be discussed in Chapter 9.

Kislitsyn’s lower bound (Theorem 1.3) together with Schreier’s upper bound
(Theorem 1.4) tell us that there is no gap between the worst case of some known al-
gorithm and the best known lower bound. The complexity of the selection of second
largest is exactly n + [lgn] — 2. This is a selection instance where the chapter has
been closed in the sense of worst-case optimality.

Not every selection problem enjoys this status, including instances of prime prac-
tical importance like that of median selection where, as discussed in Section 1.9.1,
there is a gap between the best algorithm for the worst case and the best known

(9 @ © @

Figure 1.10. The second-best selection round in Schreier’s algorithm.
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theoretical lower bound. The gap is not in the correct order of the complexity, but
is only in the constant associated with it. Of course, the correct order of complex-
ity 1s an important issue by itself. The linearity of median selection is demonstrated
constructively by an algorithm discussed in Chapter 12.

EXERCISES

1.9.1 Let Wy(n) be the worst-case optimal number of comparisons required to find
the set of first k£ order statistics in any given input of » numbers; any algorithm
whatever for determining the set of & order statistics in any given input of »
numbers will require at least Wy (n) comparisons. Use an adversary argument
to show that Wi(n) > Wi(n — 1)+ 1,forall 1 <k <n.

1.9.2 Explain why the proof of the lower bound for the selection of two medians
does not work for the selection of a single median.

1.9.3 (Meyer, 1969) Given a sample of two numbers X1 and X, prove that

X1+ Xy X1 =X

in{X1, X2} =
min{X1, X2} =~ .

Derive a similar formula for the maximum.

194 (Meyer, 1969) Given a sample of three numbers X, X5, and X3 prove that

. 1
min{X, X2, X3} = Z(XI +2Xo + X3 — |X1 — Xo — | X2 — X3

— X1 = X3 — X1 = Xal +1X2 — X3|).

Derive a similar formula for the median and the maximum.

1.9.5 Show constructively that it is possible to find the median of five elements
using at most six comparisons.

1.10 RANDOM PERMUTATIONS

The majority of sorting algorithms are comparison based. They accomplish the sort-
ing task by making decisions according to the relative smallness of keys. For ex-
ample, while sorting the given list of numbers X1, ..., X,, a comparison-based al-
gorithm may at some step compare X; with X ;, and if X; < X, the algorithm will
follow a certain path; but if X; > X the algorithm will proceed with an alternate
path. We see that the algorithm will, for example, take the same path in the two cases
X; =10and X; = 19,0r X; = 30 and X; = 34. In both cases X; < X; and the
algorithm takes the same action in response to the comparison of X; against X ;. The
only data aspect that matters in the outcome of comparing the two entries X; and
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Xy their relative ranking. For any n distinct keys chosen from an ordered set there
corresponds a ranking from smallest to largest, that is, a permutation of {1, ..., n}.
T'his permutation corresponds to some leaf in the decision tree. This permutation is
the sequence of indexes (read from left to right) of the data labeling the leaf. This
permutation determines exactly the path in the tree from the root to this leaf, or, in
other words, determines exactly the sequence of comparisons the algorithm will fol-
fow. We may therefore assimilate the actual n keys by that permutation of {1, ..., n}
for which the algorithm will exhibit exactly the same behavior. To unify the anal-
vsis we shall always consider permutations of {1, ..., n}. To any actual input of n
distinct keys from whatever data set, the corresponding permutation will decide the
number of comparisons done on a corresponding arrangement of integers. The tim-
ing of comparisons among the actual data keys is only a scaling of the number of
comparisons done on the integers of the corresponding permutation.

If the data are “random” according to some probability model, the corresponding
permutations will have an induced probability distribution. In practice, many data
scts consist of real numbers taken from some continuous distribution. We shall prove
that this induces a uniform distribution on permutations. This statement will shortly
be made precise by some definitions and propositions. Because of this, we shall take
the uniform distribution on permutations, whereby all permutations of {1, ..., n} are
cqually likely (each permutation occurs with probability 1/n!), as the gold standard
for the analysis of comparison-based algorithms. The unqualified term random per-
mutation will refer to this particular uniform model. Most analyses in this book are
conducted under the random permutation model. If any other probability model of
randomness on permutations is considered, it will be clearly and explicitly qualified
by a description or a special terminology.

When the data contain no duplicates, the speed of a comparison-based sorting
algorithm can be made insensitive to the distribution of the data. After all, the data
from whatever distribution can be made to appear as if they came from the random
permutation model. An example of data with no duplicates is a sample (drawn with-
out replacement) from a discrete distribution. The data can be first subjected to an
initial randomizing shuffle so that their ranks become a random permutation. An ini-
tial stage to randomize the data may serve as a way of guaranteeing the same uniform
average speed of a comparison-based sorting algorithm over all possible distributions
of lists with no duplicates. Our forthcoming analyses thus also apply to comparison-
based sorting algorithms that perform this randomization prior to sorting, for data
with no duplicates even if the ranks do not follow the random permutation probabil-
ity model.

Let us introduce the working notation. Suppose X1, ..., X, are distinct real num-
bers. If X; is the jth smallest among X1, ..., X, we say that the absolute rank of X;
is j. The absolute rank of X; is denoted by Absrank(X;). The range of Absrank(X;)
is {I, ..., n}. The sequential rank of X;, denoted by Seqrank(X;), is its rank among
the keys X1, ..., X; only. That is, Segrank(X;) = j, if X; is the jth smallest among
X1, ..., X;. So, the range of Seqrank(X;) is {I,...,i},foreachi € {1,..., n}.
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We assume throughout that the elements of our sample are distinct, as duplicate
keys may only occur with probability O when the keys are taken from a continuous
distribution. That is, the computation of any probability is not altered by ignoring the
null set (set with probability zero) of sample space outcomes in which two or more
keys are equal.

As we prove in the next proposition, the sequence of sequential ranks is like a
“signature” to a permutation. It uniquely characterizes the permutation, and vice
versa.

Proposition 1.5 There is a one-to-one correspondence between permutations of
{1,...,n} and the n-long feasible sequences of Sequential ranks.

Proof. Let n be fixed. Every one of the n! permutations of {1, ..., n} obviously has
exactly one corresponding sequence of sequential ranks. So, we only need to show
that there corresponds at most one permutation to any feasible sequence of ranks

of length n. We do an induction on n. Suppose that [1 = (7y,...,7,) and E =
(&1, ...,&,) are two different permutations with the same sequence of sequential
ranks sy, ..., s,. Suppose m; = n = &;. Thus 5; = i and s; = j. We have three
cases:

(a) Ifi < j, then n appears to the left of position j in IT, and 7 is not the largest
among 7y, ..., 7}, thatis, s; = Seqrank(x ;) < j, a contradiction.

(b) If i > j, this case is symmetric to case (a), only the roles of i and j are
interchanged, and IT and E are interchanged.

[

(¢) If i = j, drop n; from IT and & from =. What is left behind are two

permutations of {1,...,n — 1}, each having sequential ranks sy, ..., s;_1,
Si+1,--.,8p. By the induction hypothesis, these two permutations must be
the same, and restoring n at position / to recreate the two original permuta-
tions will give two identical permutations, a contradiction. ]
Proposition 1.6 A permutation of {1, ..., n} is a random permutation if and only
if
(a) Each sequential rank is uniformly distributed over its range.
(b) The sequential ranks are mutually independent.
Proof. To prove the “if” part, let IT be a permutation of {1, ..., n} with correspond-
ing sequential ranks sy, ..., s,, and suppose IT is constructed such that:

(a) Foreach i,
Seqrank(r;) 2 UNIFORMJI .. 1].

(b) Segrank(r)), ..., Seqrank(m,) are mutually independent.
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A permutation (7, ..., m,) uniquely determines its sequence of sequential ranks
(s1, ..., Sn), by Proposition 1.5. By the independence and uniform distribution as-
sumptions (a) and (b):

Prob{IT = (ny, ..., 7))}
= Prob{I1(1) = ny,.... [1(n) = m,}
= Prob{Seqrank(H(l)) =51,..., Seqmnk(l'l(n)) = s,,}
= Prob{Seqrank(I1(1)) = s} ... Prob{Segrank(I1(n)) = s,}

1
n

and all permutations are equally likely.

To prove the “only if” part, let us assume that [T = (7, ..., 7,) is a random per-
mutation. We use the following counting argument to show that Prob{Segrank(m;) =
jy=1/i,foreachl1 < j <ie{l,...,n}.Chooseand fix 1 < j <i <n.To
have Seqrank(w;) = j when mr; = k, exactly j — | numbers less than £ must appear

among the first i — 1 positions of I1. These numbers can be chosen in (/j‘:i) ways,

then j — 1 positions are chosen for them from among the first i — 1 positions (in (;:11)
ways); these numbers can be permuted in (j — 1)! ways over the chosen positions.
So, the number of ways to choose and insert these j — 1 numbers to the left of & is
(/;:11) (j.—_ll)(j — 1)!. To fill the rest of the first i — 1 positions, the rest of the numbers
must come from the set {k + 1, ..., n} and then be permuted over the remaining
i — j positions. This can be done in (;’:f)(i — j)!. The tail of the permutation can
now be constructed by permuting the remaining #» — i numbers in the n — i positions
following ;. Hence, the number of permutations with Seqrank(r;) = j and 7; = k

(o R (G S

The probability of the event Segrank(rr;) = j and 7; = k is this number divided by
n!, as the random permutations are equally likely. So,

n

Prob{Segrank(;) = j} = ) _ Prob{Segrank(m;) = j, 7 = k|

k=]
_ ! (l - 11)(]' —DIG = ) —i)!

n\j —

()00
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_ (i—n! G-D'G—=jjNn=i)
TU=Dli- py

()0
=i<2>§<’;ii)<’::§>-

l

'-'), as can be seen by counting the number of ways of choosing

The last sum is (]
[ integers from {l,..., n} by first choosing k = j, ..., n, then forming a subset
involving j — 1 numbers less than k& and i — j numbers greater than &, for some fixed

1 < j < i. After the cancelation of binomial coefficients,
_ |
Prob{Segrank(r;) = j} = -,
i
as required for (a).
By Proposition 1.5, a feasible sequence sy, ..., s, of sequential ranks uniquely

determines a permutation Z. So,

Prob{Seqrank(l'I(l)) =S1,..., Seqrank(l'l(n)): s,,}
= Prob{l’l = E}

1
= —, (1.8)
n!
Having proved (a), we can write
Prob{Segrank(m;) = s1} ... Prob{Seqrank(r,) = s}
1 1 1
=]l X=-X=X-+X—
2 3 n
_ L (1.9)
n!
Equating (1.8) and (1.9), we see that for every feasible sequence sy, ..., s, of se-

quential ranks

Prob{Seqmnk(m) =51, ..., Seqrank(m,) = s,
= Prob{Segrank(r;) = 51} ... Prob{Segrank(w,) = Sn}s

asserting the independence as required for (b). -

Suppose X1, X2 is a random sample taken from a continuous distribution. By
symmetry, the events
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(X1 < X3} and {X> < X}

are equally likely, and each has probability % (the complement event of {X| < X,}U
{X1 > X2}, that is, the event {X| = X3}, occurs with probability 0). Similarly, for a
larger sample X |, ..., X,, from a continuous distribution, the n! events

{(Xn, < Xmy < ... < Xz},

for any permutation (7, ...,7w,) of {l,...,n}, are equally likely, each occur-
ring with probability ”i, (and again all the events with ties have probability 0).
Whence, Absrank(X,), ..., Absrank(X,) is a random permutation and enjoys
all the properties of that model of randomness. Notably, the sequential ranks
Segrank(X1), ..., Segrank(X,) are independent and each is uniformly distributed

on its range:

Seqrank(X;) 2 UNIFORMI .. 1],

as ascertained by Proposition 1.6.

1.10.1 Records

Suppose X;,i =1, ..., n,is a sequence of keys sampled from a continuous distribu-
tion. Let 7r; be the absolute rank of X;. With probability 1, the sequence (7y, ..., Tn)
is a random permutation. A value X ; in the sequence is a record when X ; > X; for
all i < j, or probabilistically equivalently 7 ; is a record in the random permutation
I, = (my,....,m) of {1, ..., n}, when 7r; > gm; for each i < j. For example, the
permutation

7 6 8 3 1 2 5 4
T

has the two records indicated by the upward arrows. The goal of a sorting algorithm
is to increase the number of records to the limit.

Let I; be the indicator of the event that the jth key is a record (/; assumes the
value 1 if the jth key is a record, and assumes the value 0 otherwise). Proposition 1.6
asserts that these indicators are independent and the jth key is a record (the jth indi-
cator is 1) with probability 1/j. Mean and variance calculations for J; are immediate.
We have

i1 11
Elljl=0x L +1x===,
and

Var(l;] = E[/?] - E*[I;] = E{l;] - E*[I;] = ~
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The probability generating function g;(z) of the jth indicator is

o0 . _1
> FProbir; =k = L=+ %,
—~ T

Let R, be the number of records in the permutation. Then R, is

Rp=L+DL+----+1,.

Accordingly we have

E[(R,]1 =E[/;]+ E[l2]+ -+ E[/,]

3o

=11
— H, (1.10)
~1Inn. (1.11)

It also follows from the independence of the indicators that?

Var(R,] = Var{Il|] + Var[];] + - - - + Var[],]
S
= i oJ?
= H, — H\”

~ Inn. (1.12)

Let r, (z) be the probability generating function of R,. As R, has a representation
as a sum of independent indicators, its probability generating function is the product
of the probability generating function of these indicators:

rn(2) = g1(2) ... gn(2)

j=1 J
4
el R (1.13)
n!
As a generating function, (x), = Y ;_,[ Jx* generates the sequence [} | of signless

Stirling numbers of order n. Extracting coefficients gives us the exact probability
distribution of the number of records:

121
]
Prob{R, =k} = T

3See the appendix for the definition of harmonic numbers.
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The exact probability structure of Ry, is simple enough to admit a transparent pas-
age 1o a normal limiting distribution by elementary calculation without resorting
(0 a general condition like Lindeberg’s. for example. We will show next that a suit-
ably normed version of R, has a limit distribution by directly taking the limit of the
moment generating function of that normed version by appealing only to standard
properties of Stirling numbers. We shall use the asymptotic mean (cf. (1.11)) for
centering and the asymptotic standard deviation (cf. (1.12)) as a scaling factor. Le
us consider :

R, —1Inn

Vinn

In 1944 Goncharov first discovered a result for this normalized number of records
in the context of normality of the number of cycles. Bijections between cycles and
records were later reported by Foata in 1965. We shall see in our forthcoming dis-
cussion on cycles of permutations that the number of cycles is distributed like the
number of records. The direct proof below for the asymptotic normality of records
runs along the main lines of Mahmoud (1991).

Theorem 1.5 (Goncharov, 1944). The number of records R, in a random permu-
tation of the set {1, . .., n} has the Gaussian tendency:

Ry, —Inn

= L2, N, 1).
n

Proof. Let ¢y, (t) be the moment generating function of (R, —Inn)/+/Inn. Condition
on R,, to obtain

d)n ([) = E[e(Rn —In H)t/m]

n
e(k—lnn)t/\/lnn Prob{R,, — k}
k=1

n!

gy i(et/my[z]

k=1

3 lnntet/«/lnn(et/\/lnn_*_1)...(et/\/lnn+n_1)
=e

n!

r(e!/Ynn 4 p)

_ e—\/ﬁ_nt .
['(n+ 1) T'(e!/VInn)

Using Stirling” approximation of the gamma function (as n — ©0)
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—/Innt
Pn(t) ~ -—e———[i:l————nexl)(f/«/ln—n)—l

I‘(e’/\/l“”)
e—\/lnnt
- I‘(et/\/lnn) exP{
e—\/lnnt {[<1 N t N t
—_—
[ (e!/Vinn) P Vinn  2Inn
3

+0<1;§’/7;))—1]1nn}.

Simplifying and then taking the limit as n — oo for fixed ¢ yields the simple ex-

. 2 C . .

pression e’/ 2, which is the moment generating function of the standard normal
distribution. Convergence of moment generating functions implies convergence in
distribution and the proposition follows. L

(@Y™ 1) Inn]

2

1.10.2 Inversions

In a permutation I1, = (7y, ..., m,) of {1, ..., n}, apair (7r;, 7;) is an inversion if
7; > mwj withi < j, that is, when a bigger element precedes a smaller one in the
permutation. The permutation

7 6 8 31 2 5 4

has 19 inversions.

Clearly, an algorithm to sort I, (or equivalently a data set with ranks y, ..., 7,)
must remove all inversions therein and it is evident that analysis of inversions in a
permutation will play a role in the analysis of some sorting algorithms.

Let V; be the number of inversions caused by 7y, that is, the number of items
greater than ry and appearing in positions 1, ..., k—1 in the permutation. So, V; = j
if and only if 7y is less than j of the first K — 1 elements of the permutation. In other
words, Vi = k — Seqrank(ry). Proposition 1.6 then states that

v, 2 UNIFORM[O..k — 1],

and Vi, ..., V, are independent. The uniform distribution of V; admits simple cal-
culation of its mean and variance:

k-1 el .
; . . k(k—=1) k-1
E[Vi] = Z,/Prob{v,\, =j}= Z | _ =

j=0 j=0

L)

and
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k—1 .2

var Vil = (3 ’7) - (%—1)2

Jj=0
_k(k=D@k—=1) (k=13
B 6k 4
k2 — 1
12

Let ¥y, be the total number of inversions in a random permutation. Then
Ypn=Vi+ -4V,
‘Taking expectations,

E{Yp] =E[Vi] + -+ E[V(]
k—1

(1.14)

Taking the variance and using the independence of the Vs we obtain

Var{Y,] = Var[V|] + --- + Var[V,]

k2 —1
12

k=1

:—7—l~n(n— D2n +5) (1.15)

Proposition 1.7 The number of inversions, Y,, in a random permutation of
{1,..., n} has the Gaussian tendency

P 2 o.5)

Proof. A standard verification of Lindeberg’s c~0nditi0n yields the result as fol-
lows. Consider the centered random variables V; = Vi — E[Vi], where V};, =
UNIFORM[O k — 1] is the number of inversions caused by the kth item. We have

i

11 Vi =Yy —E[Y,]. Lets> = Y k-, Var| (V] = Y z=i Var[Vi], which is given
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by (1.15). For any fixed ¢ > 0 we want to verify

& i
lim — f VZdP =0,
n—00 Slzl /; {IVk|>&sp)

where P is the uniform probability measure on the sample space of permutations.
This Lebesgue-Stieltjes integration in question is simply a summation because our
case 1s discrete. The last limit is equal to

1 : 2 ,

lim = > > (j —E[Vi])Prob{V; = j}.

2
"0 S k=1 |j—E Vel es,

However, for large n, the set {Vy = j : |j — E[Vk]| > es,} is empty because s,%
grows cubically, whereas Vy < k < n. For large n, the inner summation is zero. m

1.10.3 Cycles

Let I, = (wy,m2,...,7y) be a permutation of {1, 2,...,n}. We call a chain of
indexes iy, i, ..., ik such that m;, = i, m;, = i3,...,my_, = ig, and 7;, =
i1, a cycle of the permutation. We denote such a cycle by the parenthesized list
(i1, 12, i3, ..., ig). Put together, all the cycles of a permutation give an alternative

representation to permutations. For example, (4 3 8) is a cycle of the permutation

(1 2 3 45 6 7 8) (1.16)
7 6 8 3 1 2 5 4 ’
and a cycle representation of that permutation is

(I 7 5 @2 6) 4 3 8). (1.17)

Obviously, by its cyclic nature, a cycle can be represented in many equivalent ways
by cyclically shuffling its members. For example, the cycle (4 3 8) can also be
represented as (3 8 4) or (8 4 3). By starting at different positions in the chain
of indexes of a cycle we get different representations—a cycle of length k can be
cyclically shuffled in k£ different ways. Among the various cycle representations of
a permutation IT,, we consider the canonical cycle representation as the one that
cyclically shuffles the members of each cycle so that the first element of each cycle
is the largest in the cycle and permutes the cycles in a such a way as to put their first
elements in increasing order.

For sorting purposes off-line algorithms can be designed to detect the cycles in
the ranks of the input and fix them by exchanges. Analyzing the number of cycles
in a permutation does not require any new techniques. In fact there is a one-to-one
correspondence between n-long permutations with k cycles and n-long permutations
with k records. We shall prove this correspondence in the next two propositions. It
will then follow that cycles have the same probabilistic qualities as records.
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Proposition 1.8 (Foata, 1965). To a permutation of {1, ..., n} with k cycles there
corresponds a unique permutation of {1, ..., n} with k records.

Proof. Remove the parentheses from the canonical representation of a permutation
of {1, ..., n}. In a left-to-right scan of the resulting permutation, the first element of
the first cycle is a record, and remains so till the first element of the second cycle
appears to dictate a new record and so on. The largest elements of the & cycles now
provide k& records. ]

As an illustration of the proof of Proposition 1.8, consider the permutation (1.16),
with the cycle structure (1.17). Massage a cycle representation (1.17) in two steps:
First cyclically shuffle each cycle to bring its largest element to the beginning of the
cycle:

7 5 1I)@® 2@ 4 3);

second, obtain the canonical representation by rearranging the three cycles according
to an increasing order of their first elements:

6 2) @7 5 1)@ 4 3).

If we drop the parentheses, we obtain

6 2 7 5 1 8 4 3;
1 1 1

the first element in each of the three cycles provides a record in the last permutation
(indicated by an upward arrow under the record).

Reversing the construction is easier. Starting with a permutation of {1, ..., n}
with & records, we can put parentheses around stretches that begin with a record and
end with an element preceding the next record to obtain k cycles.

Proposition 1.9 (Foata, 1965). To a permutation of {1, . .., n} with k records, there
corresponds a unique permutation of {1, ..., n} with k cycles.
Proof. Let

71',']’1 iy 1 - - .71','[],1 71','],2 i, 2 -« - 71','62,2 s Tk Tin kv e niek,k

1 1 1

be a permutation of {1, ..., n} with the k records m;, 1, 7i,,2, - - -, 7i, k as indicated
by the upward arrows. Consider the group of elements with the same second index
as the successive members of one cycle to get the cycle representation

(i 1 Tig, 1 - o Ty 1) (7i),27ig,2 « + + iy, 2) - o+ (i kT e+ -« Ty, k)

with & cycles. n
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The constructive proofs of Propositions 1.8 and 1.9 illustrate the concept of equal-
ity in distribution. The permutation with & records that corresponds to I1,,, a permu-
tation of k cycles, is not necessarily IT,. If we think of the permutations of {1, ..., n}
as points of a sample space, the number of cycles of a permutation may not be the
same as its number of records. Yet, the number of permutations with k& cycles is the
same as the number of permutations with & records. Specifically, the number of per-
mutations of {1, ..., n} with &k cycles is [Z], Stirling’s number of the first kind of
order n and degree k. For equiprobable permutations, the probability that a random
permutation IT, of {1, ..., n} has k cycles is

1

'}E.

Prob{IT, has k cycles} = [’; ]

Let C,, be the number of cycles of a random permutationof {1, ..., n}, and let R,
be the number of records of the same permutation. While generally, R, # C,, their
distribution functions are the same, and

The number of cycles in a permutation has the exact same probabilistic character
as the number of records. In particular, it has the same mean, variance, and exact
and limit distributions. In random permutations of {1, ..., n}, there are H, ~ Inn
cycles on average, and the variance of the number of cycles is H, — H,Ez) ~ Inn.
The number of cycles satisfies Goncharov’s theorem (Theorem 1.5).

1.10.4 Runs

An ascending trend in a permutation (a block of ascending elements that is not a
sub-block of a longer block of ascending elements) is called a run. Runs represent
natural trends in the data that may be favorable to some sorting algorithms.

Formally, in a permutation (7y,...,7m,) of {1,...,n}, the subarrangement
7, ..., of consecutive elements is a run, if ;;—| > 7, 7 < Wiy < ... <7},
and 7; > 7y, with the interpretation of boundaries pg = n + 1, p,41 = 0. For
example, the permutation

7 6 8 3 1 2 5 4

can be broken up into the five runs

7] e8] [l [z s) 4

Let R, be the number of runs in a random permutation of size n. A random per-
mutation of size n “grows” from a random permutation of size n — 1 by inserting
n at any of the n gaps. If n falls at the end of a run it will lengthen that run by one
place, but the number of runs remains the same (this can happen in R, ways). Al-
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ternately, if n falls within a run, it breaks up that run further into two runs, increasing
the total number of runs by |. Therefore,

Ru-1, with probability _@%:L; (1.18)

R | Ry =
i [R,,_1+1, with probability 1 — Re=t.

So, given the sigma field 7, (the entire history of the growth process up to and
including stage n — 1),

Rn——l
n

—1
B[Ry | Fot] = Ryt + (1= =250 ) = =Ry + 1. (1.19)

One sees that
E[nRy | Fuoi] = (0 = DRyt +n,
and nR, 1s “almost” a martingale, but not quite because of the presence of the
shift factor n on the right-hand side. The variable nR, can easily be turned into
a martingale. A linear transformation accomplishes this martingalization. Let M,, =
nRy + by, for an appropriately chosen factor b,. We want M), to be a martingale; so,
we want
E[Mn |]:n—1] =M.
We let this happen by setting
E[nRp + b | Fyei] = B[Ry | Fact] 4 bn = (1 = DRn_y + i1 + by

equalto M, _| = (n — 1)R,—1 + b,—1, for all n > 2. This gives a recurrence for b,.
We must have

bp=b,-.1—n=b—Q2+3+---+n).
We want the mean of our martingale to be 0, dictating that
EM|]=Ri+by=1+b;=0.
Hence,
M, =nR, — —;—n(n +1)

is a martingale. This immediately yields

1
E{M,] = nE[Rn] — Zn(n + 1) =0,
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giving

n+1
>

The martingalization process just discussed applies to the more general situation
where a random variable X, satisfies E[ X, | ,,—;] = ¢y Xn—1 +dp. One sets up the
linear martingale transform Y,, = a, X, + by, then solves the recurrences for aj,
and b, in terms of ¢, and d,,. Chao (1997) gives a powerful martingale central limit
theorem and applies it to several characteristics of permutations.

To finish off with the martingale central limit theorem, we should get the variance
of R,,. From the square of (1.18), we have

E[Rn] =

Rp— R
E[R;21|~7:n—1]=73,%_1 ’:l ! + (Rp—1 +1)2<1—.__':l_._1>
2 2n —1
= (1 - —>R3—1 + LR+ L (1.20)
n n

Now we take expectations of both sides to get a recurrence for second moments:

E[R}] = (1- %)E[Rﬁ_l] +n+ -;-

Let

anzl—;, gn=n+'2‘.

Qur recurrence becomes
E[R2] = anE[RZ_,1+ gn,
which can be iterated:

E[R%] = anan—lE[R,z,_z] + angn—1+ &n

n
= ayay-1 - . .azE[R%] + Zanan_l C A8
j=2
The product ana,—1 ... aj4 is telescopic and simplifies to
n—2 n-—3 n—4xn—5 y J ><j—l jGg =1
.. Aj4] = X X X o ; = .
@nfn=1 s+ n n—1 n—2 n-3 j+2 j+1 nr-1)
SO, a”an_.l o4y = O and

UL o PN UL S
SR = oy 7Y (i +3)=3Gn+o@n+ 1.
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This gives the variance

n+1

Var[R,] = E[R;] - E*[R,] = —

This narrow concentration admits a law of large numbers. By Chebyshev’s inequal-
ity,

Prob” Rn l - 8} - Var[R,/(n+ 1)]  Var[R,] I

I = - —>
n+1 2 - g2 E2m+ 1?2 1282+ 1)

3

for any fixed ¢ > 0. That is, R,/(n + 1) Lol Multiply by the deterministic

N — BN —

convergence (n + 1)/n — 1, to get R, /n LN . It will be useful for the work

below to write this relation as

1
Rn = §n+0p(n), (1.21)
where op(n) is a quantity that is negligible in comparison to n in probability. The
proof of asymptotic normality for runs appeals to the martingale central limit theo-
rem (see the appendix). The backward difference v My = My —Mj_| is a martingale
difference as it satisfies E[\y M} | Fx—1] = 0, and so is any scaling 7 (n) v M.

Proposition 1.10 In a random permutation of {1, ..., n}, the number of runs, R,
satisfies a central limit theorem:

Proof. The variables n=3/2 g My, fork = 1,...,n, are a martingale difference
sequence. We shall show that it satisfies the conditional Lindeberg’s condition and
the 5-conditional variance condition. From its definition

1 1
VM = [kRi = skk+ D] = [t = DRy = 56 - k|
=k R+ Ry_1 — k.

By the growth rules (1.18), vRx € {0, 1}, and so | v Mk| < k. It then follows that
for any fixed ¢ > 0, the sets {| v M| > en3/?} are empty for large enough n; the
conditional Lindeberg’s condition is verified.

Let

n

o= (Y )

k=1
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We have

n

1 2
V, = -r;g;:]:E[(kRk — (k= DRt = k)| Fit |
1 n
= ;3.<k§_1:{(k — ?RE_| + 2k(k — DRy—1 + K*E[R} | Fi—1 ]

— 2k?E[Rg | Fi—1] + k% — 2k(k — 1) Ri—1E[Ri |fk_1]}>.

Substituting the conditional expectation of the first moment with (1.19), and that
of the second moment with (1.20), we get

1 n
Vi = 3 Z Ri—1(k — Rr—1).
k=1

We use the representation (1.21) for Ry, and we further have

I </1
Ve = ;;(Zkzwto;o(kz))

1
= — 1

12-*-010()
p 1
H—.—;

12

the Tli-conditional variance condition is verified.
The sum Z}é:] n=3/2 v My =n32M, converges in distribution to a random

variable with characteristic function E[exp(— letz)], which is that of A/ (0, ]17). And
o)

Ru=3n=3 D N (0 3—).
N/ 12
The numerator’s nonessential factor —% is adjusted by Slutsky’s theorem: Add the
almost-sure convergence % /~/n — 0 to get the result as stated. [
EXERCISES
1.10.1 Let IT,, = (my, ..., my) be a random permutation of {1, ..., n}. Let a new

permutation IT), be obtained by a circular shuffie of the first element. That
is, [T}, = (w2, m3, ..., 7y, ). Prove that IT), is a random permutation.
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1.10.2  Suppose the nonuniform probability distribution py, ..., p, is imposed on
n', ... M the n! permutations of {1, ..., n}; with Z;":l pi = 1. Let
En = (§1,....&y) be picked from this distribution (with probability p;).
Assume now that E, is randomized into ) = (El’, ..., &) by picking Sl’
uniformly at random from the set {£1, ..., &,}, (with probability 1/n), then
picking Sé from among the remaining elements with probability 1/(n — 1),
and so on. Prove that all randomized permutations are equally likely.

1.10.3 Assuming the binary search tree is constructed by progressively inserting
the elements of a random permutation of {1, 2, ..., n}, what is the probabil-
ity of inserting the nth element at the jth leaf (in a left-to-right numbering
of leaves of the tree after n — 1 insertions)?

1.11 AN ANALYTIC TOOLKIT

Most of the probability theory used in this book is standard and can be found in many
classic textbooks. We shall not develop probability theory. However, for quick ref-
erencing, we provide in the appendix statements of classic probability theory results
used throughout the book.

A certain analytic toolkit has emerged in the analysis of the algorithms. By con-
trast to probability theory, this analytic toolkit cannot be found in many textbooks and
remains somewhat obscure and limited to research outlets. To disseminate these tech-
niques we shall outline the salient features of this analytic toolkit. We shall present
the setup in its general form and leave the mechanics to the various chapters as the
analytic kit will be encountered a few times in the book.

Many algorithms give rise naturally to recurrence equations on averages, vari-
ances, moments, and various forms of moment generating functions. In many cases
one is able to express the probabilistic behavior of a sorting algorithm in terms of a
recurrence for its moment generating function. A certain property of the algorithm,
like its number of comparisons or exchanges, is typically a nonnegative integer ran-
dom variable (X, say), when the algorithm sorts an input of » random keys (accord-
ing to some well-specified model of randomness). When it converges within a disc
including the origin, the moment generating function

o0 fk
dn(t) = E[e'"] = ;)E[Xﬁ]g

captures the distribution of X,. Sometimes, to avoid convergence issues, one deals
with the characteristic function ¢, (it), which always exists because

=1

Other times it is more convenient to deal with the probability generating function

a0 = (B[] < E[Je"

¢n(Int) = E[t¥].
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These approaches are only minor technical variations on the main theme to handle a
convergence issue or get what works.
It is often helpful to set up a bivariate generating function

O, 2) = Zaj¢j(t)zj.
=0

Sometimes such a bivariate generating function is called a super moment generating
function, as it generates moment generating functions. One then gets a representation
for ¢ ;(¢) from the basic mechanics of the algorithm; subsequently a representation
for ®(t, z) becomes available.

The usual routine is to formulate an equation for ® (¢, z) by multiplying both sides
of a representation of ¢, () (a recurrence for example) by z” and summing over » in
the range of validity of the recurrence. One often gets an equation for ®(z, z). For
recursive algorithms such an equation is usually a functional equation.

Derivatives of this equation give us equations (or functional equations) for the
moments. For instance, the kth derivative with respect to 7, at t = 1, gives

2, dke
cb(Oz)—Z, j;k()

=0
w .
= Z ajE[Xf]Zj s
j=0

+ ~nerating function for the kth moment of the cost. When the representation of
¢, is a functional equation (both sides involve ®(t, z)), taking the first and sec-
U erivatives of the functional equation gives functional equations on generating
teet ons of the first and second moments.

1.1 The Saddle Point Method

¥ 3t 2an one do with an equation or a functional equation on $(¢, z), a super gen-
Ceing function of ¢, (¢)? The equations arising from algorithms vary in complexity
4 he techniques for solving them accordingly vary widely. In many cases an exact
S0.tinn is not readily available, whereas an asymptotic one is. One obvious thing
L v 45 to recover ¢, (¢) from (¢, z). The function ¢, (¢) is the nth coefficient of
9 ) and the process is that of extraction of coefficients.

¥ use the notation [z"] for the operator that extracts the coefficient of z" from a
fuiezon ( possibly bivariate) of z. One form of functional equations that we encounter
Sorezimes in the analysis of algorithms leads to ¢, (¢), or a component of it, given

as

a4t < sefficient of some bivariate function

[k, 2).
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with k large. In this case, We may utilize Cauchy’s classical formula:

I A ()
K1 7) = 2 gz
("W, 2) = 2m?€ il (1.22)

where I' is a closed contour enclosing the origin. The need arises for asymptotic
evaluation of integrals, as the parameter k gets large. This situation can be handled
by the saddle point method. We shall say a quick word about the principle involved
and the interested reader who may wish to learn more about the method can refer to
a chapter in a specialized book on asymptotic integration, like Wong’s (1989).

The saddle point method is a heuristic based on working with expansions of func-
tions and is used often to asymptotically evaluate integrals of the form

1
10) = — f g(2)eM@ gz,
7Tl Jr

over a contour I' (not necessarily closed), for large values of the real parameter
A. The saddle point method will thus be helpful for extracting the nth coefficient
from the representation (1.22) particularly when & is large, which requires a minor
extension for the cases where both g and 4 become bivariate, and the value of the
integral itself depends on ¢.

The functions g and A will both be assumed to behave reasonably well. For our
particular applications these two functions will be analytic, thus differentiable within
a domain containing I". The basic principle is that the exponential function (of a
complex variable) grows very fast with the growth in its real part. The contour I is
deformed to another contour on which the integral has the same leading asymptotic
term as / (A), only introducing a small error in lower-order terms. Having an expo-
nential factor in its integrand, the integral picks up the most contribution from around
a neighborhood of a maximal value of the exponential factor.

Of the family of possible such contours, we choose I'” which passes through zg, a
point that maximizes the real part of the function 4(z), and h(z) drops off as sharply
as possible as we move away from zg on I'’. Such a curve with fastest rate of decrease
in the real part of h(z) is called the path of steepest descent. Integrating over the
path of steepest descent admits good approximation to the original integral from
only a very small neighborhood around zg. It turns out from careful examination of
Cauchy-Riemann conditions that on the path of steepest descent the imaginary part
of h(z) remains constant (the steepest descent path is sometimes called the constant
phase path). Constant phase prevents large oscillations that otherwise, on some other
contour, may interfere with and even supersede the main contribution at 4 (z¢) as we
move away from z(, because we are letting A be very large. The situation needs closer
attention when there are several local maxima on I'’. For all our purposes we shall
be dealing with simple cases with only one essential maximal point.

When all the conditions for an essential saddle point are checked and I'' is indeed
the steepest descent path, the integral picks up the main contribution from only a
small neighborhood around zg. The function k(z) attains a maximum at zg, that is,
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h’(zp) = 0. Hence, the function A(z) has an expansion near z; given by:

1
h(2) = h(z0) + 5h"(20)(z = 200 + 0((z — 20)%);
so does the function g(z):

g(z) = g(z0) + O(z — z9).

Because the function %(z) is in the exponential factor, the second term in its expan-
sion is critical, whereas for g(z), which is only a multiplicative factor, it is sufficient
to work with its leading term g(zq), as z — zg. Working with the expansions,

1 1 1"
I(A) = Y r/[g(zo) + 0(z — 20)] eXp{A[h(zo) + Eh (20)(z — 20)*

+0((z - 20)3)]} dz

A
N g(Zq)exh(zo)f exp{—h”(zo)(z - zo)z} dz.
2mi r 2

The change of variable v2 = —Ah"(z9)(z — z0)? yields

g(zp)et @) ru2
27/ Ah" (20) Jui

the beginning and ending points vy and vy usually form a real interval containing
0 (the image of z( under the v transformation). Again because the integrand is an
exponential function, we can extend the range of integration to the entire real line,
only introducing an asymptotically negligible error. So,

1) ~ e~V/2 du;

g(zo)e)‘h(z‘)) 00 e—v2/2
V2 h"(z0) J—00 N 2m

The remaining integral is that of the standard normal density, and is therefore I.
When all the conditions check out, this procedure gives a working asymptotic for-
mula, as A — oo,

1) ~ dv.

g(zp)et @

V2r AR (zo)

1) ~

1.11.2 The Mellin Transform

The Mellin transform of a function f(x) is

foo fox*dx.
(

)
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The resulting transform depends on s and will be denoted by

M{f(x); s}

The Mellin transform usually exists in fundamental domains in the complex s plain,
often taking the form of a vertical strip

a <MNs < b,

for a < b real values. The function f(x) can be recovered from its transform
M{ f(x); s} by the inversion integral

1 c+ioco
fx)= z—f M{f(x); s} xds.
T Je—ioo

This inversion formula is typical of a general class of integral transform inversion
formulas that include the Mellin, Laplace, and Fourier transforms where the inver-
sion is given by a line integral in the complex plane.

The Mellin transform and its inversion play a prominent role in simplifying har-
monic sums of the general form

Ak flagx).
k=0

The function f(x) is called the base function and is involved in the harmonic sum
with different scales for its argument. These harmonic sums appear often in algo-
rithms for digital data. A function

g(x) = A flagx)
k=0

(well defined for x > 0) has a simple Mellin transform. The formula for the trans-
form g*(s) = M{g(x); s} is obtained easily from

g (s) = /oo Zkkf(akx)xs“l dx = Z)‘k_/ flagx)x* " Ldx.
0 k=0 k=0 Y0

The change of the order of summation and integration is permissible in view of the
absolute convergence of the series at every x > 0, to g(x). In the kth integral, the
change of the integration variable ayx = vy gives

g*(s) =) na;’ f Fovy™ doe = f*(9) ) may”
k=0 0 k=0
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One then resorts to contour integration to recover g(x) from its Mellin transform via
the inversion integral

c+ioo

1 * = ) -5
Y . (f (s)kz:(:))\kak )x ds,

Cc—10

which is taken over an infinite vertical line s = ¢ in the fundamental strip of
existence of g*(s), say a < fs < b.

The line integral involved in the inversion formula is usually estimated asymp-
totically (for large x) by the method of “closing the box.” One links the inversion
integral to a contour integral, which is to be evaluated by residues of the singularities
of the integrand. Typically, these singularities are poles of low order aligned on the
real axis, and equispaced singularities aligned (symmetrically about the horizontal
line) on vertical lines outside the domain of existence.

It is common folklore that the poles on vertical lines give small oscillations in
the solution, and that the dominant behavior in inversion formulas comes from sin-
gularities of higher order, as we shall soon see in an example. Consider the contour

integral
% /*L“HM fd-}—iM fd—iM fC—iM
A c c+iM d+iM d—iM

where A is a box connecting the four corners given in the limits of the four integrals;
the minus signs account for traversing the contour in the clockwise direction. The
contour encloses a number of the poles to the right of the line Rs = ¢, and we
choose the altitude M so that the contour does not pass through any of the poles of
the integrand. The common types of Mellin transforms are functions that decrease
exponentially fast as one moves away from the horizontal axis, such as the Gamma
function. By a careful limit process, letting M — oo without letting the top or
bottom sides of the box pass through any poles, the integrals on the top and bottom
sides of the box vanish. Another consequence of the exponent1al decay of the Mellin

transform in the vertical direction is that the right integral f dii M is bounded by

O (x~%) as we shall see shortly. As d is arbitrary, we can take it large to minimize
the error. In the limit, the contour A grows to A «, a contour encompassing the right
boundary of the infinite strip ¢ < Rs < d, and

| CHI0 1

— =—— o(x~%).
270 Jo—ioo 2ni Aoo+ (x )

A large value of d will allow A to encompass all the the poles lying to the right
of the fundamental strip. The evaluation of the line integral has been reduced to a
computational task. By Cauchy’s classical residue theorem, the equivalent integral
on the closed contour A is 2ri times the sum of the residues of the poles of the
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integrand inside A . It follows that
| c+ioo
i i =— Z{residues of singularities to the right of the fundameptal strip}
+ O(x"d).
Example 1.1 To see the mechanical procedure of evaluating a harmonic sum in

action, consider

A =Y (1 -/,

k=0

The Mellin transform of the harmonic sum A(x) is

x0
A*(s) =f A)xSVdx
0
x0
= M{l—e "5}y 2%,
k=0

The sum converges to 1/(1 — 2%) in the domain
12°] < 1,

that is, fs < 0. On the other hand, the Mellin transform of 1 — e™* is what is
sometimes referred to as the Cauchy-Saalschiitz analytic continuation of the Gamma
function. This transform is —I"(s) in the domain

—1 <Nfs <O.

Both M{1 — e™*; s} and the infinite series exist in the vertical strip —1 < Rs < 0,
and

I'(s)

A*(s) = —
W=-1"%

is well defined for Rs € (—1, 0). The inverse Mellin transform is

1 c+ioco
A(x) = —-—f A*(s)x ¥ ds,
278 Je—00

for any ¢ € (—1, 0). Shifting the line of integration to a vertical line atd > O requires
compensation by the residues of the poles of A*(s):

Alx) =— Z{Residues of poles to the right of the strip —1 < Rs < O}+O(x_d).
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The transform A*(s) has singularities at the roots of the equation
2 =1=ek k=0 +1,42,....

There are singularities at sy = 27ik/In2, for k = 0,+£1,+£2,... . The Gamma
function contributes additional singularities at 0, —1, —2, —3, ... . Each of the in-
tegrand’s singularities is therefore a simple pole, except the pole at 0, which is a
double pole (see Figure 1.11). We shall see that this double pole gives the asymptot-
ically dominant term.

Proceeding with the inversion,

xX
A(x) = — Res A*(s)x ™5 — Res A*(s)x ™ + O(x~%).
0=-ggar= 8 g roe
k£0

The residue at O is

d(_szf(;v);”s>=_1x vy 1

lim —
s—>0ds

AN
r A

6mi

)(—m

Figure 1.11. The poles of the Mellin transform A*(s); x indicates a simple pole and ® indicates a double
pole.
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where y = 0.5772 ... is Euler’s constant. The residue at sz, with & # 0, is

lim — (S — S/()F(S)X—S _ —I—_F<27Tl.k>e_2nik1gx.
§> 8¢ 1 —2¢ In2 In2

For any arbitrary d > 0, the sum is

Y 1 —d
Alx) =1 ~Z 4+ - -0 ;
(x) gx+ln2+2 QUgx) + O(x™%),

where Q is the function

1 & 2mik A

— F( ) —anku.

Qu) ——lnzk:m 7 )¢
k30

A few technical points in the example are worthy of some interpretation. The error
O (x~?) introduced in inverting the Mellin transform is valid for any fixed d. What
this really means is that the error is less than the reciprocal of any polynomial in x;
it might for instance be exponentially small.

The function Q(u) is an oscillating function of a truly ignorable magnitude. For
all u, the magnitude of the function is bounded by 0.1573158421 x 1075, Note
that these oscillations occur in the lower-order term, anyway, and do not make the
harmonic sum behave in an unstable manner. As a function of x, the sum is a “wave”
of a very small amplitude flickering around a “steady” component.

1.11.3 Poissonization

A combinatorial problem like sorting # random keys is sometimes hard to approach
for fixed n. Occasionally, the same problem is more tractable if, instead of fixed ~,
one assumes that the size of the combinatorial problem (number of keys to be sorted
in the case of sorting problems) is random according to some probability distribution.
For example, one may consider sorting N (z) keys where N (z) follows a probability
distribution with parameter z. Which probability models are helpful? The Poisson
distribution has proved to be an instrumental tool leading to Poissonization. The
general idea in Poissonization is that the behavior of a fixed-population problem
should be close to that of the same problem under a Poisson model having the fixed-
population problem size as its mean. To a lesser extent, geometric random variables
have been used and indeed there is work involving geometrization like Grabner’s
(1993) work on incomplete digital trees.

One of the earliest applications of Poissonization can be traced back to the work
of Kac (1949). Over the past few decades the idea has resurfaced in various forms
and guises. The difficult step has always been in relating results from the Poisson
model back to the fixed-population model, the model of prime interest. Interpreting
the Poissonization results for the fixed-population model is called de-Poissonization.
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A variety of ad hoc de-Poissonization solutions have been proposed. Perhaps the
earliest Poissonization in the analysis of algorithms is due to Jacquet, and Régnier
(1986). Poissonization and de-Poissonization have also been considered by some as
a mathematical transform followed by an inversion operation. The first to treat it as
such were Gonnet and Munro (1984) [Poblete (1987) follows up on the inversion
of the transform]. Other useful related results may be found in Holst (1986), Al-
dous (1989), Rais, Jacquet, and Szpankowski (1993), Arratia and Tavaré (1994), and
Jacquet and Szpankowski (1995).

For a fixed-population sorting problem, analysis via Poissonization is carried out
in two main steps: Poissonization, followed by de-Poissonization. Instead of having
a population of fixed size, we first determine the number of keys to be sorted by a
draw from a Poisson distribution with parameter z. A recurrence or what have you
of techniques is then set up and the problem is completely solved under the Poisson
model.

Of course, z, being the parameter of a Poisson distribution, must be a real, pos-
itive number. However, all calculations can be extended to complex numbers. For
example, for any complex z, we can define

Z* —z
Ap(z) = aé
as the analytic continuation of Prob{N (z) = k}; that is to say Ax(z) is a function
whose value coincides with Prob{N(z) = k} for every integer k and real z, or Ax(z)
is the analytic continuation of Prob{N (z) = k}.

For subsequent de-Poissonization, we formally allow z to be a complex number
in order to manipulate the resulting generating function by considering its analytic
continuation to the z complex plane. This allows us to use the full power of complex
analysis. De-Poissonization is then achieved by a combination of Mellin transform
methods and asymptotic integration over a circle of radius # in the z complex plane.

Suppose X, is the number of operations a sorting algorithm performs on a set of
n random keys. Let the exponential generating function of the means sequence be

00 j
M(z) = ZE[X,']EJ.—,-
-~ |

The generating function e “* M (z) has a Poissonization interpretation. Had we started
with N(z) = POISSON(z) random number of keys instead of a fixed n, the average
cost of sorting would have been

E[Xyw] =Y E[Xne) | N@) = j]Prob(N(2) = j}

=0

o0 Zje——z
=) E[x/] i

j=0 '

=e *M(2).
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The intermediate step

zfe z
E[Xy@] = ZE

entices one to think of E[X N(z)] as a mathematical transform on the sequence E[X ],
j =0,1,2,..; Gonnet and Munro (1984) were the first to recognize it as such. A
sequence {a, }2.;0 will be called Poissonized when it is under the Poisson transform.
For example, E[X y ;)] = e7*M(z) is the Poissonized average of X j. We shall speak
of Poissonized averages, variances, and probability distributions.

One can analogously define the Poisson transform for any sequence of numbers
ag,k =0, 1, ....Forsuch asequence, the Poisson transform is formally

8]

Ze?
[{akk 0> < Za, i

A sequence to transform may be an arbitrary deterministic sequence, a sequence of
means, variances, moment generating functions, or probabilities. The Poisson trans-
form with respect to z, is a function of z and can be denoted simply as a function
like P(z). Consider a cone Sp = {z : |argz| < 6}; certain rates of growth of P(z)
along a large circle (as in Figure 1.12) inside and outside Sy provide good asymptotic
approximations of sequences by their Poisson transform.

Figure 1.12. The cone of de-Poissonization.
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Lemma 1.3 (Jacquet and Szpankowski, 1998). Let {an}:° , be a sequence of real
numbers. Suppose that the Poisson transform P(z) exists and can be analytically
continued as an entire function of complex z. Fix 6 € (0, n/2) and let Sy be the cone
{z : |argz| < 6}. Suppose that there exist positive constants « < 1, By, B, ¢, and
20 such that the following conditions hold:

(1) For all 7 € Sg with |z| > z9,
P < Bilzl;
(i1) forall 7 ¢ Sy with |z| = z¢,
[P@)e] < Bolzle®H.

Then for large n,
gy =P(n) + 0(n "2 Inn),
Proof. Extract a, from its Poisson transform by Cauchy’s formula:
_n! % e*P(2) d
= on A ©

where A is any closed contour enclosing the origin. To make use of saddle point
techniques, choose A to be the circle 7z = net? for0 < ¢ < 2m,withradius n > zg.
Break up the line integral into two parts

n!.% e*P(z) dr = 11_!/9 P(ne'?) éxp(ne"‘/’) do
2mi Jo Tl 21 J_p (ne'®)n
' -0 i 9
N _n_f P(ne )c?xp(ne )d¢-
27 Jo (neld)n

The Stirling approximation of n! by n"e™"+/2nn (1 + O(1/n)) cancels out several
factors. It is seen that the second integral involves the behavior of the Poisson trans-
form outside the cone (condition (ii)). This second integral introduces a term that is

only O(nc+%e"(1"°‘)”). So,

n!
dp

o 1 1
f P(lzei‘/’) exp{n(e"/’ —i¢p— 1)} deé + 0(nc+7e_(1_“)”).

= Dxnnen -0
In the integral, set x = ¢/ to get
o./n , . j
a0, = L F00/m) / P (ne'*/+7) exp{n<ezx/ﬁ _ix 1>]dx
21 —0./n NG

+ 0 (n“+%e_(1”“)”).
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To proceed with further approximations, expand both functions in the integrand for
fixed x. However, these expansion are only valid for small x; near the limits of the
integral, x is not small enough to warrant use of the expansions. So, further split the
integral inside the cone as

N —Inn /ln n 6./n
./ N ./;0\/5 Inn -[
AslInn//n — 0, for n large enough, the expansions are valid over the entire range of

the middle integral. The first and third (symmetric) integrals contribute a negligible
error because

'[ﬂejﬁp<neix/ﬁ> exp[n(eix/\/’—l - % - 1)} dx‘

< ffﬁ |73(neix/\/’—1)| |exp{n<e""/\/’—1 - f/% - 1>}|dx.

nn

But then by condition (1):

[ [0 b esp{n(eos(22) - 1)} s

ool ) ST
= e ofo(i "2+ 0(%)) ) -

< BiOnce "x/ﬁ,

for some positive constant &; the latter bound decays exponentially fast and is
1 —Ilnn . .
O (n“"2 Inn). Of course, | f—@ NG | gives the same asymptotic error.

We now return to the range where expansions are valid; for any fixed x the expo-
nential function gives

colp (677 ) o[+ 5 5 o)
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Being analytic, the Poisson transform can be expanded in series form around n, giv-
ing

1
P@ =P +P' -+ 5P e =n*+ =P +0(Pm)z-n),

and again P’ can be extracted by Cauchy’s formula:

P'n) = — ?§ PO 4,

2mi Jor (z —n)2

where A’ is a circle centered at n and of any radius sufficiently small for the entire
circle to lie inside the de-Poissonization cone, that is, A”’s radius is less than » sin 6
(see Figure 1.12); let us take it to be R, = %n sind. As A’ lies entirely inside Sp,
condition (i) now comes again into the picture to show that

1 yg 2463] 1 Bin¢

Pn)| == ldz| < —
I I 2n A |z—n|2 2 A R’%

|dz].

The integral §,, |dz| is the perimeter of the A’, and so

Bin°
R, )

|P'(n)| <

In the integral [ lnl'; ,» 2 comes from a restricted cone of (infinitesimal as n — oco)
angle —Inn//n < ¢ <Inn//n.Each z on the arc of A lying inside the restricted
cone is close enough to n, with |z — n| < n x (Inn//n) = /n Inn. The error

term O (P'(n)(z — n)) is 0w :inn /Ry). Within the restricted cone, the Poisson
transform has the expansion

P(2) = P(n) + O(n"" 2 Inn).

So, finally,

_ofeth o~y LFOU/m) [ g ix 1
o= O+t ) ¢ =22 |- g o)) (P

1
+ O(nc_% 1nn)> dx + O(n°"2Inn).
The dominant component in this integrand is P(n)e™* 2/ 2. upon extending the limits
of the integral from —oo to +00, we only introduce another O (1/n) error; the domi-
nant remaining integral is 7P (n) times 1 (the area under the standard normal density).
|

If a, is a sequence of average values, the De-Poissonization Lemma states that
under suitable growth conditions on its Poisson transform, the fixed-population av-
erages are nearly the same as the Poissonized average with n replacing z.
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The rough idea behind de-Poissonization is the following. For any fixed n, the
coefficient of z"* in the power series expansion of ¢~P(z) about the origin is a, /n!.
Finding a, is then only a matter of extracting a coefficient from a generating function.
This is routinely done by considering a contour integral around the origin in the z
complex plane. In particular, when we choose the contour to be the circle |z| = n,
we get

n! e*P(z)
a, =

iy oy dz.

Such integrals typically have most of their value contributed by a small arc at the
intersection of the circle with the positive real line (i.e., at the saddle point z = n); the
rest of the contour adds only an ignorable correction. Over this small arc, the value
of the function P(z) is well approximated by P(n). Taking this now-constant factor
outside the integral, performing the remaining elementary integration, and applying
Stirling’s approximation to n!, we see that all factors cancel out, except P(n). The
point is that a, can be accurately approximated by P(n), with a diminishing error
as n — o0. The De-Poissonization Lemma gives sufficient conditions to make this
approximation valid.

1.11.4 The Dirichlet Transform

Another transform that appears in solving recurrences is the Dirichlet transform
which, like the Poisson transform, transforms sequences of real numbers. For a se-
quence {a,}>° |, we define the Dirichlet transform as the generating function

def = an
D(s) = s
n=1
for some domain of convergence in the s complex plane.

An inversion formula, proved next, recovers certain finite sums of the members
of the sequence. This inversion formula is called the Mellin—Perron inversion, and
is typical of the general class of integral transform inversion formulas that include
the Mellin, Laplace, and Fourier transforms where the inversion is given by a line
integral in the complex plane. By methods similar to the closing-the-box method,
such line integrals are actually estimated within small errors by residues of poles
within the box.

Lemma 1.4 (Mellin-Perron). Let ay, az, . . . be a sequence of real numbers with an
absolutely convergent Dirichlet generating function D(s), for Rs > o > 0. Then,

for B > a,

n-1 n [BHioo D(s)n®

—Bar = —— 27
];(n Ja 271 Jp—ioo S(s+1)
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Proof. Let B > « and consider the line integral

B+ioo s B+ioco 00 s
f D(s)n ds=f Z(fl_f) n ds.
B—ico S(s+1) B-ico [Nk s+ 1)

As the series ) o | axk™ converges absolutely for Rs > «, so does the series
Y te akn® /[s(s + 1)k]; it is permissible to interchange the sum and integral signs.
So,

B+ioo s o) B+ioo s
& De)n 5= " 3 f /) 4. (1.23)
B

— s =
2ri Jg—ivo S(s+1) 2ri = —ico S(s+1)
Introduce the function

1 B+ioo X3
J(x) = —

- ds.
27 Jg—ico S(s+1)

To evaluate the line integral in J(x), for x > 1, consider the circle centered at the
origin and having radius R > . Let its two intercepts with the vertical line Rs = B
be the points s1 = B + ia and s, = B — ia, with a = /R% — 2. Consider the
closed contour A consisting of the vertical line segment connecting s to s and the
closing arc A1, the arc of the circle connecting the points 51 and s2 to the left of the
line s = B; see Figure 1.13. The contour integral

f B f T s f < s
s = s ,
ASGS+ 1D p—ia S(s+1) A S+

S

Figure 1.13. Evaluating J (x) via residues.



An Analytic Toolkit 69

is to be evaluated via the residues of the poles of its integrand by Cauchy’s classical
formula:

B+ia s s 8§ s
/ al ds = 27ri[Res * + Res a ] —-/ al ds
B—ia S(s+1) s=0 s(s+1) s=—15(+1) A S(s+1)

Letting R — 00, a — o0; the integral on the straight line segment becomes
27iJ(x). Thus,

1 | x*
Jx)=1—-— -~ — lim
X 2mi R»oo Jp, s(s+1)

As is customary in complex analysis, the limit in question is O because

x5 x5
ds~ < / ~ ~ ds
‘/A] s(s+1) Ay lsGs+1) s]

xf)ts
< ——— |ds|
/A, Is(s] — 1)

arg s, xﬁ
5/ ——— Rd6
args;, R(R—1)

2w xP
<
~— R-1
— 0, as R — oo.

Thus J(x) =1—1/x,ifx > 1.

By a similar contour integral, closing the contour with A, the arc of the circle
extending to the right between s and s;, one sees that J(x) = 0, forall x < 1, as
the contour encloses no poles of the integrand. The limiting process by which one
shows that, as R — oo, | A, 0 is basically the same where one uses the condition
x < 1.

Going back to (1.23),

n Btico p(s)ns 4 =niak./(£)

27i B—ico S(s+1) = k
n—1
k
=n (1 — —)ak ]
=1 n

The Mellin-Perron theorem is very useful for handling recurrence equations that
are commonplace in divide-and-conquer algorithms. The sorting algorithm MERGE
SORT falls in this class. Algorithms that divide a given input into two parts are
forced to deal with ceils and floors. When the input is of size n, the two parts are
not equal for odd n. Suppose ay, is some efficiency measure for such a divide-and-
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conquer algorithm. The algorithm creates two parts of sizes [n/27] and [n/2], on
which it recursively repeats its operations. The result of a divide-and-conquer algo-
rithm is constructed from the recursive operations; combining the results of the two

recursions may add a toll b, to the efficiency measure. A recurrence equation of the
general form

an = an 21 + ajny2) + bn (1.24)

is associated with such an algorithm. MERGE SORT will provide a perfectly natural
example in this class of algorithms.

A technique for handling these recurrences and finding asymptotic solutions by

integral transform methods is due to Flajolet and Golin (1994). This technique is
discussed next.

The method consists in first getting rid of all ceils and floors by taking forward
and backward differences of the recurrence. The Dirichlet generating function for
the sequence of differences is then constructed and inverted.

The starting point in solving the general form (1.24) is to get rid of the ceils and
floors involved by differencing operations. The forward and backward difference
operators are denoted by A and v7: Operating on a sequence g,

Agn = Gn+1 — qn,
V4n = 49n —4qn—1-

Taking the backward difference of (1.24) we have

Vén = (af"m a2t b") - (af(n—l)m +ajn-1/2) + bn—l)-
For even indexes n = 2m, this simplifies to:

Varm = (@m + am + bam) — (@m + am—1 + b2m—1)
= (am — am—-1) + (bom — bam—-1)

= Vam, + Vbom,

a recurrence without ceils and floors. For odd indexes n = 2m + 1, the procedure is
exactly the same; one gets

Vam+1 = Vam+1 + Vbam+1,

also a recurrence without ceils and floors. If we let m run its course, from 1 to
oo on the recurrence for vay,,, and from 0 to oo on the recurrence for a1,
the left-hand sides of the two recurrences will produce the entire sequence va,,
n =1,2,... term by term, and so will the right-hand sides generate the entire se-
quence vb,, n = 1,2,.... However, the right-hand side of each recurrence will
generate vaj, Vaz, vas, . . .. This overlap gives rise to a clumsy Dirichlet transform
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for the sequence of backward differences on a,, because convergence issues clutter
the formal definitions. For example, the Dirichlet transform for the recurrence on
even indexes gives the term a3 /6%, and the transform for the recurrence on odd
indexes gives the term a3 /5°. It is not easy to combine such terms in one conver-
gent Dirichlet generating function. This minor hurdle is circumvented by applying a
second layer of differencing operators to remove the overlap. Applying the forward
difference operator to the recurrence on backward differences gives

AV Gy = Varm+1 — Va2m
= (Vam+1 + Vbon+1) — (Vam + vbom)
= AV am + A by, (125)

and for odd indexes

AV am+1 =AY byl (1.26)
We next develop the Dirichlet generating function D(s) of the sequence {Avay, }2°=1 :

o0

A
HIOEDY v an.

ns

n=1

Because of the parity consideration, we break up the infinite sum into odd and even
indexes and apply (1.25) and (1.26) to obtain

o0

o~ AV aym A Y aam+
Dis) =Y ———=m gy Yl

3

o0 o0

_ZAVam+AVb2m ZAVme—H
m=1

2m)S @2m + 1)5

m=0

NI,_.

o0 o0
AV an AV by
-5 L e
m= =

o

(s)
2S

+ n(s),

where 7(s) is the Dirichlet transform of the known sequence {A 7 bi}. Reorganizing
the last equality,

n(s)
| —2-s’

D(s) =

Forward and backward operators telescope nicely to unfold the final term of a sum-
mation (the nth term) via the formula in the next lemma.
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L.emma 1.5

n—1

Z(n —k) Ava, = an — nay.
k=1

Proof. By definition we take ap = 0. Break up the finite sum as follows:

n—1 n—1 n—1
Z(n—k)Avak = ZnAvak —ZkAvak.
k=1 k=1 k=1

The first sum on the right unwinds as

n—1

ZnAvak=n(Ava1+Ava2+---+Avan_1)
k=1

= n[(vay — va)) + (vaz — vaz)
+ (Vag — va3) + -+ + (Van — Van_1)]
= n(van — vaj).
In a like manner, the second sum unwinds as

n—1
Y kAva = (vay— va) + 2vas — vaz) + -+ + (1 ~ 1)(Van — vap_1)
k=1

=—(vai +vay+ -+ vap—1) +(n—1) van
Combining the two sums we obtain

n—1

(n—k)Avay=vay —nva+(va;+ -+ vay—1)
k=1

= (an — an—1) — n(a; — ap)
+[(a1 —ap) + -+ + (an—1 — an—2)]

=a, —haj. u

In the recurrence (1.24) we shall assume bounds on the growth of the sequence
{bn};2 . This is done to ensure the existence of the Dirichlet transform of A v by,
in some manageable domain in the complex plane. In almost all recurrences of the
general form (1.24) arising naturally in an algorithmic application reasonable growth
bounds like b, = O(n) exist. The growth rate b, = O(n), as n — 00, means that
there is a constant K and an integer ng, such that |b,| < Kn, for all n > ngp. So,
the second-order differences | A vby| = |(byr1 — bn) — (bn — bp—1)| < |bpt1| +
2lby| + b1l < K(n+1)+2Kn+ K(n — 1) = 4Kn, for all n > ng. The formal
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Dirichlet transform

liAVb”l—lZAVb”l IZ Avb,l

n=1 no+1
00
Ayb
<o+ Y l Y
n=ng+1 n
00
4Kn
<o)+
(1) _Z T
n=np+1

1
=0()+4K ) —,
(1) ,;ms-w

which finitely exists for Rs > 2.

A combination of Lemmas 1.4 and 1.5 culminates into an exact solution to a
recurrence equation with ceils and floors. We can take the line integrals involved in
the inversion at any 8 > 2. We shall take g = 3.

Theorem 1.6 (Flgjolet and Golin, 1994). Let by, by, . .. be a sequence of numbers
with growth by, = O(n). The recurrence equation

an = arn/21 + ain/2] + bn
has the solution

3+4+ico n(s)ns
ap, =ah+ — ds,
270 J3—joo S(s+ D)(1 —279)

where n(s) is the Dirichlet transform of the sequence of second-order differences
A v by

Applying Theorem 1.6 requires evaluation of a line integral. It is typical in this
Mellin-like analysis to resort to evaluating the integral by relating it to the singulari-
ties of its integrand. Typically, these singularities are poles of low order lying on the
real axis and equispaced singularities aligned on vertical lines symmetrically about
the horizontal line.

It is common folklore that the poles on vertical lines give small oscillations in
the solution, and that the dominant behavior in inversion formulas comes from sin-
gularities of higher order, as will be verified when we follow this route. To evaluate
line integrals like those in the statement of Theorem 1.6 we close a contour—starting
with the line integral f 3+’M , for some large M, we relate it to a line integral on the
closed contour A conS1st1ng of the line segment joining 3—iM to3+iM, and Ay, an
arc of a large circle centered at the origin and with radius v M2 + 9. The number M

is suitably chosen so that the circle does not pass through any poles; see Figure 1.14.
We have
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Figure 1.14. Evaluating the line integral via residues.

3+iM
Jow b= 4
3-im Ja Ja

The contour encloses a number of the poles to the left of the line is = 3. By a
careful limit process, letting M — oo without letting the circle pass through any
poles, the integral on A; vanishes, by considerations, not repeated here, like those
used in the proof of Lemma 1.4 for determining the limit of a line integral. In the
limit, the contour grows to the infinite semicircle A, with the vertical line Rs = 3

as its diameter, and
34ico %
»/3—1' fold) Aso

The evaluation of the line integral has been reduced to a computational task. By
Cauchy’s classical residue theorem, the equivalent integral on the closed contour
Ao 18 27i times the sum of the residues of the poles of the integrand inside Axo.

1.11.5 Rice’s Method

Upon extracting coefficients from closed-form generating functions, certain types of
summations whose summands alternate signs and contain binomial coefficients often
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appear. The general form of these sums is

n B k n
k;( ) f(k)(k),

starting at some small integer a. This type of sum will be called an alternating sum.

It is not always easy to get a closed-form expression for an alternating sum. Even
numerical evaluation is often fraught with difficulty because binomial coefficients
tend to be rather large and the alternation of signs then demands accurate subtraction
of very large numbers, which is a challenging arithmetic exercise on computers.

Accurate approximations can be worked out for alternating sums via Rice’s
method, a method based in complex variable theory. The idea in the method is to ex-
tend f (k) to its analytic continuation f(z) in the complex plain. An alternating sum
then has an interpretation as the residue calculation for the poles inside some closed
contour. By Cauchy’s residue theorems we can enlarge the contour and work with
the poles outside the old contour and compensate by the new line integral. When
the new contour is properly chosen, the new line integral gives an asymptotically
ignorable error.

This outline of Rice’s method hinges on the connection between a sum and a line
integral, established next.

Lemma 1.6 Ler f(k) be a function defined at all nonnegative integers, k =

0,1,....Suppose f(z) is the analytic continuation of f. Then
L k n 1
>0t} ) = 5 f F@Bzn+ Dz
= k 27i JA

where B is the classical Beta function, and A is a closed contour enclosing the inte-
gersa,a+ 1, ..., n, and no other integers.

Proof. The Beta function has the representation:

I'(=alr(n+1)

B(—z,n+1) = A
n'I'(—2)
T n-2T(n—2)
n!T(—2)
T - —z—-1)...(=)(—2)
n!

= . (1.27
nm—z2)n—1—2)...(=2)
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The last representation manifests clearly that the Beta function 8(—z, n + 1) has
simple poles at the integers k =0, 1, ..., n, of whichonly a, ..., n are inside A.
Evaluate the contour integral via residues of poles inside A:

R B _ .\ n! £(z)
Znija'fﬁoﬁ( P DY s B
_ Z n! f(2)(z — k)
z—->k [n—2)...(k+1=2)]z—k)
1

TG -k —1).. 7]
= (=DFf)
k=a

n!
X [(n—k)x...><2><1][1><2><...><k]'
n

Lemma 1.6 translates an alternating sum into a line integral on a closed contour A
surrounding the points @,a + 1, ..., n. The correspondence of the sum to a contour
integral gives us an alternative for computing residues. We can work with the residues
of poles outside the contour, but inside a new enlarged one.

To asymptotically estimate this contour integral, enlarge the contour A into a new
contour A’ to enclose poles of the integrand outside A. By Cauchy’s residue theorem

1
——.55 F@B(=2.n+ ) dz = —#55 F@B(—zn+ 1) dz
27 A 27'[1 Al
+ Z{Residues of f(z)B(—z,n+ 1) outside A and inside A/}.

The larger the new contour is, the more poles outside A it will catch, and as is
common in complex analysis, the compensating line integral 351\, gives a smaller
error. The situation is a trade-off between how complicated a residue computation
we are willing to tackle, versus how small an error we wish to control. Often, a large
contour catching only a few dominant poles outside A is sufficient to bring out the
main character of the sum with only ignorable error. This heuristic is illustrated next
by an example.

Example 1.2 Let us evaluate
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_d+iM// %Y A C//+iM//
dnif 3 +iM A o +iM
e4 3 I A A ntpi
B¢ > -
0 2 3 n
4
w2t loim ¢ —iM’
—d—iM// —%x C//—iM//

Figure 1.15. Changing the integration contour by Rice’s method; x indicates a simple pole and ® indi-
cates a double pole.

The analytic continuation of 1 /(1 — 27K to the z complex plane is 1/(1 —27%). Take
the contour of integration A to be the rectangle connecting the four corners 3/2 + i,
n+ % +i,n+ % —1i,and 3/2 — i; see Figure 1.15.

By Rice’s method, if we enlarge A into A’, the rectangular contour that connects
the four points 1/2 +iM’, ¢/ +iM',¢’ —iM’',and 1/2 —iM’,for ¢’ > n + 1, the
given alternating sum is given by

| —-2-2

— dz;
2l Jpr 1 —27%

Sy = Z{Residues of outside A and inside A’}

the easiest way to compute these residues is via the working formula of rational
functions given in (1.27). The only pole of the integrand between the two contours
A and A’ is at 1. This pole gives the residue

Res ——————~——'B(_Z’ nt 1) =
=1 1-=2-

2n.

The error term requires some work. For any fixed x, the Gamma funcl:tioon x4+
iy) is O(Iy[*="/2e=7112), as |y| — oo. So, [T(x + iv)| < Kily[*~!/2e= /2,
for some positive constant K| and all |y| larger than some yo. This is helpful in
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estimating the error introduced by shifting the line integral to a larger contour with
M’ > yo.Onthetopsideof A’,z =x+iM’,for1/2 < x <. As we let M’ — oo,
the integral on the top side of the rectangle diminishes to 0, which can be seen from:

/c/+iM’ B(—z,n+1) iz ' / ¢ ' 1 '
z=1/24inr 1 =272 T Jamipp 127N

Fn+1)IT(—x —iM')
Frn+1—x—iM)

dx

/

S /c Kl (M/)—x—l/Ze—nM’/Z
1/2 1 —2—*

T(n+1)
T(n+1—x—iM)

dx.

By the Stirling approximation of Gamma functions, the ratio [I'(n + 1)/T'(n + 1 —
x —iM")| is bounded by K,n*, for some constant K, and for all # exceeding some
no. Hence, for any large enough fixed #,

M B(—z,n+ 1) ﬁKlee—nM//z d no\x
—————dz| < (‘7) dx
i=1/24im0 1 =272 V2-DVM  Jip\M
_ V2K K™ (n/ )12
(V2 = DM’ In(M’/n)

valid for any fixed n > ng, with M’ > max{yg, n}. Taking the limit,

lim
M'—o00

/n+1+iM’ B(—=z,n+1)
=124inr 1 =272

dz[ —0.

The argument for the line integral on the bottom side is the same. On the right side,
for very large values of ¢’ the Gamma function in the denominator grows very fast in
magnitude and annihilates the integral; on the line z = ¢’ + iy, for—M' <y < M/,
we have

=M’ ,B( Z,n+1) l / M’ [T'(n + 1)} I'(—c —iy) dy

mepim 1=270 o 1= 27T (=¢ +n+ 1~ iy)

and again if ¢’ is very large, for any fixed n, we have |[I'(—¢' —iy)/T(=c' +n+1 —
iy)| < Ko(c")~®+D that is, the line integral on the right side of A’ is bounded by

M/
/ n! y K»)(C ) (n+1)dv < 2K2M/
_m 1 — = — (1 =2"¢ )(U)”‘H

as ¢’ — oo at the right rate, the bound on the integral tends to 0. For example, for
any fixed n we can take ¢/ = M’, then let M’ — oo0.



An Analytic Toolkit 79

The only nonzero error comes from the left side of the rectangle. On the line
z=1/2+1iy, for—M' <y < M’, we have for all n > ny,

~/”H”4 B=z.n+1) _</M’ ID(=1/2 —iy)|
1/2—iM/’ C1-277 = Jymep |1 = 271720y
X| Fn+1) l
L(1/2+n—iy)
</M’ IC(=1/2 = iy)| Kon!/?
e 1 —1/+/2

KoN2n [*° )
< IT(=1/2 ~iy)ldy.

2-1J-c

d\,

dy

The integral in the bound contributes only a constant; the magnitude of the Gamma
function decays exponentially fast. The integral on the left side of A’ contributes
0(/n). As n — oo, we have an asymptotic estimate for our sum

Sp =2n+ O(/n).

The O(/n) term is only an artifact of assuming the right side of the rectangle
at Rz = 1/2. Had we taken that right side at any %iz = ¢ € (0, 1), we would have
gotten an error bounded by O (n¢). For example, we may take the right side at .01
and claim the error to be O (n01).

The error cannot be improved below an exponent of n unless we shift the left
side of the rectangle to the left of the vertical axis. For example, if we consider
the contour A”, a rectangle connecting the four corners —d &+ iM"” and ¢” £ iM"
instead as our enlargement of A (withd > 0, ¢’ > ¢/, and M” > M’), several of
the hidden terms in our O(/n ) calculation with A" will come out. Of course, more
poles enter the calculation, but that is the expense one pays for increased accuracy;
see Figure 1.15.

Working with A”, the arguments are exactly the same for the top, bottom, and
right sides: For any fixed n, however large, they all still tend to 0 as we let M" —
oo. The line integral on the left side of the rectangle A” introduces an error that is
O (n~9), for arbitrary d > 0. Such an error cannot take the form of the reciprocal
of a polynomial of n; this error may be exponentially small in n. As we let M”
approach infinity the rectangle A" grows to encompass all the poles aligned on the
vertical axis; the enlarged contour grows to swallow all the poles outside the original
contour A. For any arbitrarily large d > 0, our summation can be approximated
by

O(n*d) + Z{Residues of poles outside A”}.

The function 1/(1 — 27%) has poles at solutions of the equation

272 = | = 2Tk k=0,+1,42,....
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There is a simple pole of 1 — 272 at every z; = 2mik/In2, fork = +1,+2,....
Recall that the Beta function has a simple pole at 0. Thus B(~z,n + 1)/(1 —27%)
has simple poles at each z, k = £1,+2, ..., and a double pole at O (refer to Fig-

ure 1.15). We have already computed the residue at z = 1. The double pole at 0
contributes

Bl—=z,n+1) Hy
Res ——— M8 = =
=0 1 -~-272 1n2

Each of the poles z;, k # 0, contributes

1
—— B~z n + 1).
lnzﬁ( Zon + 1)

Collectively the simple poles on the vertical axis contribute

s<>——— Zﬁ( z.n+1).

k=—00
k50

A better approximation to the given summation is

H,
Sp=2n——2+80n) +0n9),
In2

for arbitrarily large positive d (but must be held fixed, as we let n — o0). The
major correction in working with A”, instead of A’, is the harmonic number H,,,
which grows as the natural logarithm. It is small in comparison with the linear term.
The function §(n) is bounded in magnitude for all » and contributes a term of os-
cillatory nature. For large n, one can use the Stirling approximation for 8(—z,n +
1) = I'(—zx)'(n + 1)/T(n + 1 — zz) to represent these summand terms in the
form

B~z n +1) = P(=zn™ (1+ 0(%))

Thus

50 < 1o Z‘ r(Gl+ o))

The term 1 + O(1/n) can be taken out of the summation as the O is uniform in
k. The remaining sum divided by In2 is 0.1573158421 x 107, the same constant
that appeared in our bound on the oscillations of Example 1.1 on Mellin transform.
Of course the O term can be made arbitrarily small. For example, the 1 + O(1/n)
term is absolutely bounded by 1+ 109 and the entire oscillating term has amplitude
not exceeding 0.1573159994 x 107>, for large enough n. These very small oscil-
lations can be neglected in comparison with the logarithmic correction to the linear
term.
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EXERCISES

1.11.1

1.11.2

1.11.3

1.11.4
1.11.5

1.11.6

1.11.7

(Rais, Jacquet, and Szpankowski, 1993) Suppose {X,)} is a sequence of
nonnegative integer random variables. Let ¢,(u) be the probability gen-
erating function of X,. Show that if the bivariate generating function
Y =0 Pn ()2 /n'is O(|e*|). the fixed-population probabilities Prob{X, =
k} can be approximated by Poissonized probabilities (the Poisson transform
of the probabilities). Specifically, if N(z) = POISSON(z), show that

Prob{X, =k} = Prob{Xy@) =k} + En),

for a small error function £(n), uniformly in k. Quantify the error by O
bounds.

Suppose X, is a sequence of random variables. Is the Poissonized variance
the same as the Poisson generating function of the sequence of variances
Var[X,,]? In other words, if N(z) is a POISSON(z) random variable, is the
function Var[X y(;] the same as V(z) = Z;“;O Var(X,]z"e %/n!? How
then would one go about obtaining Var[X,] via de-Poissonization?

(Delange, 1975) Let v(n) be the number of 1’s in the binary expansion of 7.
For example, v(14) = v((1110)7) = 3. Let Z(n) = ;‘;i v(Jj). Show that

o =2([3))+2(13)) (31

(Hint: Only “half” of the numbers 1,2, ..., n, are odd.)
Asymptotically solve the Delange recurrence of Exercise 1.11.3.

Solve the functional equation

f(X)=2f<%C)+e“x—1+x,

asymptotically, as x — Q.

(Hwang, 1993) For positive x near 0, approximate the function

>0 1
:L;ekx—l'

(Hwang, 1993) Estimate each of the following constants:
@ Y2 ey

1
b) 2721 77

© R In(1+ 5).
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1.11.8 Asymptotically approximate the sum

()
-2k \k)

asn — Q.
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Insertion Sort

In its standard forms INSERTION SORT is a very simple algorithm that belongs
to the class of naive sorting algorithms. Although INSERTION SORT is not very
efficient it i1s sometimes a method of choice for small and medium-size files because
of its simplicity and capability of handling on-line data.

Straightforward transparent code can be quickly written for this algorithm. It is
sometimes favored by practitioners when the situation calls for a rapid production of
a working, easy-to-maintain, and easy-to-share computer program when efficiency
is not a major concern—when the size of the file to be sorted is relatively small any
reasonable sorting method will do the job in a fraction of a second on a modern com-
puter. A nonstandard implementation of INSERTION SORT, suggested by Melville
and Gries (1980), optimizes it into a parsimonious algorithm. We shall only hint in
passing at this complex and nonstandard implementation in this introduction. Later
in the chapter we shall focus on the standard algorithms for sorting by insertion.

INSERTION SORT works by adding data in stages to a sorted file. At the ith
stage, the algorithm operates to insert the ith key, say K, into a sorted data file con-
taining i — 1 elements. Searching (successfully or unsuccessfully) a sorted file is a
relatively easy matter and can be accomplished by many alternative methods. For
example, at the ith stage we can conduct a linear search either going forward starting
from the top or going backward starting from the bottom of the data file (let us as-
sume the data are kept as an array A[1..i—1]). Once an insertion location is found (a
gap between two elements, say A[j] < K < A[j+ 1]), we must then make room for
the new key by moving the block of data A[j + 1 ..i — 1] down to occupy positions
J+2,j+3,...,i. Then we can insert K at its correct position j + 1; the block of
data A[l ..7] is now sorted.

By using an efficient search method like BINARY SEARCH, INSERTION SORT
can be made competitively efficient in a situation where only data comparisons are
involved with no or few data movements. Consider, for example, the way Bridge
players collect a dealt hand of 13 cards. Most players like to keep the hand sorted
by suits, and within one suit, the cards are arranged in decreasing order from left to
right. The actual algorithm that many players use is a hybrid of BUCKET SORT and
INSERTION SORT. Bridge players usually pick the dealt hand one card at a time.
The usual arrangement puts the spades as the leftmost group in the hand, then the
hearts, and the diamonds followed by the clubs. After picking / — 1 cards, whatever
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84 Insertion Sort

cards are picked are already kept in groups categorized by suit and sorted in decreas-
ing order within a suit. The player finds out the category of the /th card (a simple
matter of visual recognition of the color and shape of the suit). This determines the
suit or bucket in which the card falls. Then an insertion sort using linear search is
used to determine the insertion position. The insertion itself in a hand of cards does
not require any card movements (usually the player just slides the newly picked card
into its position).

Melville and Gries (1980) suggested introducing “holes” in the array—empty
positions to receive new arrivals. For example, to store n keys from a sample
X1,..., Xn, we can use 2n + 1 slots to create a sorted array of the ordered sample
of the form

hole Xy hole X hole ... hole Xy hole. 2.1)

A new key falls in one of the holes and can be inserted without moving any data.
After some insertions, contiguous clusters of data will begin to form. A new item
falling within a cluster will force all the greater elements of the cluster to move
down one slot until the first gap below the cluster is filled (as in the so-called hashing
with linear probing method). Sooner or later, the array will become too dense and
finding the next hole may take a long time. At this stage, the algorithm suspends its
routine insertion and enters a reconfiguration phase. This phase redistributes the new
collection of data over a larger portion of the host array and restores the form (2.1).
Suitable optimization criteria can be chosen for the number of gaps, and the need
to reconfigure. With these criteria the average number of date moves is O(n) to
insert n elements. With an appropriate encoding of an efficient searching method
like BINARY SEARCH to search in the presence of gaps, the total search time is
O(nInn). The average total running time of the optimized algorithm is therefore
kept as low as O(nlnn) as in parsimonious sorting algorithms. This optimization
makes the algorithm efficient, but not simple and implementation is fraught with
difficulty. Practitioners prefer other standard parsimonious algorithms.

For the rest of the chapter we shall discuss standard implementations of INSER -
TION SORT.

2.1 A GENERAL FRAMEWORK

A search strategy is a collection of algorithms used at the different stages of inser-
tion. Each algorithm in the sequence can be represented by a deterministic insertion
extended binary search tree, henceforth to be called the insertion tree. For example, a
strategy may use the following algorithm for its 10th insertion. At the 10th stage we
wish to insert a new key K in a sorted array of 9 elements. The search algorithm may
probe position 3 first and if K < A[3], the algorithm probes position 1. If K < A[l],
the new key is smaller than all the elements in A[]..9]. Butif K > A[l], the al-
gorithm will have to probe position 2 next, and it will be immediately determined
whether K is the second or third smallest according to whether K < A[2] or not.



A General Framework 85

TABLE 2.1. The Probe Sequences of a Search Algorithm

Rank(K) Probe Sequence

31
312
312
387654
387654
38765
3876
387
389

0 389

—_— 0 00~ OV U RN —

Similarly, a deterministic probe sequence corresponds to each possible ranking of K.
Our algorithm may be completely specified by its probe sequences as in Table 2.1.
This particular search algorithm may be of no practical interest. It is only given for
the sake of illustrating the general framework.

We can construct an insertion tree as an extended binary search tree that reflects
the essence of this algorithm as follows. The first probe (position 3) will be the root
label. Depending on whether K < A[3] or not, the next two potential probes are
1 and 8 (see the second entry of all the probe sequences in Table 2.1). We make
these the left and right children of the root. Depending on the outcome of the first
two comparisons, the process may just be terminated or continued with one of the
potential third probes 2, 7, 9 (see the third entry of the probe sequences in Table 2.1);
we make these possibilities the four descendants at level 2 (with a leaf accounting
for the possibility of termination). The insertion tree construction proceeds in this
fashion until every gap between two keys is represented by a leaf. Upon completing
the construction we obtain the tree of Figure 2.1. Now, the different probe sequences

Figure 2.1. The insertion tree of the search algorithm of Table 2.1.
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are represented by the labels of the internal nodes on the root-to-leaf paths of the
extended binary tree—assuming the 10 leaves are labeled 1 to 10 from left to right,
the labels on the path from the root to the jth leaf, j = 1,..., 10, represent the
sequence of probes used while inserting the 10th key if its rank is j.

We emphasize at this point that the insertion tree is completely deterministic. If,
for example, the rank of the 10th key is 3, the algorithm will always probe positions 3,
1, then 2. It is the randomness of the rank of the 10th key that introduces a stochastic
effect in the insertion process. Under the random permutation model the rank of the
10th key is distributed like a UNIFORM][1 .. 10] random variable. We have seen in
Exercise 1.10.3 that the insertion of a 10th key in a random binary search tree of 9
internal nodes is equally likely to fall at any of the 10 leaves of the tree—all probe
sequences are equally probable candidates to appear during the insertion of the 10th
key.

Many reasonable search strategies can be used in conjunction with INSERTION
SORT. To name a few we mention FORWARD LINEAR SEARCH, BACKWARD
LINEAR SEARCH, BINARY SEARCH, FIBONACCI’'s SEARCH, and the many
variations available therein. In fact, the different stages of insertion are independent
and may even use different insertion algorithms. For example, an INSERTION SORT
algorithm may use FORWARD LINEAR SEARCH for the 10th insertion, then BI-
NARY SEARCH for the 11th, and FIBONACCI’s SEARCH for the 12th. No one
will actually try to do that because in doing so INSERTION SORT will lose its edge
of simplicity; such an insertion strategy is far more complicated than necessary. In
practice, programmers prefer to use the same simple algorithm (like BACKWARD
LINEAR SEARCH) throughout all the stages of INSERTION SORT. Technically
speaking, a search algorithm like BACKWARD LINEAR SEARCH for n elements
is different from BACKWARD LINEAR SEARCH for n + 1 elements, as is evident
from their different insertion trees or probe sequences. Nevertheless, in a program-
ming language like PASCAL, for all n > 1 the different BACKWARD LINEAR
SEARCH algorithms can be coded as one procedure that may be invoked at the dif-
ferent stages of INSERTION SORT with different parameters.

In this chapter we shall first present a general distribution theory that encompasses
most reasonable search strategies. We then focus on two specific implementations of
INSERTION SORT—one that uses BACKWARD LINEAR SEARCH (to be called
plainly LINEAR INSERTION SORT) and the other assumes the insertion is done
using BINARY SEARCH (to be called BINARY INSERTION SORT). Many dif-
ferent variations on these basic themes will be left for the exercises. Our purpose
for presenting LINEAR INSERTION SORT implementation is mostly pedagogic.
LINEAR INSERTION SORT introduces the insertion sorting method in one of its
simplest forms, and indeed all calculations in the analysis are quite straightforward.
We shall establish a Gaussian law for a suitably normalized version of the number of
comparisons. The simplicity of LINEAR INSERTION SORT will admit easy calcu-
lations for the rate of convergence to the normal limit distribution, too, a question of
practical importance. The extreme simplicity of LINEAR INSERTION SORT allows
computation of the exact probability distribution.
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On the other hand, BINARY INSERTION SORT must be considered since bi-
nary search is one of the most efficient known searching algorithms. An insertion
sort based on BINARY SEARCH is bound to be efficient (as far as the number of
comparisons is concerned). If data movements are not a concern (such as the case
in Bridge hand collection), or if Melville and Gries’ adaptation is implemented, BI-
NARY INSERTION SORT becomes as efficient as parsimonious sorting algorithms.
We shall also find a Gaussian law for BINARY INSERTION SORT. Calculation of
moments is more involved for this method. We shall see, for example, that the vari-
ance of the total number of comparisons of BINARY INSERTION exhibits periodic
fluctuations of small magnitude.

2.2 A SUFFICIENT CONDITION FOR NORMALITY

The sequence of n insertion algorithms used by a search strategy corresponds to
a sequence of n insertion trees. Let A; be the height of the ith insertion tree, i =
1, ..., n. Let the number of data comparisons required by the ith algorithm be X;.
Then clearly, C,,, the total number of data comparisons is

Cn=X1+X2+"'+Xn. (2.2)
Taking expectations, we get
E[C,] = E[X ]+ E[X2] + - - + E[X,]. (2.3)

It underlies our basic random permutation probability model that the random vari-
ables X; are independent (see Proposition 1.6). Thus taking the variance of C, is
only a matter of adding up the variances Var[X;]. Introduce

n
sy =Var[Cy] =) Var[X;].
i=l
The next theorem characterizes a sufficient condition that guarantees a limiting nor-

mal behavior. The condition relates the rate of growth of the variance of C, to the
height A,. This condition is satisfied by almost all practical search strategies.

Theorem 2.1 (Lent and Mahmoud, 1996b). Suppose INSERTION SORT uses a
search strategy that corresponds to a deterministic sequence of insertion trees of
heights hp,,n = 1,2, .... Let Cy, be the total number of comparisons to sort n keys,
and s,% be its variance. If the sequence of heights is nondecreasing with

hp = o(sy), asn — 00,

then

Cn ZElCa] D yro. ).

Sn
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Proof. Suppose the ith stage of insertion makes X; data comparisons. Let ¥; =X; —
E[X;],fori = 1,...,n. The event {|Y;| > h,} implies {|Y;| > h;}, as the heights of
the sequence of trees considered are non-decreasing. That is,

Prob{|Y;| > h,} < Prob{|Y;| > h;}.
However,
(1Yl > h;} ={X; — E[X;] > h;} U {E[X;] - X; > h;}
C{X; > h;} U {E[X;] > h;}.

The two sets in the latter union are empty because X; < h;; consequently the average
E[X;] is also less than A;. So

Prob{|Y;] > h;} < Prob{{X; > h;} U {E[X;] > h;}} =0;
consequently, uniformly fori =0, ..., n,
Prob{|Y;| > hy} < Prob{|Y;| > h;} = 0.

It follows from our assumption 2, = o(s,) that for any ¢ > O there is an integer
N¢ so that h,, < sy, for all n > N.. Then uniformly fori =0, ..., n,

Z k2 Prob{Y; =k} < Z k2 Prob{Y; = k} = 0.
lk|>esy |k|>hy

Hence for n > N,

1

Z Z k% Prob{Y; =k} = 0,

i=l1 |k|>es,

or

1 1
lim =Y > k*Prob{¥; <k} =0,

2
OO Sk =1 zes,
verifying Lindeberg’s condition; convergence in distribution to normality follows
from Lindeberg’s central limit theorem. [ ]

2.3 LINEAR INSERTION SORT

This is perhaps the simplest implementation of INSERTION SORT as it integrates
the search, data movement, and insertion all in a single algorithm. We assume the
data come on-line as an input stream and are to be sorted in an array A[l..n]. (An
off-line version is discussed in Exercise 2.2.) The first key is placed in A[1]. The
second key is compared with A[1]. If the second key is less than A[1], it is placed
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“above” it, by first moving the content of A[1] down to position 2 then replacing
A[1] with this second key. If the second key is larger than the first, it is placed in
A|2]). The algorithm continues in this fashion, and right before the ith insertion, the
block of data in A[l..i — 1] is in sorted order. To insert a new key K, its value
is first obtained by performing an input operation. We then start a search from the
bottom of the sorted block A[1..i — 1], that is, we first probe position i — 1 using a
backward-going working index (j say, initialized to i — 1). If K > A[j] we insert
K at the bottom of the block at position j. However, if K < A[j], we copy the
key in A[/] at the position underneath it (thus there are now two copies of this key
at positions j and j + 1). We decrement j and continue our probing at position ;.
So long as we find elements of A that are less than K we keep pulling them down.
When for the first time a stopper key (if any) less than K is found (at position j),
we insert K right under it. In the preceding step the key at A[j + 1] was copied at
position A[j + 2], and it is all right to proceed with a destructive assignment of X
to overwrite the leftover copy at position j + 1. Figure 2.2 illustrates the insertion
tree for (BACKWARD) LINEAR INSERTION SORT to search for a position for the
6th key. In case K is smaller than all the keys inserted so far, it should go to the top
of A. To avoid a problem of having the array index “go through the roof” (that is,
having j = 0), we must check every step of the way up that j is still greater than
0, before probing position j, or else an attempt to access the nonexistent A[0] will
be made, giving rise to an error. Thus we may write the backbone loop of LINEAR
INSERTION SORT in the form

while (; > 0) and (K < A[/]) do

which modern programming languages handle with the so-called short-circuit option
that does not evaluate the second condition (K < A[/]) unless the first condition
(j > 0) is true.

Index comparisons can add a substantial number of comparisons, one index com-
parison (comparison of integers) for every data comparison. This may be inconse-
quential in case the data are of some complex nature (long character strings, say,

Figure 2.2. The insertion tree of LINEAR INSERTION SORT for the 6th key.
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like DNA sequences). However, if a comparison between two data items takes an
amount of time comparable to index comparisons, the issue may not be ignored. For
example, if the keys themselves are integers, the comparison K < A[] takes an
amount of time comparable to the comparison j > 0.

Index comparisons can be eliminated altogether by introducing a sentinel value
as a stopper—a dummy key value to occupy the top array position and is less than
all the other possible values for this type of data. This suggests that we extend the
range of our subscripts to include O, that is, set up the array A[O..n]. In the case of
numeric data, we let A[0] = —oo. This ensures that some key in the array is less
than K and if no other stopper is found, A[0] will act as a one; there is no need
ever to check whether the index is within bounds. In practice —oo is replaced by
the smallest admissible value in the data type we are sorting. For example, if we are
sorting integers, PASCAL provides —MAXINT as the smallest integer it can deal
with and this is the “practical” negative infinity for this type. Supposing instead we
are sorting ASCII characters; the nonprintable null character, the first in the collating
sequence, may be thought of as the practical —oo. The required loop can then be
simplified to the plain

while K < A[j] do

We shall assume the presence of this sentinel in the algorithm presented in the fol-
lowing text and in subsequent analysis. As mentioned before, this eliminates any
index comparisons. On the other hand, the probability distribution of data compar-
isons is very slightly altered, an effect that whithers away anyhow in the asymptotics.
The complete (BACKWARD) LINEAR INSERTION SORT algorithm is presented
in Figure 2.3.

Let X; be the number of comparisons made to insert the ith key and let C,, be
the overall number of comparisons to sort the n data items. For LINEAR INSER-

TION SEARCH (with a sentinel) the number of comparisons for the ith insertion is
UNIFORM[1 ..i].

A[0] <« —o0;
fori < 1tondo
begin
j<—i—1;
read(K);
while A[j] > K do
begin
Alj +1] < A[jL;
J<Jji—L
end;
Alj+ 11 < K;
end;

Figure 2.3. The LINEAR INSERTION SORT algorithm.
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When we insert the /th key, it will have to cross over every datum in A[]..J/ — []
that is larger than it, that is, we have to fix every inversion caused by the ith key. If
the sequential rank X; = j, the new key must be moved to position j from the top
of the array. Regardless of what order the larger keys that preceded X; appeared in
the input, they are arranged in order and now occupy the bottom i — j positions of
A[l..i — 1] (the key X; causes i — j inversions). To cross over these i — j data, X;
must be compared with these i — j keys plus one more key (the stopper at position
J — 1, the first key from the bottom that does not exceed X; ). Therefore, the number
of comparisons needed to insert X; is | 4+ V;, where V; is the number of inversions
caused by X;. Summing over all the stages of insertion

n
Co=) (1+V)=n+7Y,,

=1

where Y}, is the total number of inversions in the input stream (review Section 1.10.2).
The mean and variance calculations for the number of inversions (1.14) and (1.15)
provide us with direct answers for LINEAR INSERTION SORT. For the mean num-
ber of comparisons, from (1.14) we have

n(n+3) 2

E(C,] = n +E[Y,] = —— ”Z, (2.4)

and for its variance, from (1.15) we have

nin—1DQ2n+5 n’
72 36

52 = Var[C,] = Var{n + ¥,] = Var(V,] = (2.5)

The asymptotic normality of the number of comparisons can be demonstrated
either from Proposition 1.7 or from Theorem 2.1. The normality of Theorem 2.1
holds for LINEAR INSERTION SORT: The height of the nth insertion tree is 4, =
n, whereas s, ~ ¢n/2. Hence, according to Theorem 2.1, LINEAR INSERTION
SORT has a normal limit behavior,

Cn, —E[Ch] D

Sn

N, 1),
which, according to (2.4), is

Cn—gn(n+3) p

Sn

N, 1). (2.6)

The asymptotic formula (2.5) simplifies the last convergence in distribution as fol-
lows. First noting that

S lra
O] S
2
O\“I»—
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we can use the multiplicative form of Slutzky’s theorem to get (from (2.6) and the
last formula):

Cn n(n+3) D 1
n3 —N(o 1) = N(o,3—6->.

From the latter normal limit behavior and the convergence %n /n3/? = 0, we have

Ch ;/3%”2 ——->./\/<0 _1_)

by an application of the additive form of Slutzky’s theorem.

A practitioner may now ask how large »n should be before the tables of the normal
distribution can give a reliable approximation to the actual distribution or what the
error is for a given n. We can settle this sort of question by estimating the rate of
convergence of the distribution function of

C:; d:e__f Cn - E[Cn]

Sn

to the distribution function of the normal random variable N (0, 1). Let lek be the
centered version of X;:

1
X;-k =X; - EX;]=X; — E(l + 1).

Then C; has a representation as a sum of independent random variables (compare
with (2.2) and (2.3)); namely

(Z X; — ?;1 E[X; ])

i=l
n
-2
_ :
Sn i1

with C;¥ —P—> N(O, 1) as shown in Theorem 2.1.

The Berry—Esseen theorem bounds the absolute value of the error committed in
using the distribution function of the normal distribution instead of the actual distri-
bution function of C,; by the relation

sup [Prob{(C} = x) — Prob[N(0, 1) = x}| = 5 CEXE, @)
X n ‘_

where A is the absolute constant (] + 22/2) = 17.87135734...... The Bery-

Esseen theorem requires a calculation of absolute third moments of X l* to get a uni-
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form bound on the error. For this computation we have
]

i
E[X7]3=Z’k—l; ] Prob{X, = k|
k=1

I x -ty

k=1 k=] S+

A lengthy calculation (left as an exercise) shows that

4 3 2

n
def 3 n n 3n n
IS EX P o
T =BT =13t e~ s T e

where g(1) = 0, and for n > 2, g(n) is defined in terms of H,, the nth harmonic
number, as

1 1 1
—H, | ——— — —H ,
32 T =) 327303

1 L
32l T g g

if n is odd;
gn) =
if n is even.

It is clear that uniformly inn > 1,

4 n3 1

f0) S oo+ = —H
n<—+—+—H, ;.

=128 64 327!
All lower-order terms on the right-hand side of this inequality are o(n*). If n is large
enough, all the lower order terms can be made less than Mn*, for any arbitrary con-

. 4

stant M. For example, if n > 20, gzn® < 0.1{5, and 45 H,_| < 0.000088694 >
So, for all n > 20,

4
fn) < 1.100008871—”2§. (2.8)

From the asymptotic representation (2.5), we immediately see that

1 & 216 216n* 27
LAY o) LR A P LM
sp = n 12807 164/n

Hence the order of the rate of convergence is the slow 1/+/n.

We can actually answer a specific question like “What is the error in the prob-
ability calculation Prob{C4gp00 > 400070003}, if the approximating asymptotic
distribution is used instead?” The rate of convergence is slow as already observed,
and we are choosing such a large number of items (n = 40000) to have mean-
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ingful approximations with reasonably small errors. From (2.4) and (2.5) we have
E[C40000] = 400030000, and s40000 = 50+/2133413330/3. Hence

Prob{Cag000 < 400070003}

Ca0000 — 400030000 - 400070003 — 400030000}
504/2133413330/3 —  50./2133413330/3

= Prob{

Thus, from the Berry—Esseen bound (2.7),

](1 — Prob{C40000 < 400070003}) — (1 — Prob{N(0, 1) < 0.0300016.. })]
_ 17.88£(40000)

3
540000

From the bound (2.8) we can write

Prob{Cagoo0 > 400070003} — Prob{A/(0, 1) > 0.0300016.. .}j
<0.1659527... .

Looking up the normal table we find

Prob{N (0, 1) > 0.0300016...} =0.488... .

Thus

0.322 < Prob{Csp009 > 400070003} < 0.654.

Higher moments can be deduced from the well-known moments of the limiting
normal distribution. Doberkat (1982a) finds the leading term in each moment directly
by a combinatorial argument and Panny (1986) refines Doberkat’s results and finds
several lower order terms for the moments of the number of comparisons of LINEAR
INSERTION SORT. Conversely, from their arguments, one can infer convergence in
distribution of the normed number of comparisons to the random variable N (0, 1).
The normal distribution is one of the distributions uniquely characterized by their

moments, and it follows that C,’f—g N0, ). This route of proving asymptotic nor-
mality works here because moment calculations are particularly simple for LINEAR
INSERTION SEARCH. For implementations of INSERTION SORT via some other
search strategies, like the BINARY SEARCH strategy of the next section, the method
of moments may prove to be a difficult route as the computation of the moments may
be rather complex.
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2.4 BINARY INSERTION SORT

This algorithm uses the binary search strategy, that is, it uses the BINARY SEARCH
algorithm at each stage of the insertion. At the ith stage, BINARY SEARCH operates
on a sorted array A[1 ..i — 1] to find a position for a new key K by probing the middle
position | é'l . At alater step in the algorithm, the search is narrowed down to A[£ .. u],
a stretch of A between a lower index ¢ and an upper index u. The algorithm probes
the middle position m = [(£ + u)/2]. If K < A[m], the algorithm should only be
concerned about finding an insertion position within A[£..m — 1], because all the
elements of A[m ..u] are now known to be of values larger than K (as A[1..i — 1]
is sorted). BINARY SEARCH then repeats its operation in A[£ .. m — 1]. Similarly,
if K > A[m], BINARY SEARCH repeats its operation in A[m + 1 .. u]. The process
continues to dispose of one of the two remaining halves until a gap between two
elements of A[1..i — 1] is found. Data movements and insertion follow exactly as in
LINEAR INSERTION SORT.

The ith BINARY SEARCH algorithm in this strategy has a complete insertion tree
7; of order i — 1. The insertion tree of Figure 2.4 illustrates this insertion algorithm
for i = 6; the root-to-leaf paths of the tree specify all possible probe sequences.

Let Z; denote the number of leaves at level [1gi] = [lg(: — 1)] + 1 in the tree
7T;. Recall that an extended binary tree on / — 1 internal nodes has i leaves and its
height is [1gi]. That is, unless the tree is perfect, the leaves appear on the two levels
[1g(i —1)] + 1 and |1g(i — 1)]. If the tree is perfect (i = 2k for some k) all its leaves
lie on level 1gi. So, X; (the number of comparisons taken to insert the ith key) is

X; =|lgi — D] + B, (2.9)

where B; is a BERNOULLI(Z; /i) random variable that assumes the value 1 (with
probability Z; /i) or 0 (with probability 1 — Z;/i); in the case | = 2K this Bernoulli
random variable is deterministically B; = 1. It is an easy combinatorial derivation
(Exercise 1.6.2) to show that

Z; = 2(i — 2le=Dly, (2.10)

Hence

Z; Z;
E[B2 =E[Bi]=0x (1= =) +1x = =

Figure 2.4. The insestion tree of BINARY INSERTION SORT for the insertion of the 6th key.



96 Insertion Sort

So, by (2.9) and (2.10)

E[X;] = [lgtt — D]+ E[B]
2(,’ — 2L1g(i—1)J)

=g — DI+
Similarly we obtain for the variance

Var[X;] = Var[|lg(i — 1)] + B;]
= Var[B;]
= E[B7] — E*(Bi]

=57 "7 (2.11)

The mean of Cj,, the total number of comparisons, is obtained by summing E[X/]
yielding

( _ pllg( m)
E[C,] = ZUga - D)+ Z l.
i=2

- n—1 lo §
2Lf:].’
§1 gJ () jEIJ 1

Note that the O(1) term is uniform in i, because x — |x | < 1, for any real number x.
The sum

It follows that
E[C.]=0(m) + ) lgj.

j=1

By the Stirling approximation for factorials (which is developed in (1.6)) we have
n—1
Y lgj=lgn!—Ign
j=1

n 1 1

Hence,

E[Cy] =nlgn + On).
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The calculation of the variance is more involved. It is easier to start with n = 2/
so that the corresponding insertion tree 7,,, of order n — | = =2/ —1,is perfect
this perfect tree has height j. By the independence of the X;’s, the variance s of
the overall number of comparisons is the sum of the variances over all stages of
insertion. The history of this insertion corresponds to a sequence of complete trees.
The shape of the ith tree 7; can be obtained from the previous tree 7;_| by adjoining
a new internal node to 7; _| at level |1g(i — 1) to replace a leaf, then adding two new
leaves as children of this new node. (The labels, however, need to be recomputed.)
This tree-growing property is discussed in Exercise 2.8. Another view of this is to
consider the perfect tree as if it is obtained by a growth process that systematically
fills out a binary tree by adding internal nodes at level &, until that level is saturated
(for k € {0,1,...,j — 1}). The process starts at k¥ = 0 and gradually increases k
to span the range 0, 1, ... j — 1. The variance s,zl = Var[C,] can thus be obtained
by first considering the sum of the variances over all trees of height £ + 1, then
taking the sum over k =0, ..., j — 1. (The last tree 7,, is perfect and consequently
Var[X,;] = 0.) From the variance computation (2.11) we have the representation:

g Sl Zi\2
oS - £ 2 ) an

While the tree is filling out level &, the height of the insertion trees is held constant
atk +1,and |1g2* +i — 1)| =k, for 1 <i < 2*. Thus by (2.10),

Zoiy; =225+ -2% =12,
and the inner sum gives

2 Zoey,  (Zugin2y A2 R 20 2
;{2"+i—(2’<+i>]Z;(2"+i>_;(2"+i>

= 6(2%) (Hyr1 — Hy) — 41 (HG), — HP) -2+,

To simplify the latter expression, we use the asymptotic expansions

2

) T 1)

HY? =2 —Z10(=

" 6 n+ (n2

We obtain
2k_1
Zokyi  (Zohyi k

2—-4)2 o1
N (75) | =@m2—42+0m
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So, now

j—1
sp=(6In2~4)) 2+ O(nn)
k=0

= (6In2—4)2/ + O(lnn)
=(6In2 —-4)n+ O(nn).

Note that h, = lgn, whereas s, ~ 4/(61n2 — 4)n. So, for the perfect tree T, = T5;,
hy = 0(sn),

comporting to a requirement of Theorem 2.1.

For general n, the situation is not very much different from the special case
n = 2/. The insertion of the nth key for a general value n # 2/, for any j, cor-
responds to a complete but not perfect tree of size n — 1 and height 4,,. This value of
n can be represented as n = 2187=DJ 1 for some i not exceeding %(n + 1).
The height 2, = [lgn]. The growth process systematically saturates the levels
k=0,1,2,..., lgn]—1,in this order, with internal nodes, then inserts the remain- .
ing i internal nodes on level |lg n |, thus placing 2i leaves on level [lgn|+1 = [lgn].
We only need to add to our calculation of the variance of a perfect tree the contribu-
tion of the 2i leaves on level [Ign]. That is,

i

2 __ 2

Sn = Szllg("—l)J + Zvar[Xng(nﬂl)JHz]'
£=1

Each internal node added on level |lgn] increases the overall variance by a contri-
bution of the two leaves introduced and reduces it by replacing an old leaf. The net

gain can be easily computed (as in the inner sum of (2.12)). Adding up these gains
we obtain

i

ZVar[X {gln—1 ]:41"“(__._1___.___1_)
=0 e 20+i4+1 2

+6(2/)(Hyiyip1 — H2f> —2i+ 0().
Simplifying we obtain

) _ [6(1 + f)In2—6

Sn

4
o -2+ E]n—{—O(lnn)

def Qun + O(Inn), _ (2.13)

where

fn=Ilgn—llgn].
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The sequence f], f, ... is dense on the interval [0, 1), that is, given any & > 0,
for any x € [0, ]) the interval (x — &, x + €) contains points from the sequence,
however small ¢ is. Thus, given any x € (0, 1], f, is infinitely often in the interval
(x —&, x+¢). That is, if we specify any x € [0, 1), the coefficient of 7 in the variance
s,z, in (2.13) for infinitely many n comes arbitrarily close to the interpolating function

Q(X)(gf6(l+x)ln2—-6_2 4

2¢ 4%

The function Q(x) is the analytic continuation of Q, (which is defined only at the
positive integers), restricted to [0, 1). When n = 2/, the insertion tree is perfect and
the variance Var[X,] is 0. As n gradually increases Q(n) goes through “cycles.”
First it decreases, then increases, then decreases again until n = 2] +1, the next
perfect tree, where the variance of the corresponding insertion goes back to 0 again.
Figure 2.5 illustrates the cycle forn = 4, 5, 6, 7. At the beginning of this cycle, O, =
Qg4 is identically 6 In2 — 4. As n increases, O, fluctuates till Qg “wraps around” to
coincide again with 6 In2 — 4. The corresponding behavior in the total variance s? is
that its leading term is asymptotic to (6 In2 — 4)n when n is a proper power of 2; it
then increases at a small rate, because there is only a small proportion of nodes on the
last level; the majority of the leaves are at level |lgn]. Larger variability will appear
when the proportion of nodes on that level are of an effective magnitude. When the
majority of leaves are on level |1g n|+1, the total variance does not change much any
more; each new insertion has a smaller variance than the preceding one; the increase

Q(x)

0.20
015+ —— |
0.10 -

0.05

0.00 | : : -
fa 025 Jf5 050 Jfe 075 17 1.00

Figure 2.5. The cycle of BINARY INSERTION SORT for n = 4,5.6,7.
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xQ(x)

15000 —

10000

5000

0 1 T : |
10000 30000 50000 70000 90000 *

Figure 2.6. Oscillations in the leading term of the variance of the number of comparisons in BINARY
INSERTION SORT.

in 52 is small. The variance s is an increasing function of the form

s,% = Qun + O(Inn).

Figure 2.6 illustrates the oscillating behavior of the leading term.
In particular Q* = inf, 0, = 0.1519119... and

s,% > 0*n+ O(Inn),

whereas i, ~ lgn. Hence h, = o(sy) for general n, too. Theorem 2.1 asserts the
Gaussian limit behavior

Cp—nlgn D
L= S N(@O,D.
/nQn
EXERCISES

2.1 How many comparisons does LINEAR INSERTION SORT (the sentinel ver-
sion of Section 2.3) make to sort the list 10 9 8 7 6 5 4 3 2 1?
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2.2

23

24

2.5

2.6

2.7
2.8

How many comparisons does BINARY INSERTION SORT make to sort this
list? If the list is reversed, how many comparisons does each implementation
make?

Suppose that the data file is available off-line, that is, the entire file is acces-
sible prior to sorting. Assume the data are initially loaded in the (unsorted)
array A[l ..n]. Adapt LINEAR INSERTION SORT to sort A.

LINEAR INSERTION SORT is particularly suitable for linked lists. Write a
LINEAR INSERTION SORT algorithm to progressively add data to a sorted
linked data list resulting in a sorted list. Each insertion should be O(1).

Consider the following possible speed-up method for FORWARD LINEAR
SEARCH. Assume an array implementation with a sorted array A[l..i — 1]
after i — 1 insertions. At the ith stage, instead of going through the array
A[l..i — 1] in increments of size 1 as in the usual FORWARD LINEAR
SORT, a JUMP INSERTION SORT may compare the ith key by probing
positions ¢, 2¢, 3c, ..., until either a stopper (an array element larger than
the new key) is encountered, or until the list is exhausted without finding such
an element (that is, when the next candidate probe is at position jc¢ > n).Ifa
stopper is encountered at position jc, say, we start a search backward within
the stretch A[(j — 1)c + 1.. jc — 1]. If no stopper is found, we make the
insertion at position i. Find the mean number of comparisons made by JUMP
INSERTION SORT. Show that 4, = o(s,), where A, is the height of the
insertion tree of this algorithm and s, is the standard deviation of its number
of comparisons. Deduce the Gaussian limit behavior of JUMP INSERTION
SORT.

Reter to Exercise 2.4. Show that the choice ¢ = [/n/2] asymptotically opti-
mizes the average behavior of JUMP INSERTION SEARCH.

Study Exercises 2.4 and 2.5. Derive a Gaussian law for JUMP INSERTION
SORT at its asymptotically optimal choice of c.

Prove that the insertion tree for BINARY SEARCH is complete.

A search strategy is said to be tree-growing, when 71, T2, ... is its sequence

of insertion trees, and the shape of 7; is obtained from the shape of 7;_; by

replacing a leaf in the latter tree to become an internal node and then adding

two new leaves as children of this new internal node (considering only shapes

and disregarding labels). Draw the sequence of the first eight trees in each of

the following strategies:

(a) BACKWARD and FORWARD LINEAR INSERTION. Consider the sen-
tinel version of both as well.

(b) BINARY SEARCH.

(c) 3-JUMP SEARCH (the strategy of JUMP INSERTION SEARCH of Ex-
ercise 2.4 with ¢ = 3).

Prove that each of the above strategies is tree-growing.
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2.9

2.10

2.11

Insertion Sort

Show that among all possible search strategies, BINARY SEARCH is the one
that minimizes the average of the overall number of data comparisons.

Consider RANDOMIZED INSERTION SORT in which the probe for the ith
datum is chosen at random from among the i — 1 sorted elements in the array
(the ith probe position has the distribution of UNIFORM][1 .. i —1}). The algo-
rithm is then applied recursively on the subfile chosen for the continuation of
the search. Find the mean and variance of the overall number of comparisons
to sort n elements. Prove that, with suitable norming, the overall number of
comparisons of this randomized algorithm asymptotically has a normal distri-
bution.

Assume an array storage for data. Let M, be the number of data movements
required while running any implementation of insertion sort. Argue that M,
does not depend on the search strategy. Prove that M, has a Gaussian limit
behavior.
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Shell Sort

SHELL SORT is a generalization of the method of sorting by insertion. It is essen-
tially several stages of INSERTION SORT designed with the purpose of speeding up
INSERTION SORT itself. The algorithm was proposed by Shell in 1959. The algo-
rithm is a rather practicable method of in-situ sorting and can be implemented with
ease. From a theoretical standpoint, the interest is in that standard implementations
of INSERTION SORT have an average of @(nz) running time to sort » random keys,
whereas the appropriate choice of the parameters of the stages of SHELL SORT can
bring down the order of magnitude. For instance, by a certain choice of the structure
of the stages, a 2-stage SHELL SORT can sort in O (n>/3) average running time. Ul-
timately, an optimized choice of the parameters can come close to the theoretic lower
bound of ®(nlnn) average and worst case; the best known sequence of parameters
performs in © (n In? n) time in the average and worst case. In practice some SHELL
SORT constructions perform competitively for the small and medium range of n.
The analysis of the algorithm brings to bear some interesting stochastic processes
like the Brownian bridge.

3.1 THE ALGORITHM

To sort by insertion, one progressively adds keys to an already sorted file. This is
achieved by identifying the rank of the next key by searching the available sorted
list. As discussed at length in Chapter 2, the search can be done in many different
ways. We shall restrict our attention to LINEAR INSERTION SORT, since it has a
search mechanism that integrates easily into SHELL SORT.

SHELL SORT performs several stages of LINEAR INSERTION SORT. It is well
suited for arrays. We shall assume the data reside in a host linear array structure
A[l..n] of size n. If the chosen SHELL SORT uses k stages, a k-long integer se-
quence decreasing down to 1 is chosen to achieve a faster sort than plain LINEAR
INSERTION SORT as follows. Suppose the sequence is #, tx—1, - - - » f1 = 1.In sort-
ing n keys, the first stage sorts keys that are #; positions apart in the list. Thus 7 subar-
rays of length at most [#/#] each are sorted by plain LINEAR INSERTION SORT.
In the second stage, the algorithm uses the increment #;_ to sort 7 subarrays of
keys that are 7, positions apart (each subarray is of length at most [n/#_11), and
so on, down to the last stage, where an increment of 1 is used to sort the whole array

103
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by insertion. Thus, in the last stage the algorithm executes plain LINEAR INSER-
TION SORT. A SHELL SORT algorithm using the sequence #, tx_1, ..., 1 will be
referred to as (¢, t_1, ..., 1)-SHELL SORT, and the stage that uses the increment
t; will be called the #;-stage.

As an example, (2, 1)-SHELL SORT sorts the array

7 4 1 8 9 5 6 2 3

in two stages. In the first stage increments of 2 are used—the subarray of odd indexes
is sorted by the regular LINEAR INSERTION SORT, and the subarray of even in-
dexes is sorted by the regular LINEAR INSERTION SORT. The two interleaved
arrangements

sorted odd positions: 1 3 6 7 9
sorted even positions: 2 4 5 8

are then sorted by one run of the regular LINEAR INSERTION SORT on the whole
array.

The code for the algorithm is a simple adaptation of LINEAR INSERTION SORT
(see Figure 3.1). Assume the increment sequence comprises & increments stored in

for m <« k downto 1 do

begin

{insert sort with increment ¢[m]}

h <« t[m],

fors <~ Otoh —1do

begin
i<~ h+1;
while i < ndo
begin
Jj <1,
key < A[jl;
while (; — 4 > 0) and (key < A[j — &]) do
begin
Alj] < A[j — Al;
j=Ji—h
end;
A[j] < key;
i <—1+h;
end;
end;
end;

Figure 3.1. The SHELL SORT algorithm.
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an array 7] 1 .. k]. The algorithm executes its main loop k times, one iteration for each
increment. An index. say m, records the stage number, which starts out at k. Toward
a transparent code, the increment 7{m] of the m-stage is recorded in a variable, say
h. to avoid double indexing (for instance use A[A + 1] instead of A[t[k] + 1]). The
algorithm then iterates LINEAR INSERTION SORT on 4 subarrays. The variable s
is used to index these iterations. During the first iteration of the outer loop. The first
iteration of the inner loop with 4 = t[k] orders the subarray A[1], A[/ + 1], A[2h +
Il,..., Alrh + 1], where r is the largest integer so that 7 + | < n, by LINEAR
INSERTION SORT. In the second iteration of the inner loop (still with 2 = #[k]
as increment), the subarray A[2], Alh + 2], A[2h + 2], ..., A[rh + 2], where r is
reassigned the largest integer so that 74 + 2 < n, is sorted by LINEAR INSERTION
SORT, and so forth. During the sth iteration of the inner loop with &z = #[m], the
array with beginning index s 4 1 and whose elements are /4 positions apart is the
subject of LINEAR INSERTION SORT.

3.2 STREAMLINED STOCHASTIC ANALYSIS

There is a large variety of SHELL SORT algorithms according to the various se-
quences that can be chosen for the stages. For example, some flavors will choose
a fixed number of stages with a fixed sequence of increments. Other flavors may
choose a fixed number of stages, but the members of the sequence may grow with
the number of keys, while some other flavors may choose an approach that allows
the number of stages to increase with the number of keys.

We shall study the (2, 1)-SHELL SORT as a prototype for the analysis technique
and the type of result one expects out of such analysis. Extensions of this prototype
case may be possible. The analysis of (4, 1)-SHELL SORT may follow the same
general lines and extensions to (#, fx—1, ..., 1)-SHELL SORT may be possible for
some sequences of increments.

The probability model for the analysis is the random permutation model. The dif-
ficulty in the stochastic analysis of (#, tx—1, ..., I)-SHELL SORT lies in that after
the first stage the resulting data are no longer random. Instead, 7 sorted subarrays
are interleaved. The second and subsequent stages may not then appeal to the results
known for INSERTION SORT. For example, the 1-stage of the (2, 1)-SHELL SORT
does not sort a random array of size n. The 2-stage somewhat orders the array as a
whole, and many inversions are removed (some new ones may appear, though; see,
for example, the positions of 5 and 6 before and after the 2-stage of the example of
Section 3.1).

To illustrate the analysis in its simplest form, we shall consider in this section
(2, 1)-SHELL SORT. We shall streamline the stochastic analysis of (2,1)-SHELL
SORT by finding a probabilistic representation for its components. The forms arising
in the analysis bear resemblance to the empirical distribution function, which has
natural connections to the Brownian bridge. We shall say a quick word about each of
these tools in individual units before we embark on a full stochastic analysis of (2,1)
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SHELL SORT. A reader familiar with the notions of the Brownian bridge may skip
directly to pick up the remainder of the discussion at Subsection 3.2.3.

3.2.1 The Empirical Distribution Function

Suppose we want to empirically determine a distribution function F'. For that we take
a sample Zy, ..., Z, of points from that distribution. Let F () be % times the num-
ber of observations not exceeding ¢ in our sample. Clearly Fj,(¢) is a right-continuous
nondecreasing staircase-like function that rises from 0 at —oo to 1 at +o0. It there-
fore qualifies as a distribution function, which we shall call the empirical distribution
function. Its rationale is to assign each point in the n observed data a probability of
1/n, corresponding to a jump of this magnitude in the empirical distribution function
at each sample point.

For example, suppose that it is not known to us that X 2 BERNOULLI(%—)
and we want to assess its distribution function. We may decide to take a sample of
size 100. Of these 100 points 35 may turn out 0, the remaining 65 turn out 1. For
0 < t < 1, the empirical distribution function is Fjgg(#) = 0.35. This is to be
compared with the true distribution function F () = %

The empirical distribution function is random; F,(¢) is a random variable. For
instance, repeating our assessment experiment, it may happen the second time around
that only 27 points of our 100 sample points assume the value 0, the rest assume the
value 1, in which case Fjgg(r) = 0.27, for 0 <t < 1. As we repeat the experiment a
large number of times, we expect fluctuations in F}(¢), but we also should believe its
value is close to the true underlying distribution. Indeed, F(¢) has a representation
as a sum of independent identically distributed random variables:

1 n
Fat) = =3 Nz,
j=1

where 1¢ is the indicator of the set £. It follows from the strong law of large numbers
that

Fa(t) 235 E[lyz,<1] = Prob{z, <1} = F(1).

A strong law only states the behavior of the leading component of F(¢). More
profoundly, the fluctuations F, (1) — F(r) normed by a suitable factor behave like a
Brownian bridge, the second of our constructs, a connection established shortly after
we introduce the Brownian bridge process.

3.2.2 The Brownian Bridge

The second of our constructs is the Brownian bridge, a Brownian motion over the
time interval [0, 1] conditioned to return to O at time 1. We therefore define the more
general Brownian motion first. The Brownian motion is a stochastic process pro-
posed as an approximate model for a physical phenomenon first noted in 1827 by
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the botanist Robert Brown, who took interest in the then-unexplained random mo-
tion of particles submerged in a fluid. The observation did not draw much attention
throughout the rest of the nineteenth century. With the advent of the twentieth cen-
tury, molecular theory of the structure of matter settled in and Albert Einstein and
independently Marian Smoluchowski around 1905 gave physical explanations based
on the then-new theory of molecules. The spores immersed in a fluid experience
rather frequent bombardment by the particles of the fluid. The result is to exhibit
short intermittent displacements. Around 1918 Norbort Wiener wrote about a math-
ematical model that is a conceptual limit to this kind of random behavior.

It is sufficient for our purpose to understand the one-dimensional analog. The
genesis is the usual symmetric random walk. Assume we have a particle starting out
at 0 and at each time tick it makes a move either one step to the right with probability
1/2 or one step to the left with probability 1/2. Let X; be the particle’s displacement
in the ith step. Then X; is —1 or 1 with equal probability. After n discrete time ticks
the particle has moved a distance of

Sh=X1+Xo+ -+ X

Being a sum of independent identically distributed random variables, this sum fol-
lows standard probability theory and gives strong laws and central limit theorems in
a well-developed standard theory for random walks. Figure 3.2 illustrates one possi-
ble realization of the standard symmetric random walk. The position of the particle
at time n (integer) is Sy, the bullet corresponding to the nth time tick; however, the
straight line segments connecting S, and S, are only inserted for visual conve-
nience and may not have a physical meaning.

Now suppose that we speed up the process in a manner that emulates the rapid
intermittent bombardment of spores in a fluid. We shall call the process so obtained
the incremental Brownian motion, till we pass to a formal limit definition. Instead

Sn
1

—-

o 10 11"

Figure 3.2. A realization of the standard symmetric random walk.
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of waiting a whole time unit, the particle is forced to make its move every infinitesi-
mal unit of time Az. The size of the displacement is also made microscopic. Instead
of jumps of magnitude 1, the particle is restricted to make displacements of the in-
finitesimal magnitude Ax. Where is the particle at time # and what kind of trajectory
does it follow? If At and Ax are both very small, one does not expect the particle
to change its position too much in a small time period approaching some notion of
continuity.

Let the particle’s displacement at time ¢ be D(¢). The interval [0, ¢] can be divided
by time ticks 0, Az, 2At, ..., [t/At]At. During the interval ([z/At] Az, t] the par-
ticle does not make any moves (but will move again at time (|#/A¢] + 1)At). The
total displacement up to time 7 is

Dty=Z1+ 2+ -+ Z|1/A¢)>

with each Z; being an independent random variable that takes the value —Ax (with
probability 1/2) or +Ax (with probability 1/2).
The displacement D(¢) has mean 0 and, as At — 0, has variance

Var[D()] = | - |Var(z)] = (- + 0()) (ax)2

For the incremental Brownian motion process to remain nontrivial at fixed 7, as
At — 0, Ax must be of the order o/ At + o(+/At) for some positive constant
o (otherwise the process either dies out or blows up). Let us take Ax = o+/At, so
that

Var[D(1)] — 0?1,  as At — 0.

If At is infinitesimally small, a finite interval [0, 7] will contain a very large num-
ber of time ticks at each of which a small displacement takes place, and D(¢) then
becomes the sum of a large number of independent, identically distributed random
variables. One can apply the standard central limit theorem to the statistical average
of the incremental displacements Z;, to obtain

L1/A1)

2 Z

i=1 _ bW
L1/51) ] JVar[D()]

Var[ Z Z;

i=l

2, N ],

Under the chosen condition for speeding up the random walk, «/Var[D(#)] — o /1.
The product of this deterministic convergence by the last relation yields

D) -2 o VINO. 1y 2 N, 621

. . . . . . )
the displacement D(7) is normally distributed with mean 0 and variance o-¢. Intu-
itively, the displacement averages (o zero, as movement in both directions is equally
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likely, but as more time clapses, our uncertainty about the position of the particle
increases (a larger variance).

The incremental Brownian motion process described above falls in a class of
stochastic processes that are of independent increments. A process () is said to
have independent increments if for any time sequence t; < tp < ... < Iy, the incre-
ments Q(t1), Q(t)— O(t1), ..., Q(t,) — Q(t, 1) are independent. The incremental
Brownian motion process accrues an incremental amount of displacement that is in-
dependent of the particle’s current position.

Moreover, a stochastic process Q(¢) is said to be a stationary process if the incre-
ment Q(t 4+ s) — Q(¢) depends only on s (but not on ¢). If s < ¢, the displacement
of the incremental symmetric random walk process at time ¢ is D(s) & D(t — s),
the convolution of D(s) and a random variable distributed like D(t — s). That is, the
displacement over the interval ¢ — s is distributed like the process itself at time ¢ — s
(as if the process were reset to start at time s).

The incremental Brownian motion is a stationary process that has independent
increments. It may then be reasonable to require that the limiting process inherit
these properties. We therefore use these properties and the normal limit as the basis
for a formal definition of the Brownian motion process. The Brownian motion, D(t),
is a stochastic process that satisfies the following:

(1) D) =0.
(ii) The process has independent and stationary increments.
(iii) The process at time ¢ has a Gaussian distribution:

D) 2 N, 620,

The Brownian bridge is a Brownian motion conditioned to return to the origin
at time 1 (that is, it has the conditional distribution D(t)| D(1) = 0). We can
standardize the bridge by considering the conditional Brownian motion with o =
I (if o # I, we can always study D(t)/o.) We denote the standard Brownian
bridge by B(t). The distribution of the Brownian bridge process is obtained by
conditioning the Brownian motion. Suppose 0 < #; < < .-+ < t, < 1. Let
fvi,..v,(v1, ..., vp) denote the joint density of random variables Vi, ..., V. The
joint distribution fp),.... D@, (d1, ..., dy) is more easily obtained from the incre-
ments D(t), D(tp)—D(t1), ..., D(t,)—D(t,—_1). The increments amount to a linear
transformation of random variables, introducing a new set:

Iy = D(11),

In = D(tn) - D(tn—l)-

This linear transtormation introduces a set of independent random variables be-
cause the Brownian motion is a stationary process of independent increments. From
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the standard theory of transformations, the set of increments and the set of actual
displacements have joint distributions connected via:

1
foap, ..., D(z,,)(dl,--wdn):mfll ..... 1,,(d1 dy —di,...,dp —dn-1),

where J is the determinant of the Jacobian of transformation that is given by: -

aD(1;
J:' W) o1
0l
1 0 0 0 0
1 1 0 0 0
11 1 0 0l
S 11
— 1.

By the independence of the increments, their Jomt density is the product of their

" individual normal densities:

oA = (d=d)? Q0 —11)
X
27 N2 (th — 1)
o~ @n=dn_1)*/Q(tn~ts—1))

v 27 (ty — ty—1)

The Brownian bridge is a conditional Brownian motion:

foup....pa)@di, ..., dy) =

B(t)=D()|D(1)=0.

Its density fp(;)(x) is therefore obtained from the joint density of D(¢) and D(1).
For 0 < s <t < 1, we are further interested in the covariance between B(s) and
B(t). To save some effort, we develop the bivariate joint density fg(s),B(r)(x, y) first.
The univariate density fp() is then one of the two marginal densities of the bivariate
joint density. We have

fBes),B)(X, ¥) = fp).piyx, y [ D(1) =0)
_ fps).pey.om(x, ¥, 0)

foay(0)
_ V2 " <~ﬁ~(y~X)2_ v )
Tt =n T2 T 26—s)  200-1)

1(1—)x2=2s(1 =) xy+s(1—s)y?
eXP( ( SU—)(1=0) ))

2 /st —s)(1 —1)
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Put in matrix notation, this expression has a familiar compact form. Let v = (x )
and v’ be its transpose. Then

]
fBes),Bay(V) = s :

where

(s =s) s(I1-0Y\,
2_(s(1~t) t(l—t))’

the bivariate density of the Brownian bridge at times s and ¢ is the same as that of a
bivariate normal distribution with mean @ and covariance matrix Y. The covariance
of the Brownian bridge at times s and ¢ is

Cov[B(s), B(t)] = s(1—1).

The Brownian bridge B(¢) is the marginal distribution of the bivariate normal
distribution discussed above. This marginal is a zero-mean normal distribution with
variance f (1 — t), that is,

B(t) 2 N(0,1(1 -1)).

The Brownian bridge is closely tied to the empirical distribution function. To
approach this intuitively, we consider first the connection between the Brownian
bridge and the empirical distribution function F(f) = ¢, for 0 < ¢t < 1, of the
UNIFORM(O, 1) random variable. This distribution function is assessed empirically
by F,(z), that is, computed from a sample Uy, ..., U, of n independent variates
taken from that distribution:

1 n
Fp(t) = ;Zl{Uisz}-
i=1
For0 <s <t < 1, one finds

E[F.()] =E[% il{uii,}]

i=l

1 n
S ZProb{Ul <t}
L

=1.

Interpreting the argument of the empirical distribution function as time, F,(¢) is
then a stochastic process with the covariance
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Cov[Fu(s), Fa(1)] = E[Fy(s)Fy(1)] — E[Fa(s) | E[F,(1)]

- LS ) (5 )] -
1= . J=

1 n .
= ?E[Z Liu<sy+2 Z I{UiSS}l{Ufg}] -t
i=1

I<i<j<n

~ The uniform variates are independent and identical in distribution, giving

Cov[Fy(s), F,()] = -15 x nProb{U; <s)
n

1 .
+=5 % (n — )nProb{U; < 5} Prob{U, <1} — st
n

— 1)st
:£+——~—————-(n )$ — S5t
n

—_ 3

= —s5(1—1).
n

The process 4/n F, (¢) thus has the covariance structure

Cov[v/n Fr(s), v/n Fp()] = s(1 —1).

The centered process /n (F,(t) — t) is Markovian and has the same covariance
structure of the standard Brownian bridge. We conclude that

Vi (Fa(t) = 1) 2> B(1).

Figure 3.3 shows the empirical distribution function F3q of 30 independent standard
uniforms in comparison with the true distribution function common to these random
variables, and Figures 3.4 illustrates 30 (F30(t) — 1), which has the general shape
of a jagged Brownian bridge.

The discussion is not restricted to the empirical distribution function of the uni-
form random variable alone. The key point here is that the inversion process of a
continuous distribution function (the so-called probability integral transform) always
yields uniform random variables—if F is a continuous distribution function of X, we

define U = F(X) and then U 2 UNIFORM(O, 1); we leave it as an exercise to ver-
ify this. So,

Vi (Fa(t) = F()) 25 B(F®),

where F,(t) is the empirical distribution function of F(r).
The stochastic representations of (2, 1) SHELL SORT will soon be connected to
the Brownian bridge. The area under the absolute Brownian bridge comes into this
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F30(1)

1.0

0.5

T I T
—1 0 ] 2 t
Figure 3.3. The empirical distribution function of the UNIFORM(0,1).

picture; the random variable

1
A:f |B(1)| dt
0

appears in the calculation. The distribution of A is complicated but known (Johnson
and Killeen (1983)).

Many functionals of the Brownian bridge, including A, have been studied. All
moments of A are known and the first few are tabulated in Shepp (1982). We shall
only need up to the second moment. For the first moment of A, it is fairly simple to

V30 (F30(t) — 1)

IAWAY A
T I

Figure 3.4. The function V30 (Fyr) —1).
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-+ derive Shepp’s first moment result from basic principles and standard distributions:

E|B(n)| =E|N(0,(1 — )]

: 1 o x2

= S f_oo |x;eXp(—m) dx

_) t(1—1)
V2rt(1=1) Jo

= ‘/zt(l —1).
T
1
E[A]=E U lB(t)ldt}
0

1
=f E|B(1)|dr
0

1
=\/§f t(l1—1)dt
T Jo
2 33
=\/;ﬂ(z’z>’

the Beta function 8(3, 3) = "($)T'3)/T(3) = %, and

b4
E[A] = \/g A (3.1)

We can also do this for the second moment needed in the proof of the variance
result below. One can compute Shepp’s second moment result form basic principles

involving the bivariate normal distribution. After somewhat heavy integral calcula-
tion one finds

o0 2 )
ve~ V2 gy

Then

7
E[A?] = = (3.2)

3.2.3 Using the Stochastic Tools

We have at our disposal enough tools to model (2, 1)-SHELL SORT. Suppose our
data are » distinct real numbers (this is almost surely the case when the numbers
come from a continuous probability distribution). Let us call the elements in odd
positions X’s and those in even positions ¥’s. Thus, if # is odd, initially our raw
array prior to any sorting is

X1, Y1, X2, Y2, ., Ying2y, X1ny21s
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and if » is even the initial raw array is
X]» Y], X27 Y2a s Xn/27 Yll/z'

The 2-stage of the algorithm puts the X’s in order among themselves and the Y’s
in order among themselves. The order statistic notation is handy here. Let Z(;y be
the jth order statistic of Zj. ..., Z,,. The 2-stage puts the array in the form

X, Yoy, X, Yoy, - Yn2p, X(gn21)s

if n 1s odd, and

X, Yy, X2 Y oo Xny2)s Yiny2)s

if n is even,

Let S, be the number of comparisons that (2, 1)-SHELL SORT makes to sort
n random keys, and let C, be the number of comparisons that LINEAR INSER-
TION SORT makes to sort n random keys. The 2-stage of (2, 1)-SHELL SORT
makes two runs of LINEAR INSERTION SORT on the subarrays X1, ..., X,/2)
and Yy, ..., Y|, 2], thus requiring

Crny21 + Claj2y

comparisons, where {C;} and {C’j} are independent families. !
The 1-stage now comes in, requiring additional comparisons to remove the re-
maining inversions. We know that LINEAR INSERTION SORT makes

C(Iy) =n+I(Iy)

comparisons to sort a permutation I, with 7 (I1,) inversions. The overall number of
comparisons, S, of (2, 1)-SHELL SORT is therefore given by the convolution

Sn = Cray2) + Claja) + (n + In). (3.3)

Gaussian laws have been developed in Chapter 2 for various forms of INSER-
TION SORT. In particular, C,, the number of comparisons that LINEAR INSER-
TION SORT performs to sort # random keys, is asymptotically normally distributed:

Cn—;l‘n2 D 1

75/_2‘— -—»N(O, 56)

We only need the distribution of /, to complete the analysis of (2, 1)-SHELL
SORT.

I'We shall use the term independent families of random variables to indicate that the members of one
family are independent of each other as well as being independent of all the members of the other families.
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Lemma 3.1 (Smythe and Wellner, 2000). After the 2-stage of (2, 1) SHELL SORT,
the remaining number of inversions, 1,,, has the representation

[n/21 {ln/2] Tn/2]

I, = Z Z Ly,<x;)— O ixi<x;)

j =1

where 1¢ is the indicator of the set &.

Proof. To avoid trivialities caused by data repetition, we shall discuss the case when
all the data are distinct (which is the case with probability 1 under the random per-
mutation model). For each of the X’s we compute the number of inversions it will
cause after the 2-stage. Suppose the rank of X ; in the entire data set is ». There are
r — 1 data below X ;. If the rank of X; among the X’s is ry, there are r; — 1 of
the X’s below X ;. To visualize data positions after the 2-stage, it is helpful to think
of X as X(,) for the rest of the proof. The data points X (i, ..., X(, 1) are below
X (r,). After the 2-stage, these items will be placed in this relative order to the left of
Xy =Xj.Letrp= (@ —1)~(r; —1)=r —r; be the number of ¥’s below X ;.
For 1nstance in the case n even and r| < r, the arrangement after the 2-stage will
look like:

Xy X Xiri-1y X X(ns2)

Yoy Yo Yo-n o Yo oo Yap2)

After the 2-stage, the X’s are sorted among themselves; X,y causes no inversion
with any other X, ). Among the Y’s, Y1), ..., ¥(,) are all less than X, ); all the
other Y’s are larger. Which of Y(yy, ..., ¥(,,) will be inverted with respect to X,
will depend on the relation between | and r,. Two cases arise:

(a) The case r; < rp: In this case Y(y), ..., ¥, —1) appear to the left of X, );
but Yy, ..., Y(r,) appear to the right of X, ) and each of these latter ¥’s
causes one inversion with X(, ). Obviously the Y’s above X, (that is,
Yyt 1ys - - » Y(iny2))) all appear to the right of X,,), and cause no inversions
with it. The number of inversions involving X,y is therefore

Ln/2] (n/2]
r— ==Y lyex; - Y Iw<x)
i=1 i=1
(b) The case ri > rp: In this case Y1y, ..., ¥(,) appear to the left of X(,,) and
Y(rs+1), - - - » ¥(r,—1) are the only ¥’s that are out of position with respect to
X (r,); the number of inversions involving X, is therefore

(/2] /2]
(rn—1-mn= Z K<) — 2 <x))-

i=l
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In either case, to /, the key X ; contributes

1n/2] [1/2]

Y yexy— D Lixiexy

i=| i=l

inversions. The total number of inversions after the 2-stage is then obtained
by summing over j. [

Let F () be the distribution function common to the data items, and let ﬁ,, (1) be
the corresponding empirical distribution function computed from a sample of size #.
Let U; and V; be the “projections” of the X;’s and ¥;’s via the probability integral
transform, that is,

U[:F(Xf)’ l'=1,...,fn/2'l,

Vi = F(Y;), i=1,...,n/2].
The random variables U; and V; are independent and each is distributed like a
UNIFORM(O, 1) random variable. The representation of the number of comparisons

in the 1-stage of (2, 1) SHELL SORT as a sum of indicators (Lemma 3.1) admits
expressions via the empirical distribution function—we have the terms

ln/2] ln/2]

Y lr<xp) = Z} Liyi<x;)
1=

i=1

o

ln/2]
Y Yru)<Fx))

i=1
Ln/2]

= > L=

=]

= (n/2]Fnp)(U)),
and

e )
Y Lxi<xp = ) Lixesx) H1xg<x;)
i=|

j=| =

i#]

/21

Y Lixsxy) — Lix,=x;) +0
i=1

I%

= [n/2Fran(Uj) = i

where F“j(t) 2 ﬁj(t), and I:"J- (1) and I:"j (¢) are independent (the ¥’s are independent
of the X’s).
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For compactness, let Tn(J ) denote the inner summation of the expression of
Lemma 3.1, namely

ln/2] [n/2]
Z Lyi<x;) — Z Lixi<x;)
i=1 i=l1

For uniform data, we have discussed the convergence

7 et

Vi (Fa(t) —1) B> B(),

where B(t) is the (standard) Brownian bridge. Thus

i’i_: = (\/%@\/@ﬁtn/zjwﬂ—@\/@ﬁf”mw"H0(%)(

D 1 ~
—+7§]B(U,-> - B(Uj),

where B(r) and B(z) are two independent standard Brownian bridges. The difference
B(t)— B(t) is clearly a Markovian stationary process of independent increments and
has a simple normal distribution because

B(t)— By 2 N(0,1(1 = 1)) = N(0,1(1 — 1)) 2 N(0,2:(1 = 1)),

(N0, 1(1—1)) D N(0, t(1—1)), and is independent of N (0, 7 (1 —1))). Therefore
(B()— B())/ /2 is distributed like the standard Brownian bridge. We have
)
T, D
G > BW)I (3.4)

Theorem 3.1 (Knuth, 1973). The average number of comparisons made by the 2-
stage of (2, 1)-SHELL SORT to sort n random keys is asymptotically equivalent to

%nz; the I-stage then performs a number of comparisons asymptotic to | 135 n3/2,

The overall number of comparisons is therefore asymptotically equivalent to %nz.

Proof. Knuth (1973) proves this result by a combinatorial argument that counts cer-
tain kinds of paths in a two-dimensional lattice. We present a proof due to Louchard
(1986) based on the stochastic elements introduced in this chapter. Let S, be the
number of comparisons that (2, 1)-SHELL SORT performs to sort » random keys.
Recall (3.3):

Sy = Cf/1/2'| + éLn/2J + (n-+1y).
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Take the expectation
E[S,] = E[Cfn/;ﬂ] + E[él_n/ZJ] + E[l,] + n.

Two of the three components in the average of the convolution of S, are the av-
erage number of comparisons of LINEAR INSERTION SORT on |n/2| and [n/2]
keys (each is asymptotically equivalent to %nz; this was developed in Chapter 2;

see (2.4)). The 2-stage asymptotically makes n2/16 +n%/16 = n*/8 comparisons.
As in the development of Lemma 3.1, the third component (comparisons of the
1-stage) is n + I, where the random variable I, takes the form

and TV, ..., T1"/?D are identically distributed. So, E{I,] = {n/2] E[T\"]. By
the connection (3.4) to Brownian bridge:

E[1;"] ~ VR E|BWU))|.

Conditioning on the uniform variate Uy, together with Shepp’s first moment re-
sult (3.1), yield the expectation

1
E[T,f”]~ﬁ/0 E|B(1)| dt

b3
~ 5‘2-1’1- (3.5)
The 1-stage makes [n/2] E[Tn(l)] ~ ./ T55 n/? comparisons. ™

The stochastic representation of (2, 1)~-SHELL SORT allows us to go forward
with the variance calculation and ultimately with the limiting distribution.

Theorem 3.2 (Knuth, 1973). The variance of the number of comparisons of (2, 1)-
SHELL SORT for sorting n random keys is asymptotically equivalent to (§163—0 -

T’;—g)nz'.
Proof. Recall again the convolution (3.3):

Sn = Crnj21 + Claja) + (n + 1n);
and take its variance to get from the independence of the parts

Var[S,] = Var[C[n/21] + Var[C a2 ] + Var(l,].
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The random variables C,/27 and C |n/2, are the number of comparisons of LINEAR
INSERTION SORT on [r/2] and |n/2] keys (each has variance that is asymptoti-
cally equivalent to iﬁnz’, which was developed in Chapter 2; see (2.5)).

For I,,, we have

[n/2] ) . |
Var[l,] = Z Var[Tn(’)] +2 Z COV[Tn('), T,,(j)],
i=l 1<i<j<[n/2]
The variables Tn( 1), cees Tn( n/21) are identically distributed, which simplifies the cal-

culation to
Var(l,] = [n/21Var[ "] + [n/21(1n/21 = 1)Cov[ 1, 7],

Recall the statement

The variance of Tn(j ) is thus O(n). The covariance can be obtained from
1 2 1 2 1 2
cov[,", 1,7 = E[1,V 1,17] - E[ T\ ]E[T*].
The latter component in this covariance was worked out in (3.5); it is

B2 (1] ~ X

5‘2-1’1.

The former part is obtained by conditioning on the uniform random variates U and
Us:

E [T,f”T,}”] ~ nE[|BU)||BWUY)|]

=n /01 /01 E[IB(s)||B(t)|] dsdt

= nE UOI /01 |B(s)| ;B(t)‘dsdt}
= nE (/01 [B(t)[dt)z

7

by Shepp’s (1982) calculation (cf. (3.2)). So,

1 2 7 T
COV[T,,( )T,,( )] ~ 66" - 3—2~n.
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We can combine the variances of the various stages to get an overall result:

Var(S,] = Var[C[n/21] + [C|n/2) ] + Var(l,]

2
2;8 +2"514_8’ +[O(’ vy (876”—;5 >]

144 " 240 128)" "
Theorem 3.3 (Louchard, 1986). Let S, be the number of comparisons of (2,1)-
SHELL SORT to sort n random keys. Let A = fol |B(t)| dt. Then

Y N<O 144) +A4.

Proof. Recall again the convolution (3.3):
Sn =Cyo + él_n/ZJ + (n + In);
whose average is
E(S.] = E[C[n/21] + E[C|n/2)] + ElL,] + n.

Center §,, by subtracting off the mean and scale it by the order of its standard devia-
tion; the standard deviation is found in Theorem 3.2:

Sy = E(Sy] _ Crny21 = E[Crapm] | Clnj2) — E[Clnp2y] o I = ElL]
2 32 32 Py R

The three components on the right-hand side are independent. Hence, if we iden-
tify their three corresponding limits, the convolution of the three limits will be the
limiting distribution.

For the third component (7,, — E[In])/n3/2, Theorem 3.1 gives us the limit

E[l,] L
n3/2 128"

The stochastic part, I,/n3/2, converges weakly—this can be seen by going back to

the form
\/%_@\/@FL”/ZJ(U” - \/%—@\/@Fh/ﬂ((/j) + 0(%)
(n/2] |
2372 Z \/—‘\/—'FLn/ZJ(U )—\/—'anm(Uj)‘ ™ /21 <ﬁ>

[n/2]
I,a.s.a/n Z
j=1
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Let Uy, ..., U(n/27) be the order statistics of the uniform random variates Uy, .
Urn/2)- This enables us to view the sum (in the limit) as a Stieltjes integral:

I, » . fn/TI
=5 — hmn_>Oo FLn/ZJ(U(/))

n ~
- [ﬂ Frnm W)

ey

d Finy (Uj).

The empirical measure F rn/21(Ujy) converges to the uniform measure on (0, 1) on
the time scale ¢. Thus the incremental rise d F7,, /27 (U ;)) approaches the differential

element dt. Furthermore, \/_2" /L%Jﬁwzj Uy =/ [%A‘ }7"(,1/21 (U(j))' converges

to the absolute standard Brownian bridge B(¢) as already discussed. So,

I, — E[l,]
e f BOlar - [

As for the first two components coming from the contribution of the 2-stage, the
limit laws we obtained in Chapter 2 for INSERTION SORT provide us with the two
(independent) normal limits AV (0, z—ég—) and NV (0, 2_11;8‘)- Hence

B 2o ) o) A i o

The leading terms of E[S,,] are determined in Theorem 3.1:

1 432 3/2
E[S,] = = / /2).
[S) = gn? + /= 2 +o(n*/?)

Now apply Slutsky’s additive form—add the deterministic convergence relation

E[S,] — gn? e
—_
n3/2 128

to the limit law (3.6) to obtain the required result. ]

3.3 OTHER INCREMENT SEQUENCES

We analyzed at length the (2,1)-SHELL SORT in the previous sections. The methods
may extend to (A, 1)-Shell SORT and even to some longer sequences of fixed length,
as is done thoroughly in Smythe and Wellner (2000).

Several natural questions pose themselves here. What is an optimal choice (in the
average sense) of A in (h, 1)-SHELL SORT? Would the methods that lead to op-
timizing (k, 1)-SHELL SORT extend naturally to optimizing the choices in longer
sequences, like (k, h, 1)-SHELL SORT, for example? Do sequences of length in-
creasing with n, the number of items sorted, perform better than fixed-length se-
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quences? What is an optimal sequence? Given an optimal sequence, does SHELL
SORT achieve the theoretic ®(n Inn) bound?

At present, a satisfactory answer to all these questions is not yet known. However,
we know some partial answers that may shed some light on the big picture. The lack
of a universal answer and methods for analyzing SHELL SORT has stirred quite a bit
of intellectual curiosity. Many sequences have been proposed and many conjectures
have been generated. We shall not try to portray the whole picture of every develop-
ment that took place in the investigation of SHELL SORT. We shall try only to bring
about some significant results in the area.

Most sorting algorithms in this book have an average behavior of either O(n?) or
©®(n Inn). Curiously, SHELL SORT with various choices of the increment sequences
fills that spectrum with interesting orders of magnitude in between these two typical
extremes. It is instructive to look at a special construction that gives one of these
atypical orders of magnitude. Let us try to optimize the two-stage (h, 1)-SHELL
SORT.

Theorem 3.4 (Knuth, 1973). The choice h = | /16n/m | optimizes (h, 1)-SHELL
SORT. The (|/16n/m |, 1)-SHELL SORT sorts n keys in @(n5/3) average time.

Proof. Knuth (1973) presents an argument based on an exact count of Hunt (1967).
For asymptotics, it is sufficient to consider a simpler asymptotic estimate. The -
stage of (k, 1)-SHELL SORT creates A files of size n/h + O(1) each. On average,
the creation of these blocks requires # times the average amount of time LINEAR
INSERTION SORT spends on sorting n/ &+ O(1) random keys, an asymptotic total

SR (1)
of h X o= = 7.

There are (g) pairs of these subfiles; any two of them are interleaved like a permu-
tation of size 2n/ h + O(1) after it has been subjected to the 2-stage of (2, 1)-SHELL
SORT. Let I, be the number of inversions that (2, 1)-SHELL SORT leaves after the
2-stage. The 1-stage needs n+ I,, comparisons. We studied the average of I,, in Theo-
rem 3.1. Accordingly, on average the 1-stage of (4, 1)-SHELL SORT asymptotically

requires
E[L,] b4 <2n)3/2 h
7 B 128 \h 2
comparisons.

If h grows with n, over the two stages the algorithm requires an asymptotic aver-
age of

n?

+

— + =V mn h.

4h 8

Differentiate this quantity with respect to & and set the derivative to 0 to obtain h =
YT6n]x as the value of 4 that asymptotically minimizes the number of comparisons.

The (|/16n/7 |, 1)-SHELL SORT runs asymptotically in ®(n°/3) average time.
]
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We see in the proof of Theorem 3.4 that on average the h-stage makes 4ﬂ,27 com-
parisons. If 4 is fixed with respect to n, the average number of comparisons of the
h-stage alone will grow quadratically. This is a feature observed in fixed sequences.
To do better, one needs to let the number of the increments depend on n.

It is not known definitively whether SHELL SORT is optimal; no one knows
whether there exists some sequence of increments that achieves ® (nInn) time on
average to sort n keys. Several reasonable sequences give ®@(n%), with a > 1, av-
erage running time; (| &/16n/7 |, 1)-SHELL SORT instantiates this (Theorem 3.4).
Obviously, sequences with © (n“) average running time, with @ > 1, cannot achieve
the theoretic lower bound. Several sequences are known to give reasonably fast
performance. The general spirit in these sequences is that they do not have fixed
length. Such sequences are usually derived from an increasing numeric sequence
1 = ay,as, ... tobe called the generator sequence in what follows. For any n, we
determine the largest k for which a; < n; we then apply (ag, ar_1, - .., a1)-SHELL
SORT. Thus the length of the sequence grows with r, and a large number of incre-
ments will be used for large n.

Sparse breakthroughs have taken the form of discovery of clever generator se-
quences that improve the average order of magnitude. When Shell introduced his
algorithm in 1959, he suggested the sequence |n/2], |n/4], |n/8],..., 1, which
becomes a diminishing sequence of proper powers of 2 in the case when n itself
is a power of 2. However, this sequence has a bad worst-case behavior. To remedy
the difficulty several authors suggested perturbations that take the form of an offset
by +1 from Shell’s essentially powers-of-2 sequence. Hibbard (1963) suggests the
generator sequence 2k 1, with k = 1,2, ... . Lazarus and Frank (1960) suggest
using Shell’s sequence but adding 1 whenever an increment from Shell’s sequence
is even. Papernov and Stasevich (1965) suggest the generator sequence 2% + 1, with
k = 1,2,... (Lazarus and Frank’s sequence when n is a proper power of 2), giv-
ing O (n3/?) running time in the worst case; a proof of this and several other results
related to the choice of this sequence are discussed in a chain of exercises (Exer-
cises 3.2-3.4).

Sedgewick (1986) suggests deriving the increments from the generator sequence
1,8,23,77, ..., thatis,a; = l,and q; = gh=1 4 3x2k=24 1, fork > 2. Sedgewick
(1986) proves that a SHELL SORT construction based on this generator sequence re-
quires O (n*/3) running time for all inputs of size n. Weiss and Sedgewick (1990a)

" proved that ® (n*/3) is the running time for all inputs of size n, still an order of mag-

nitude higher than the ®(n Inn). Incerpi and Sedgewick (1985) argue that for any
fixed k there are SHELL SORT constructions with O (In n) increments for which the
running time is O(nl“//"); Selmer (1989) gives a proof based on the a number-
theoretic problem of Frobenius (introduced shortly). On the other hand, Poonen

(1993) shows that a worst-case input for & increments requires at least nlte/ \//?,
¢ > 0, comparisons (Plaxton and Suel (1997) provide a simple proof). Thus SHELL
SORT cannot be worst-case optimal with a fixed number of increments.
Theoretically, one of the best known numeric sequences for generating incre-
ments is 1,2,3,4,6.8,9.12, 16, ...; numbers of the form 2¢ x 3", for a.b > 0.
In practice, a SHELL SORT construction based on this sequence is slow as it must
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involve ®(In? n) increments, too large a number of increments giving an impractical
amount of overhead. This sequence was suggested by Pratt in 1971. From an asymp-
totic viewpoint, this sequence produces the best known to-date increment sequence.
To intuitively understand why Pratt’s 2¢ x 3" sequence performs well, whereas a
SHELL SORT construction based on Shell’s essentially 2% generator sequence per-
forms poorly, it is worth looking into what happens to the input after it has passed a
stage. We shall call a file k-ordered if all k subarrays of k keys apart are sorted. For
example, consider again the input instance of Section 3.1:

7 4 I 8 9 5 6 2 3.
The 2-stage of (2, 1)-SHELL SORT produces the 2-ordered permutation:
1 2 3 4 6 5 7 8 9.

It is curious to observe the following result.

Lemma 3.2 (Knuth, 1973). Suppose the decreasing sequence of increments ty., t;,_1,
.., L is used in the SHELL SORT algorithm. At the end of the t j-stage, the input is

ty-ordered, 1. -ordered, ..., and tj-ordered.
Proof. Let X, ..., X, and Yy, ..., Y, be sequences of numbers such that
X1 <Yy, X2 <Y, , Xm <VY,. (3.7
We show that their order statistics X1y, ..., X(n) and Yy, ..., Yy, satisfy
Xy =Y, X2 <Y, , Xmy < Yim)- (3.8)

This is true because each of the Y’s is at least as large as some X. But Y, is as
large as j of the Y’s, which are known to be at least as large as j of the X’s. That is,
Y(j) > X(j),forj =1,...,m.

Let & < k. Consider an array A[l..n] of numbers to be the subject of SHELL
SORT algorithm that uses k and % as successive increments. After the k-stage the
array is k-ordered. Now the h-stage is about to take over. We want to show that after
the h-stage the file remains k-ordered, that is, A[i] < A[i +k],forall1 <i <n—k.

For any position 1 <i < n—k, we can find the starting position . of the subarray
of h keys apart to which A[i] belongs by going as far back in the array in steps of
h. We can then shift the position up by k to find the starting position of a second
subarray whose elements are k away from their counterpart in the first subarray. The
h stage will sort each of these subarrays. Formally, let 1 < u < h be such that
i = u (mod h). Appeal to the relations (3.7) and (3.8) with X; = Alu+ (j — DA],
Y; = Alp-+k+(j — D)h], with j running from 1 to (i — u + h)/ h. Right before the
h stage, we have X ; < ¥, for j = 1,...,(i —u~+h)/h, by the sorting effect of the
k stage which puts in order A[s] and A[s -+ k] for any s < n — k. The relations (3.7)
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and (3.8) guarantee that the largest among the X’s will be at most as large as the
largest among the Y’s. The & ordering will now bring the largest of the X’s into
Alp + h[(i =+ h)/h — 1]] = Ali] and will bring the largest of the ¥’s into
Al +k + hAl(G — w+h)/h — 1]] = A[i + k]. The resulting array (which is now
h-ordered) will remain k-ordered. [ |

Lemma 3.2 shows that, for example, after the 2-stage of (4, 2, 1)-SHELL SORT
performs on some input, the input will be 4-ordered and 2-ordered. This is not par-
ticularly useful—interaction between odd and even positions takes place only at the
1-stage. An adversary can construct an input which leaves in @(nz) inversions after
the 2-stage of (4,2, 1)-SHELL SORT. One will have to wait until the 1-stage to re-
move these inversions in @(nz) time. By contrast, (3, 2, 1)-Shell SORT mixes in the
2-stage subarrays handled in the 3-stage.

A number-theoretic property is needed to complete the analysis of the construc-
tion known to be theoretically best for SHELL SORT. The aspect we need is the
definition of a special number.

A country has issued only & different stamps of distinct values sy, ..., sg. The
Frobenius number R(s1, ..., s) is the largest value that cannot be exactly composed
of these stamps, that is the largest integer that cannot be expressed as a sum o157 +
sy + - -+ + xSk, with nonnegative coefficients a7y, . . ., . For instance, if k = 2
and the two stamps issued are of values s; = 3 and s =5, then

1=7?

2="7

3=1x3

4="7

S=1x5
6=2x3

7="7
8=1x3+1x35
9=3x3
10=2x5

Il =2x3+1x5

and one can show in this case that R(3,5) = 7 from the more general result of Ex-
ercise 3.2 for the case of two stamps. Even though it is an old problem, determining
R(sq, ..., sr) by an explicit formula of sy, ..., sk is not solved except in some spe-
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cial cases. For the cases where s1, . .., s are pairwise relatively prime, R(sy, ..., k)
is known to exist finitely.

Lemma 3.3 (Poonen, 1993). Let si, ...,k be positive integers for which the
Frobenius number R(S1, . .., sx) is well-defined. The number of steps required to h-
order an array A[l ..n] that is already s\ h-ordered, ..., s h-ordered by an h-stage
of SHELL SORT is at most [1 + R(s1, ..., sK)](n + h).

Proof. Let ay, ..., o be any nonnegative integers. Since the array is s;h-ordered,
we have A[j] < A[j + «ys1h]; since the array is also sph-ordered, we have A[j +
ais1h] < Alj + ays1h + agsoh], ... ; and since the array is sih-ordered, we have
Alj +arsth -+ -+ op_1sp—1h] < AlJ +a1s1h + -+ + agsih]. By transitivity,

Alj] < Alj +aisih + - -+ agsihl, (3.9)

whenever the indexing is feasible.
The definition of the Frobenius number R = R(sq, ..., sg) implies that R -1 can
be expressed as as] + - - - + oy, for nonnegative coefficients «;, ..., . Hence.

The partial order (3.9) guarantees
Alj1 < Alj + (R + Dh].

Running the A-stage on an input with this partial order drags any key at most
R + 1 steps back before finding a “stopper.” During the A-stage, the algorithm sorts
h subarrays of size at most [n/ h] each. Inserting an element at its correct position in
its respective subarray involves at most R + 1 comparisons. It is, of course, assumed
that A < n;atmost & x [31(R+1) < (n +h)(R + 1) = O(n) comparisons are
needed at the A-stage. [

Theorem 3.5 (Pratt, 1971). Generate the numbers of the sequence 2% x 3%, a,b>
0 in natural increasing order. Let t; be the jth member of this sequence. Let ky be
the largest index for which t,, < n. The (tx,, tx,~1. - .-, 1)-SHELL SORT requires

®(nln?n) average and worst-case running time.

Proof. This proof is due to Poonen (1993). Consider an increment £. It is, of course,
assumed that &4 < n. Take up the large increments first. For any 2 > %n from Pratt’s
generator sequence, the worst case is that of sorting A files each having at most

(fnéfﬂ) inversions. This requires at most

h x (fn/h] + (fnéh'l)) = 0(n)

comparisons in the worst case. The argument for the average case 1s the same; the
average number of inversions has the same order of magnitude as the worst-case
number of inversions.
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Forh < %n, both 24 and 3/ are less than n. By the A-stage, the input is 34-ordered
and 2h-ordered. By Lemma 3.3 the algorithm requires at most (n+h)(R(2,3)+1) =
2(n + h) comparisons for this stage.

Any increment (large or small) requires O(n) comparisons. There are [log, n]
powers of 2 that are less than n and [logs n] powers of 3 that are less than n—there
are at most [log, n] flogyn] = ®(In? n) increments.? The number of comparisons
is O(nln®n).

We now turn to the lower bound. The number of comparison that LINEAR IN-
SERTION SORT makes on an input of size n is C,, > n. Any increment / then
requires at least 2 x Uﬂ = 2(n) comparisons for any input. There are A(In? n)
increments. The total number of comparisons is also €(nIn? n) in the worst and
average case. [

Theorem 3.5 tells us that asymptotically SHELL SORT can come close to the
theoretic ®(nlnn) bound on average and in the worst case, but is not quite there.
Yet, various flavors of SHELL SORT with several (but a fixed number of) increments
are relatively fast in the small and mid-range number of input keys. These flavors of
SHELL SORT remain popular sorting methods in practice.

EXERCISES

3.1 Suppose X is a continuous random variable whose distribution function F'(x)
is strictly increasing. Show that F (X) 2 UNIFORM(O, 1).

3.2 Letsy,...,s be k > 1 given distinct numbers and let R(sy, ..., s¢) be their
corresponding Frobenius number.

(a) What is the Frobenius number R(1,s2, ..., 5¢)?

(b) Argue that if each of s; successive integers can be expressed as a linear
combination oy s] + - - - + o 5% (with nonnegative coefficients «j, .. ., ak),
then any higher integer can be expressed as a linear combination of
s1, ..., S with nonnegative coefficients.

33 Letk > h > g be three successive increments of SHELL SORT. Prove that if &
and A are relatively prime, the number of comparisons that SHELL SORT uses
at the g-stage is 0 (khn/g). (Hint: It is known (Sharp and Curran (1884)) that
the Frobenius number R (s, s2) is §157 — 51 — 52, when s and 57 are relatively
prime.)

3.4 (Papernov and Stasevich, 1965) Let k,, = |lgn] and A = 25 — 31.2Pr(‘)ve that
(hk,. hk, -1, ---» 1)-SHELL SORT sorts any file of size 2 in O (n/?) time.

2Esewhere in the book we use the notation 1g 12 for log, 12; in this proof both log, 17 and log; 1 appear.
We emphasize the base of each logarithm for clarity.
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Bubble Sort

A natural way to sort is to make local exchanges among neighbors that are out of
order. Because the exchanges are done locally between adjacent neighbors, an ex-
change can move a key at most one position closer to its final destination. A key
distant from its final position may therefore require many exchanges before it gets to
its correct position. This makes the algorithm slow. Indeed, as the analysis will re-
veal, BUBBLE SORT is a naive algorithm, requiring ®(n?) running time on average
to sort » random keys. Albeit being too natural an algorithm, unfortunately it has a
slow performance.

4.1 THE ALGORITHM

The BUBBLE SORT algorithm goes down a data array A[l .. n] and exchanges two
adjacent keys A[i] and A[i + 1] if they are not in their natural order, that is, if
A[i] > A[i + 1]. BUBBLE SORT thinks of such a pair as a “bad pair” A “good
pair” is a data pair A[i] and A[i + 1] in natural order, that is, A[i] < Al[i + 1].
Starting at the top of the array (i = 1), BUBBLE SORT goes down considering the
pairs A[i] and A[i +1],fori =1,...,n—1, fixing bad pairs and leaving good pairs
unchanged. The small keys “bubble up” to the surface and large keys “sink down”
to the bottom. Performing these local exchanges for i = 1,...,n — I, completes
the first pass over the input. One pass orders the array somewhat, but may not be
sufficient to sort. More passes are performed, as many as needed to completely sort
the array. During the first pass, the largest element, wherever it 1s, will sink all the
way down to the last position. If it is at position j < n, when i = j the largest
key, A[i], is compared to A[i + 1]. It will prove to be at least as large as A[i + 1]
and if it is strictly larger, it will sink down one position to be at A[j + 1] by the
swap, and if it is not larger, then it is equal to A[j + 1]; in either case A[j + 1]
now holds the largest data value. But then, when i is advanced to position j + 1, the
pair A[j + 1] and A[j + 2] is considered, and again the largest key will sink further
down to position j + 2, and so on, till it ends up at position 7. In the process, several
other large elements may be at their natural position by the end of the first pass.
The second time around, BUBBLE SORT need not go all the way down. During the
first pass it detects the position of the last swap, possibly several positions above r,
and that defines a reduced range for the second pass. The algorithm proceeds like

129
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this in passes, fixing some bad pairs in each pass and handing over to the next pass
a reduced range of indexes, till at some pass no exchanges are made at all. That is
when BUBBLE SORT gets to know that sorting has been achieved. At least one key
is moved to its correct position in each pass and it is evident that at most n passes are
needed to sort any arrangement of » keys.

To illustrate the action of BUBBLE SORT, consider the data set

32 54 27 13 85 44 63 68.

Figure 4.1 depicts the step-by-step exchanges of the first pass, with the pair being
considered at each step for an exchange indicated. Bad pairs are flagged with an
asterisk.

Figure 4.2 shows the status of the array after each pass. In Figure 4.2 last is the last
index of a key involved in an exchange during the pass. Thus A[1 .. last] is the object
of sorting in the next pass. Note that last may move in increments larger than one.
For instance, relative to its position at the end of the first pass, last moved three steps
up at the end of the second pass. Note also that during the fourth pass the algorithm
did not detect any bad pairs, and it halted at the end of that pass.

The above ideas may be implemented by two nested loops, one to initiate passes,
and an inner one that does the bookkeeping of a pass. To initiate passes, BUBBLE
SORT keeps track of a logical variable, more, which tells the next iteration whether
more exchanges are needed. At the very beginning of execution, more is of course
assigned the value true, for the algorithm does not have any prior information on the
input. Even if the data are sorted, BUBBLE SORT will have to go through them at
least once to realize that. The number of passes is not known in advance; a while
loop is appropriate for the situation. This loop runs till no more passes are required.
When the algorithm enters a new pass, it wishfully hopes that the pass is the last; it

32 32 32 32 32 32 32 32
54 ) 54 27 27 27| |27 27 27
27 27 )* 54 13 13 13 13 13
13 13 13 )* 54 54 54 54 54
85 85 85 85 ) 85 44 44 44
44 44 44 44 44 )* 85 63 63
63 63 63 63 63 63 )* 85 68
68 68 68 68 68 68 68 )* 85

Figure 4.1. Pair comparisons in the first pass of BUBBLE SORT.
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The array after

pass 0 pass 1 pass 2 pass 3 pass 4

(input) (sorted)
32 32 27 13 |« last 13
54 27 13 27 27
27 13 32 32 32
13 54 44 |« last 44 44
85 44 54 54 54
44 63 63 63 63
63 68 |« last 68 68 68
68 |« last 85 85 85 85

Figure 4.2. The state of an input array to BUBBLE SORT after each pass.

assigns more the negated value false. The algorithm then considers the pairs A[i] and
Ali + 1], fixing bad pairs, starting at i = 1 and working through the range of indexes
of the pass. If the algorithm detects a bad pair, it realizes that its assumption that this
was going to be the last pass is untrue; BUBBLE SORT takes back its assumption
and reverts more to the true status. BUBBLE SORT also records i, the lower index
of the two keys involved in the exchange in a variable, say last. By the end of the
inner loop the lower of the two indexes of the last two keys involved in an exchange
sticks in last; A[last] and A[last+ 1] were exchanged, after which point the algorithm
did not detect any other keys below last that are out of position. In between passes,
a pass tells the next that its range may be reduced; the next pass need only concern
itself with A[1 .. last], where last picks up the position of the last key involved in an
exchange (the last value assigned to last in the inner loop). The variable last controls
the iterations of the next pass, which needs to consider pairs A[i] and A[i + 1], only
fori = 1,...,last — 1. Because a definite number of steps is known in advance to
a pass, the working of the pass can be done by a for loop. The very first pass must
consider all pairs A[i] and A[i + 1], fori =1, ...,n — 1; at the very beginning last
must be initialized to ».

4.2 A LIMIT LAW FOR PASSES

We can analyze the number of comparisons that BUBBLE SORT makes via the num-
ber of passes the algorithm executes. So, we shall take up this latter parameter first.
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last « n;
more < true;
while more do
begin
more < false;
fori < 1tolast — 1do
if A[i] > A[i + 1] then
begin
swap(Ali], Al + 1]);
last < i;
more < true;
end;
end;
Figure 4.3. The BUBBLE SORT algorithm.

Let P, be the number of passes that BUBBLE SORT makes on a random permuta-
tion of size n. Suppose that initially K = A[i] is a key preceded by a certain number
V; of larger members of the permutation. In its various passes, the algorithm moves
exactly one of the keys that are larger than K past K. Thus V; passes will be suffi-
cient to remove all the inversions caused by the initial entry at position ;. To remove
all the inversions, max{Vi, ..., V,} passes are needed. One last pass will then be
needed to scan the array and recognize that the array has been completely sorted.
Hence,

Pp =14+ max{Vy,..., Vy}.

We studied the distribution of the number of inversions caused by an element of
a permutation. Recalling a discussion from Subsection 1.10.2,

v: 2 UNIFORM[O..i — 1],

and Vy, ..., V, are independent. The simple distributions and independence of V;,
i = 1,...,n, admit an easy exact distribution for P,. Of course, P, is a discrete
random variable and it is sufficient to study its staircase distribution function at the
integer points k = 1, ..., n. We have

Prob{P, <k} = Prob{1 + max{Vy, ..., Va} <k}
=Prob{V, <k-1,...,V, <k -1}
= Prob{V|, <k —1}...Prob{V, <k -1},
a decomposition by independence. Because V; = UNIFORM[O0..i — 1] < k — 1, for

i =1,...,k, the probabilities Prob{V; < k — 1},fori = 1,...,k, are all equal to
1. That is,
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k
Prob{P, <k} = ]_I Prob{V (Vi <k-1}= ]_I =,
J=k+1 j=kg1 ]

We have thus arrived at the exact distribution stated next.

Theorem 4.1 (Knuth, 1973). Let P, be the number of passes that BUBBLE SORT
makes on a random permutation of size n. The exact distribution function of this
random variable is

k! kn =k

n!

Prob{P, <k} =

3

fork=1,...,n

The exact distribution is simple enough to allow a direct passage to the limit
distribution. As a byproduct, we shall get the asymptotic mean and variance of the
number of passes.

Theorem 4.2 The number of passes, Py, that BUBBLE SORT makes while sorting
a random permutation of size n, satisfies

Pn—n_g _R

n

where R is a Rayleigh random variable (a nonnegative continuous random variable
. . _x2
with density function xe=* /2, for x > 0).

Proof. We shall seek center and scale factors, i, and 0, so that Py = (P, — itn)/0n
converges in distribution. Consider the probability

Prob{P;} < x} = Prob{P, < pun + x0,} =Prob{P, < [in +x0n]}.
For an appropriate range of x, Theorem 4.1 applies giving

Lun +x0n ]!

PI‘Ob{P: < X} = I./Ln +xgan—L,U«n+xan_| x ~

We have | iy + x04 ] = pn + x0n — B, for some 0 < B < 1. Then

n—(,un-i-xo‘,,—ﬂn (M” + X0n — 'Bn)!
Bn) :

Prob{P; < x} = (n + x0, — !

The factorials can be asymptotically handled by Stirling’s approximation, yielding
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PI‘Ob{P: <x}~ (Mn + xon — an)n—,u,,,—xO',,-i—ﬂ,,

X \/277(/1«11 + x0n — Bn)

n\n
(—) X A/ 2mwn
e

n
(Mn + X0~ an) e"‘Mn—XGn-i-ﬂn \/;'L’1 T X0n — ﬂn

n"t n

(Mn + JCOn e ﬁn)ﬂn+xa'n“ﬂn

x (4

= -l-ll—’-’:ll-(l + 'xg,l -——"ﬁn)nen_un—xo—n+ﬂn \/Mn +xgn — 'Bn
n” n ’

MUn

The form suggests use of the standard calculus relation

when f, = O(n®), with ¢ < 1; we take u, = n. Having decided to try centering by
n, we can also determine the appropriate range of x for that centering. As P, < n,
the probability Prob{P; < x} = 1, for any nonnegative x. We need only consider
negative x. Any fixed negative x is in the support, because P, > 1, thatis, Py >
—(n — 1)/o,, and x enters the support as —(n — 1)/o, < x <0, if 0, = 0o(n), and
n is large enough. We can write

Prob(P; <x)~ (1+ M)"e-xa,,+ﬂ,, |ntxon.
n n

(1 + M>n = exp[nln(l + w)}

n n

Now,

Expanding the logarithm as (xo,/n — B, /n) — xzonz/(znz) + O(Un/nz), we arrive
at

n—+ xop

Prob{P} < x} ~ ™% o /(@W+0n/m)
- n

The right-hand side of the last relation converges if o, = ¢ /n, for any constant c.
Let us take ¢ = 1 (and subsume it in the limit R), to finally obtain

Pn_n

N

The latter distribution function is that of a negative random variable, — R, where
R has the distribution function

Prob[ < x] - e , for x <O.
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—x2/2
Fpx) = Il —e , forx > 0
, otherwise.

The density of R follows by differentiation. n

Knuth (1973) computes the average and variance from the exact distribution by
considering asymptotic equivalents of sums involving the exact distribution func-
tion. The asymptotic route considered in Knuth (1973) alludes to an argument by De
Bruijn that connects the exact distribution function to one of Ramanujan’s functions.
We shall follow an alternate route to derive the asymptotic mean and variance from
the limit distribution.

Only mild conditions are required to show that moment calculations follow from
convergence in distribution. In pathological cases one may not be able to claim, for

example, that if X, _2, X, then E[X,] — E[X]. However, random variables arising
in algorithmics are usually well behaved. Often all their moments exist. Our case is
no exception; it can be checked that it satisfies a uniform integrability condition
sufficient for convergence of the first two moments to the first two moments of the
limit random variable.

Theorem 4.3 (Knuth, 1973). The average number of passes that BUBBLE SORT
makes on a random permutation of size n is

n—d%-&-o(ﬁ).

The variance is asymptotically equivalent to

=T

Proof. Owing to the presence of suitable conditions (uniform integrability), we have
two straightforward asymptotic calculations. For the first moment, we have

Pn—n _ _ o0 2_x2/2d :-\/_72
E[ T ]——>E[ R] = /O x‘e X >
E[P,) =n— [ = +o(/n).

For the second moment, we have

implying

Var[ P,:/—En ] — Var[—R],
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or
%Var[Pn] — Var[R]
= E(R?] — E*[R]

o0 2
= / x3e"x2/2 dx — (- il )
0 2

=2 ~ . ]

oS

The orders of the mean and variance of the number of passes indicate a narrow
concentration around the mean value.

Corollary 4.1 Let P, be the number of passes that BUBBLE SORT makes in sort-
ing a random permutation of {1, ..., n}. Then

Proof. Fix ¢ > 0. By Chebyshev’s inequality

Py Var(P,/n — 1]
Prob”—’;—-l‘ze} < 2
Var|[ P,]
e2n?
2 —n/2)n+ o(n)

£2n?

-— 0, as n — o0. ™

4.3 A LIMIT LAW FOR COMPARISONS

Let C,, be the number of comparisons that BUBBLE SORT makes to sort a random
permutation of size n. If the algorithm makes n passes, necessarily after each the
range of sorting diminishes by only I, forcing the range delimiter /ast to decrement
by 1 (refer to the algorithm of Figure 4.3). The ranges of the sort are then successively
n,n—1,...,0;in this case the algorithm exerts (n — 1) + (n —2) +--- 4+ 1 ~ %nz
comparisons. But indeed, the number of passes is narrowly concentrated around n—
in view of Corollary 4.1, the number of passes behaves almost deterministically like
n. Therefore we expect C, to be concentrated around 1§n2.

The number of comparisons can be sandwiched by bounds involving the square
of the number of passes. This will be sufficient to derive a law of large numbers for
the comparisons of BUBBLE SORT.
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The variable /ast in the algorithm of Figure 4.3 diminishes from n to O along
asequence n = Ly, Lo...., L p, .0. Within the jth pass the range of BUBBLE
SORT is A[1..L;]. Given the number of passes P,, a perturbation (preserving the
number of passes) of only one of the values L ; by A will change the overall number
of comparisons by A, as can be seen from the following straightforward argument.
Suppose Py is given and the sequence Ly, Lo, ..., L p, is specified. The number of
comparisons is

P
Cn = Z(Lj -
j=1

A sequence (L), ..., L ) (Ly,La,...,Lj—1.Lj + A, Lj4y, ..., Lp,) cor-
responds to a permutat10n for which BUBBLE SORT makes the same number of
passes, but requires

P

Z(Lk—l)—A+Z(Lk—1)—C;z+A

comparisons. When P, and Lj, Ly, ..., Lp, are given, the sequence n,n — 1,n —
2,n — P, + 1 will correspond to at least the same number of comparisons; all the
bounding values Ly, Ly, ..., Lp, are perturbed as far as possible in the positive

direction. We have the upper bound

Coh<in—-D+m=2)+-+ @ — Py
=nP,—(14+2+ -+ Pp)

1
=nPn——2'Pn(Pn+1)- (4.1)

On the other hand, if all the numbers in the given sequence are perturbed in the
negative direction as far as possible, the result will be the sequence n, P, — 1, ..., 1,
which corresponds to a lower bound on the number of comparisons

Co>(n=1D+(Pr—2)+(Pn=3)+ - +1

=n-—-1+ —;—(Pn—2)(Pn— 1). 4.2)

Combining the two bounds (4.1) and (4.2),

1 p2 1
1 PI12 C” nPn"‘QPn_'iPn Pn ( PH) Pn
— — L — = — X {1 —
n2(2n 3P,) + . < Y < - . » )
P . .
Corollary 4.1 asserts that P,/n —L 1. Thus, Pn/n2 —> 0. In probability, C, is
sandwiched from above and below by 1/2.
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Theorem 4.4 The number of passes, Cy, that BUBBLE SORT makes in sorting a
random permutation of size n, satisfies

As discussed in the paragraph preceding Theorem 4.3, random variables arising
is algorithmics are usually well-behaved and we have sufficient conditions to war-
rant that the moments of C,,/ n? behave like the degenerate random variable 1/2. In
particular we have the first moment convergence

E[(C,] 1
._» -
n? 2

BUBBLE SORT’s average number of comparisons E[C},] is asymptotic to %nz,
which is close to the algorithm’s asymptotic worst-case performance. Even though it
is a very intuitive sorting algorithm, its behavior is narrowly concentrated around its
worst case, and will generally be rather slow.

EXERCISES

4.1 Does BUBBLE SORT (as implemented in Figure 4.3) handle repeated data
correctly or does it require some modification to deal with repeats?

4.2 Is BUBBLE SORT a stable sorting algorithm?

4.3 Refer to the algorithm of Figure 4.3. Suppose you have a permutation of
{1, ..., n} that assigns the numbers n = Ly, L, ..., Lp, to the variable last
in P, passes. Describe a permutation of {1, ..., n} that also requires P, passes,
but corresponds to the sequence of assignmentsn,n —1,n—2,...,n— Py, + 1.
Describe a permutation of {1, ..., n} that requires P, passes, and corresponds
to the sequence of assignmentsn, P, — 1, P, —2,...,2, 1.

44 (Dobosiewicz, 1980) As presented in the chapter, BUBBLE SORT makes lo-
cal exchanges among adjacent keys. It may be possible to speed up BUBBLE
SORT if we let a key move a long distance. In the spirit of (&, t—1,..., 1)-
SHELL SORT one can design an algorithm to go through a “bubbling pass” on
subarrays whose keys are #; positions apart, then go through another bubbling
pass on a subarray whose keys are #;_1 positions apart, and so forth until the
usual BUBBLE SORT (the algorithm of Figure 4.3) is applied at the last stage.
Implement such a (%, t—j, ..., 1)-BUBBLE SORT.
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Selection Sort

SELECTION SORT is an intuitive but slow sorting method. The method is in the
O (n?) naive class of sorting algorithms. It is based on successive selection of minima
(or maxima). To sort 7 items from an ordered set, the algorithm proceeds in stages: It
first isolates the smallest element by scanning the list of n elements using n — 1 data
comparisons. This minimal element is then moved to the top of the list (in practical
implementation this minimum is swapped with the element at the top of the array
containing the list). Now that the smallest element is in its correct place, in the second
stage the algorithm is concerned with the bottom n — 1 elements. The algorithm finds
the second smallest in the array (the smallest among the remaining n — 1 elements)
by making n —2 comparisons, moves it to the second position from the top, then finds
the third smallest (using » — 3 comparisons), moves it to the third position from the
top, and so forth. Obviously the algorithm is bound to be slow because at every new
stage the algorithm is entirely oblivious to any partial information obtained while
scanning during the successive selection of minima.

5.1 THE ALGORITHM

The algorithm is presented in Figure 5.1. Right before the selection of the ith min-
imum, A[1..i — 1] contains the smallest i — 1 data elements in sorted order. The
ith order statistic will then be found in A[i .. n] and stored in the variable min. The
selection of the ith minimum is done by presuming A[i] to be the minimum, then
checking this hypothesis against the elements of A[i + 1 .. n]. Every time an element
smaller than min is encountered, the algorithm picks it as a better candidate for min
and records its position in pos. Right before the end of the ith stage pos will hold
the position of the ith order statistic. The content of positions i and pos are swapped
(possibly swapping A[i] with itself).

Figure 5.2 shows the various stages of SELECT SORT on the input data set
22.8,16,5, 14, 17. The decreasing-size boxes show the diminishing ranges of SE-
LECTION SORT. The minimum at a stage (a stage is a column in the figure) is
indicated by a pointing arrow. At the end of a stage, the minimum of the stage at
the position pointed to is swapped with the element at the beginning of the sorting
range. In the next column over, that minimum appears at the top of the previous sort-
ing range, and the range of sorting is shrunk by one position. On one occasion, the
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fori < 1ton— ldo
begin
pos < i;
min < A[i];
for j < i+ 1tondo
if A[j] < min then

begin
min < A[j];
pos < j;
end;
call swap(Ali], A[pos]);
end;
Figure 5.1. The SELECTION SORT algorithm.
22 5 5 5 5
8 |8« 8 8 8
16 16 16 14 14
5 |« 22 22 22 16
14 14 14 |« 16 |« 22
17 17 17 17 17 |«

14

16

17

22

Figure 5.2. Successive selection of minima by SELECTION SORT.

Selection Sort

minimum of a range was the first element in the range (the second column from the

left) and it is swapped with itself.

5.2 ANALYSIS

The number of comparisons made by SELECTION SORT is deterministic. The first
stage always takes n — | comparisons, the second n — 2, and so on. Thus the number

of comparisons is exactly

m=—D+m=2)+ - +3+2+1;

that is, %n (n—1). The algorithm makes n— | swaps (sometimes swapping an element
with itself, when the element nearest to the top in the remaining list happens to be

the smallest among the remaining elements).
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The only random aspect of the algorithm is the number of times the variables min
and pos are updated to reflect the discovery of a better choice. This quantity is of
secondary importance relative to comparisons, as generally an assignment is done
much faster than a comparison on a modern computer. There is one update for each
of these variables right before the inner loop of the algorithm, then the body of that
inner loop executes a random number of updates on them. Let U, be the number of
updates performed on min and pos while sorting a random list of size n. During
the first stage, each time an array element smaller than min is encountered, min and
pos are updated. Together with the initializing update outside the inner loop, during
the first stage the number of updates is the number of left-to-right minima or the
number of records.! Denote the number of records in a random list of size n by R.
Supposing the minimum appears at (random) position K),, the relative ranks of the
list A[1.. K, — 1] form a random permutation of {I, ..., K,, — 1}. The number of
updates during the first stage is one plus the number of records in A[l .. K, — 1],
thatis |1 + Rk, —;, where the | accounts for the condition that A[K,] is the minimal
element in the array, and thus will always force an update. At the end of the scan of
the first stage, A[K,] is swapped with A[I], leaving a random list in A[2 .. n], with
U, —1 updates to be performed. We have a recurrence for the conditional expectation:

EUy| Kpl =Un-1 + Rg, -1 + 1.

Unfortunately U,_| and Rg, are dependent random variables, which complicates
the analysis of U, considerably. No complete analysis beyond variance is known to
this day. Even the variance is found by a rather lengthy and sophisticated calcula-
tion that embeds the algorithm in a two-dimensional stochastic process (Yao, 1988).
Nonetheless the last recurrence is good enough for the computation of the average.
Taking expectations of the last recurrence, we obtain:

E[Uy] = E[Uy— i1+ E[Rk, 1]+ 1.

To find E[R, ], we condition on K. The minimum during the first stage is equally
likely to appear at any position, that is, K, has the UNIFORM[I .. n] distribution
with Prob{K, =k} = 1/n. We find

E[Rk,—1]1 =) _E[Ri_1]Prob{K, =k}
k=1

1<

S
nk:l
1

= ——(an_l —(n— 1))1
n

IRecords were defined in Section 1.10.1 in the sense of “record large.” In the present con[cx[. we are
working with the symmetric notion of “record sinall** which has the same distributional characteristics as

record large.
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in the last display we have used the property that E[R j1 = H; as we found in our
discussion on records (see (1.10)), and the identity

Y Hj=(+1DH, —n. (5.1)
j=1

We get an unconditional recurrence for the desired average:

E[Un] = E[U,-1] + %(an_l ~ (= D) +1
= E[Un—l] + Hy.

Unwinding the recurrence with the initial condition E[U;] = 0, we obtain

E[Un] = Zn: H/
j=2

=@+ 1D(H, = 1)

~nlnn,

where again we used (5.1) to reduce the combinatorial sum.

EXERCISES

5.1 If SELECTION SORT is stopped after the selection of k minima, the algorithm
finds only the first £ order statistics. Adapt SELECTION SORT to find only the
first k < n order statistics. How many comparisons does the adapted algorithm
make to find the first k£ order statistics?

5.2 Adapt SELECTION SORT to be an algorithm for order statistics. Given a set of
ranks, iy, ..., ig, the adapted algorithm should find the keys with these ranks.
How many comparisons does your adapted algorithm make?

5.3 Leta set of k ranks be chosen at random from {1, ..., n} so that all (}) sets of
ranks are equally likely, and then given to your multiple order statistic finding
algorithm of the previous exercise.

(a) What is the average the number of comparisons?

(b) What is the variance of the number of comparisons?

(c) As an indication of the class of distributions involved determine the limit-
ing distribution of a suitably normed version of the number of comparisons
for the case k = 1.

5.4 Tllustrate by an instance that the variables Rg, 1 and Uy - (counting the num-
ber of records and the number of updates of pos and min in the algorithm of
Figure 5.1) are not independent.
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5.5 We have a list of n numeric keys and we are going to perform m search opera-
tions on them. Each key is equally likely to be the subject of any search. When
is it cheaper on average to perform these m search operations by linear search
than to sort first by SELECTION SORT? That is, what is the largest value for
m for which the average number of comparisons in m such searches is less than
the number of comparisons in the SELECTION SORT of n keys?
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Sorting by Counting

Simple counting can be used effectively to sort data by comparison or by non-
comparison-based algorithms. Suppose we have a list A[1 .. n] of data elements. The
total order of this data set can be discovered by determining for each element the
number of list elements not exceeding it. More precisely, assuming our list is made
up of distinct data, if we determine that there are j elements less than or equal to
Ali], then A[i] must have rank j in the set. Only minor adjustments are needed if
our data are not distinct, a case that arises with O probability in the random permuta-
tion model.

6.1 COUNT SORT

We shall dub the sorting algorithm based on straightforward counting COUNT
SORT. As outlined in the introductory paragraph of this chapter, sorting a data set
A[1..n] by counting is basically a determination of the count of the number elements
not exceeding A[7] for every i. We shall assume that these counts are kept in an array
of counters, to be declared count[1 .. n]. After running the algorithm, count[i] will
contain the number of elements that do not exceed A[i]; the rank of A[i] will be this
counter’s value. Starting count[i] at 0, every element below A[i] will contribute | to
the count, as well as A[{] itself because, of course, any element is less than or equal
to itself. Subsequently, we can cut the work by about half. We can generate only the
indexes | <i < j < n,and if A[j] < A[{], then right there we can also account for
the outcome of the comparison A[i] < A[/], which we would have made, had we
generated all possible pairs of indexes. We can also ignore all the comparisons A[i]

with A[i], fori = 1, ..., n, by initializing all counters to 1.
At the end of executing this algorithm, the array count[1 .. n] will hold a permuta-
tion of {1, ..., n} that carries the required complete sorting information. Figure 6.1

illustrates an input data set and the result in count after running the algorithm. For
example, A[3] = 12 is the smallest input key; after executing COUNT SORT, the

A: 40 16 12 86 60 40 19 50 40 26
Count: 5 2 ] 10 9 6 3 8 7 4

Figure 6.1. The counts after running COUNT SORT on some data.
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fori < 1 ton do

count[i] < 1;
fori <~ ltondo
for j <« i+ 1tondo

if A[j] < A[i] then

count[i] < count[i] + 1
else count[ j] < count[j]+ 1,
Figure 6.2. The COUNT SORT aigorithm.

corresponding counter, count[3], contains 1, indicating that this key has rank 1 or is
the smallest among the data presented to the algorithm. Three keys are equal to 40.
There are four keys of lower value. The algorithm chooses to rank these three repeat
keys 5, 6, and 7, with the least indexed repeat key receiving the least rank. Of course,
other interpretations of the ranks of equal keys are also possible and will amount
to only minor modifications in the basic algorithm. This version of the algorithm is
presented in Figure 6.2.

The analysis of COUNT SORT is very straightforward. The first loop makes n
initializations. The algorithm then executes two nested loops. Embedded in the two
loops is the comparison statement. One comparison is executed for every pair of dis-
tinct indexes 1 < i < j < n. Deterministically (3) comparisons are made. Thus
the dominant component of the algorithm is deterministic and is of quadratic or-
der, putting the algorithm in the class of naive sorting algorithms. Nothing is really
stochastic until one looks into some of the very fine details of the algorithm, such as
machine-level implementation, which will then introduce a little variability around
the chief component. For example, at the level of assembly language the if-clause is
implemented by a set of instructions followed by a JUMP instruction to bypass the
else-clause. This instruction has no counterpart after the assembly translation of the
else-clause as there is nothing to bypass. The number of times this JUMP instruction
is executed is the number of times the if path is chosen, that is, the number of times
the algorithm encounters two indexes i and j such that A[j] < A[i]. This number is,
of course, random and introduces the only stochastic element of the algorithm. Cor-
responding to every inversion of the permutation underlying an input of n distinct
keys, an extra JUMP instruction in the if-clause is executed. Therefore J,, the total
number of jumps until a file of n random data is sorted, is the total number of in-
versions of that random permutation. A result for inversions in random permutations
is given in Section 1.10.2. We repeat that result here, cast in the context of COUNT
SORT. The limit result is still valid if our data are not distinct, a case that arises with
probability zero in the random permutation model anyway.

Theorem 6.1 Let J,, be the total number of jumps in the if-clause of COUNT SORT
to sort n random keys following the random permutation probability model. In the
limit, as n — 00,

it B )
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6.2 SORTING BY COUNTING FREQUENCIES

The general idea of counting can be used very selectively to design efficient sort-
ing algorithms for discrete data from finite ranges. The algorithm so derived counts
frequencies of occurrence of values and henceforth will be called FREQUENCY
COUNTING SORT. Supposing our data are drawn (possibly with replacement) from
a finite set S = {sy, 52, ..., s¢}, whose listing is according to a strict total order, that
is, s1 < §2 < ... < s;. Our n keys (some possibly are repeats) come from S. To
sort these n keys we can set up a simple frequency counting scheme. We can count
how many occurrences there are of sy, how many of s, and so on. We can keep
these frequencies in an array indexed by sy, ..., si. At the end of the tally, we can
figure out exactly how many times an element below s; appeared in the set and sort
accordingly.

For example, the parent data set may be the range of integers b .. c. Adapted to
this particular data type, the algorithm is very straightforward. The data are kept
in A[1..n]; the algorithm initializes all counters to O, then every time it finds an
element A[j] equal to i, it updates count[i] by 1 (that is, it updates count[ A[j]] by
1). At the end, it is known that the integer / appears in the data set count[i] times; thus
we can print (or add to a new data structure like an array or a linked list) count[i]
copies of i after the integers that precede i and before the integers that are larger
than i. For example, suppose our range of integers is 6 ... 13. We set up count[6 .. 13]
to receive the final count. If our raw data set is the one given in Figure 6.3; after we
tally the frequencies, count[6] = count[7] = count[8] = 1, indicating that each of
the integers 6,7 and 8 appears only once, whereas count[9] = 3, indicating that 9
appears three times. We can then print the keys 6,7, 8,9, 9,9, ... or adjoin them (in
this order) to a secondary data structure.

Figure 6.4 gives the formal algorithm for sorting a set of integers from the range
a .. b (with the count[a .. b] serving as the counting data structure). The version cho-

A: 9 12 6 8 9 13 9 7 12 13

indexes: 6 7 8 9 10 11 12 13
count: 1 1 1 3 0 0 2 2

Figure 6.3. The counts after running FREQUENCY COUNT SORT on a set of integer data.

fori < btocdo
count[i] <« 0;
fori < 1tondo
count[Ali]] < count[A[i]] + I;
fori < btocdo
for j < 1 to count|i]do
print(i);
Figure 6.4. The FREQUENCY COUNT SORT algorithm for integers in the range « .. b.
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sen for presentation is the one that prints, but equally simple is a version that adjoins
the data sequentially in the same order either to a secondary array of size n or to a
linked list that starts out empty then grows to size n linking integers in sorted order.

The algorithm just discussed can be applied to any discrete data type from a set of
reasonable size like, for example, a small finite set of integers or other objects. Tech-
nically speaking, real data are “discretized” in internal computer operation. Owing
to finite precision of all modern digital computers, real numbers are not genuinely
real inside a computer but rather approximations of these numbers are used. The
finite precision of data in a computer forces us to work with equally spaced close
“ticks” on the real line. These ticks are close enough for almost all practical applica-
tions, such as financial records, to consider these approximations quite satisfactory.
The ticks are typically of order 10738 on personal computers and 10~7° or less on
mainframes. Therefore, if need be, we can even consider a version of FREQUENCY
COUNT SORT to sort computer “real” data. Even for a small real interval, the num-
ber of ticks contained in the interval will be enormous. Therefore the algorithm can-
not be practical unless the data come from a very small range, such as physics data
under very accurate measurements in a laboratory experiment.

There is not a single conditional statement in FREQUENCY COUNT SORT. The
algorithm is therefore purely deterministic and takes the exact same amount of com-
puting time for all subsets of the same size coming from the same parent set. The first
loop runs in O(1) time. The second loop performs n counting steps. After the count,
the sum of all counts must obviously be n. Collectively the two nested loops perform
n print operations (or adjoin operations of whatever kind in the version that builds
a secondary data structure). This algorithm, whenever the nature of the data permits,
runs in linear time.

EXERCISES

6.1 Isthe COUNT SORT algorithm (Figure 6.2) stable?

6.2 Argue that the COUNT SORT algorithm (Figure 6.2) handles repeated data
correctly.

6.3 What is the rate of convergence to the normal distribution of Theorem 6.1?
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Quick Sort

QUICK SORT is one of the fastest in-situ sorting algorithms. The algorithm was
invented by Hoare in 1961. Since then the method has enjoyed high popularity and
several implementations are in operation as the sorting method of choice in computer
systems such as the UNIX operating system.

QUICK SORT is a parsimonious divide-and-conquer algorithm. Its basic idea
is as follows. A list of n distinct keys is given in the unsorted array A[l..n]. We
select an element, called the pivot, and locate its position in the final sorted list by
comparing it to all the other elements in the list. In the process, the remaining n — 1
elements are classified into two groups: Those that are less than the pivot are moved
to the left of the pivot’s final position, and those that are greater than the pivot are
moved to the right of the pivot’s final position. The pivot itself is then moved between
the two groups to its correct and final position. This stage of the algorithm is called
the partitioning stage. QUICK SORT is then applied recursively to the left and right
sublists until small lists of size 1 or less are reached; these are left intact as they are
already sorted.

Simple modifications can be introduced to handle lists with key repetitions, a
case that occurs with probability zero in a sample from a continuous distribution
(i.e., when the random permutation model applies). We shall therefore assume in
the following text that all n keys in the list are distinct and their actual values are
assimilated by a random permutation of {1, ..., n} and will leave other variations to
the exercises.

7.1 THE PARTITIONING STAGE

It is obvious from the above layout that QUICK SORT only does the bookkeeping
necessary for monitoring which array segments to be sorted next. The actual data
movement to accomplish sorting is done within the partitioning stage (to be set up as
a procedure called PARTITION).

During the partitioning stage the pivot is compared to the remaining n — 1 keys;
this takes at least n— 1 comparisons. We shall present an implementation that actually
takes n — 1 comparisons. A popular implementation of the partitioning algorithm
due to Sedgewick makes 1 + 1 comparisons. Sedgewick’s partitioning algorithm is
discussed in Exercise 7.2.

148
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QUICK SORT recursively invokes itself to sort the two sublists. At a general
stage QUICK SORT may need to sort the particular segment A[£..u], with £ and
u being the lower and upper limits of the sublist to be sorted. Therefore the parti-
tioning procedure must be able to handle the partitioning of any general segment
Al .. u]. We shall consider an implementation of PARTITION that takes in £ and u
and returns p, the final position of the pivot; the array A is accessed globally from
within PARTITION. A side effect of the call to PARTITION is to rearrange A so that
Al€..p—1] < pivotand A[p+1..u] > pivor; the pivot itself is moved to its correct
and final position. A typical call from within QUICK SORT is

call Partition(¢, u, p).

The procedure PARTITION considered here is based on a simple idea. In partitioning
the segment A[£ .. u], the element A[u] is used as a pivot. PARTITION scans the
remaining segment A[¢ .. u — 1] sequentially, from left to right, keeping an invariant
property. At the ith stage of the scan, within the segment scanned so far we keep
track of a position p to the right of which we place all the elements encountered so
far that are larger than the pivot, but up to p all the elements of A[£ .. p] are smaller;
see Figure 7.1,

Assume this has been observed up to position i — 1, £ < i < u — 1. We now
consider the next element A[i]. If A[i] > pivot, then A[i] is on the correct side of p,
we extend the range for which the invariant property holds on the right of p by simply
advancing i, and now all the keys from position £ up to p are smaller than the pivot,
and all the elements to the right of position p up to i are greater. If A[i] < pivot, we
increment p by 1, then swap A[i] with A[p]; we thus bring an element smaller than
the pivot to the position indexed by the new incremented value of p to replace an
element greater than pivor. This greater element is bumped to the end of the segment
scanned so far; the invariant property is maintained. At the end of the scan, A[£ .. p]
contains keys smaller than pivot, and A[p+1 .. u — 1] contains elements greater than
pivot. We can bring pivot to its correct position p + 1 by swapping the pivot A[u]
with A[p + 1]. The algorithm is presented in procedure form in Figure 7.2.

The diagram of Figure 7.3 illustrates the operation of PARTITION on a stretch
of six keys. In the figure the pivot is circled and the top line depicts the selection of
the pivot. Each subsequent line represents some ith stage and depicts the addition of
Ali] to one of the two growing parts of the partition. The two growing parts of the
partition are boxed; only the second line has one box with an element larger than the
pivot; the other part (with keys less than the pivot) is still empty at this stage.

We shall discuss next the effect of the above PARTITION procedure on the ran-
domness of the two subarrays produced. The hypothesis is that at the end of PAR-

£ P [ u
| < | > 11 L[

Figure 7.1. An invariant property of PARTITION.
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procedure Partition({, u: integer; var p: integer);
local i, pivot: integer;
begin
{maintain the following invariant:
Al€..p] < pivot and A[p + 1..i] > pivot}
pivot < Alul;
p<—£L—1
fori < ftou —1do
if A[i] < pivot then
begin
p<p+tl
call swap(A[p], Ali]);
end;
p<p+l
call swap(A(p], Alu));
end;

Figure 7.2. A partitioning algorithm that takes n — 1 comparisons.

TITION the relative ranks of the keys in the subarray A[1.. p — 1] form a random
permutation of the integers {1, ..., p — 1}. Likewise the relative ranks of the keys in
Alp + 1..n] form a random permutation of the integers {1,...,n — p}. We prove
this hypothesis by induction on i (the stage number). We start with keys in A[1 ..#n]
whose (absolute) ranks form a random permutation of {1, ..., n}. At the ith stage
of PARTITION, A[i] is considered. The sequential rank of A[i], Seqrank(Ali]), is
distributed as discrete UNIFORM][1 .. {], according to the random permutation model
(see Proposition 1.6).

Assume that at the /th stage of the scan, the relative ranks of A[1.. p] form a
random permutation of {1, ..., p} and those in A[p + 1 ..i — 1] form a random per-

33 16 59 12 74

33 16 59 12 74

16 33 59 12 74

16 33 59 12 74

16 12 59 33 74

16 12 59 33 74

16 12 33

Figure 7.3. The action of PARTITION.
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mutation of {1, ...,/ — p — 1}. Thus, the conditional distribution of Absrank(A[i]),
given A[i] < pivot, is discrete UNIFORM][1 .. p + 1]. In this case, swapping A[i]
and A[p + 1] 1s the same as juxtaposing an element at the end of A[1 .. p] at position
A[p + 1] and the sequential rank of the new element is equally likely to be any of
the numbers 1, 2, ..., p + 1. Hence after this swap the relative ranks of A[1.. p + 1]
will be a random permutation of {1,..., p + 1}; see Proposition 1.6. As for the
other segment, the subarray A[p + 1 ..7], the effect of the swap between A[i] and
A[p + 1] 1s like a circular shuffle of a permutation on {1, ...,i — p — 1} moving its
first element to the end; the result is a random permutation on {1, ...,i — p — 1}; see
Exercise 1.10.1.

The argument for the case A[i] > pivot mirrors the one we used for A{i] < pivot.
In either case, the induction hypothesis implies that when we are done with A[i] the
two subarrays A[1.. p] and A[p + 1..i] contain elements whose relative ranks are
random permutations of their respective sizes, completing the induction.

The last swap, moving the pivot to its correct position, preserves the randomness,
too. The element A[p + 1], whose sequential rank a priori has a UNIFORM([1 .. n]
distribution, is now known to have rank exceeding p, so relative to the elements now
contained in A[p + 1..u — 1] it has relative rank distributed like UNIFORM][1..n —
pJ. According to Proposition 1.6, the relative ranks of the entire segment A[p+1 .. u]
form a random permutation. Swapping the pivot with A[p + 1] is a circular shuffle
that preserves this randomness (Exercise 1.10.1).

In summary, at the end of PARTITION, the relative ranks of the elements in
A[l.. p—1] are arandom permutation of {1, ..., p — 1} and the relative ranks of the
elements in A[p + 1..#n] are a random permutation of {1, ..., n — p}. This is instru-
mental in forming recurrence relations that assume that the sublists are probabilistic
copies (on their respective sizes) of the original problem.

7.2 BOOKKEEPING

As discussed above, QUICK SORT itself acts as a manager directing PARTITION to
rearrange the elements of the list. The recursive algorithm is specified in Figure 7.4.

procedure QuickSort(£,u: integer);
local p: integer;

begin
if £ < u then
begin
call Partition(,u, p);
call QuickSort(£,p —1);
call QuickSort(p + 1, u);
end;
end;

Figure 7.4. QUICK SORT algorithm,
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Figure 7.5. Operation of QUICK SORT by repeated calls to PARTITION.

In the algorithm shown in the figure, the array A[1..n] is accessed globally; the
algorithm may be initiated by an external call like call QuickSort(1, n).

Figure 7.5 depicts the action of QUICK SORT on the same data set used for
illustrating PARTITION (Figure 7.3). Each line of Figure 7.5 shows a stretch of the
array at the end of a call to QUICK SORT to handle a segment; the pivot chosen for
that step is circled.

7.3 QUICK SORT TREE

It is useful to make a connection between QUICK SORT and random binary search
trees whose properties are well understood. Let us construct the Quick Sort tree as
follows. For every pivot encountered create a node in the tree labeled with that pivot.
The first pivot labels the root of the tree. As the first pivot splits the list into two parts
(of which one or both may be empty), a pivot will be found in each nonempty list and
will father a subtree. If the list of smaller elements is nonempty, the pivot found in it
is attached to the root as a left child. Likewise, if there are larger elements, the pivot
found there will be attached to the root as a right child. As QUICK SORT continues
recursively, nodes are added in this fashion to the tree until files of size O are the sub-
ject of sorting; those are represented by leaves. As a visual aid for this construction
consider connecting the pivots (circled numbers) in Figure 7.5. Redrawing this tree
with nodes at the same distance from the root appearing at the same level we get the
tree of Figure 7.6.

Our discussion of the randomness of the subfiles created by PARTITION indicates
that the QUICK SORT tree is a random binary search tree. Indeed, as the ranks of
the n keys of the input form a random permutation, the pivot is equally likely to be
any of the input keys. It is then an easy induction argument—given the absolute rank
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Figure 7.6. The Quick Sort tree of the running example.

of the first pivotis r € {1, ..., n}, the two remaining lists, of sizesr — 1 and n — r,
are random as in our discussion above. If we assume the assertion true for any list of
size less than n, then the two sublists give rise to two random binary search trees of
sizesr — 1 and n — r, which are attached as left and right subtree. This construction
coincides with the inductive definition of the random binary search tree (see Section
1.6); the resulting tree is a random binary search tree; the induction is complete. A
node at level k£ in the QUICK SORT tree is involved in & comparisons with its k
predecessors, one comparison for each predecessor when this predecessor is chosen
as the pivot. The total number of comparisons is therefore the sum of the depths of
all the nodes of the tree, that is, the internal path length of the Quick Sort tree (recall
that the root is at level 0); whence C,,, the number of comparisons made by QUICK
SORT to sort a list of n elements, is the internal path length of the Quick Sort tree
and is related to X,,, the external path length of the Quick Sort tree, by the relation

Xn——:Cn +2I’l

(review Proposition 1.3).

7.4 PROBABILISTIC ANALYSIS OF QUICK SORT

We demonstrate in this section that QUICK SORT has good probabilistic behavior
that makes it one of the best known sorting algorithms. We shall see that QUICK
SORT makes 2n Inn comparisons, on average, to sort a list of n elements. This only
means that the majority of sample space points have good behavior. Nonetheless,
QUICK SORT can occasionally exhibit slow performance on certain (rare) inputs.
For example, QUICK SORT performs badly on sorted arrays! If the given list is

already sorted (say the input is the permutation I'Ig;)c end = (1,2,...,n)), QUICK
SORT will just waste time at each partitioning stage trying to find a good location for
the pivot, only to discover at the end that the pivot is already in its correct place. This
takes n — 1 comparisons at the first level of recursion, then recursively the subarrays
considered will each be sorted in increasing order. At the second recursive step n — 2

comparisons will be made, and so on, and 1n this case
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C”(Héz)cend) =n-1D+n0-2)+---+1
nn—1)
3 .

This @(nz) behavior is the worst-case number of data comparisons (and on the other
hand is the best case for the number of swaps). The point here is that, although
QUICK SORT has an O(nlogn) average number of comparisons, there are cases in
which QUICK SORT performs like naive © (n2) algorithms. One can construct other
deterministic permutations on which QUICK SORT has other orders of magnitude
between the best O(nlogn) and the worst 0 (n?); see Exercise 7.3.

In the previous section we discussed PARTITION, an algorithm for the partition-
ing stage with n — 1 data comparisons when performing on a list of size n. The
bookkeeping algorithm recursively applies PARTITION; the number of data com-
parisons will build up. Let C,, be the total number of comparisons used by QUICK
SORT to sort the given data array of size n. PARTITION moves the pivot to a random
position P, 2 UNIFORM][1 .. n]. The recursive structure of QUICK SORT is then
reflected by the recurrence

D ~
Cn 2 Cp_1+Cp_p, +n—1, (7.1)
where Cy 2 Cy, and the families {C j}?il and {C j}?il are independent; the bound-
ary conditions are Cg = Cj = 0. It should be noted that even though C; and Cy, are

independent for every j, k, the pair Cp,_; and C_ p, are dependent (through their
connection via Py). It should also be noted that the random variables Cy, ..., C,
are all well defined on the sample space of permutations of {1, ..., n}. The average
behavior of QUICK SORT can be directly obtained by taking expectation of (7.1),
yielding the basic recurrence for averages:

E[C,] = E[Cp,—1]+E[Cp—p,] + 1 — 1.
D

The uniform distribution of P, induces symmetry in the algorithm and Cp, _; =

én_ p,- Thatis, Cp _j and Cp— p, have the same probabilistic behavior (hence the
same average). We can write the average number of comparison in the form

E[Ca] =n — 1 +2E[Cp,_1].

By conditioning on Py, the random landing position of the pivot, we can compute
the average of Cp, | as follows:

n
E[Cp,—1]= Y E[Cp,_i| Py = p]Prob(P, = p)
p=I

1 n
= - > EIC,_1].
p=1
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We thus get the recurrence

nE[Cy] = (n — Dn+2 ) E[C,_i]. (72)
p=I

We can solve this equation by differencing as follows. A version of (7.2) forn — 1 is

n—1
(n = DE[Cpmi]= (1 —2)(n = ) +2 Y E[Cp_y]. (7.3)
p=1

Subtracting (7.3) from (7.2) the resulting equation can be reorganized in a form suit-
able for direct iteration:

—1 1
E[an:z(”n ) + RG]

:2(n—1)(n+1)+2(n—2)(n+1)+n+1

nn+1) (n—1n n—lE[Cn_ZJ

—z<n+1>2 T +1)+ (1 + DE[CY]

_2(n+1)2 e +1)

(In the last line, we used the boundary condition E[C1] = 0.) Writing (j — 1) /(j (j +
1)) as2/(j + 1) — 1/j simplifies the average to

E(Cy] =200 + 1) Z(——~ - %)

=2(n+ 1)[2(Hn + Zlf—l ~1) - Hn].

Theorem 7.1 (Hoare, 1962). The average number of comparisons that QUICK
SORT makes to sort a random list of n keys is
E(C,] =2(n+1)H, —4n.

Asn — 09,

E[Cp] ~ 2nlnn.

The variance of C,, can be found by a similar technique. The principle of the cal-
culation is the same, though the algebraic manipulation is quite a bit more involved;
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it may be best to reduce the combinatorial sums therein by a symbolic manipulation
computer system such as Maple or Mathematica. (Exercise 7.5 outlines a fast way of
evaluating the leading term in this variance.)

We first compute the second moment by conditioning on P,, the pivot’s final
position to get

n
E(C;]1= ) E[C}|P, = p]Prob{P, = p}.
p=1

The probabilistic recurrence (7.1) gives

E[C; | Py =pl =E[(Cp_i1+ Cnp+1n—1?]
=E[C}_|1+EIC;_, 1+ (n = 1)* +2(n — DE[Cp_i]
+2(n — DE[Cp—p] + 2E[Cp_11E[Cp—p].
We can replace every E[(:’,%p] by E[Cy—p], because for every k, C; and Cy are

identically distributed. Unconditioning, we obtain a recurrence for the second mo-
ment:

1 n
E(C}]=(n— 1+~ g[E[cf,_l] +E[C2_,] +2(n — DE[C,)_i]

+ 200 = DEICy—p] + 2E[Cp_ 1] ECp—p1}.

The term E[C,%_p] can be replaced by E[C;_l] and the term 2(n — 1)E[Cy,—p] can
be replaced by 2(n — 1)E[C,_] because they occur within sums over p (so the
former gives sums like the latter but written backward). Letting

f)y=n(n—17+4m—1)Y ECp11+2 ) E[C,_1]1E[Chp],
p=I p=I

we can combine the latter notation with the unconditional second moment to get a
recurrence for the second moment:

f(n)

’
n

2 n
E[C;] =~ EIC, ]+
p=1

where the averages involved are given by Theorem 7.1. To solve this recurrence, we
can employ the differencing technique we used for the average. Using the backward
difference operator notation v f (n) = f(n) — f(n — 1), we subtract from the latter
equation a version of itself with »n replaced by n» — 1 and unwind the recurrence:
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2

E[Cn—l]

E[C;] = v";(n) 4ot

_(n+1Dv fn) 4 (n+DhHvfin=1) 4 (n+ Dn
N (n+ n nn—1) nn—1)

E[C,_,]

_y i),

o JU+D

we used the boundary condition C| = 0. As mentioned above, a symbolic manipu-
lation system can be programmed to reduce the last sum.

Theorem 7.2 (Knuth, 1973).
Var[C,] = 7n% —4(n + D2H® —2(n + D) H, + 13n

27T2 2
~(7——3——)n, asn —> o0.

We have found the mean and the variance of the number of comparisons that
QUICK SORT makes to sort a random list of n elements. If a limit distribution exists,
the proper centering factor should be E[C,] ~ 2n Inn, the asymptotic mean, and the
norming factor should be of order », the same order of the square root of the variance
of C,. This suggests studying the normalized random variable

C,’f d:if Cp—2n lnn.
n

We next discuss the existence of a limit law for C;. In fact we prove a stronger
almost-sure result in the next theorem.

Theorem 7.3 (Régnier, 1989). There exists a limiting square-integrable random
variable C such that

% 4.8,

cr— C.

n

Proof. Let us grow a binary search tree 7, from a random permutation of {1, ..., n}.
Let F, be the sigma field generated by the trees 77, T, ..., T,—;. Suppose the n
leaves of T,,_; are indexed 1, ..., n, from left to right, say. Let D; be the depth of
the i/th leaf of T;,_;. When we insert the last entry into T, to obtain 7}, it replaces
some leaf of T,_i, say leaf i, at depth D;. Two new nodes are created at depths
D’ = D" = D; + 1. Suppose the level of insertion of the nth key is L,,. Hence, given
that L, = D;, the new external path length is
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Xo=Di+-+Di_1+D' +D"+Djy +---+D,
=Di+-+Di1 +2(D; + 1)+ Diy1 + -+ Dy
=Di+ -+ Dy+D;+2
= X,_1 + D; +2.

Then

n
E[X, | Fu-1]1= ) E[X,|Fy_1and L, = D;] x Prob{L, = D;|F,_}
i=l1

1 n
==~ (Xn_1+2+Dp)
i=1
1 n
=X,-1 +2+;;D,’
1
=Xp-1+2+ ;Xn—l

n+1
= . Xp_1 +2. (7.4)

Taking expectations gives us

n—+1
n

E[Xn] =

E(X,—1]1+2. (7.5)

We recall Proposition 1.3, which gives the relationship between the external path
length, and the internal path length, which is also Cj,:

Xn = Cn + 2”.
Equations (7.4) and (7.5) can be expressed in terms of C,, and one gets

E[Cn - E[Cy] Cn—1 — E[Cy-1]
n+1 n '

That 1s, (C, — E[C,])/(n + 1) is a martingale. This centered martingale has zero
mean, According to Theorem 7.2,

]:n—l] =

C, — E[C 1
Var[ il [ "]]z Var[C),]
n+1 (n+1)2
13
<7+—
n
< 20, foralln > 1.

Therefore this zero-mean martingale has uniformly bounded variance . It follows
from the martingale convergence theorem that almost surely this martingale con-
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verges to a limit. That is, there is a square-integrable random variable C’, such that

Cn _E[Cn] _LS? C/.
n—+1

In Theorem 7.1 the asymptotic approximation of the harmonic number gives

E[C,] —2nlnn as 2y —a.
n+1

From the rules of almost-sure convergence, we can add the last two relations to obtain

—2nl
Cy 2nlnn _a_ic/+2y_4 d‘—ifc,
n+1

and C is square-integrable, too. Multiplying the last relation by the obvious determin-
istic convergence relation (n + 1) /n — 1, we obtain the statement of the theorem.
.

The distribution of C is not known explicitly. However, it can be characterized
implicitly as the solution of a distributional equation as we discuss in the next
paragraphs. Several attempts have been made toward an explicit characterization of
the limiting distribution. Hennequin (1991) found all its cumulants, Rosler (1991)
proved that the limit law of C is the fixed point of a contraction mapping, Mc-
Diarmid and Hayward (1992) empirically obtained its skewed shape, and Tan and
Hadjicostas (1995) proved that it possesses (an unknown) density with respect to
Lebesgue measure.

An implicit characterization of the distribution of C is obtained by first expressing
all the random variables in the basic probabilistic recurrence (7.1) in the normalized
form—we subtract 2n In n from both sides and divide by » to obtain

C,—2nl
cr = n nn nn
p Cp _ Cp— n—1)—2nlnn
DCpot  Cn P,,+( )
n n n
Py g Cp—1 —2(P,— 1) In(P, = 1)
- n Pn_l
n—Py, Cy_p,—2(n—Py) In(n— Pn)
-+ X
n n—P,
2Py — 1) In(Py, — 1) +2(n — Py) In(n — Py) —2nlnn
+ n
n—1
+ ,

n
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which can be written as

Pn_l ’l_Pn

Ch _+ —-—n——é;:_p,, + Gn(Py), (7.6)

D
* D
C, =

where

G,(x) = %[Z(x —DInx—-1)4+2(n—-x) In(n —x) - 2n lnn] + Kl—_—l,

n

and for every k, C’,’f D Cy» and the families {C}'}72 | and {C’,’f},‘fil are independent.

As ascertained by Theorem 7.3, a limit distribution exists for C,’f; we can charac-
terize it by passing the last equation to the limit. However, this is a delicate operation
and must be handled with care. We have three additive terms in the distributional
functional equation (7.6), and all three converge to limiting random variables. Con-
vergence in distribution 1s a weak mode of convergence and we cannot immediately
infer from this that the sum of the limiting random variables is the limit of the right-
hand side of (7.6), even though it will turn out to be, but this needs some technical

work. Recall that if X, —2) X and ¥, _D..) Y, it is not necessarily the case that

X, +Y, N X + Y. This is true when X, and Y,, satisfy some additional conditions
like independence or when at least one of the two limits is a constant.

The ingredients on the right-hand side of the functional equation (7.6) are not
independent. For instance, the random variables C}kJ,,—l and Ct’:_ p, are dependent

through their mutual dependence on Py, even though C;_; and Cp— j are indepen-
dent. Curiously, the dependence is asymptotically weak enough, as n — oo. That is,
for large » the three additive factors of (7.6) are “almost independent”; and eventually
when n becomes infinite they become so.

The terms on the right-hand side converge as follows. Let U be a UNIFORM(O, 1)
random variable and C be the limit of C};, as in Theorem 7.3. It is easy to see that

P, -1
n _2) U.
n
Py, A% o0
From the latter, we have
Ch,—1 e
Therefore,
P, —1 D
¢y > UC.
’rl n
Similarly
n— Py~

D ~
np, — (I — U)C,
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where C 2 C, and C and C are independent. Moreover, in Gn(Py) we write
nlnn =2(P, — 1l +n—P,+DInn=2(P, —1)Inn+2(n— P,)Inn +21nn.
In the regrouped G, (P,) the term

1 P,—1_ /P, —1
Z[2(Py = 1) In(Py — 1) = 2(P, — 1) Inn] = 222 1n( L )
n n n

2ooumu,

and

l[Z(n -~ Py) In(n — Py) —2(n — Pn)lnn] = 2n ~ I ln<n — Pn)
n n n
2 20— Uy - Uy,

and, of course,

n—1 2lnn
— 1.

n n

These convergence relations suggest a form of a distributional functional equation
for the limit:

c 2ucta-u+cw, 1.7

where U is a UNIFORM(O0, 1) random variable that is independent of C, and

G(u) def 2ulnu +2(1 —u)In(l —u) + 1.

However, as discussed, we cannot immediately claim the right-hand side of (7.7) as
the limit of the right-hand side of (7.6).

The dependence among the three additive terms in (7.6) is weak enough to permit
the right-hand side of (7.7) to be the limit and, after all, the conjectured functional
equation (7.7) is the valid form for the distribution, a statement that is proved in what
follows. The proof is based on convergence in the Wasserstein metric space.

The Wasserstein distance of order k between two distribution functions F and G
is defined by

di(F, G) = inf [|[W — Z]|x,

where the infimum is taken over all random variables W and Z having the respective
distributions F and G (with || . || being the usual L* norm). If Fy is a sequence of
distribution functions of the random variables W,,, it is known (Barbour, Holst, and
Janson (1992)) that convergence in the second-order Wasserstein distance implies
weak convergence, as well as convergence of the first two moments. A few exercises
arc given at the end of this chapter to familiarize the reader with this metric space.
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Because the input is a random permutation, we have the representations

P, = [nU] 2 UNIFORMII..n],

for some UNIFORM(0, 1) random variable U.

Let F,, and F be the distribution functions of C;; and the limit C, respectively.
Further, let

= E[(C} - 0)?].

Since the second-order Wasserstein distance ds (F},, F') is given by an infimum taken
over all random variables with distributions F;, and F, we must have

d2(Fy, F) < ay.

If we manage to show that a, — 0, as n — oo, we shall have proved the required
convergence in distribution. We have

an = E[{(M‘{l—i -1~ UC)

+(n — [nU7 -~

—Co—pnuy — (1 _U)C)

+(Gu(TnUT) — G(U))}z].

As we square the argument of the expectation operator, only the squared terms
stay because all cross-product terms are 0.
We have the equality

ay = E[(.‘—igl___l FnU]—l _ UC)z

n
+(n — [nU] »

X ~\2
=gy — (1= U)C)

+(Gn(rnU1) — G(U))z].

If [nU] = k, then k = nU + ay,, where oy, is a nonnegative function of k and n,
and is of a uniformly bounded magnitude; for all n > 1, 0 < ax, < 1. Condition on
fnU7 = k and write

o= (E3E( e, - )]
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_k —k 2
+E[(——~—” —Cy i~ n———————n+ hn c) ])

2

+E[(Gn([nm) . G(U)) }

= {r+ 5 om0

n

MR CRRLL Ce

n

+E[(Ga([n01) - G(U))z]; (7.8)

the remainder terms R, R,, and E[(Gn (l—n Ul ) —-GU ))2] are uniformly bounded in
n—to see this, we use the uniform bound 0 < ay, < 1 and the variance calculation
of C (Exercise 7.5) to develop the following:

2 k=D =) o I n A —a)® o
Rn_n; - E[C]+n; ——E[C?]

2T k—1_ o, 1 E[C?Y]
d E[C*]+ -
<n,§ n? €] n; n?

<(-ZE+ 5

<2(-%);

n

Similarly, the remainder R, is also bounded by %(7 — %nz).

Again, manipulating 2nlnn as 2(P, — 1 +n — P, + 1)Inn =2(P, — ) Inn +
2(n — Py)Inn +21Inn in G, (P,), we bound the difference between Gn(fnU1) and
G(U) as follows:

Gn([nU1) — G(U) = In

2(fnUT =1)  /[nU] -1
—— (=)

n

+2(n — \'nU]) 1n<n — \'nU])
n n
2lnn  n-—1

n n
—QUInU +2(1-U)In(1-U)+1)
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21 —
<2UIU+2(1 -=U)In(1 — Uy — 22 L 7

n

—(2UInU +2(1 = U)In(1 = U) + 1).
It follows that

2Inn + 1)2

E[{G.([nU1) - GW)}’] 5( %

=

b

for alln > 1. Together, all remainder terms in (7.8) are less than %(7—%712)-{-% < g,
forall n > 1. By a change of the second summation variable in (7.8), that summation
is made identical to the first and we can represent (7.8) as an inequality:

2 ¢ 200 ok 21, 6

an < ;l‘ng:l(k =1 E[(Ck_l - 0) ]+ .
2 & ) 6
< 53— D2y + -
_”3k=1( )V ak-1+

Theorem 7.4 (Rosler, 1991). Let C,, be the number of comparisons that QUICK
SORT makes to sort an input of size n following the random permutation model. The
normed number of comparisons C, = (C, — 2nlnn)/n converges almost surely to
a random variable C satisfying the distributional functional equation

c2uvuc+a-uvc+6w,

where U is UNIFORM(O, 1), C, C, and U are independent, and C D C and
Gw) =2ulnu+2(1 —u)In(1 —u) + 1.

Proof. Let C* be the random variable on the right-hand side in the functional equa-
tion in the theorem. Let F},(x) and F(x) be respectively the distribution functions of
Cy and C*. Let d%(Fn, F) be the second-order Wasserstein distance between these
two distributions.

In the preparatory computation of the Wasserstein distance preceding the theorem,
we have shown that

2 n—1 ' 6
d3(Fy, F) < ay = E[(C} ~ 0)?] < = > jfaj+ - (7.9)
—~

for all n > 1. We next show by induction on n that @, — 0, asn — oo. The
argument works by first treating (7.9) as an equality to guess the general form of a
solution to a recurrence of this type; we then take a simple bound on the nth term
and use it as an upper bound at the nth step of the induction.
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A recurrence of the form

can be treated by differencing the nth and the (n + 1)st terms to obtain

n?(n +2) 6(2n + 1)

b = —_—
T a1 T Tt 1)3

This recurrence is easily linearized by setting x,, = n2b, /(n + 1). This transforms
the equation into

L 6(2n+1)
T m+2)(n+ 1)

Xn+l =X

Iterating this formula (with initial condition b = 6) we find

6(n + 1 3 241 I
by = 2T ><2Hn+—___3)<__f}@i_z,
n n+1 n

We proceed with our induction to show that a, < 2’1—4 In(n + 1). Using this induc-
tion hypothesis in inequality (7.9) we have

an+1 =

d 6
D 24jInG+1) + —
j=1 "

2
(n+1)3 +1

48
(n+1)3

=

n+1 6
/ xIn(x + 1)dx + ——
1 I’l+1

48 1l , 1, 6
= - 1 2) — = _
(n+1)3[2n Inn+2)+nlnn +2) 4n]+n+1
B [241n(n+2) 241n(n+2)} N 24n2In(n + 2)
B n+1 n+1 (n+1)3

48nIn(n +2) 12n? N 6

(n+1)3 n+13 n+1

_24In(n+2) 24In(r+2) 1212 N 6
 n+l m+1)3  m+1)3 n+l

The quantity

24In(n+2) 1212 N 6
m+1D3  (m+D3  n+l
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is negative for all n > 1, and we have

24In(n +2)

an-HS }’l+1 3

the induction is complete.
It follows that, as n — oo,

d2(Fy, F) < ay = 0,

or
Cr 2> C*;
in view of Theorem 7.3, C* must be equal to C almost surely. ]

7.5 QUICK SELECTION

QUICK SORT can easily be modified to find a collection of order statistics in a given
list of numbers without completely sorting the list. We shall call this variant MULTI-
PLE QUICK SELECT (MQS). Obviously, if we want to use the idea of partitioning
to find p order statistics in a list, we need not continue partitioning the two sublists
as in QUICK SORT; we need only identify the relevant sublists containing the de-
sired order statistics and proceed recursively with those sublists while truncating the
other irrelevant sublist. Occasionally the algorithm will be one sided and its speed
must be somewhat faster than plain QUICK SORT. The version of MQS for only a
single order statistic (p = 1) was introduced in Hoare (1961) and was called FIND.
Chambers (1971) extends the algorithm for general p < n.

When MQS operates to find p order statistics, we can think of the algorithm as
a hierarchy of levels (the level being the number of order statistics sought). The
algorithm begins at level p, and recursively moves down to level 0. At level O, the
algorithm is asked to search for no order statistics. No work is really required for this
and the algorithm terminates its recursion. At every stage only segments containing
desired order statistics are searched and the rest are ignored.

For each fixed set of p order statistics one should anticipate a limit distribution
that depends on the particular set chosen, for a suitably normed version of the random
number of comparisons (possibly the norming factors are different for different sets
of p order statistics). These limit distributions are rather difficult to obtain.

The analysis is far more tractable under an averaging technique introduced in
Mahmoud, Modarres, and Smythe (1995) where the sets of p order statistics are
themselves random according to a uniform probability model; we shall refer to the
selection of a random set of p order statistics as random selection. When the set of p
order statistics is fixed we shall call it a case of fixed selection. Analysis of random
selection is only a smoothing average measure to understand the distributions asso-
ciated with the algorithm. We shall thus average over all sets of p order statistics and
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we shall speak of the average of the averages of all the fixed cases (we shall call it the
grand average), which is stamped with the general character of the individual fixed
cases. We shall also speak of the average variance (grand variance); we shall even
speak of the “average distribution.” To use a parallel language, we shall sometimes
refer to this average distribution as the grand distribution. The grand distribution
is an averaging of all distributions of the individual fixed cases and is indicative of
their classes of probability distributions stamped with the general character of the
individual fixed cases.

We characterize the limiting grand distribution of MQS when all the sets of p
order statistics are equally likely. Thus we assume double randomness: The keys
follow the random permutation model and the sets of p order statistics follow an
independent uniform distribution.

In the analysis of MQS, we shall see that the behavior at level p is an inductive
convolution involving the distributions associated with the number of comparisons
at all the previous levels 1, ..., p — 1. The case p = I, Hoare’s FIND algorithm,
provides the basis for this induction with an infinitely divisible distribution for a
suitably normed version of the number of comparisons. Therefore, we shall take up
the discussion of FIND and its analysis first.

7.5.1 Hoare’s FIND

Hoare’s FIND algorithm is designed to find some predesignated order statistic, say
the mth. Descriptively, FIND operates as follows. It is a programming function Find
(Figure 7.7) that takes in the parameters € and u identifying respectively the lower
and upper limits of the sublist A[€ .. u] being considered and returns the actual value
of the mth order statistic; the initial external call is, of course, call Find(1, n). Within
FIND, m and the list itself are accessed globally. At the stage when the search has
been narrowed down to the sublist extending between positions ¢ and u, FIND first
goes through the partitioning process by the call

call Partition(l, u, k)

function Find (£, u: integer) : integer;
local p: integer;
begin
if £ = u then return(A[¢])
else begin
call Partition(€,u, p);
if p = m then return(A{[p])
else if p > m then return(Find(¢, p — 1))
else return(Find(p + 1, u));
end;
end;
Figure 7.7. Hoare’s FIND algorithm for finding the mth order statistic.
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@16 3374

Figure 7.8. Operation of Find to find the 4th order statistic.

exactly as in QUICK SORT, moving the chosen pivot to its final position k (review
the algorithm of Figure 7.2). If k = m, we are done; the element at position k is
our mth order statistic. If k > m, the mth order statistic must be in the left sublist;
we apply FIND recursively on the left sublist; the situation is handled by the call
call Find(¢, k — 1); otherwise, the mth order statistic must be in the right sublist and
it is now the (m — k)th smallest among the keys of the right sublist. This situation is
handled by the call call Find(k + 1, u). Figure 7.8 illustrates the operation of FIND
on the running example of this chapter to find the 4th order statistic. In Figure 7.8
the boxed subarrays are subjected to the recursive operation; the unboxed subarrays
are ignored. The effect on the associated tree is to prune every subtree corresponding
to a truncated side. The edges pruned from the Quick Sort tree to obtain the tree
associated with FIND are dashed in Figure 7.8; only the solid edges remain in FIND’s
tree.

As discussed in the previous paragraphs, for each fixed order statistic the limit
distribution for the number of comparisons (suitably normalized) will depend on the
particular order statistic chosen, and these may be difficult to obtain. As an average
measure, we analyze FIND’s grand distribution, when all order statistics are equally
likely.

Let C, be the number of comparisons that FIND makes between list elements
when applied to a random list of size » (assimilated as usual by a random permutation
of {1, ...,n})to find a randomly chosen order statistic.

The method of Rosler that we used for QUICK SORT can develop a functional
relation for the limit law of the number of comparisons when suitably normed. For
QUICK SORT we only implicitly characterized the limiting distribution by a dis-
tributional functional equation. Fortunately, for FIND where the algorithm is com-
pletely one sided, the distributional functional equation is solvable and we will be
able to characterize the limiting distribution completely by its characteristic function.

The order statistic that will be searched for is first generated independently of the
input from the discrete UNIFORM][1 .. ] distribution. Let us call such a randomly
generated value M,,. FIND then operates to locate the M, th order statistic in some
input list of size n and the ranks of the input are assimilated by a random permuta-
tion of {1, ..., n}. Let P, be the position to which the pivot moves. As the starting

. D
list is assimilated by a random permutation, P, = UNIFORM][1 .. n]. The first
partitioning stage makes 7 — 1 comparisons and we have the conditional behavior:
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n—14+Cp 1, ifM, < Py;
Cp=1n-1, if P, = My;
n—14+C,_p, ifM, > P,.

We thus have the distributional equation
D ~
Cpn =n—1+Cp1lim,<ry+Cnp,Lip,~p,), (7.10)

where for every j, C j D C;, and the two families {C it {é j} are independent.
Hence the expectation of C,, is

D ~
E[Cn] =n-1 + E[CP,Z—I]‘{Mrz<Pn}] + E[Cn_Pnl{Mn>Pn}]'
The last two additive terms are symmetric. So, by conditioning on P, we find

E[Cq) =n — 14 2E[Cp,_11s,<p,)]
n
=n—1+2Y E[Cp,_11{s,<p,) | Pn = k]Prob{P, = k}
k=1

2 n
—n—1+4 ;;E[Ck—ll{Mn<k}]'

Note here that even though Cp, | and 1{y, <p,) are dependent (via Py,), these ran-
dom variables are conditionally independent (given P, = k). So,

E[Cro11(p,<k}] =E[Ck— 1) E[1{p1, <t} ]

As the order statistic sought is randomly selected, M, 2 UNIFORM[! .. n]; the
expectation of the indicator is '
E[1{ss, <k}] = 0 x Prob{1s, <4 =0} + 1 x Prob{l{s, <k} = 1}
k—1

n

We thus have
2 n
E[Ca) =n 1+ =33 (k = DE[C-1]
k=1

We solve this recurrence by differencing. Let a, = E[C,]. In terms of an the recur-
rence is
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n
n2an =m—-Dn?+2 Z(k — Dag_;.
k=1

A version of this recurrence for n — 1 is

n—1
(n—1%ap_1 = -2)(n-1>%+2 Z(k ~ Dag_1.
k=1

Subtracting, we obtain the form
2
n-—1 3n—-2)(n—-1
="+ ( )2(n )’
n n

to be solved with the initial condition a; = E[C] = 0. This recurrence is easily
linearized—set x, = na, /(n + 1), and write the recurrence in the form

BGn-=2m—-1)
nn+1)

2 10
:.Xn._1+3+""_ .
n n+41

Xn = Xp—1 +

Iterating the recurrence we obtain the following.

Theorem 7.5  (Knuth, 1973). The average number of comparisons made by Hoare’s
FIND algorithm to find a randomly chosen order statistic in a random input of size
nis

8
E[C,] =3n —8H, + 13 — H ~ 3n.
n

The result presented in Knuth (1973) is for fixed selection where the jth (fixed)
order statistic is sought. Knuth’s analysis assumes Sedgewick’s partitioning algo-
rithm (Exercise 7.2), which takes n + 1 data comparisons on a list of size n. The
analysis can be mimicked for PARTITION, the partitioning algorithm used here,
which makes n — 1 data comparisons to partition a list of size n. The average num-
ber of comparisons in the fixed selection of the jth order statistic depends on j with
asymptotic values ranging from 2n for extreme order statistics (the very small and
the very large) to (2 + 2In2)n =~ 3.39xa for the median. By assuming the choice
of the order statistic is made randomly under PARTITION, then averaging Knuth’s
results we obtain the grand average presented in Theorem 7.5.

We focused here on a direct approach to the grand average because as mentioned
before we shall develop a limit grand distribution for the case of random selection.
The asymptotic 3n grand average of Theorem 7.5 will then be our centering factor.
We also need a scale factor to norm the random variable. This is the asymptotic
square root of the variance of C,;, which we shall take up next.
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We can first determine the second moment of C,, by a method similar to the one
we used for the grand average, though the computations become substantially more
extensive. We start by squaring the distributional equation (7.10). The squares of
the indicators 1{y, <p,} and 1{a, - p,} are of course the indicators themselves and
their cross product is O as they 1ndlcdte mutually excluswe events. We obtain the
distributional equation

D -
C2 ( - 1) + CP —ll{Mn<Pn} + Cg—P,,l{Mn>Pu}

+ 20— DCp, 1 1p,<py +2(n — DCp_p 1{p1,~P,)-

IS}

. e . . D =
Once again, utilizing the symmetries Cp,—1 = Cp—p, and 13, - p,)
we have a recurrence for the second moment

Ym,> P}

E[C.] = (n — 1)* +2E[C}, _ L, <p,)] + 4(n — DE[Cp, _11p,<p,) ]

Proceeding as we did for the grand average,

n
E[C2]=(n—1?+2) E[C} _1{m,<p,) | Pn = k] Prob{P, = k)
k=1

n
+4(n — 1) Y _E[Cp,—11{m,<p,) | Pa = k] Prob{P, = k]

k=1
P | 4n — 1) &
=mn-1)7%+ - ZE[C,%_II{M,,<1<}] +— ZE[Ck—11{M,,<k}]
k=1 k=1
2 & k— 1) k — 1
(n )+ " 1; [ —1] . + Z k1]

Introducing the notation b,, = E[C 3], and again using the notation a, for E[C,], we
have the recurrence

bn=(n =1+ — Z(k—l)bk G Z(k—l)ak I

Differencing two versions of this recurrence with indexes n and n — 1, we obtain

n? —1 4(n—1)3 +vgn)

bn = Tbn—l +

n2

where

gm) =4 —1) Y (k= Dax1,
k=l
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and the averages a;._| are given in Theorem 7.5. This recurrence is to be solved with
the initial condition ; = 0. The recurrence is linearized by setting y, = nb, /(n+1).
In its linear iteratable form the recurrence is

4(n — 1) + vg(n)
nin+1)

Yn =Yn-1-+

Unwinding the recurrence by direct iteration we obtain the second moment. Sub-
tracting off the square of the grand average (Theorem 7.5) we obtain the following.

Theorem 7.6 (Mahmoud, Modarres, and Smythe, 1995). The grand variance of the
number of comparisons Hoare’s FIND algorithm makes to find a randomly chosen
order statistic in a random input of size n is

H2
Var[C,] = n? — 10n — 16H? + 108H, — 47 — 48H\” — 80—
n

@ 2

H H H

+204—" —48—"— — 64—

n n n

~ I’l2.

Kirschenhofer and Prodinger (1998) compute the variance of the number of com-
parisons in fixed selection. For the jth (fixed) order statistic they find a variance of
the form v jn2, where v; are coefficients that depend on j. The grand variance of
Theorem 7.6 for random selection is obtained by subtracting the square of the grand
average from an “average second moment,” which is the average of the second mo-
ments over all the fixed cases. But again, as in the grand average, we considered a
direct approach to the grand variance of random selection (bypassing calculation of
the fixed cases) because we shall consider the limiting grand distribution for the case
of random selection; the square root of the grand variance is the appropriate scaling
factor.

Having produced the asymptotic grand average and grand variance, we can begin
to work toward the asymptotic distribution: The factor 3n will be used for centering
(Theorem 7.5) and the factor n will be used for scaling (Theorem 7.6); introduce

Cn - 3”

n

Y, =

We normalize (7.10) by writing it in the form

Cn —3n D Cp,—1 —3(Py— 1) o P, —1
h Pn_l n

l{Mn<Pu}

éwﬂ—3m—aﬂxn—m

n— Py n

]{Mu>l)n}
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3P — 1) 3(n — Pp)
+ - 1{M,,<P,,} + _———_—_n— {M,,>P,,}
n H
n—1 3n
n n

In terms of the normalized random variables, this is

2 P”_]

n—~P, - 1
l{Mn<Pn} “

(Ve =1 +3) + Lagy oy = (T, +3) =2 = —,

(7.11)

Y,

where for each i, f’, L Y; and the families {Y;}, {f’,-}, {P;}, and {M;} are mutually
independent. This representation suggests a limiting functional equation as follows.
We first note that both P, /n and M, /n asymptotically behave like two independent
standard uniform random variables. Let U and W be independent UNIFORM(0,1)
random variables. Then, as in Exercise 7.15,

P
Py
n

M,
——1—2—)—>W
n

b

k4

P. D
L, <= — Lw<o)U.

Now, if ¥, converges to a limit Y, then so will Yp, _| because Py, A% 00, and it
is plausible to hypothesize that the combination 1{a, <p,) P ”n—l (Y P—1+ 3) con-
verges in distribution to 1jw .yyU(Y + 3). A symmetric argument applies to the

second additive term in (7.11), and likewise it is plausible to hypothesize that

n_Pn

a2 =2 (Faep, +3) —=> Lwoo) (1 = UN(F +3), where 7 2 ¥ and is
independent of it. As in the analysis of QUICK SORT, the additive terms of (7.11)
are dependent (via P,). However, this dependence is weak enough to allow the
following limit form to hold.

Theorem 7.7 (Mahmoud, Modarres, and Smythe, 1995). There exists a limiting
random variable Y such that

Y, 2.

Let U and W be two independent UNIFORM(O0,1) random variables. The limit Y
satisfies the distributional functional equation

Y +2 2 Loy U +3) + Lwaoy (1 = U)F +3).
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Proof. The proof of Theorem 7.7 goes along the main lines of that of Theorem 7.4.
Having guessed a functional equation for the limit, we proceed by showing that the
second-order Wasserstein distance between Y, and Y converges to 0; and conse-

D . .
quently Y, — Y. To be able to compute the second-order Wasserstein distance
we first seek a unified representation for ¥, and Y. As the pivot lands at a random
position,

P, 2 .

So, Y, can be represented by the functional equation (see 7.11)

Ul-1
Yp+12 2 1{W<U}@—l‘_—(y[nU]—l + 3)
—TnU7 ,~ 1
+ 1{W>U}?———’£—n——l(Yn_[nu] + 3) + Op(;).

The Op term is O(%) in probability and contains terms like —1/# and the correction
terms changing the representation from P, and M, to U and W. An instance of
this correction term is (1{p7,<p,} — Lyw<u)([nU]1 = D (XY p,—1 +3)/n. If ¥, has a
limit, such a term converges to O in probability because the difference between the
two indicators diminishes quickly down to 0. The last representation of ¥, expedites
the computation of the second order Wasserstein distance between Y, and Y. The
technical development is similar to that in the proof of Theorem 7.4 (the details are
left for Exercise 7.16). u

An equivalent but simpler form for the functional equation in Theorem 7.7 is conve-
nient and will generalize to MULTIPLE QUICK SELECT.

Theorem 7.8 (Mahmoud, Modarres, and Smythe, 1995). The random variable
Y* =Y + 2 satisfies the functional equation

v 2 x4+,

where X and Y are independent with X having the density

2x, O<x<1;
flx) =

0, elsewhere.

Proof. Let Y* =Y + 2, and let ¢y« (¢) be its characteristic function. According to
Theorem 7.7, Y* satisfies

v 2 1)U + 1) + Loy (1 = U)F* 4 1),

S D .. .- .. .
where Y* = Y*, and is independent of it. We can condition on U and W to obtain a
representation for the characteristic function. These two random variables are inde-
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pendent UNIFORM(0,1), and their joint distribution is uniform on the unit square.
That is, their joint density is 1 in the unit square and 0 elsewhere. We have

1 1
Py=1) =/0 /0 Elexplit(Lyw<pyU(Y* + 1)
+ Yooy (1 =" + DU =u, W = w]dwdu.

By splitting the inner integral into two integrals, one from w = 0 to « and the other
from w = u to 1, we simplify the integration because in each of the two integrals
only one of the indicators 1{, <) and 1{;~) is 1 and the other is 0. We obtain

Lopuw 1 opl )
¢Y*(t) :/ / E[eztu(Y +l)]dwdu +/ / E[ezt(l—u)(Y +1)]dwdu
0 Jo 0 Ju
1 1
:/ ME[eitu(Y*+l)]du +/ (1 -—u)E[e’.t(l‘”)(Y*“f'l)]du.
0 0

The last two integrals are identical; the change v = 1 — u of the integration variable
in the second integral renders it identical to the first. Hence

1
¢y*(t) = 2/ ue””qﬁy*(tu) du.
0

On the other hand, by conditioning the random variable X (Y* + 1) on X = x we
see that the characteristic function ¢y (y+4+1)(#) of X(¥Y* + 1) is

1
0

1 -
:f 2xe' ™ Py« (tx) dx.
0

Thus Y* and X (Y* + 1) have the same characteristic function, i.e., the same distri-
bution. [

The limit random variable Y, as we shall see shortly, belongs to the class of infinitely
divisible random variables. A random variable § is called infinitely divisible if for
every positive integer k, there exist independent identically distributed (i.i.d.) random
variables S k, ..., Sk,k such that

Y 2 514@ @St (7.12)

For example, the standard normal variate N (0, 1) is infinitely divisible because lin-
ear combinations of independent normal variates are normal-—the standard normal
variate has the representations
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When a random variable § has an infinitely divisible distribution, ¢ g(¢), the char-
acteristic function of § is said to have a kth root for all integers £ > 1, meaning that
the kth root of ¢g(t) is a characteristic function, too, of some random variable. This
is so because for any positive integer k, the random variable S has a representation
as a convolution of k independent and identically distributed random variables as
in (7.12)—if these random variables have the common characteristic function ¥ (¢),
then ¢s (1) = ¥*(z). So, the kth root ¢’ * (¢) is ¥ (¢), and has a meaning as a charac-
teristic function of some random variable. This property, true for infinitely divisible
distributions, is not true for other characteristic functions.

We specify the limit ¥ in terms of its characteristic function.

Theorem 7.9 (Mahmoud, Modarres, and Smythe 1995). FIND'’s limiting normal-
ized number of comparisons Y is infinitely divisible with characteristic function

Loltx _ 1 —jtx
oy () = exP(2/0 ————————~dx).

X

Proof. Consider the functional equation of Theorem 7.8 for Y* = ¥ + 2. By condi-
tioning on X, we obtain an equality for the characteristic function ¢y~ of Y* in the
integral form

1
<z>y*(t)=f E[e!"T" D | x = x]f(x) dx
0

1 -
=/ 2xe'F gy« (tx) dx.
0

The change of integration variable to u = tx yields

t iu
<z>y*(t)=/0 ue by

12

The random variable Y* = Y + 2 has a finite second moment. Hence, its charac-
teristic function is at least twice differentiable. Taking the first derivative with respect
to ¢ of the last equality gives the first-order differential equation:



Quick Selection 177

;2 dpy«(t)
dt

=21 (¢! = 1)y (r).

with the solution

u

toin ]
Py«(t) = exp(2/) ‘ du).
(

Reverting to ¥ = Y* — 2, we find the characteristic function

Py (t) = e Hpy.(r)

.ot toplit _
= (e”2l Jo d”) exp(2/ ¢ : du).
0o u

The statement of the theorem is obtained after setting the integration variable u = tx.
The characteristic function ¢y (¢) has Kolmogorov’s canonical form of an infinitely
divisible distribution with finite variance. [

As discussed when infinitely divisible distributions were introduced (see the text
following (7.12)), ¢y (¢) has a kth root for any positive integer k. Exercise 7.10 elicits
the special meaning of the square root.

7.5.2 MULTIPLE QUICK SELECT

The techniques developed for the analysis of FIND are extendible to MULTIPLE
QUICK SELECT and we are now ready to tackle the more general problem of the
selection of a number of order statistics and its analysis. The multiple selection of
order statistics has numerous applications in statistical inference where it is often
desired to construct statistics based on a few order statistics (typically five or less) as
discussed in Section 1.2,

Chambers (1971) suggested the use of a variant of Hoare’s FIND algorithm to
locate multiple order statistics. We shall refer to the adaptation of QUICK SORT to
find several order statistics as MULTIPLE QUICK SELECT (MQS).

Suppose 1 < j; < -+ < jp =< nis a collection of indexes specifying p order
statistics required for an application. (For convenience, we introduce jo = 0 and
Jp+1 = n+ 1) To find X, ..., X(j,), we need not completely sort the given
sample. MQS first goes through a partitioning stage just like that of QUICK SORT. If
k, the pivot’s final position, happens to coincide with one of the indexes, say j;, MQS
announces the pivot (now moved to A[k]) as the j;th order statistic and continues to
operate recursively on A[1..k — 1] to find X(yy, ..., X(j,v—l), and on Ak + 1..n]
to find X(j, 41y, ..., X(p). If instead j; < k < j;41, for some 0 <i =< p, MQS
operates recursively on A[1..k — 1] to find X(1y, ..., X(j;), and on A[k +1..n] to
find X, 41y, ..., X(p). We think of the algorithm as a hierarchy of levels (at level
i the algorithm looks for i order statistics). The algorithm begins at level p, and
recursively moves down to level 0. At level 0 no order statistics are sought and the
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Figure 7.9. Operation of MQS to find the Ist, 4th, and 5th order statistics.

algorithm terminates its recursion. Only segments containing desired order statistics
are searched and the rest are truncated. Figure 7.9 shows the operation of MQS on the
running example of this chapter (with n = 6), to find the first, fourth, and fifth order
statistics and the tree associated with it. Only segments containing order statistics are
boxed (they are recursively searched). The associated tree, to be called the MQS tree,
is derived by pruning the Quick Sort tree, removing from it every node labeled with a
key not used as a pivot in the search. In Figure 7.9 the edges of the MQS tree are solid,
the rest of the Quick Sort tree edges that are not in the MQS tree are dashed. When
MQS is done finding the order statistics j, and j,4+1, all data with ranks between
these two numbers are moved to positions lying between the final positions of these
two order statistics. We can thus find groups of data with ranks unspecified but known
to be between two bounding order statistics. This is useful for many applications. For
example, the a-trimmed mean of X, ..., X, is a statistic that throws out the upper
and lower a proportion of the (sorted) data (0 < @ < 1), deeming them too extremal
to be representative of the nature of the data. These outliers may exist because of
errors or inaccuracies in measurements. The ¢-trimmed mean is given by

1 n—|oan]

n—2lan) i=lan]+1

We may use MQS to identify the two bounding order statistics X | o, and X, —|gn|+1-
In the process, MQS will place all intermediate order statistics in the array between
positions (lan] + 1), ..., (n — |an]), not necessarily in sorted order. For the com-
putation of the a-trimmed mean we need not sort these intermediate order statistics;
we are only seeking their average. The only information required for this is their
sum and their number.

The formal algorithm is given in Figure 7.10. The procedure M QS globally ac-
cesses the data array A[1 .. n] and another array O S[1..p] storing the p sorted ranks
of the order statistics sought. The procedure takes in £ and u, the lower and upper de-
limiters of a stretch of the data array to be searched, and b and ¢, the top and bottom
delimiters of a stretch of OS; at a general stage with these parameters, the proce-
dure looks for the order statistics with ranks stored in the stretch O S[b ..¢] within
A[£ .. u]). The outside call is

cal MQOS(l,n, 1, p);
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procedure M QS (¢, u, b, t: integer);
local k, g: integer;

begin
if b < t then
begin
call Partition(€, u, k),
q < call Search(k, b, t),
ifg=b—1thencal MQOS(k + 1, u,b,t)
else if OS[q] = k then
begin
print(k, A[k]);
cal MOS(,k—1,b,qg — 1);
cal MOS(k+ 1, u,qg + 1,1);
end;
else
begin
cal MOS(¢,k —1,b,q);
cal MOS(k,u,q + 1,1);
end;
end;
end;

Figure 7.10. MULTIPLE QUICK SELECT.

The algorithm invokes PARTITION first. Upon receipt of k, the final position of
the pivot, M QS searches for k, using the function Search, among OS[b..t], and
returns into g the largest rank in O S[b .. t] that is less than or equal to k. According
as whether k is among the ranks OS[b ..t] or not, the algorithm either announces
finding an order statistic or not, then moves down to lower levels, searching for fewer
order statistics (stored in the appropriate segments of OS) within the appropriate
segments of A. Two special cases may arise when g falls at the beginning or the end
of OS[b ..t]. In the special case that k is less than all the ranks stored in O S[b .. 1],
Search returns b — 1, an index value outside the stretch OS[b ..¢]. The next stage in
the algorithm becomes one sided and looks for O S[b ..t], all greater than k, among
Alk + 1..u]. This special case is handled by a conditional check. In the special case
when k is not found in OS[b..t] and ¢ = ¢, when all the ranks in OS[b..¢] are less
than k, the next stage is again one-sided and is covered by the call call M QS (¢, k —
1,0, q).

When ¢ > u the stretch A[£.. u] does not exist. However, this condition need not
be checked, because b < ¢ implies that there still are order statistics to be found and
a stretch of A of length u — ¢ + 1 > ¢t — b + 1 must exist; the condition £ < u is
guaranteed when b < r.

For each fixed set of p order statistics one should anticipate a limit distribution,
depending on the particular set chosen, for a suitably centered and scaled version of
the random number of comparisons (possibly the norming factors are different for
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different sets of p order statistics). As an average measure, we analyze the “‘average
distribution,” that is, we characterize the limiting distribution of MQS when all the
sets of p order statistics are equally likely.

In MQS the occasional truncation of one side of the recursion is bound to im-
prove the focused searching process over complete sorting by QUICK SORT. Indeed,
the running average time is asymptotic to only cj, . j,n, for fixed p, as n — oo.
Of course, the constant cj,, . ; depends on the particular set {ji, ..., jp} of order
statistics being sought. Prodinger (1995) specifies these constants explicitly. Aver-
aged over all possible sets of p order statistics (assuming all (7,) sets of p order
statistics are equally likely) the grand average (average of averages) is seen to be
asymptotically linear in n, as we shall prove in the next theorem. We shall take a
direct shortcut to the grand average of random selection (bypassing fixed case calcu-
lation) because we shall develop the grand distribution.

The technique for finding the asymptotic grand average is based on the relation-
ship of the MQS tree to the Quick Sort tree. Let C ,51’ ) be the number of comparisons
made by MQS on a random input of size n to find a random set of p order statistics.
If we sort the input by QUICK SORT, we would have an underlying Quick Sort tree.
But if we only search for a selected collection of p order statistics, several nodes and
branches are pruned. If a key is chosen as a pivot at some stage in MQS, it is com-
pared with all the keys in the subtree that it fathers. For example, the first pivot (the
label of the root of both the Quick Sort tree and the MQS tree) is compared against
n — 1 other keys. In MQS only subarrays containing order statistics are searched re-
cursively. In the Quick Sort tree only nodes belonging to the MQS tree are the roots
of subtrees containing desired order statistics and are compared against the keys in
the subtrees they father; the rest are pruned. Let S E.n) be the number of descendants
of the node whose rank is j . Let '

I, ifkeyranked j is an ancestor of at least
Ij(.") = one of the p order statistics;
0, otherwise.

(In what follows we suppress the superscript in both Sj.") and Ij(.")). Then

C,(,p) — Z S_,' Ij,

J=l

whose expectation is

n
E(C"] =Y E[s;1]

J=1

n n—1

=Y "> E[S;/;|S; =k]Prob{S; =k}.

j=1k=0
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The value of the conditional expectation involved can be argued as follows:
E[[ij [S; :k] =0xProb{/; =0|S; =k} +£k x Prob{/; = 1|§; = k}.

As the p order statistics are chosen at random, the event that the key ranked j is not
an ancestor of any of the required p order statistics, given there are & descendants
of the key ranked j, amounts to choosing the p order statistics from among all the
other nodes of the tree that are not in the subtree rooted at the key ranked j. Given
that condition, there are n — k — | nodes outside the subtree rooted at & and any p
of them re equally likely to be chosen for the random selection process. So, we have

the following representation for E[C ,(,p )]:

(n—k—l)
n n—I
E[c"] = ZZk[I— JProb{Sj=k}

=)

n—k—1
n o on— non— l( )
=ZZ kProb(S; =k} — Y > "L kProb{S; = k).
25 o
P

Jj=1k=0

The first double sum is reducible to a familiar term:

ZZkProb k) = iE[Sj] =E[c");
Jj=l

Jj=1k=0

to see this, consider the sum of the number of descendants of a node taken over every
node in the Quick Sort tree. This is the number of comparisons QUICK SORT would
take if we wanted to sort the input instead. (QUICK SORT can be viewed as the
special case p = n of MQS when order statistics of all ranks are to be found; in this
special case all the indicators /; are 1.) The double sum is also an equivalent form
for the internal path length of the QUICK SORT tree (a node at depth d is counted
in this sum d times, once for every ancestor); the average number of ancestors is the
same as the average number of descendants (Exercise 1.6.6). Hence, this double sum
is E[C ,ﬁ”)], the average number of comparisons of QUICK SORT on a random input
of size n and is given by Theorem 7.1. Therefore

(n—k~1> |
E[c?] =E[c{] - ZZ P k Prob{S; = k). (7.13)

w5 ()

It only remains to asymptotically analyze this exact expression. The asymptotic anal-
ysis is facilitated by Pochhammer’s symbol for the rising factorial:
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D

@Wp=x+D. c+p-D=) "] (7.14)

r=1 r

where [f ] is the rth signless Stirling number of the first kind. We shall also utilize
the first derivative with respect to x of this identity:

(x), - = r[ ]xr“ ) (7.15)
e R A
In the Pochhammer notation (7.13) can be written as
n n—I
()] _ g p! n—p—kp _
j: =

- n n—lpg p l:p](n—p—k)r
= E[C}; ]—ZZ[Z . ]x k Prob{S; = k}. (7.16)

et s Rl S )

Theorem 7.10 (Prodinger 1995; Lent and Mahmoud, 1996a). The average number
of data comparisons for MULTIPLE QUICK SELECT to locate a random set of p
order statistics in a random input of size n is

E[C{P] = 2H, + Dn —8plnn+ O(1),

when p is fixed as n — 00.

Proof. In the exact expression (7.16) for the grand average, expand the terms (n —
p — k)" by the binomial theorem:

p
n n—l1 14 [ ]
E[C’EP)] — E[C,g")] _ ' k _—trs

S0 = o P+l
x [i(—l)’(Z)k’(n - p)’“']Prob{Sj = k)
=0
n_ p
_ (n) p r (n p) |

Isolating the terms containing the first and second moments of S ;, we obtain:

n 14 r
cP =g[cM P1I_n=P) g, 7.17
E[C,”] =E[C)"] - j};;[r](n—mn,, (551 @I
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- r(n P)r—l 2
+,~=1§T[ ]——————<n_p+1> E[S%] (7.18)
n 14 11
+ Z[ ]Z( b ()
j=lr=l1
(n—p) 1+1
n—p+1) 557 (7.19)
First, using (7.14)
14
n 14 p (n_p)r le:f] n—p)r n
E[S = E[S
;,Zl[r]m—[wrl)p 157) (n—p+1), ; 157)
(n_p>p (n)
p— Cn
= pt 1y, ]
= (1-2)Eici)
n
=E[C"] —2pH, + O(1);  (7.20)

the last asymptotic relation is obtained by an application of Theorem 7.1. For terms
involving the second moment, we use the identity

n
Y E[S7]1=3n*+ 17n — 10(n + 1) H,,
j=1

the derivation of which is relegated to Exercise 7.17. By way of the identity (7.15)
we find

n_ p [p]r(n—p)r—l n p—1
1

21 _ 2
ZZ (n—p+1), E[Sj]_<ZE[Sj])n—p+1p§n p+i

j=1r=1 j=1

= (3n° +17n — 10(n + 1) Hy)

(-2 X1+ o()):

1
= ~[3n? = 10(n + D)H, + 17n]
n

<(1- 2+ 0 (7))

= 3pn — 10pH, + 0(1). (7.21)
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Rearranging the terms involving the higher moments, we have

’ gt n f'+l
Xp:[ ]n(i;i)l Z( 1)t+l(>< %) r' E[ijt ].

r=1 Jj=1

To simplify this, we use the asymptotic approximation

(1-5)"=1+0(;)

We can write the result of Exercise 7.17 in the form

1 E[Sr~+l]

'Z I — =n(1+ 1?‘-) +0(D).

=1

When we substitute these into expression (7.19), the sum on ¢ becomes (for fixed
r>1)

£ (42 o0
=2
(- L) on

=1

== n(l +2Hr - 31’) + O(l)a

where we have used the binomial theorem and the identity

i(_l)t-i-l(r)_H
1:1 ; )T rs

which in turn follows from the binomial theorem:

£ () [ (e
_/0 %;C)(—x)t dx

Pl —x) =1
__[d=x -1
0 X

/l v — 1
= dv
0 v— |

I
=/ (I+v+02 4+ dv.
0
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Next we observe that

(n—p)? |
—_— = 4 O -},
(n—p+1D, + <n)
and that for each r < p,
— ]'
[’)]——(’i—l’—)——(zf],Jr I —3rn = 0(l).
(’1_p+ 1)1)

Then we may rewrite (7.19) as

(n—p)p p—1 ( _p),.
. (2Hp+1—3p)n+2[ ]m(zﬂr+1—3r)n+o(1),

which reduces to
(QHp+1-=3p)n+ O(1). (7.22)

Substituting (7.20), (7.21), and (7.22) for (7.17), (7.18), and (7.19) respectively gives
the required result. n

Theorem 7.10 develops the average number of data comparisons for MQS. Addi-
tional comparisons are needed for the search after each partition step for the position
of the pivot of the step in the relevant portion of the array OS. Each of these com-
parisons are made between integer indexes and may generally be faster than one
comparison of a pair of data. As discussed in Exercise 7.19, collectively over all the
stages of the algorithm, the average number of these additional index comparisons
is O(1) under any reasonable search algorithm and can only affect the lower-order
term of the average speed of M Q' S, or the rate of convergence to that average.

Let the outcome of the random process for determining the order statistics be
V1, ..., Vp; these order statistics are determined independently of the random input.
Let P, be the landing position of the first pivot. For a random permutation

P, 2 UNIFORMII .. n].

Right after the first partition step, for some 1 < r < p, either the pivot (now
moved to position P,) splits the array into two segments: A[1 .. P, — 1] containing

Vi,..., Vr, and A[P,..n] containing V,41,..., Vp, or P, = V,, in which case
A[ P,]is one of the desired order statistics, A[1 .. P, — 1] contains V1, ..., V., and
A[P,+1..n] contains V, 11, ..., V.. Under the hypothesis of random subarrays, we

have a distributional equation:

cp 2 D (n— 1)+Z< c® l+C(p r)) (r)+z< o 1)+C(p r))i’gr)’ (7.23)
r=0
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2¢ 2 ¢0 2 ¢V and the families (¢},

< k < oo, are independent; the random variable

where for every j and k, C ,,Ej )
(CL 1 )0 <
1,§’) 1s the indicator of the event V, < P, < V,,1, and i,§’) is the indicator of the
event V, = P,. Only one of the indicators assumes the value 1, as they indicate
mutually exclusive events. So, one indicator will pick up the two correct terms for
the partitioning while all the other terms are filtered out of the picture.

The asymptotic grand average (2Hp + 1)n in Theorem 7.10 suggests the use of
this factor for centering. We use #n as a scale factor since it is the order of the standard
deviation for the case p = 1 (see Theorem 7.6), and we anticipate it to be the order
of the variance for higher p as well; we shall see that indeed » is the exact order

of the standard deviation for all fixed p. We normalize the random variable C,SI’ ) by
introducing

o G —QHp + Dn
AL
n
(note that Y,fo) = —1). In normalized form the basic recurrence (7.23) is

Pn_l

p
(P) p 1 [( (r) )
Y, +2H, = —— + E Y +2H, +1
n 14 n | P,—1 r

~(p— n—P
+ (Y,ffpj)+2Hp_r+ 1) ; ”}1,5’)

Pn_l

+

M~

5 (r—1
{(PR2) +2H, -1+ 1)
1

‘
I

< (p— n— Pyy-
+(Y,ffﬂf)+2Hp_r+1) - ”]Ié”,

where for every j and k, f’k(j) 2 f’k(j) 2 ?,fj) 2 Yk(j),O < j <k < o0, and the
families {Yk(j)}, {f’k(j)}, {)A’k(j)}, {f’k(j)} are independent.

The event P, = V, occurs with probability 1/# in a random permutation. Thus
i,ﬁ’) converges to O in probability. And so, if, for every fixed p, Y,fp ) converges in
distribution to a random variable, the sum

14
A (p e P, -1 < (e n—Pyq -
) (0 1)
r=0

will be op(1) (i.e., o(1) in probability) and subsequently will play no role in the
limiting distribution. We can therefore write the essentials of the recurrence in the
form
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(p D[ () Py -1
P +2H, 2 )| (Yi) 28 +1) =
r=0

P
+(7P 5 + 2ty + 1) 21

n
+op(l). (7.24)

We shall show a little later that Y, ,§f’ ) converges in distribution to a limiting ran-

dom variable, to be called ¥ (?). (FIND’s limiting random variable Y is Y,fl) in this
notation.) The next theorem will then follow.

Theorem 7.11 (Mahmoud and Smythe, 1998). For each p > 1, the limiting nor-
malized number of comparisons Y'P) satisfies the characteristic equation

, o2
v 428, 2 3 1 |XP (O + 28, +1)
r=0

+(1 - XP) (PO +2H,, + 1)},

where, for any r, o 2 Y™, X(p) is a random variable with density f () (x) =
(p-l—l)(r)x (1=x)P7", for0 <x < l,and Jy, Jy, ..., J| p/2) are the components of
a | p/2]{-component vector J, of Bernoulli random variables with joint distribution

2

Prob{Jg=(O,...,0,1,0,...,0)}=;1_1,

when the 1 appears at the rth position, forany 1 <r < | p/2], and

T _ _ 1/ (p+ 1), ifpiseven;
Prob{f, = ©.0.....0. 1)}_{2/(1)+1), if p is odd.

Furthermore the families {X ﬁp )}, (Y, and (Y )} are independent and the random
variables Jy are independent ofXﬁp), YD, and YO forallt,r, p, jand k.

Proof. Consider the characteristic function of Y,fp ) 4 2H p- Upon conditioning on
the givenranks V| = ji, ..., V, = jp; P, = m and using the various independence
and identical distribution assumptions, the recurrence (7.24) yields

-1
¢y<p>+2H ( ) Z Z Z ¢Y,§’Z,+2H,+1<"‘—‘m - t)
P

m=1r=0 ji<..<jr<m<jryi<..<Jp

n—m 1
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1 eI /m—=1\(n—m m—1
) <n> Z r p—r ¢Y:fzrll+2H’+l ( n t)
n

m=1r=0
p

n—m
X by-n 41 (1) +olD. (7.25)

Assuming the limit ¥ P) exists, as will be proved later on, we can write the limit
of the last equation in the form of a convolution:

1 2’3 !
by, ® = =7 3 [ oy sam 1 0)
? p+1=Jo

X $yo-n o, +1 (10 = 0) | fP0dx. (7.26)

For p odd, the sum in (7.26) can be split into two sums, one with the index r
running from 0 to [ p/2], the other from [p/2] to p. The change of index from r
to p — r in the second sum yields two identical summations. Splitting the sum into
two identical sums is a convenient way of identifying the correct probabilities of the
vector J,. The range [p/2], ..., p of the index r does not introduce new random
variables; each of these terms coincides with one from the range O, ..., [ p/2], only
doubling its probability. One gets

Lp/2] s
t = - r t
Sy 128, ) P rX:(:) /0 Py 424, +1(1x)

X Qy(p-n42H,_,+1 (r(1 - x))fr(p)(x)dx-
The right-hand side is the characteristic function of

p/2)
> XY 428, + 1)+ (1= XY FC 4 2H, + 1) (720)
r=0

A similar argument applies to the case p even. The only difference is that we
cannot split the sum into two exact halves; a middle term that does not repeat appears.
That is, each term in the range O, . . ., %p — 1 is doubled by a matching term from the

range %p +1, ..., p, and a middle term corresponding to r = p/2 appears by itself.
So, the right-hand side of (7.26) is the characteristic function of a random variable
of the form (7.27), the only difference for even p being that the probabilities of the
Bernoulli random variables are different; forr =1, ..., %p - 1:

1, with probability 2/(p + 1);

=10, with probability I — 2/(p + 1.
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whereas

I I, with probability 1/(p + 1);
P/2=10, with probability I — 1/(p + 1).

Thus for p odd or even we get the same characteristic distributional equation, but
with different weights assigned to the Bernoulli random variables involved, as stated.
n

The special case p = 1 is characterized by the distributional equation
D (1
rh 42 = xPa®+3),

with X( ) having the density 2x, for 0 < x < I; that is, X( ) is X of Theorem 7.8.
As 1n the case p = 1, the technique for convergence in distribution gives us
convergence of the first two moments as well. So, ¥ is square-integrable. Thus it

has a finite second moment for which a recurrence relation can be formulated from
Theorem 7.11. Let

» & Var[y(P] = E[(Y?)3).

We first square the characteristic equation of Theorem 7.11, then take expectation
of both sides. Simplifications follow from the fact that ¥ ") are all centered random
variables (having mean O, for all r), and that the components of J, are mutually
exclusive (all cross-products J; J; = 0, when i # k), and from the various indepen-
dence and equality in distribution assumptions.

For odd p,

vy +4H2 = 2 (E[(l —x ") (v + 2H, + 1)2)]

p+1
p—1 5
+3 (o + @H, + DYE[(x7)?]
r=1
Lp/2]
+ 3 2E[XP (1= X)) |@Hy + DQRHp_r + 1)).
r=I1

Write the last summation as

Lp/2) |
STEXP(1-xP,)]@H, + D@Hp—r + 1)
r=1

Lp/2] ) e
+ Z E[x,” (1 - x;7,)|@H, + DQH,—r + D).
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Replace p — r by r in the second sum and use the symmetry

to write just one sum extending over the index r from 1 to p. This further simplifies
the variance recurrence to

2 p-l
v r+ D@ +2)v, + gp,
P <p+1)2<p+2)Z rTép
where
2 p+3
=——QH 12—4 H?
gp p+1( p+) 1 p

p—1
R 1)3(,) +2) Z(" + D)(r +2)QH, + 1)

2 i,
TG TD L D S DR+ DCHp 4 1.

Even though the existence of a middle term in the case p even changes the prob-
abilities of J, similar work shows that the last recurrence is a valid form for v D
for even p, too. This recurrence can be linearized by first differencing a version with
p — 1 replacing p to get

(P + D +2vp = P2(p+ Dvp1 =2p(p+ Dvpo1 + V(P + D*(p +2)gp),
which simplifies to the linear recurrence

Vip + D%(p +2)gp)
(r+D(p+2

(p+ l)vp = PVUp—1 +

This form can be iterated, yielding

X": v{G + D2 +2)g}

, (7.28)
G+DG+2)

P+1 =

where we used the boundary condition v; = 1, from Theorem 7.8. The sums in-
volved in g, vary in complexity. Several combinatorial identities leading to the re-
quired results are given in Exercise 7.18.

Theorem 7.12  (Mahmoud and Smythe, 1998; Panholzer and Prodinger, 1998).

4(p*> +3p+5
vp=7—4H(321— (p 2P )_
P 3(p+ D (p+2)
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Theorem 7.12 gives the asymptotic variance of the normalized number of com-
parisons of MQS, for p fixed. So,

Var[C"] ~ v,n?.

The assumption that p is fixed is crucial throughout. For example, the centering
factor of Theorem 7.10 was obtained under this assumption and the asymptotic ap-
proximation of the binomial coefficients to make the transition from (7.25) to (7.26)
uses this assumption and is not valid otherwise. Curiously, even though this analysis
is done under the assumption of fixed p, the result coincides with a special case in
which p is not fixed. When p = n, MQS finds all order statistics, i.e., sorts the in-
put. Namely, MQS becomes QUICK SORT and if p = n — o0, the form of v, in
Theorem 7.12 converges to 7 — 272 /3, QUICK SORT’s variance of the limiting nor-
malized number of comparisons (see Theorem 7.2). The exact variance computation
of Panholzer and Prodinger (1998) for all fixed selection cases sheds light on why
this is the case.

By an argument that generalizes that of the case p = 1, we shall prove that

Y ,,(p ) 2, Y (P), We shall then give an implicit characterization of the random variable
Y (P) as the solution of a first-order differential equation.

We shall need additional notation and a little preparation to prove convergence in
distribution. As in the random selection of one order statistic (p = 1), the proof is
based on convergence in the Wasserstein metric space.

To be able to compute the Wasserstein second-order distance, we seek a unified
representation of ¥\") and Y. Let U, Uy, ..., U » be independent UNIFORM(0,1)
random variables, and let U(y), ..., U(p) be the order statistics of Uy, ..., Up. We
assume this family of random variables to be independent of all the other families
that appeared so far. For convenience we also introduce Uy = 0 and U,y = 1.
Introduce the indicators

(p) _
Kr = l{U(o)<...<U(r)<U<U(r+1)<...<U(p+1)}v

which have a distribution function differing only by O(1/n) from the distribution
function of 1,5" ). Also recall that

P, 2 mmun.

An equivalent representation of Y,ﬁ" ) is

P
D (nU] —1
1P 28, 23| (vin o+ 28 1)
r=0
n—[nU]

o (p—r) (p)
+(7P o +2Hp—r +1) L&

n
+op(1).
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Lemma 7.1
b
YW 4 2H, =2 (¥ +2H, + 1)U
r=0
+(PP=) 4 2H,_, + 1)(1 = D)} K7
Proof. Let yP)(t) denote the distribution function of the random variable on the

right-hand side in the lemma. Condition on U = u, Uy = uy,..., U, = u,. Only

one of the indicators K ,(p ) assumes the value 1; the rest are 0. Hence, summing over

all permutations iy, ..., i, of {1, ..., p}, we have

yP@ey= > Xp: // / E[exp{it{(Y(r)+2Hr+1)u

I15025eesip =0, ) e <Ujp UG, ) <o <Uj,

+(FP 4 28, + 1) = w)] | dudu ..du,

—p'z [[] el 28+ 1)

U <o <Up<U<Upp) <...<Up
+(P 4 2l + 1)1 = w0} | [dudui ... duy.

Notice that, for any integrable function H(u),

/// Hw)duduy ...dup = (p+1)' / H(u)fr(l’)(u)du

U <o <Up <U<Up4] <...<Up

reconstructing the densities f,(p ) (u) in the representation; comparing this with (7.26)
the function y () () coincides with ¢y (1o (8). =

By an induction similar to that of the proof of Theorem 7.4 it can be shown that the
Wasserstein distance between the distribution functions of Y,?’ ) and Y converges
to 0, as n — o0o. The induction here is a double induction. We assumne the statement
to be true for all n for all p < p; we then use this hypothesis to show the assertion
true for all n at p = p. The details are left as an exercise.

As discussed at the beginning of this section, it follows from this convergence in

the Wasserstein metric space that

Y(P) Y(p)

and

E[(r,”)"] - E[(r*")*).
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Having shown that a limiting distribution exists, we turn to characterizing it. In
what follows we shall denote ¢y(/7)+2H/) (1) by R,(r). With this notation, Lemma 7.1
enables us to write a recurrence for this characteristic function:

Lp/2] 1
Ry(t)=e' )~ Pk/o R0 Rk (t(1 = 0)) 7P (x) dx, (7.29)
k=0

where Py are probabilities defined as

and

D _J1/(p+ 1), if piseven;
PRIV 2/(p+ 1), if pisodd.

The recurrence (7.29) gives us an inductive characterization of the distributions
of Y{P); the infinitely divisible distribution whose characteristic function is

exp{2/07<iu—_—ul~_—ﬁl—) du} (7.30)

is at the basis of this induction.

Assume by induction on p that Ry(¢), ..., Rp—1(#) have already been deter-
mined. Let
 Lp/21 1 )
Gp(1) = ¢! Z Pk/ Rk(tx)Rp_k(t(l —x))fkp (x)dx,
k=1 0

which is now assumed known. Then the recurrence (7.29) can be written as

it 1 )
Ro = | TR, (1= x)) P () dx + G (1)

2 ! ;
f ;F-__l_ 0 MpeluRp(u)du+Gp(t)

The limit Y7 has finite second moment, whence R p(t) is at least twice differen-
tiable; taking derivatives once with respect to ¢, we arrive at the differential equation

1 — 2 (p+DGp@) + G
R;,(t) + E—t—;——iRP(l‘) — Pt r’

In principle, this first-order differential equation can be solved by well-known tech-
niques and R, (¢) will be expressed in terms of convolution integrals of the compli-
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cated function (7.30). These may be manipulated numerically to determine the shape
of the distribution.

This equation may not admit an explicit solution because of the complex nature
of the function G ,. However, bounds may be developed on R p(¢) for large ¢ and one

can prove that R,(¢) is integrable. Therefore the limit ¥ (P) possesses a continuous
density.

EXERCISES

7.1

7.2

7.3

74

7.5

7.6

What adaptation does the text’'s PARTITION and QUICK SORT need to
handle data files with possible replication of entries?

(Sedgewick, 1980) A popular partitioning algorithm is based on the following
idea. Set up two indexes F (forward) and B (backward). Choose a pivot from
the array A. Keep advancing F as long as you see array elements A[F] less
than the pivot. Then come down from the other end by retracting B until you
find an element A[B] less than the pivot. At this stage both A[F] and A[B]
are on the “wrong side” of the pivot’s correct position. Swap A[F] and A[B]
and continue the process on A[F + 1 .. B — 1] until F and B cross.

(a) Implement Sedgewick’s partition algorithm to partition A{1 ..n]. (Hint:

Introduce a dummy o0 at the end of the array as a sentinel.)

(b) What value serves as sentinel, when QUICK SORT (with Sedgewick’s
partition algorithm) handles an arbitrary stretch A[£..u],1 <€ <u < n?

(¢) How many comparisons does Sedgewick’s partitioning algorithm make
to partition A[l .. n]?

(d) How many swaps does Sedgewick’s partitioning algorithm require in the
best case, worst case, and on average? Determine the central limit ten-
dency of the number of swaps.

Construct an input permutation of {1, ..., n} to drive QUICK SORT to make
0(n3/ 2) comparisons.
Assume the sample space used for the analysis of QUICK SORT has n!

equally likely input permutations. On this sample space, interpret Cy, Cj,
C,—1, which appear in the recurrence equations for Cp,.

..y

(Rosler, 1991) By taking the variance of both sides of the distributional equal-
ity (7.7), and using the independence assumptions for this equation, find the
leading term in the variance of the number of comparisons of QUICK SORT.

Calculate the second-order Wasserstein distance between

(a) The distribution functions of two identically distributed random variables.

(b) The distribution functions of U = UNIFORM(0,1) and W,, = U(1 +
1/n). Conclude that Wy, —> U.



Quick Selection 195

7.7

7.8

79

7.10

7.11

7.12

713

What constant minimizes the second-order Wasserstein distance between a
degenerate distribution function and that of a random variable?

(Mahmoud, Modarres, and Smythe, 1995) Assuming the text’s PARTITION
algorithm, prove that the mean and variance of Q, the number of compar-
isons in Hoare’s FIND for locating the minimum (or the maximum, by sym-
metry) in a list of size n, are given by

E[Qn] =2n - 2H,

~ 2n, asn — o9,
and
-9
Var[Q,] = ("2 ) +8H, — 4H
1)
~ -, as n — OQ.
2

(Mahmoud, Modarres, and Smythe, 1995) Let Q, be FIND’s number of com-
parisons for locating the minimum (or the maximum, by symmetry). Show
that

&2,
n

where 0 2 UQ + 1, and U is a UNIFORM(0, 1) random variable that is
independent of Q.

(Mahmoud, Modarres, and Smythe, 1995) Demonstrate that the square root of
the characteristic function of FIND’s limiting number of comparisons Y for
random selection is the characteristic function of FIND’s limiting number of
comparisons Q for the fixed selection of the minimum (or the maximum, by
symmetry); see the previous exercise for the definition of Q.

(Mahmoud, Modarres, and Smythe, 1995) Let ¥ be the limiting normalized
number of comparisons of FIND. Show that the support of Y is unbounded,
that is, the probability that ¥ belongs to a bounded set of the real line is 0.
(Hint: Argue that if Y were to have a bounded support, Var[Y] would have to
be 0.)

(Mahmoud and Smythe, 1998) Let ¥ be the limiting normalized number of
comparisons of FIND. Show that the distribution function of Y is absolutely
continuous. (Hint: Show that ¢y (¢), the characteristic function of ¥ is asymp-
totic to r —2, hence integrable, as ¢ — 00.)

(Mahmoud, Modarres, and Smythe, 1995) Develop the following large de-
viation inequality for the upper tail of the distribution of the limiting random
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7.15

7.16

7.17

Quick Sort

variable Y, FIND’s normalized number of comparisons: For y > 0,

" Prob{Y > y} < ( ¢ )Hy.

l+y

(Hint: Use a Chernoff-like technique—start with Chebyshev’s inequality in
its exponential form and minimize the exponent.)

(Mahmoud, Modarres, and Smythe, 1995) Develop the following large de-
viation inequality for the lower tail of the distribution of the limiting random
variable ¥, FIND’s normalized number of comparisons: For y > 0,

Prob{Y < —y} < exp(—zzi);

see the hint to the previous exercise.

Suppose P, and M, are two independent families of random variables with
the nth member of either family being distributed like UNIFORM[1 .. n].
These families arise in the analysis of random selection, for example, P,
may be the landing position of the pivot and M, may be a randomly se-
lected order statistic to be located by FIND. Let U and W be two indepen-
dent UNIFORM(0, 1) random variables. By taking limits of the distribution
functions of P,/n and M,/n and 1p, < p,) Pn/n, show that these random
variables respectively converge to U, W and 1yw <) U.

Compute the second-order Wasserstein distance between Y, ,,(p ) , the normalized
number of comparisons MQS makes in locating a randomly selected order
statistic, and the limiting random variable Y ().

(Lent and Mahmoud, 1996a) For the analysis of the average number of com-
parisons of MQS to find a random set of p order statistics in a random file of
size n we need to develop sums of the form Z'}-zl E[S ;.], where (simplifying
notation) §; is the number of descendants of node j in a random binary search
tree.

(a) From the first moment of S; found in Exercise 1.6.5 derive the identity

> ELS;]=2(n + 1) Hy — 4n.
j=1

(b) From the second moment of S; found in Exercise 1.6.5 derive the identity

n
ZE[S}] =312 4+ 17n — 10(n + D H,.
j=1

(¢) For all moments of S; develop the asymptotic relation
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61871 = (5 = g o= 7 4 7]

m — | m-—2
m

m— 1| m—2
+;——-—n_2n +0(n )

For moments higher than the second develop the asymptotic relation

iE[S"n] — m + lnm + O(Hm—l)
— m— 1 ’

7.18 Simplify (7.28) by reducing the combinatorial sums involving g; by proving
the following identities:

(a)

p—1

4 8
S+ D +2QH +1)? = <§p2 +4p+ g)pHg_l

r=1

+(‘—1 1228 +§)H
9P 3/ 9P 3 p—1

ENCRI RS (N
7P TP TP T g
(b) Starting with
p—1 p—1
r+D(p-r+DHQH +1DQCHy—+ 1 = r+D(p—-r+1
r=1 r=1

p—1
+2) r+D(pp—-r+DH,
r=I1
p—1
+2) ¢+ Dp=r+DHp,
r=I1
p—1
+4> (r+D(p—r+DHHp,

r=1
show that the first sum is
1 1

-3 2 _ - —1:
6P + P 6P )

show that the second and third sums are both equal to:

1, 5 5 3 2, 1 5
(6p +p+6)pHp—l 36" 3P

%Pt e



198

7.19

Quick Sort

Let

p—1
ap=Y (r+1)(p—r+HHp,

r=1
and show that the generating function

o<

A) =) apzP

p=0
is the square of some elementary function of z. Extract coefficients from
this elementary function to prove that

1
ap =2+ D(p+2(p +3(HE — H)

1
——(37p% + 186p + 209
+108( p°+186p +209)p

1
—T-g—(sz +30p + 37)pH,.

What is the average number of partition steps in MQS when it runs on a ran-
dom input of n keys to find a random set of order statistics of size p? What
does that tell us about the number of index comparisons performed within the
array O S of predesignated order statistics?
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Sample Sort

The term sample sorts refers to a class of algorithms that are based on QUICK SORT
where a sampling stage precedes application of QUICK SORT. The pathological
cases of QUICK SORT, with $2(n?) behavior, arise when the splitting pivot does
not split the given list near its middle at most recursive levels, as, for example, in
the case of an already sorted list of numbers. The idea in sample sort algorithms is
to avoid such pathological splitting by taking a sample from the list and using it to
produce a situation favorable to middle splitting with probability higher than that of
the chance of a single pivot to split near the middle. This preprocessing stage helps
QUICK SORT reach its speed potential.

Some sample sort variations take a small sample. The median of the small sam-
ple is employed as the splitting pivot to speed up QUICK SORT. The sampling is
then reapplied at each level of recursion. Another approach to sampling as an aid
to speeding up QUICK SORT uses a large sample once at the top level of recursion.
The elements of the sample are then inserted in their proper places, producing a large
number of random segments, each handled by standard QUICK SORT. In either case,
QUICK SORT’s behavior is improved but the algorithm becomes more complex.

8.1 THE SMALL SAMPLE ALGORITHM

In the small sample approach to sorting » — 0o elements, a fixed-size sample is
chosen. The median of the sample is then used as a pivot. Recursively, at each level
the sampling is reapplied.

Median selection is not always the easiest task. We saw instances of median-
finding algorithms based on adaptations of some standard sorting algorithms. The
point of a small sample approach is to avoid complicating sample sort by burdening
the median finding stage. If the sample size is 2k + 1 for some small fixed k, simple
median finding algorithms may be used. (Standard QUICK SORT, discussed exten-
sively in Chapter 7, is itself the special case k = 0.) In the practicable choice k = 1,
we have a sample of size 3 at each level of recursion. This special version of sample
sort is commonly referred to as MEDIAN-OF-THREE QUICK SORT. The sample
can be taken from any three positions. Under the random permutation model the joint
distribution of data ranks at any three positions are the same; it does not really matter
which three positions to take as the sample. For consistency in implementation, at

199
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any level of recursion we may take our sample, say, from the first three positions of
the stretch of the host array under consideration. The process continues recursively
until arrays of size two or less are reached, when it is no longer possible to sam-
ple three elements. The arrangement of arrays of size two is resolved by a simple if
statement; smaller arrays are of course already sorted.

One can find the median of three items by an algorithm that uses only if state-
ments. For example, Figure 1.6 provides a complete sorting algorithm for three items
using only if statements. Finding the median of three distinct items by comparisons
is equivalent to sorting the three elements (see Lemma 1.1). This simple, yet worst-
case optimal, algorithm for median selection from among three items either makes
two comparisons (with probability 1/3) or three comparisons (with probability 2/3);
the theoretic lower bound of [lg3!] = 3 is attained (Theorem I.1). That is, the ran-
dom number of comparisons, B, for median selection among three items is given
by

B=2+ BERNOULLI(%),

whose average is E[B] = 8/3.

Algorithms based on arithmetic operations are also available for finding the me-
dian of three elements (see Exercise 1.9.4).

For a meaningful contrast with standard QUICK SORT, we analyze MEDIAN-
OF-THREE QUICK SORT under a comparison-based median selection algorithm
that does not introduce other operations like arithmetic operations, for example, that
are harder to evaluate relative to comparisons. We shall use the worst-case optimal
algorithm of Figure 1.6 to assess the kind of improvement one gets by sampling over
standard QUICK SORT.

Let Cy, be the number of comparisons needed by MEDIAN-OF-THREE QUICK
SORT to sort a random input. The basic distributional equation is essentially the
same as that of the standard QUICK SORT, see (7.1). The difference is that at each
level of recursion an additional step for choosing the pivot from the sample is re-
quired. Once a pivot is chosen, it can be compared to the other n — 1 elements of the
array by PARTITION, QUICK SORT’s partitioning algorithm. Two subarrays are
created, to which the sampling, median-of-three finding, and the partitioning process
are repeated recursively. Let P, be the position of the pivot (which is the median of
a sample); then (forn > 4)

D ~
Ci = Cp_{+Cp_p +n—1+B, (8.1)

where C), 2 Cy, and the families {Cp,}72 |, {C‘n}gil and {B} are independent. No
longer is P, uniformly distributed as in standard QUICK SORT; it has a biased distri-
bution humping at the middle, and that is where MEDIAN-OF-THREE outperforms
QUICK SORT.

Under the random permutation model, all (’;) triples of ranks are equally likely
to appear in our sample. For a sample of size three to be favorable to the event

{P, = p}, the median of the sample must be of rank p; one of the other two ranks



The Small Sample Algorithm 201

in the sample must be smaller (can be chosen in p — | ways), and the other must
be larger (can be chosen in n — p ways). The probability distribution for the pivot
position is

— D(n —
Prob(P, = p} = L )n(” 23 (8.2)
(5
Taking the expectation of (8.1),
E[Cy] = E[Cp,_1]1+ EICy—p,]+n — 1 + E[B]
R _ Ap—=D(n—-p) 8
_2;E[CPH_IIP = pl <n> +n—1+3
3
2 & 5
=—< Y ElCy_l(p—Dn—p)+n+Z, (8.3)
=l

()] 3

where we used the symmetry P, —1 2o P,,. The biased probability distribution of
the pivot’s landing position gives us this recurrence that does not directly telescope as
in the case of standard QUICK SORT. This recurrence calls for a different technique.
We shall tackle it by generating functions. Let

C(x) =) EICy)c".
n=0

Multiplying the recurrence (8.3) throughout by (’;)z”‘3 and summing over the range
of validity of the recurrence, we obtain

> (5B =23 = 10a = pIEIC,

n=4 n=4 [7=l
X\ 3n+5(n\ ,_3
+ Z 3 <3)z :
n=4
or

O

> n(n = 1)(n — DE[Cyle"

n=4

= 12 Z Z(E[Cp—l](p - I)Zp_z)((n — IJ)Z”—-”*I)

n=4 p=l
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1 & e
+§n§n(n —D(n—2)Bn+3+2)7"3

= 12()ElCe 11k - D252) (D20 + 1)
k=1 j=0
+i(n + D —1)(n—2)7"3

k=4

2 = n—3
+3 l;nm —1)(n —2)z

(Z E[Ci_1]1(k — 1)z~ 2) (i(} + l)zj)

k=1 =0
+ 4 -(—— z”)
w sl

In differential form

o _12C'(2) 24
C"'@) = 6BIC3) = =5 + (755 = 24) +(

Observing the initial conditions E[Cy] = E[C] = 0, E[C;] = 1, and E[C3] =
E[B] = %, we obtain the Euler differential equation

4
(1 —2)* _4)'

12C'(2) 24 N 4
1-22% (Q-2°5 UA-2%

C///(Z) — _ 12,

with boundary conditions C(0) = C’(0) = 0, C”(0) = 2. The homogeneous part,

12C'(z)

C///(Z) - (1 — Z)z

=0,

has (1 — z) ™" as solution for every A satisfying the characteristic equation
AA+ DA +2)— 124 =0.

The solutions of the characteristic equation are 2, 0, and —5. The homogeneous
solution is therefore

T )2+K2+K3(1—z)

where K|, K, K3 are three constants to be determined from the boundary condi-
tions. To develop the particular solution, we use a well-known operator method. In-
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troduce the operator

d3 12 d
=—0 = 5 X

dz3  (1-2?2 " dz’
A term a/(1 — z)? on the right-hand side of the functional equation

a
L{C()} = “(1—_-—59-

gives rise to the solution X (1 — z)™* when

_KAA+DA+2)-12KL  a
B (1 —z)*+3 T (1-2%

This is possible only if A =6 —3, K = a/[A(A+1)(A+2) —12A] = a/[(6 —3)(® —
2)(8 —1) - 12(6 — 3)], and 8 is not a root of the equation

L{K(1 ~2)7*)

h(6) gef ©-3)6-2)0-1)—-12(6—-3) =0, (8.4)

i.e., when 6 is not 5, 3, or —2. Hence, every term a/(1 — z)? on the right-hand side
with #(0) # O contributes to the solution the particular integral

a
h©)(1 — z7)0-3"

In our equation we have two terms matching this form: the term (T—iz—)?’ with 8 =4
and a = 4, and the term —12, with § = 0 and a = —12. The corresponding solutions
are respectively —%(1 — 27! and —%(1 -2

When 6 is a root of (8.4), we can again start with the formal requirement of a
solution with symbolic 6:

a a
£[ h©)(1 — 7)0-3 } 1=

and take derivatives with respect to 6 to obtain the form

9 a _ ah(®) 1 ah' (9)
-@ﬁ[(l —2)9*3} C(1-2)Y ln(l —z)+ (1 -2

At aroot of #(0) = 0, the last formal representation suggests a particular integral:

1
ﬁ[ (1 —z);l*3h’(9) 1n(1 - z)} T —az)e'

In our case, the only term involving a root of £(6) = 0 is 24/(1 — z)°, which
according to the argument just presented gives the particular integral 12/[7(1 —

2)?11n[1/(1 = 2)].
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Collecting contributions of homogeneous and particular solutions and matching
the initial conditions to determine the constants K|, K, and K3 in the homogeneous
solution, the complete solution to the differential equation is obtained:

12 1( 1 ) 207 2
n — —

7(1 —2)2 \1—z 2451 —=2)?2 31 -2
82(1 -z 21 —-23 9
J2d-o7 2-27 9

735 5 5

Extracting coefficients, we find the required averages.

Cl) =

Theorem 8.1 (Sedgewick, 1980). The average number of comparisons for MEDIAN-
OF-THREE QUICK SORT to sort n > 6 random keys is

12 627 12 1111
HCnl = ntlh = ogsn + 71— 255
12
~ —7—11 Inn, as n — oo.

The nature of the distributional equation for MEDIAN-OF-THREE QUICK
SORT is the same as that of standard QUICK SORT. Orders of magnitude of both
mean and variance are the same for both algorithms, only differing in the coefficients
of their respective leading terms. The same methods that were used in Chapter 7 can
be used again to establish the existence of a limit C for the centered and scaled
random variable

12
C* qgf Cn _ 71111172

n n

Subtracting off the asymptotic mean and scaling by n, the order of the standard de-
viation (as we did in QUICK SORT) gives us the analogous distributional equation
satisfied by the limit.

Theorem 8.2 (Risler, 1991). Let C); be the centered and scaled number of com-
parisons made by MEDIAN-OF-THREE QUICK SORT to sort n random keys. Then
C, converges in distribution to a limiting random variable C satisfying the equation

D

C = LC+ (1 —=L)C + g(L),

where C 2 C,and C, C and L are independent, with L having the density
frx) =6x(1 —x), for 0 <x <1,

and

2

P

12
gluy=1+ —7—11 Inu + —7—(1 —u)In(l — u).
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Recall that for standard QUICK SORT the limit law for P,/n is that of UNI-
FORM(0,1). For MEDIAN-OF-THREE QUICK SORT it humps at the middle. The
random variable L is the limit of P, /n.

A full expansion of Var[C,| may be possibly obtained at a great effort by the
methods of Kirschenhofer, Prodinger and Martinez (1997). Such a formula may turn
out to be several pages long. The leading term in that formula can be found directly
by taking the variance of both sides of the distributional equation of the limit law.
From the symmetry of L and | — L, and the identical distribution of C and C, and
from the various independencies,

Var[C| = E[C?] = 2E[C*[E[L?] + E[¢*(L)].

This yields

E[C?] = E[g?(L)] . f()l g% () fr (u) du _ 485 %ft_nz.

O 1-2E[L?Y] —2f01 u? fr (u)du 98 49

We conclude this section with a few remarks about the performance of MEDIAN-
OF-THREE QUICK SORT. Asymptotically MEDIAN-Of-THREE is slightly faster
than plain QUICK SORT, and is also more concentrated. Its asymptotic average of
%n In n improves over standard QUICK SORT’s 27 In n asymptotic average to sort n
elements, as n — oo. The improvement is about %14, and one would expect greater
savings for larger samples, i.e., for MEDIAN-OF-(2k + 1) QUICK SORT for £ > 1.
The methods of analysis that were used for MEDIAN-OF-THREE remain valid and
versatile tools for MEDIAN-OF-(2k + 1) QUICK SORT. The differential equation
for the generating function of averages will be of higher order, but it still is an Euler
differential equation and can be handled by the operator method discussed earlier in
the section.

Some versions of MEDIAN-OF-THREE QUICK SORT, like the Australian ver-
sion, try to take advantage of the comparisons made during the median-finding stage.
(Obvious generalizations to similar savings in MEDIAN-OF-(2k+ 1) QUICK SORT
are also possible improving variations on the same theme.) Sorting a file of n keys,
the relative ranking of two elements is already known with respect to the pivot after
median selection. The Australian version uses this partial information to reduce the
n — 1 comparisons needed by PARTITION to only n — 3 as two pivot comparisons
against data are unnecessary. It is shown in Kirschenhofer, Prodinger and Martinez
(1997) that this reduction affects only lower-order terms in the analysis.

8.2 THE LARGE SAMPLE ALGORITHM

The choice of a large sample is perhaps only interesting from a theoretical viewpoint.
With a properly chosen sample size QUICK SORT can be optimized to approach
asymptotically the theoretic bound of [Ign!] ~ nlgn on average. Let us suppose
the sample size is s = s(n), a yet-to-be chosen function of 7 in a way that optimizes
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the sampling approach to QUICK SORT. The algorithm proceeds in stages: A ran-
dom sample is chosen, and in a practicable implementation the sample is inserted
among the other data, partitioning them into segments. To facilitate the insertion of
the sample, the sample itself is sorted prior to its insertion.

Each segment is then sorted. Assume, as usual, that the data reside in a host array
A[l..n]. Any s positions of data following the random permutation model form a
random subset of size s in the sense that the ranks of the s items are equally likely
to be any of the (%) possible choices of s ranks. So, we might as well take the first s
positions residing in the segment A[1 .. s] as our sample.

Three stages are present in the algorithm:

(a) The sorting of the sample itself—assume this stage makes X, comparisons.
(b) The insertion of the sample—assume this stage makes Y, comparisons.
(c) Sorting the subfiles—assume this stage makes Z,, comparisons.

Let the total number of comparisons made by such a large-sample algorithm be C,,.
That is,

Cp=Xn + Y+ Zy.

Of course, the character of all these random variables will depend also on s. However,
we shall choose s as a suitable function of n, and there is no need to use a heavier
notation with s as a second subscript.

As we are interested in lowering the number of comparisons of QUICK SORT to
ideally approach the theoretic lower bound, we can use any good sorting algorithm
for stage (a). Such an algorithm should have the correct asymptotic order of magni-
tude, but not necessarily the correct coefficient. For example, we shall assume in the
following paragraphs that QUICK SORT itself is chosen for this purpose. QUICK
SORT makes about

2s5Ins (8.5)

to sort a large sample of size s, which is 21n2 =~ 1.386 as much as an optimal algo-
rithm would. A correct order, not necessarily having the asymptotic equivalent of an
optimal algorithm, may be sufficient for optimization because after all we are apply-
ing it to a sample, which is necessarily of a size that is an order of magnitude below
n. The analysis below shows that indeed QUICK SORT for the sample insertion still
leads to an optimized algorithm that we shall refer to as the large sample algorithm.
The sample size will be assumed to be s = o(n), but still grows to infinity as n — 00.

For the insertion stage, we may repeatedly use PARTITION, a building block of
QUICK SORT (the algorithm of Figure 7.2)—this algorithm makes n comparisons to
insert a pivot among n other elements. We can of course insert the sample elements
in whichever order. To speed up the process on average, we shall try to split files
in the middle. We first insert the sample’s median, followed by its two quartiles,
then octiles that are not among the preceding insertions, and so on. We shall call
this scheme the quantile scheme. This way, for example, on average, when the two
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quartiles are inserted none of them falls in an unduly long subfile, which is to be
contrasted with a case like inserting the sample according to its order (smallest key
in the sample, second smallest, third smallest, etc.). The contrast is exemplified in
Exercise 8.2.

Lemma 8.1 (Frazer and McKellar, 1970). Following the quantile scheme,

E(Y,] ~ (n —s)lgs.

Proof. Following the quantile scheme, the median of the sample will be inserted
first with n — s comparisons. This creates two subfiles of sizes N| and Ny, totaling to
N1+ N>z = n—s. In turn, the insertion of the lower quartile in N elements will make
N comparisons and the insertion of the upper quartile in Ny elements will make N,
comparisons. Combined, the insertion of the lower and upper quartiles requires n — s
comparisons, the next four octiles combined will require » — s comparisons, and so
forth. That is,

EY,]l=(h—s)+ -+ _i)j+Ln,s,
(llgs]—1) times

where L, s is a leftover quantity that corresponds to the insertion of the last s —
(2ngsJ — 1) pivots. Clearly, L, s <n —s. n

Suppose the sorted sample keys are K(1) < K(2)... < K(s). After the insertion
stage, there are N unsorted elements that are below Ky and appear in A[1 .. Ny],
there are N, elements that are between K (1) and K2y and appear in A[N1 +2.. N1+
N3 + 1], and so on. At the tail of the file there are N, unsorted keys that are larger
than K,y and appear in A[N; + ... 4+ N5 + s ..n] as illustrated in Figure 8.1. Of
course, the N;’s are random and dependent as they must satisfy

Ny + Nsp1 =n-—s,

the size of nonsample elements. QUICK SORT is applied to each of these s + 1
subarrays. We shall assume that QUICK SORT requires Q; comparison to sort an
array of size i. On the ith file QUICK SORT performs Qn, comparisons. Therefore
Z,, the number of comparisons to sort these s + 1 subarrays, is

D 1 2 +1)
2 2 of)+ 0+ 0L

Ni No Ngiq
s i o~ ——

L [ K | (Ko | - [ Kw ] l

Figure 8.1. Partitioning by a large sample.
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where, for each i and j, the random variables Ql(j ) 2 Q;, and for any two different

indexes j and k, the random variables QE{) and Qf,k) are independent for all i and v
by the independence of the action of the sorting algorithms in the subarrays.

Lemma 8.2 (Frazer and McKellar, 1970).

E[Z,] =2(n + D)(Hy41 — Hy41) — 2(n = 5).

Proof. QUICK SORT is used in the subarrays, giving an expected total number of
comparisons equal to

E(Z,] = E[Q{) ]+ + E[Q§ ] = (s + DE[Qw,],

by symmetry of the sizes of the (s + 1) subarrays. Then, by conditioning on the share
of the first subarray,

E(Zn] = (s +1) ) _E[Q;]Prob{N; = j).
j=0

According to the random permutation model, all (%) choices of ranks are equally
likely to appear in the sample. We can easily count the number of those choices that
are favorable to the event {N; = j}. For this event to happen, the key with rank
J + 1 must appear in the sample, and no key with smaller rank should appear in the
sample (if a key with a lower rank appears, N1 would have to be less than j). We
must choose the key ranked j + 1 in the sample and the remaining s — 1 keys in the
sample must come from a set of keys with ranks j + 2, ..., n, which can happen

in (”_'7_1) ways. That is, the probability in question is (”_j_l)/(';). For E[Q;] we

s—1 s—1
have an exact expression from Hoare’s theorem (Theorem 7.1). The issue now is only

a matter of combinatorial reduction of

s+ 1) %3 —j—1
E[z,,]=“: )ZE[Qﬂ("sil )
() =
A
: n=y —j-1
_ (s+1) Z[z(j+l)Hj—4j]<n sil )

()5

This formula collapses to the exact value of the lemma—this follows from straight-
forward combinatorial reductions and the following nontrivial combinatorial identity
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suggested by Knuth (1973):

[k I n+1
Z<m)":’1‘_7 -(". )<H~+l = fi)

k=0

This latter identity can be proved by induction as in Frazer and McKellar (1970).
]

The average number of comparisons for each of the three stages has been determined
in (8.5) and Lemmas 8.1 and 8.2. Putting the three averages together, we have an
asymptotic expression for the large-sample algorithm.

Theorem 8.3 (Frazer and McKellar, 1970). Let C,, be the number of comparisons
the large-sample algorithm (s — 00) makes to sort a random input of size n. This
random variable has the asymptotic average value

E[Ch] ~2sIns+ (n —s)lgs+2(n+ 1)(Hy+1 — Hyr1) —2(n —5).

We shall next appeal to a heuristic argument to optimize the sample size. It will
turn out that as simple as it is the heuristic gives a result that cannot be improved
asymptotically on grounds of the universal lower bound result on comparison-based
algorithms (Theorem 1.1). The heuristic, based on approximating the functions in-
volved, gives a value of s that drives the algorithm asymptotically down to nlgn
comparisons. Had we worked with the exact expression or sharper asymptotic esti-
mates, we could not have improved beyond the asymptotic equivalent n 1g n; perhaps
we could have only improved the lower-order terms (the rate of convergence to the
theoretic limit [1gn!] ~ nlgn).

An important consequence of Theorem 8.3 is that it enables us to choose an opti-
mal s.

Corollary 8.1 (Frazer and McKellar, 1970). When the large-sample algorithm is
applied to a large number of keys n — 00, s that satisfies the equation

slns =n

is an asymptotically optimal choice of the sample size as it asymptotically minimizes
the average number of comparisons over the three stages of the algorithm.

Proof. Consider an asymptotic equivalent of the expression of Theorem 8.3 when
harmonic numbers are replaced by their approximate value, when both n and s tend
to infinity:

¢(5) % 25 Ins + (n — 5)1gs + 2n(nn — Ins) — 2(n — $).



210 Sample Sort

Treat this approximate expression for some large » as a function of s. To minimize
g(s), set its derivative with respect to s equal to zero:

Ins n—s 2n
'(5) =4 +2Ins — — - —=0.
g(s) +2lns ln2+sln2 K 0

For large n, the solution of this equation is asymptotically equivalent to that of

Ins n 2n

— =0.
ln2+sln2 K

Collecting common factors, the latter equation is
slns = n.

Now, plugging the chosen s into the asymptotic expression g(s) of the average, we
obtain

E[C,] ~2sIns 4+ (slns —s)1gs + 2s(1ns)[ln(s Ins) — lns] —2slns + 2s
~ (slns —s)lgs + 2s(ns)(Ins +Inlns —Ins) + 2s
~s(ns)lgs

~nlgs.

However, because sIns ~ n, we also have lgs ~ lgn. The large sample algorithm
has the asymptotic equivalent » Ig n, which is the lower bound on sorting by compar-
isons. [ ]

The large sample algorithm “barely” approaches optimality—in the proof of Corol-
lary 8.1 we worked only with leading-order terms. The lower-order terms are almost
comparable to the leading order for any practical n. If we implement this algorithm,
the rate of approaching the asymptotic optimality will be extremely slow and »n will
have to be astronomically large for the leading terms both to stand out among all
lower-order terms, and to stand out compared with the large overhead incurred by
the various stages of the algorithm, especially the second stage, which in practice
may require delicate handling with large overhead.

EXERCISES

8.1 Let P, be the landing position of the pivot in MEDIAN-OF-THREE QUICK

SORT. Show that P,/n 2, L, where L is a random variable with density
6x(x — 1), forx <0< 1.
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8.2

In a large sample approach, the sample may be inserted within the rest of the
data according to several schemes. In the text we discussed the quantile scheme.
By contrast, suppose we insert the sample sequentially—for instance, in a given
array A[l .. n] of size n, we may first sort A[1 .. s] and use its s elements as our
sample, to be inserted according to the sequence A[1], A[2], ..., A[s]. What
is the number of comparisons required for the sample insertion by the usual
PARTITION procedure (the algorithm of Figure 7.2)? How does this sequential
scheme compare to the quantile scheme?
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Heap Sort

One can sort data by manipulating a suitable data structure. For example, one can
build a binary search tree and then sort the data by traversing the tree in a manner
that recursively visits the left subtree, then the root node, then the right subtree. Each
node of such a tree will have to carry two pointers. Yet another elegant data structure,
the heap, gives rise to a nice sorting routine. The heap is essentially a pointer-free
complete binary tree. The heap can be implemented within an array. By fixing a
convention of where the children of a node are in the array, one can move freely up
and down the tree by following that convention. In 1964 Williams described a top-
down heap construction whose worst case for n items is ® (n Inn). Williams derived
a sorting algorithm from the heap. Later that year, Floyd gave a bottom-up heap
construction algorithm that builds the heap in O (n) for any input of size ».

Roughly speaking, HEAP SORT works by creating a heap for n keys, then ma-
nipulating the root and restoring a heap of #n — 1 elements, and so on. The restoration
is facilitated by the fact that one does not restructure the heap from scratch, but from
the two subtrees of an existing heap, which have ample information about a large
partial order in the heap. One then encounters a sequence of heaps of diminishing
size.

HEAP SORT is efficient because:

(a) Each of the n keys is made to travel at most the height of a heap of size at
most n. The heaps encountered in the process have height that is at most Ig n,
thus achieving O (n In n) sorting for all inputs of size 7.

(b) The method works in situ.

The method definitely destroys the randomness after the first stage, which makes
probabilistic analysis rather convoluted.

9.1 THE HEAP

First, let us introduce the conceptual heap. The heap is a complete binary tree, la-
beled such that every node carries a label larger than the labels of all its descendants.
Figure 9.1 shows a conceptual heap.

212



The Heap 213

&b B @

s b d

Figure 9.1. A conceptual heap.

HEAP SORT is designed to work in situ on a data array, say A[l ..n]. Toward a
pointerless implementation of this tree, we adopt the convention that the children of
anode stored in A[7] (if they both exist) reside at A[2i] and A[2i + 1]. To avoid gaps
in the data representation, we also put an additional restriction on the admissible
shapes of complete binary trees, always favoring left children—if a node has only
one child, we choose to attach it as the left child. In other words, among the many
possible complete binary trees on n nodes, we choose the heap to be the one with all
the nodes at the highest level packed as far to the left as possible (see Figure 9.2).

For the rest of this chapter the term heap will refer to labeled trees meeting the
required definition of the conceptual heap, and having the triangular shape of a com-
plete binary tree with all the nodes at the highest level appearing as far to the left as
possible. This choice guarantees that the data of the heap will appear contiguously
in the first n position of the array, and that, for any “node” i, if 2i < n, then A[2{]
contains a key from the heap (the left child of node i), and A[2i + 1] contains a key
from the heap (the right child of node i); if 2i = n, node i has only a left child at
Al2i].

[

Figure 9.2. The admissible complete tree shape for a heap.
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In HEAP SORT the heap construction is only a preprocessing stage followed by
the data manipulation stage that actually sorts. Several good algorithms to construct
a heap are known. To organize n keys into a heap is a process that operates in ®(n)
according to these various algorithms. So, the more clever ones can only improve the
constant coefficient hidden in the ® (n) expression. In some other applications where
the heap is meant for its own sake the differentiation between heap construction al-
gorithms may be of paramount importance. However, in a sorting application, as we
know from the theoretical lower bound (Theorem 1.1), ordering n keys by compar-
isons within a heap will require §2(n In n); an intricate but efficient heap construction
algorithm will only improve the lower-order terms in the efficiency of HEAP SORT.
Therefore we shall not dwell for too long on the choice of a subtle heap construction
algorithm. We present below Floyd’s algorithm, one of the earliest and most intuitive
approaches to heap construction. It is the speed of repeated reconstruction of a heap
after deleting its root that can make a noticeable difference in the efficiency of HEAP
SORT.

Starting out with a (random) set of data in the array A[1 .. n], Floyd’s algorithm
works in a bottom-up fashion. It constructs the “shrubs” at the bottom of the heap
(heaps of two levels). After all these bottom subheaps are obtained, their roots are
combined via parent nodes to form larger subheaps on three levels, and so on.

For instance, to arrange the 10 keys

1 2 3 4 5 6 7 8 9 10
53 144159121125 (38|67 80|49 |72

we start with the last index (10 in this case), and decide to combine the array entry
(henceforth referred to interchangeably as a node) at the 5th position with its child at
position 10 into a complete tree on two nodes. We see that A[10] > A[S5]. To satisfy
the heap property we must exchange these two keys to obtain the first subheap in
our construction as shown in Figure 9.3(a). (In Figure 9.3 data are encircled and the
number outside a node is its index in the array.) We then retract the index of the
parent by one position to produce 4 as a new parent position, whose two children are
at positions 2 x 4 = 8 and 2 x 4 + 1 = 9. We exchange the data as necessary to

10 8 ¥ 6 7
29 49 39)
(a) (b) ©

Figure 9.3. A round of Floyd's algorithm constructing subtrees of height 1.



The Heap 215

arrange A[4] and its two children A[8] and A[9] as the subheap of Figure 9.3(b), that
is, put the largest of the three elements in the root of a complete tree of order 3 by
exchanging 21 and 80. Position 3 is the next parent; A[3] and its two children A[6]
and A[7] are arranged into the subheap of Figure 9.3(c). The status of the array now
is

1 2 3 4 5 6 7 8 9 10
53144 167 80|72 3859|2149 |25

Going down to position 2, its two children at positions 4 and 5 are already engaged
as roots of subheaps; all we need do is combine these subheaps with the root at 2,
to obtain a subheap of three levels. Regarding position 2 and all its descendents
before the rearrangement as a complete tree we have the tree of Figure 9.4(a), which
we want to reorganize as a heap. We observe here that only the root of the tree
of Figure 9.4(a) violates the heap labeling property. The two subtrees are already
heaps and we need only adjust the structure. One of the two subheaps has a root
(A[4] = 80) larger than A[2] = 44 and larger than the root of the other subheap;,
we promote 80 to be the root of the subheap rooted at A[2], and position 4 is a
candidate recipient of 44. Yet, 44 there would violate the heap property as the right
child A[9] = 49 > 44; we promote 49 to be at A[4], and now use its position to store
44, obtaining the heap of Figure 9.4(b).

We are down to the last parent. The array now is:

1 2 3 4 5 6 7 8 9 10
531806749 7213859]|21|44 725

and the last task is to combine the left heap rooted at position 2 (Figure 9.4(b)) with
the right heap rooted at position 3 (Figure 9.3(c)) with A[1] = 53 into a heap of size
10. As we did before, we promote appropriate nodes: 80 goes down to position A[1]
and 72 goes down to A[2], vacating A[5] for 53 (note that 25 should not move down

(a) (b)

Figure 9.4. (a) Two subtrees (heaps) of two levels each and a root. (b) Rearrangement into a heap of three
levels. The darkend edges are the path of maximal sons.
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o

Figure 9.5. The final heap.

as it is less than 53)—the present example is not an instance of worst-case behavior;
the root does not travel at every heap reconstruction all the way along a path of
maximal sons to replace a terminal node. Finally we obtain the heap of Figure 9.5.

The general idea is to work backwards with subheap roots at positions i =
ln/2],...,2,1.For general i < |n/2], we combine two subheaps rooted at A[2i]
and A[2i + 1] with the root at A[/], which may possibly violate the heap property.
In the algorithm implementation we save A[i] in a variable, say key. We trace a path
of maximal sons, always choosing the larger of the two children for a comparison
against key (we use j as the index of the larger child). An instance of the path of
maximal sons in a heap is shown by the darkened edges in the tree of Figure 9.4(a). If
the chosen child is larger than key, we promote it in the tree, and apply the operation
recursively in the subheap rooted at the chosen child. We repeat these promotions
until either we reach a node whose two children are smaller than key, or the doubling
of the position j to find children throws us out of bounds. In either case, that last
position is the place for key. It is clear that the operation of combining two subheaps
with a root node, possibly out of the heap property, to rebuild a heap is repeatedly
needed at various parent positions. The algorithm of Figure 9.6 is the core of Floyd’s
algorithm written in the form of a procedure that receives a parent at position i, and
the size s of the heap to be constructed. The procedure assumes that the subtree
rooted at A[2i] and A[2i + 1] are heaps, and it returns the array with the complete
subtree rooted at i as a heap. (As usual, the array A is accessed globally.)

The rest of Floyd’s algorithm is to use the heap rebuilding procedure repeatedly
atthe roots i = [5],...,2, 1 as in the code:

fori <« L%J downto 1 do
call RebuildHeap(i, n),
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procedure Rebuild Heap(i, s : integer):;
local /, key: integer;
begin
key < A[i];
Jj o« 2i;
while j < s do
begin
if (j <s)and (A[j] < A[j + 1]) then
J<—j+1
if key > A[/] then
begin
A[L$1] < key;
return;
end;
A[l41] < AL
J < 2J;
eng;
A[L£]] < key;
end;

Figure 9.6. The core of Floyd’s heap construction algorithm.

9.2 SORTING VIA A HEAP

Once a heap is available, sorting is a relatively easy matter. The heap construction
guarantees that its root is the largest datum. We can simply take it out and claim it
as the largest key. We do that by placing it at the last position by exchanging it with
A[n]; the largest key is now at its correct position in the array. What do we have then
in A[l..n — 1]? We simply have a complete tree whose right and left subtrees are
heaps; a small element came from position » and is now sitting at the root of the
whole tree. We need to adjust a labeled complete binary tree structure on n — 1 keys
whose two subtrees are heaps, and its root may be in violation of making the entire
aggregate A[l..n — 1] a heap. No new algorithm is required for this adjustment;
the procedural part of Floyd’s algorithm (Figure 9.6) is designed to do just that, if
invoked with the right parameters (root at 1 and size n — 1). After restoring a heap
in A[1..n — 1] we can extract the root; exchange it with A[n — 1], and the second
largest key is now at its correct position in the array. We then repeat the process on
A[l..n — 2], etc. The root of the complete tree to be adjusted is always 1, but at the
ith stage, the size of the subtree is n — i + 1, as in the algorithm in Figure 9.7.

An easy-to-establish upper bound on the number of data moves can be found.
The iteration dealing with a complete tree of size i looks for an insertion position
in a path starting at the root. The largest number of comparisons that the root key
needs to travel to its appropriate position in the heap is the height of the (extended)
complete tree on i nodes, which is [Ig(i + 1)]. In the worst case, insertion at the end
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for i < n downto 2 do
begin
call swap(A[1], A[i]);
call RebuildHeap(l,i — 1);
end;
Figure 9.7. HEAP SORT.

of such a path will occur at each iteration, giving

D Mg+ D1=) (gi+ 01) =lgn!+ O(n).

=2 i=2

The term Ig n! is the same quantity that appeared in the lower bound on the number
of comparisons of a worst-case optimal sort. It was analyzed by Stirling’s approxi-
mation and we found its leading term to be nlgn + O(n). So, the number of moves
during repeated calls to Rebuild Heap in the algorithm of Figure 9.7 cannot exceed
nlgn + O(n). In fact, the number of moves during the whole sorting routine does
not exceed n lgn + O (n), because the only additional moves come from the initial
execution of Floyd’s algorithm to obtain the first heap of size »n. This execution takes
®(n) time, as can be seen from the following argument. The terminal nodes of the
heap are at distance d, = [lgn] from the root. The first round of the bottom-up
construction builds trees of two levels. Recall that this is done in Floyd’s algorithm
by sliding large keys toward the root. In the worst case every node that is a parent of
a terminal node makes a move; there are at most 2% ~! nodes in the layer before last.
The second round that combines the two-level shrubs with roots to obtain three-level
shrubs can move any of the 2% =2 nodes at distance d, — 2 two levels to become
terminals, etc. The number of moves is bounded above by

Ix 271 42 002 43503 o g, x 1 =204 g, —2

< 2n.

What about comparisons? In Floyd’s algorithm moving a key involves two com-
parisons: one to find the larger of the two children, and one more to compare it with
the key we are relocating. In the initial phase of heap construction the worst-case
number of data comparisons is therefore at most 4n. The worst-case number of data
comparisons of the entire sort is asymptotic to 2n 1g n; not quite the theoretical lower
bound of n lgn.

This gap invited researchers to come up with improvements. Floyd (1964) himself
suggested in general terms that data comparisons be avoided till the last possible
minute by an algorithm that goes all the way along a path of maximal sons without
comparing the root to any of its members (Figure 9.4(a) illustrates in darkened edges
a path of maximal sons). Once the terminal node of the path of maximal sons is found
we reverse the direction and back up (halving the index by integer divisions) along
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the same path but this time comparing the key being inserted with the nodes on this
path, sliding them toward the leaves (the opposite action of Floyd’s algorithm) till the
insertion position is found. The idea was followed through in the work of Carlsson
(1987) and Wegener (1993), who established that at most %n lg n comparisons are
needed for any input of size » to this algorithm. )

Can we do better? An elegant idea of Gonnet and Munro (1986) saves the day.
One may observe that at a global level Floyd’s algorithm searches for a key in a tree.
The method of search chosen in Floyd’s algorithm is essentially a linear search along
a path of maximal sons of length Ign + O(1). Gonnet and Munro (1986) suggested
that a careful implementation of the algorithm (one that remembers the indexes of
the path of maximal sons) can improve the overall cost. The labels of that path are
in decreasing order. Unsuccessful binary search for a key in a sorted list of size i
takes 1gi + O(1) comparisons regardless of the destination gap that the new key
belongs to; one can search the sorted sublist on the path of maximal sons (of length
lg i+ O(1)) using binary search with lglg i+ O (1) comparisons. The structure of this
sorting algorithm is similar to the HEAP SORT we have already presented, except
that a complete path of maximal sons is found (a root-to-terminal node path), the
indexes of the path are stored (in an array, say), then binary search is performed on
the subarray corresponding to the nodes of the path of maximal sons to insert the
root key. When the heap’s size is i the number of comparisons made along the path
of maximal sons is the length of the path, 1gi + O(l), then binary search takes at
most Iglgi + O(1). The overall number of comparisons is bounded above by

n

> (lgi +1glgi + 0()) =nlgn +o(nlnn).
i=2

HEAP SORT based on binary search is a worst-case optimal comparison-based sort-
ing algorithm. The space needed to remember the sequence of indexes on the path of
maximal sons needs to hold at most 1 + Ig» indexes. So, this HEAP SORT can be
considered an in-situ sorting algorithm. Schaffer and Sedgewick (1993) have shown
that the standard version has n Ign, asymptotic average, too.

EXERCISES

9.1 In the text the data arrangement
53 44 59 21 25 38 67 80 49 72

was used for illustration. Find a permutation of these data that is worst possible
for Floyd’s algorithm on 10 keys.

9.2 Starting with random data (a random permutation of {1, ..., n}) Floyd’s al-
gorithm constructs a heap, then HEAP SORT exchanges the root A[1] with
A[n]. After this exchange, is the array A[l..n — 1] a random permutation of
{(I,...,n—1}2

9.3 How many heaps are possible for n distinct keys? (Hint: Write a recurrence
relation based on the structure of the subtrees.)
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Merge Sort

We have seen how the divide-and-conquer paradigm leads to the efficient sorting
algorithm QUICK SORT, which becomes particularly good when the data file is
split into two parts of about equal size at most recursive levels. For the abundance
of instances of data where this happens, the algorithm possesses ® (n Inn) behavior.
In the fewer instances when the recursion does not repeatedly split the file nearly
equally, the behavior may deteriorate to ® (n?).

MERGE SORT is designed to take advantage of the idea that equal splitting in the
divide-and-conquer paradigm gives good performance. Merging two sorted lists into
one larger list is a very straightforward process and suits several common types of
data structures like arrays and linked lists. MERGE SORT is a divide-and-conquer
algorithm, recursive in its standard form, designed especially to observe that the
segment of the file being sorted is split into two “halves” of sizes that are as close as
they can be.! If at some stage the subfile considered is of length n, MERGE SORT
splits it in a top-down fashion into two files of sizes [n/2] and [n/2], then each
subfile is sorted recursively. This splitting is continued recursively until small files
of size 1 are reached; these are already sorted. The algorithm then enters a phase
of merging sorted sublists working from the ground up—merging the sorted small
clusters into bigger and bigger clusters until the whole file is sorted.

A bottom-up version avoiding recursion will also be discussed. This bottom-up
approach does not lead to any noticeable difference as the analysis will show. Both
versions of the algorithm are O (n In n) for all inputs. The only criticism that MERGE
SORT algorithms may receive is that they are usually not in-situ. To sort » items in a
data structure, a secondary data structure of the same size must be allocated in most
standard merging algorithms.

10.1 MERGING SORTED LISTS

There are several ways to merge two sorted lists of data with sizes m and n. Without
loss of generality we shall assume that m < n, for we can always rename the vari-
ables denoting the sizes. We shall call a merging algorithm MERGE. Since MERGE

"When a file of size n is split in two parts of sizes [n/2] and |n/2], the two parts are of the exact
same sizes when n is even, or differ in size by | when n is odd. The proportion of file keys in either part
is asymptotic to 1/2, and we shall liberally call the two parts of the split the two halves even when their
sizes are not equal.

220
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SORT is designed to optimize the splitting of data in the middle of a list, order data in
each half, then merge the resulting two sorted halves, we shall later use MERGE on
two sorted lists of sizes differing by at most 1. So, we shall focus in our presentation
on merging algorithms that deal with two lists of sizes differing by at most 1. More-
over, for the purpose of sorting by merging, MERGE SORT will need to merge two
lists residing in two different portions of the same host data structure. Any general
MERGE procedure can be easily specialized to the needs of MERGE SORT.

We shall present the intuitive LINEAR MERGE algorithm, a rather simplistic,
yet efficient merging algorithm. Other MERGE algorithms may be devised to pursue
goals other than simplicity. For example, a MERGE algorithm may be sought to
achieve merging in-situ.

As simple as it is, we shall see that LINEAR MERGE is indeed worst-case optimal
for the purpose of MERGE SORT. Therefore in later sections we shall restrict the
presentation of MERGE SORT and its analysis to a variation that uses LINEAR
MERGE.

By way of contrast, we shall briefly sketch two other merging algorithms, BI-
NARY MERGE and the HWANG-LIN algorithm. At first sight, they may appear
to provide efficiency over LINEAR MERGE. A closer look shows, however, that
neither has any real advantage over LINEAR MERGE in conjunction with MERGE
SORT. They may offer an advantage in unbalanced merging (the merging of two lists
with substantially different sizes), a situation that MERGE SORT avoids by design;
MERGE SORT divides a given list into two sorted halves before it merges them.

To argue that the simplistic LINEAR MERGE is indeed a good merging algorithm
for the relevant probability models, let us take up the theoretical issue of absolute
bounds on MERGE. Introduce the variable S,,,, the number of comparisons suffi-
cient to always merge two sorted lists of sizes m and n. This is the usual min-max
definition for worst-case optimality considerations—S,,, is the number of compar-
isons the best MERGE algorithm would make on its worst-case pair of sorted lists of
sizes m and n.

Let us first consider general bounds on merging to see if merging algorithms
other than LINEAR MERGE would be worthwhile. We shall shortly see in Subsec-
tion 10.1.1 that LINEAR MERGE takes at most m + n — 1 comparisons on any two
sorted lists of the sizes considered; this provides us with an obvious upper bound. A
not-too-sharp lower bound follows from a decision tree argument similar to the one
we used to find the theoretical lower bound on comparison-based sorting (by con-
trast, fortunately there the bound was sharp). Suppose the elements of the first sorted
list are

X <Xo<...<Xm,
and those of the second sorted list are
Yl <Y2<...<Yn.

The goal of an optimal MERGE algorithm is to determine the total order in the data
set {X|,...,Xm) U{Y],...,Y,}. We assume the entire data collection consists of
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distinct elements (a stipulation that matches the random permutation model when
all the elements of the whole data set are sampled from a continuous distribution).
Construct a decision tree to model the action of the optimal MERGE algorithm in the

0
usual way, with a node labeled by the query X; <Y ;j if it corresponds in the optimal
MERGE algorithm to a comparison between X; and Y;. At the top of the tree, we
must find leaves labeled with various total orders. For example, one possible input
data set has all X’s less than all ¥’s. Our optimal MERGE algorithm must ask a
sufficient number of questions climbing along a path in the decision tree terminating
at a leaf labeled

X1 Xo ... Xpn Y1 b ... Y,

To count the number of different orders in an input of X’s and ¥’s such that the
X’s are sorted among themselves and the Y’s are sorted among themselves, let us
start with unconstrained permutations. There are (m + n)! permutations of m + n
distinct keys. All m! permutations of the X’s within will give us the same sorted list
of X’s, and all n! permutations of ¥’s will give us the same sorted list of ¥’s. In other
words, there are (n +m)!/(m!n!) = ("7™) total orders that respect the known partial
order.

Our algorithm must be prepared to discover every single total order. There are
(m;: ”) leaves in the decision tree. A binary tree with this many leaves has height at

m
comparisons that must be made to discover the total order in our data set. Putting the
two bounds together, we see that

(1g(m+”>1 < Spn<m4n—1.
m

MERGE SORT's strategy splits lists at the middle as discussed. We are interested
particularly in bounds for the case where the two lists differ in size by at most one.
By Stirling’s approximation for factorials in the case where m and n are replaced
with {n/2] and [n/27, we obtain the lower bound

least {lg ('"+”)-l (see Proposition 1.1), giving us a lower bound on the number of

1
Stnj2),tn21 2 0 — 7 lgn+ O(1).

10.1.1 LINEAR MERGE

LINEAR MERGE is one of the simplest ways of merging two sorted lists. It thinks
in terms of laying the two sorted lists down as two horizontal strings of data and
aligning their left edges. LINEAR MERGE works in two stages—the comparison
stage followed by the rail transfer stage. LINEAR MERGE begins the comparison
stage by comparing the first element in each list (the leftmost in each), then transfers
the smaller of the two to a new list. Each of the two numbers compared is the smallest
in its list because each list is assumed sorted. Their minimum is therefore the absolute
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minimum in the entire collection of data (the set formed by the union of the two sets
of data). The second datum in the list from which the element has been transferred
is now promoted to be the first in that list (smallest among what is left in that list).
This is the key to look at next; we compare it with the smallest element of the other
list and this will be the second time this latter element is involved in a comparison.
We transfer the smaller of the two, which must be the second smallest in the data set,
to the recipient list. We continue in this fashion until one of the lists is exhausted.
What is left in the other list is a “tail” collection of elements (possibly only one)
in increasing order from left to right and all the elements in this tail are larger than
all elements in the recipient list. The tail transfer stage is then executed by moving
or copying the elements of the tail in order, starting with their smallest (leftmost)
until the tail is exhausted. Transferring an element does not involve any comparisons
and is implemented by operations like copying or assignments, which are generally
cheaper than comparisons. Figure 10.1 illustrates the merging of two lists with the
arrows indicating the next element to go out to the recipient list and Figure 10.2
gives the formal code of an implementation Linear Merge of the merging algorithm
adapted to the specific needs of MERGE SORT. The implementation Linear Merge

Progress of the Recipient List Progress of the Two Lists

L 121718
1316 1923 25

" 17 18
T~ 1316192325
13 17 18
T~ 16192325
17 18
-
12 13 16 1923 25
18
el
121316 17 1993 25
121316 17 18 1935

1213161718 1923 25

Figure 10.1. Merging two sorted lists by LINEAR MERGE.
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procedure Linear Merge(£, u: integer);
local i, j, k, mid: integer;
C: array[!l .. n] of integer,
begin
k < 1;
mid <« L%L—ZJ,
[ < ¢
Jj < mid + 1;
while (i <mid) and (j < u) do
begin
if A[i] < A[j] then
begin
Clk] « A[];
I — 141
end;
else begin
Clk] < Alj];
J<J+ 1
end;
k <~k +1;
end;
{transfer the tail}
while i < mid do
begin
Clk] < Ali];
I «—1i+1;
k<~ k+1;
end;
while j < u do
begin
Clk]l < A[jL;
J<Jj+1
k <—k+1,;
end;
{transfer sorted segment back into A}
for j — 1tok—1do
Al +j - 11 < C[j];
end;

Figure 10.2. An algorithm for merging sorted lists.

assumes the two lists reside in the stretch A[£ .. u] of the host array A[l ..n]: The
first sorted list is in the stretch A[£.. [(£ + u)/2]], the second sorted list is in the
stretch A[[(£ +u)/2]) + 1..u].

In a practical implementation of the data by an array or a linked list, the promotion
of an element to the top of a list is done simply by advancing an index or changing
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a pointer. In the case of arrays, two index variables are maintained to indicate the
“tops” of the two lists. When an index is down to position ;j in one list of size s,
we consider A[l..j — 1], that is, the elements up to position ; — I, to have been
processed and copied to the recipient list at the right places. The subarray A[j .. s] is
in sorted order.

We analyze M,,,, LINEAR MERGE’s number of comparisons to merge the two
lists, by way of L, the number of “leftover” elements that are transferred from the
tail of one of the two lists in the closing stage of the merging algorithm. Since every
element in the recipient list up to the moment before transferring the tail corresponds
to one comparison, we have

Muyn =m+n — Ly,.

One can construct many instances of two lists of sizes m < n with L,,, = 1, as well
as many other instances with L, = n; see Exercises 10.1 and 10.2. The range of
the number of comparisons of LINEAR MERGE 1is therefore

We are assuming the ranks of the input to MERGE SORT are random permuta-
tions. Dividing such an input stream of data into two parts of sizes m and n creates
parts with the relative ranks within each part being a random permutation of its re-
spective size. Ranked among themselves, the data ranks of the first part are a random
permutation of {1, ..., m}; ranked among themselves, the data ranks of the second
part are a random permutation of {1, ..., n — m}. No matter what ranks we have in
each list, the two lists will be sorted before they are merged. All (n + m)! permuta-
tions with the same set of first m absolute ranks (and consequently the same set of
n — m ranks in the second part), will give exactly the same two sorted lists before
they are merged. It is a combination counting situation: All (” :an) subsets of absolute
ranks are equally likely to appear in the first list.

To have leftover of size at least £ > 1, we can put the elements with ranks m +n —
£+1, ..., m+n at the tail of either of the two lists. If we place them at the tail of the
second list, we can choose any of m ranks among the remaining m + n — £ ranks to
appear in the first list (in sorted order, of course); the remaining n — £ ranks are then
added to the second list in sorted order in front of the tail. This construction can be

done in ("*" ~%) ways; by a symmetric argument we can construct two sorted lists

m+n—~

M ) ways with the first list holding the largest £ elements at

(2

Prob{L,, > ¢} = . (10.1)

(")

of sizes m and n in (
its tail. Therefore,
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We can find the mean of L,,, from a classical identity involving the tail probabil-
ities:

o0
E[Lmn] =Y Prob{Ly, > £}.
£=0

The mean value of the length of the leftover tail is therefore

o0
E[Lnn] = Y Prob{L,, > ¢}
=1

(m+n—£> (m—i—n—!i)
m-+n +
:Z m n
= m-+n
m
1 {nl-}znj—l (k) m-+n—1 (k):l
_ 3
m-+n = \m = n
m
(m+n m+n
+
_ m-+1 n+1
o m-+n
m
. n + m
T m4+1 n+1l

Therefore, the number of comparisons to merge sorted lists (of random ranks) of
sizes m and n by LINEAR MERGE is on average

E[an] =m-+n-— E[Lmn]
n m

:m+n_m+1_n+1~

(10.2)

By a similar calculation one finds the variance of M,,, from another classical
identity for the second factorial moment. The calculation involves similar combina-
torial reductions as those used for the mean:

E[Lmn(Lmn — 1)] =2 £Prob{Ly, > £}
{=0
_ 2m(m—1) + 2n(n—1)
Cm+Dr+2) (m+Dm+2)

The variance of M,,,, now follows from
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Var[{M,,,] = Var[m 4+ n — L,;,]

= Var[Lpy,]
= E[Lmn(Lmn - 1)] + E[Lnn] — Ezlen]
2m(im — 1) 2n(n —1) n m

:(n+1)(n+2) (m+1)(m+2)+m+1+n+1

n m \2
Gt o)
m+1 n+1
In a typical application with MERGE SORT, LINEAR MERGE is used to merge the
two halves of a list of size n. The random variable that will arise in that context is
Mryn/21,1n/2)- Note that here n — M1y/21,1n/2) = Lin/21,(n/2) is narrowly concen-
trated. For instance, from the above calculations

E|n — Min/21,10/2)] = E[Lny21,1n/21] < 2.

and by similar calculations we find

E!” — Mrn/21,1n/2) !2 = E[L%H/ZLLnﬂJ] <6,
and
El” — Min21,(n/2 |3 < 26.

This concentration will help us later establish a Gaussian law for MERGE SORT
under LINEAR MERGE.

10.1.2 BINARY MERGE

The BINARY MERGE algorithm attempts to take advantage of the efficiency of
binary searching. Assuming again our two disjoint lists are X' = (X, X5, ..., X,),
and Y = (Y1, Y2, -+, Yy,), with

Xi<Xp<-o < Xnm,
and
Yi<Y < - <Yy,

and without loss of generality assuming m < n, BINARY MERGE proceeds by first
searching for X,, within ) using the standard BINARY SEARCH algorithm. When
a position ¢ is found such that ¥; < X < Yig1 < -+ < Yy, the data stretch
Xm,Yit1, ..., Yy, is transferred to the sorted merged output. We then do the same
with X,,_1 and the remainder of the Y’s. This time, a data segment, say X,,_| <
Yi < ... <Y,is transferred to the output, and can be appended in front of the
first data segment, because we are already assured that all these elements are smaller
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than what is already out there from the first stage. The algorithm proceeds in this
fashion until one of the two lists is exhausted. After one list is exhausted, the keys
remaining in the other are smaller than everything already on the output list; the
algorithm transfers that tail appending it at the beginning of the output list.

Boundary interpretations are important. For instance, as usual, we may define
Y; < ... < Y;asanempty subset of ) that does not exist if i > j. Put together with
all minor details and boundary considerations, the algorithm is quite simple and can
be easily coded.

This algorithm performs poorly in the min-max sense. The worst-case scenario is
when X; > Y,. In this case, the size of the ) list is never diminished, and at the
ith stage BINARY MERGE performs BINARY SEARCH to locate a position for
Xm—i+1 among the full ) list; every insertion will fall at the bottom of ), requiring
BINARY SEARCH to make at least lgn + O(1) comparisons. In the worst case,
BINARY MERGE performs about

mlgn

comparisons.

Specifically, if used with MERGE SORT on n keys (m = [n/2]), BINARY
MERGE will have a number of comparisons asymptotically equal to

: 1
—nlgn,
2 g
which for large n is higher than n — 1, LINEAR MERGE’s worst-case number
of comparisons. LINEAR MERGE seems to offer more advantages when used by
MERGE SORT.

10.1.3 The HWANG-LIN Merging Algorithm

The HWANG-LIN merging algorithm is basically a generalization of BINARY
MERGE. It considers a general probe position as the starting point of attack instead
of BINARY MERGE’s middle point. Adding this liberty in choosing the splitting
point, the HWANG-LIN algorithm then considers a point that optimizes the number
of comparisons for uniform data.

Again, assume our two disjoint lists are X = (X|,X2,...,Xy), and J =
(Y|, Y. ..., Yy), with

X <Xp<- <Xy,
and
Yl <Y2<--'<Y,,,

and without loss of generality assume m < n. ‘
Let us consider the data aspects that make BINARY MERGE not as good as
it promises to be. Had we started with a random key and a random list, BINARY
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MERGE could not be excelled. However, our situation is not exactly that. Consider,
for instance, the particular case of two equal size lists (im = n). BINARY MERGE
begins with finding a position for X, in the ) list. The key X, is the largest among
m keys sampled from a continuous distribution. But so is Y,,. These two extremal
keys are equidistributed. On average, one expects X, to fall close to ¥}, in the ) list
rather than the middle. Contrary to BINARY MERGE, the HWANG-LIN algorithm
favors a position close to the tail of the ) list as a starting point of attack.

Consider uniform data: The &’ list consists of m randomly picked data points from
the UNIFORM(O0,1) distribution, and the Y list consists of rn randomly picked data
points from the UNIFORM(0,1) distribution. What point of attack is suitable as a
start for the more general situation of two lists of arbitrary sizes? On average, the m
points of X" split the unit interval into m + 1 equal intervals, of length 1/(m + 1)
each. The jth order statistic lies on average at j/(m + 1), and so the largest key in
the X list lies on average at m/(m + 1). Similarly, the jth order statistic in the )/
list lies on average at j/(n + 1). The question is, For large list sizes (both m and n
tend to oo in such a way that n = o(mz)), which order statistic Y; in the ) list is on
average closest to X,,? We determine this by asymptotically solving the equation

Jj . m
n+l m+1
This gives us the position
. n+1
J_—1+m‘1

o= o)

n n
m m

n
~n——-+1.
m

For instance, if m = n — 00, the approximate solution suggests n as the starting
point of attack. With high probability X,, will be close to Y, whereas if m = %n —
00, the approximate solution suggests n — 1 as a starting point of attack.

Only for aesthetic reasons, the HWANG-LIN algorithm uses an exponential rep-
resentation for the ratio n/m. As a power of 2, this ratio is

for the « that satisfies
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Of course, for algorithmic purposes, the “position” ; must be an integer; the
HWANG-LIN algorithm takes the position

j=n-=2E41.
The HWANG-LIN merging algorithm proceeds in stages as follows:

* Stage 1: Leta = [lg(n/m)] and define j =n — 2% 4 1.

* Stage 2: Compare X,, with ¥;. If X,, < Y;, move the data segment ¥; <
- < Y, to the output list. What is left to be done is to merge the X" list
among theset ¥} < -+ < Y;_j.If, on the other hand, X,, > Y;, merge X,,
into Y4y < --- < Y, by BINARY MERGE. Suppose the BINARY SEARCH
stage of BINARY MERGE identifies position &, such that Y, _; < X,,, < 7.
Move the data stretch X, < Y < --- < Y, to the output list. We are left with
the problem of merging X; < -+ < Xj,—1into ¥ < -+ < Yg—J.

Stage 3: Redefine m as the size of the smaller of the two remaining lists and n as
the size of the larger, call the members of the shorter list X’s and the elements
of the longer Y’s, then go back to invoke Stage 1 recursively on the remaining
lists.

The HWANG-LIN algorithm is designed with the unbalanced cases of BINARY
MERGE in mind. It senses when BINARY MERGE is about to become inefficient
and remedies that by reversing the roles of the two lists, so that big chunks from
the longer list are moved to the output list. Otherwise, the HWANG-LIN algorithm
simply lets BINARY MERGE run its course. The HWANG-LIN algorithm is thus
effective when there is a large difference between the two list sizes (which explains
the choice of «). For the purpose of MERGE SORT, we need only consider the cases
m = |n/2]. For these cases of two equal halves, « = 0, and the HWANG-LIN
algorithm’s worst-case number of comparisons is identical to LINEAR MERGE’s
number of comparisons in the worst case.

10.2 THE MERGE SORT ALGORITHM

The MERGE SORT algorithm is a recursive bookkeeper. We shall discuss the algo-
rithm in the context of arrays. Adaptation to linked lists is a straightforward exercise.
Given the array A[1 .. n], MERGE SORT divides it into two “halves,” of sizes [n/2]
and |n/2], which are sorted recursively by MERGE SORT. Subsequent levels of
recursion further divide these two halves into smaller subarrays until arrays of size
1 are reached. Of course, arrays of size | are already sorted and nothing needs to
be done for these. The algorithm then returns from the ground up building sorted
segments of increasing sizes starting from the singletons.

The general step handles a stretch A[£ .. u], extending between the limits £ and u.
by dividing it at the “middle” position [ (¢ +u)/2]. The implementation MergeSort



The Merge Sort Algorithm 231

procedure MergeSort (¢, u: integer);

begin
if ¢ < u then
begin
call Mergesort (¢, —'—5——_‘
call MergeSort (| &4 | + 1
call LinearMerge(£, u);
end;
end;

Figure 10.3. The MERGE SORT algorithm.

of Figure 10.3 assumes that the host array A is accessed globally and calls the merg-
ing scheme Linear Merge of Figure 10.2. A recursive chain of calls is begun by the
external call

call MergeSort(1, n);

Figure 10.4 illustrates the step-by-step effects of MergeSort on an input of size 7.
The recursive form MergeSort naturally gives rise to a recurrence equation

for the number of comparisons it makes. Letting the number of comparisons that

MergeSort makes to sort a random list of n keys be C,;, we have the recurrence

D ~
Cn = Crpy21+Cluj2) + Yo, (10.3)

where, for each j, C j 2 Cj, and the random variable Y, is the random number of
comparisons needed for merging two sorted lists of random ranks and of sizes [n/2]
and [n/2]; the families {C}, {C‘j}, {Y;} are independent. The random variable Y, is
M\ /2],n/2) Of the discussion of merging in Section 10.1.1.

Like HEAP SORT, the MERGE SORT algorithm is a particularly important al-
gorithm from the theoretical point of view as it gives a benchmark for the worst
case that other competitors must race against. For any input of size n, MERGE
SORT’s number of comparisons is upper bounded by O(nlnn), as will be proved
in the next theorem. This order, being also the order of the worst-case number of
comparisons for any sorting algorithm performing on n keys (Theorem 1.1), renders
MERGE SORT worst-case optimal. In the next theorem we derive the worst-case
number of comparisons for the particular implementation MergeSort. Other vari-
ants of MERGE SORT may slightly improve the lower-order terms, but of course
not the overall worst-case order, as it cannot be improved.

The fractional part of a number x is denoted as usual by {x}, which is a saw-
tooth function of x. A typical recurrence for a property associated with MERGE
SORT involves ceils and floors resulting from the possibility of partitioning into
nonequal “halves.” A general technique for solving these recurrences is discussed in
Section 1.11.4 and will be applied to a variety of similar recurrences with ceils and
tloors, like those recurrences for the best case, average, and variance of the number of
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37 13 22 54 29 70 46
A
37 13 22 54 29 70 46
¥ X
37 13 22 54
¥ R
37 13
13 37
22 54
22 54
13 22 37 54
29 70 46
¥ X
29 70
29 70
29 46 70
13 22 29 37 46 54 70

Figure 10.4. Operation of MergeSort on seven items of data.

Merge Sort
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comparisons of MergeSort. But first, we handle the worst case by more elementary
standard methods.

Theorem 10.1 Let W), be the worst-case number of comparisons performed by
MergeSort on any input of size n. Then

W, = n[lgn] — 278" 4
=nlgn+né(gn) +1.
where § is the periodic function

S(x) =1— {x} =211

Proof. To have MergeSort exercise its maximal number of comparisons on an in-
put of size n, each side of the recursion is forced to perform its maximal number of
comparisons for its respective size: The left recursion will perform Wy, 71 and the
right recursion will perform W, 2| comparisons. Moreover, the MERGE stage will
experience n — 1 comparisons, its maximal number of comparisons for merging the
two halves, by a particular choice of interleaved ranks that go into each half (Exer-
cise 10.2). Whence, the worst-case recurrence is similar to (10.3) when each term is
replaced by its maximal possible value:

Wy = Wina) + Winja) +n— 1, (10.4)

To solve this type of recurrence, we may first take a guess at what the answer is
like without the clumsy ceils and floors. Let us consider n = 2K so that every level
of recursion handles a list of length that is an exact power of 2, too. For this special
form of n:

Wy=n-—1 +2Wn/2

=n = 1+2[5 = 1 +2W,4]

_—:(n—l)+(n—2)+4[%—1+2Wn/8]

=(n—D+@m=2+0—+ -+ (=2 +2*W, o,

with boundary condition W« = W; = 0 (no comparisons are needed to sort one
element). Thus

Wy =nk —2K4+1=nlgn—218" +1.

Fortunately this form, fudged by ceiling all lgn terms, gives a solution to the
recurrence for general n, as well, as can be easily verified (see Exercise 10.4).
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The second form in the theorem explicitly reflects the periodic fluctuations. This
form follows directly for n = 2¥, in which case the fractional part of Ign is iden-
tically 0, and 8(Ign) = —1. For n not of the form 2, the substitution [Ign] =
lgn + 1 — {lgn} gives the result. |

The function {lgn} appears in the statement of the worst-case number of com-
parisons introducing periodic fluctuations in the worst-case behavior of MergeSort.
These fluctuations are in the function §(Ig n). The function né(lg n) fluctuates be-
tween —n and —(0.915716564 . . .)n, and the lower-order term is O(n). Interpolat-
ing n to the positive real line x, and §(lg x) to be its real continuation é(x), the graph
of §(x), as shown in Figure 10.5, is an oscillating function. So, the graph of W(x),
the real continuation of W (n), takes the form of a rising function with the general
shape of the function x 1gx and small fluctuations about it. The relative magnitude
of the fluctuations, compared to the nonperiodic rising function x 1gx, are not too
pronounced, because the fluctuations appear in the lower-order linear term, and will
not be seen unless W(x) is drawn with a very magnified vertical scale.

Moving from the easier case n = 2¥, for some &, to the case of general n was a
matter of a good guess here. This transition is a lot more complicated for the average-
case recurrence, the variance, and several other MERGE SORT analyses. A more
structured approach that involves no such guessing is developed in Section 1.11.4.

The general form (10.4) of the recurrence of the worst-case number of compar-
isons reappears in the analysis of several other characteristics of MERGE SORT’s
number of comparisons such as, for example, the average number of comparisons.
The term n — 1 in (10.4) will be replaced by more complicated expressions for these
other analyses. For example, the recurrence for the average number of comparisons

~0.92- | {\

| |
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2000 4000 6000 8000 10000
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Figure 10.5. Oscillation in the worst-case behavior of MERGE SORT.
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in the implementation MergeSort involves the same kind of ceils and floors in the
recursive terms, and the nonrecursive term is E[Y},] by specializing (10.2) to the spe-
cific situation of middle splitting. MergeSort splits the file to be sorted into two
halves, and

Yo = Mins2).(nj21 =1 = Lins2). (/215 (10.5)
with an average value

2 e
n/2)+1  [n/21+1

E[Y.] = E[M,/2) . (n21] =n (10.6)

A technique for handling these recurrences by integral transform methods, due to
Flajolet and Golin (1994), is discussed in Section 1.11.4. The technique provides a
paradigm for asymptotically solving recurrences with ceils and floors of the general
form

an = arp/2] + alns2) + bn, (10.7)

where b,, is a nonrecursive term that depends on n.

Theorem 10.2 (Flajolet and Golin, 1994). The average number of comparisons
made by MergeSort to sort a random input of size n is

E[C,] =nlgn+nn(n) + O(1),

where 1 is a periodic function given by the Fourier expansion

o0
n(u) = by + Z bre?*mu

k=-—00
k0
with
=1L _ 2y : In(T) ~ ~1.24815204 ...,
2 1n2 In2 — (m+ 1)(m +2) 2m
and

= 1+ & (xk)
k(G +1) In2’

with xy = 2rik/1In2, and

= Z:‘I (m + 1)(m +2) <<2m + 1) <2m>“)'
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Proof. In the implementation MergeSort, the merging stage operates on two sorted
lists of random ranks and of sizes [n/27 and [n/2]. As discussed before, the average
value of Linear Merge’s number of comparisons is

(n/2] Ln/2]

E”%]zn"puu—%l—fmn]+1‘

Then on average, MergeSort will make

2 2
/2] +1  [nj21+1

E[Cn] = E[Cpny21] + E[Cnj2)] + 1

comparisons. According to Theorem 1.6, under the initial condition E[C] = 0, the
last recurrence has the solution

3+ico K
n (s)n
E[C,] = — !

= - —ds,
270 J3—jo S(s+ 1)1 —279%)

with n(s) = Y 0o | A v E[Y,]/n°. We have

E[V,] = 2 . LN S S
=2n— —— — =2n— ,
2n n+1 n+1 n+1
and
n+1 n
E[Y =2 1— — =2n—1+ .
[¥21+1] nt n+1 (m+1)+1 " n+2
So,

A v E[Y2,] = (E[Y2,41] — E[Y2,) — (E[Y2,] — E[Y2,-1])
= E[Y2,41] — 2E[Y2,] + E[Y2,-1]
2
S+ D +2)

Similar algebraic manipulation for odd indexes also shows that

2 —
(n+ DHn+2) -

AvVE[Yy+]= — A vE[T2,].

The Dirichlet transform of the second-order differences is

AvE[Y] AvEr] AvE[r3]
1.8‘ 25‘ + 3.&' +

AvEIY)] AVE] AvEY) AVER
28 - 3 + 45 58

n(s) =

=AvE[Y]+
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]
26 2k + 1)

= E[Y2| - 21|+ E[Y| + )_( ) & VELY 2]
k=1

> | 1 2
=] — .
+ ;( 2k + 1)$ (2/\')-*') (k+ Dk +2)
Let 1 (s) be defined as the sum in the last line. That is, n(s) = 1 + ¥ (s), and

34700 1 NA
E[Cn] = "’:l‘— ( * 1//(3))” — ds
2w J3_i00 S(S+ DA —27%)
n 3t n® ds + n /3‘“00 v(s)n®
— s
21 J3_ i S(s 4+ 1)(1 —=27%) 2w J3—jo S(s 4+ DA =279)

ds

def R
= 5—7[11 + D).
i

As discussed in Subsection 1.11.4, both /| and I, are to be evaluated by residue
computation. In the domain of convergence MNs > 1, ¥ (s) is an entire function, with
no singularities. The equation

1-27°=0

has solutions at x; = 2mwik/In2, fork =0, 1, £2,.... The integrands of both /;
and I, have poles at x_; = —1, and xx, for k = 0, =1, £2, ... . The poles x_; and
xk. k = £1,+2, ..., are all simple poles, whereas xg is a double pole, and will give
the dominant terms.

At its double pole o the integrand of /| has the residue

1 1
&y T2

and at x_; its residue is 1/n. At the imaginary pole xx, k # 0, the integrand of I;
has a residue

Xk

ke + 1) In2’

At its double pole xg, the integrand of /5 has the residue

2 X ] 2% + 1
E:L;l(k+l)(k+2)ln< 2% )

At its simple pole x_1, the integrand of I, has a residue of 1/n. At the imaginary
pole xx, k # 0, the integrand of I, has a residue
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n*kr (§k)
Xk + 112

Collecting contributions of all poles, the theorem follows. ]

Variance calculation is very similar in spirit. Taking the variance of the distribu-
tional equation (10.3),

Var[C,] = Var[Cy,/21] + Var[C|,2|] + Var[Y,].

The variance operator was applied to each individual term on the right, as these three
variables are independent. Application of Theorem 1.6 along the lines and residue
calculation illustrated in the proof of Theorem 1.6 gives the variance as stated next.
As usual, residue computations are more involved for the variance than for the mean;
the details are left as an exercise.

Theorem 10.3 (Flajolet and Golin, 1994). The variance of Cy, the number of
comparisons made by MergeSort to sort a random input of size n, is asymptotically

Var[C,] ~ n6(gn), as n — o0,

where 0 is a periodic function given by the Fourier expansion
1 o0 X
2miku
() = — E cre ,
(&) In2 k
k=—o0

and the coefficients cy are given by

O\ 2m(5m? 1 1
co= =y MOMEIONE D114 5-) ~ 0345499568 ...
N2 2 (m+ 1)(m +2)20m +3) 2m

and for integer k # 0,

o — ¢(xk)
T G+ DIn2’

with x, = 2nik/In2 and

2 2m(5m? 4 10m+ 1) 1
(W=7, (m + 1) (n + 2)%(m + 3)? <(2m + ¥ (2m)“)'

m=1

The variance of MergeSort’s number of comparisons grows “almost” linearly; as
the variance function rises, it goes through periodic fluctuations. The function 6 (1g 7)
fluctuates around the mean value ¢g = 0.34549 .. . . The fluctuations in the variance
are more noticeable than in the average, as they occur in the variance’s leading term.
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10.3 DISTRIBUTIONS

A recursive computational formula for the exact distribution follows from the funda-
mental recurrence:

D ~
Cn = Cryy21 +Cluj2) + Yn.

The recursive formula can be worked out in the usual inductive way to build the exact
distribution inductively from the basis up. The three terms on the right-hand side in
the fundamental recurrence are independent. Let F,(z) be the probability generating
function of C,,, the number of comparisons made by MergeSort, and let §, (z) be the
probability generating function of Y,, the number of comparisons to merge the two
sorted halves. Being a convolution, the right-hand side of the recurrence has a prob-
ability generating function equal to the product of the three probability generating
functions of its three ingredients:

Fn(2) = Frn/21(@) Flny2)(2)6n(2).

This recurrence can be unwound all the way back to simple cases. For example, for
n=13:

F13(2) = F7(2) F6(2)613(2)
= [F () B@& @ ][ F3 @é(@)J6132)

= 38 ()8 (&4 (2DE6 ()7 (2)E13(2). (10.8)

We have already implicitly computed the functions &,(z). In the context of Merge-
Sort, where the splitting is done at the middle, the tail probability of the leftover in

(10.1) becomes:
() (o)
[n/2] [n/2]
(1)
[n/2]
()
n/2
)
n/2
(n —k+ 1)
AN+ D/2) it pis odd:

"o
((n - 1)/2

Prob{L /2| n/21 =k} =

if n is even;
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the two binomial coefficients in the probability calculation for odd n were combined

by Pascal’s identity
(G)=(")+(G2)
)= : +1 . .
J J J—=1

n—k n—k—1
n/2 n/2
n
n/2
n—k—1
) n/2 —1 ’
n
(i)
by Pascal’s identity. For odd #n, similar work yields
()
(n—1)/2
Prob{L|,/2|,1n/21 = k} = —————;——/-——
(")

And so, for n even,

Prob{L /2| [n/21 =k} =2

Recall that Y;, = n — L |,2),1n/2]. Therefore, Y, then has the probability mass func-
tion

Prob{Y, = k} = Prob{L |, /2),1n/21 = n — k},

and it follows that

n/2 .
( ’% (n /2k ll)z”‘k, if n 1s even;
n pu—
k=1
_ ﬂ/2)
n(2) = (n+1)/2 0k
—L 3 ((n - 1)/2)Z'1—’< if n is odd.
k=1
\ ((ﬂ - 1)/2>
For example,
§1()=1,
£(2) =z,

_1 25
§3(z)—3z 3%
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§4(2) = %zz + 22,3,
£6(2) = ]~]6z3 + %z4 + +1~66z5,
§7(2) = §l§z3 + %24 + égzs %76
s13(2) = 1_7]_18Z6 * T%EZ7 * 13?628 * 1§T6Z9
+1—271—1%le ;%%z“ + 1_97%14?12,
The product (10.8) is:
Fi3(2) = m(zzz + 22723 424177 + 175825 + 9604720

+41860z%7 + 151542728 + 4674407%° + 124294070
+284453623! + 5522160732 + 8842848733 + 11172672734
+103676162% + 6209280236 + 17740807°7).

The exact mean of Cy3 is F{5(1) = 2029/60 = 33.81666666..., and the ex-
act variance is F{5(1) + F{3(1) — (F{3(1)? = 10799/3600 = 2.99972222....
The probability mass function of C13 is represented by vertical lines in Figure 10.6,
where the height of the line at k is Prob{C3 = k}, for integer k. The same plot
depicts the normal distribution N (2029 /60, 10799 /3600). The plot suggests that the
exact probability distribution has a normal limit distribution and that the rate of con-
vergence to this limit must be very fast because the exact distribution is already very
close to the Gaussian distribution, even for a value of n as low as 13.

PI'Ob{C13 = k}

02 \

0.1~

OO T I [ k
20 25 30 35 40

Figure 10.6. The exact probability distribution of C;3 in comparison with a normal distribution.
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To prove that the limiting distribution of the number of comparisons is normal,

we may take the logarithm of the equation obtaining a recurrence of the general
form (1.24):

In Fp(2) = In Fry/21(2) +In Flp2)(2) + 10§, (2).

For any fixed z, we can think of {In F,, (z)}flozl, {In&, (z)}flo=1 as sequences of num-
bers to which the paradigm of recurrences with floors and ceils may be applied. The
computational difficulty in this route is that the poles of the Dirichlet transform in-
volved will have locations depending on z.

The basic recurrence (10.3) permits verification of a condition like Lyapunov’s,
as was done by Flajolet and Golin. Tan (1993) checks Lindeberg’s condition, which
involves only the order of magnitude of the variance as given by Theorem 10.3.
However, Tan’s analysis is only along a sequence of exact powers of two: n = 2K,
as k — oo. Cramer (1997) uses convergence in the Zolotarev’s metric of distances
of third order, which remains simple so long as n is a power of 2, but then becomes
complicated for general 1.

Theorem 10.4 (Flajolet and Golin, 1994, Cramer, 1997). Let Cy, be the number of
comparisons made by MergeSort to sort a random file of n keys. Then

Cp—nlgn p

vno(gn)

where 6 (n) is the periodic function of Theorem 10.3.

N(, 1),

Proof. Recall that C,, satisfies the basic recurrence

D ~
Cn = Crp21+ Clnj2) + Ya,

where Y, is the number of comparisons needed to merge two sorted random lists
of sizes [n/27 and |n/2] and whose exact probability distribution has been studied.
Iterating the recurrence we have:

D ~ v “ —~ v
Cn = Cripnyon T Clirnsany + Critnan €y T Yin21 + Ying2) + Yoo

where &; 2 ¢ 2 & 2 ¢, 7; 2 ¥, 2 v, and the families {C;}, (C;),

{é;}, {C’;} (Y:), {Y;), {)v’,-} are all independent. For every random variable C continue
the recursion producing two ¥’s and a C with lower indexes. Continue this process
till the indexes of the C’s are reduced to 1, and use the boundary condition C; = 0.
This way we shall represent C,, as a sum of independent members of the {¥;} family
(possibly some are repeats). For example,

D
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s

Cs C3+Co+Ys

[k~

(Cr+Ci+Y3)+(C1+C+1y) +7s5

o

CrL+Ci+)+0+Y34+0+0+Y, + Y5

o

Y2+);2+Y3+Y5.

How many members of the {¥;} family enter this representation? By induction, C,, is
the sum of n — | independent members of the {¥;} family: If the induction hypothesis
is true for values less than #n, then Cp, /2] contributes [n/27 — 1 random variables
and éLn /2 contributes |n/2} — 1 random variables, and Y, adds one more, that is,
/21 —14+|n/2]—1+1=n-1.

For each n, we have a representation of C,, in the form

Co=X1+Xo+ + X5,

where X[, X», ... are independent and each one of them is a member of the {Y;}
family. This representation as a sum of independent random variables is a perfect
candidate for application of standard theorems. For instance, we can choose to verify
Lyapunov’s condition

Y-V E|X; — EIX;1|
(Var[ Y= x;1)°

as n — 00. Most of the verification has already been done: The denominator is
(Var[C,,])z, which, by Theorem 10.3, is @(nz). Each term in the numerator’s sum
is O(1), which is a consequence of the concentrated nature of the {i — Y;} family as
outlined next. By the triangle inequality, we have the term

— 0,

|¥; —ELY:| < |Yi — i| + |i —EL¥;]].
So,
ElY; —E,I <E|Y, —i[’ +3E|y;, —i[ E|i — E[¥]]
+3E|Y; —i|E|i — E[Y;]|* + E|i - E[;]].

Each of these terms is uniformly bounded, as was demonstrated at the end of Sec-
tion 10.1.1. As n goes to infinity, each term in the numerator’s sum remains O (1);
the sum itself is O (n). [ ]

104 BOTTOM-UP MERGE SORT

We present in this section a bottom-up approach to MERGE SORT that can be im-
plemented nonrecursively. The only advantage of this method is that a special imple-
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mentation of it can be applied to on-line files whose size is not known in advance.
The efficiency of BOTTOM-UP MERGE SORT, as a review of the results will show,
is only slightly worse than that of the top-down version discussed at length in the
earlier sections of this chapter. Analysis methods founded in digital techniques were
devised by Panny and Prodinger (1995). The problem also fits in the Flajolet-Golin
paradigm, as will be sketched only for one result on the best-case performance of
BOTTOM-UP MERGE SORT. The rest of the results can be proved similarly and
will only be listed without proof to create a context for contrast with the top-down
version,

The idea of BOTTOM-UP MERGE SORT is to go in rounds merging clusters of
sizes that are, whenever possible, increasing powers of two, starting at the bottom
from the singleton clusters and moving up to merge clusters of size 2, then clus-
ters of size 4, and so on. If n is even, the first stage, the merging of singletons into
pairs, will rearrange all the singletons, residing in A[l ..n], into n/2 sorted pairs:
All..2], A[3..4],..., Aln —1..n]. If nis odd, only the first A[]..n — 1] elements
are arranged into sorted pairs; the nth element is not merged with any other at this
first round. Similarly, after j rounds of merging, the algorithm considers in the next
round sorted clusters of size 2/, merging them into larger sorted clusters of size 2/F1.
At the (j + 1)st round the sorted clusters A[1..2/]and A[2/ + 1 ..2/71] are merged
into the sorted cluster A[1 .. 2/71], the two sorted clusters A[2 x 2j +1..3x2/]and
A3x 2/ +1..4x2/]are merged into A[2 x 2/ 41 ..4 x 271, and so on. This round

takes care of K(J) &fpi+1 [n/2/%1] data in “whole” clusters of size 2/ each. If the

number n — K ,SJ ) of the remaining elements does not exceed 2/, the size of a whole
cluster for this round, this tail is left unaltered by this round. If this tail size exceeds

2/, it is divided into two clusters: one whole in A[K,(,j) +1.. K,Sj) + 2771 and one
incomplete in A[K ,SJ )42/ +41..n]. The round is completed by one additional merge

operation, combining them into a sorted stretch of data in A[K ,SJ ' 4+ 1..n]; we shall
refer to this last merge as an incomplete merge. After [lg n] rounds are completed in
this fashion the array A is completely sorted.

The algorithm has a recursive formulation that is essentially the same as the stan-
dard top-down version of Figure 10.3, only differing in the splitting policy. While
the top-down version splits at the middle (position [1/27), BOTTOM-UP MERGE
SORT splits at 218"/ the first proper power of 2 past the middle point (note that
the two policies coincide if 7 is an exact power of 2). For example, with n = 23, at
the top level of the recursion, BOTTOM-UP MERGE SORT splits the array into two
parts of sizes 16 and 7, whereas the standard top-down version splits the array into
two halves of sizes 12 and 11.

The minor alteration of the standard recursive MERGE SORT to become BOT-
TOM-UP MERGE SORT is represented in the algorithm of Figure 10.7. Notice
that a slightly modified MERGE algorithm is needed. The implementation Merge
of MERGE that is used here assumes that the algorithm works with two adjacent
sorted segments A[i.. j] and A[j + 1 ..k} and merges them together into one sorted
stretch A[7 .. k]. An implementation based on LINEAR MERGE will do the job effi-
ciently.
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procedure BottomUpMergeSort (¢, u: integer),
local s: integer;
begin
if ¢ < u then
begin
s « 2023,
call BottomUpMergeSort (€, s);
call BottomUpMergeSort(s + 1, u);
call Merge(€, s, u);
end;
end;
Figure 10.7. BOTTOM-UP MERGE SORT algorithm.

The splitting policy of BOTTOM-UP MERGE SORT admits a nonrecursive im-
plementation, shown in Figure 10.8, because the boundaries of the clusters of in-
creasing sizes are all known before going through any merging round. In this al-
gorithm £ is the length of the typical segment of a round. It starts out at 1, so that
pairs of singletons are merged. Then ¢ is doubled before the beginning of every new
round to handle the sorted clusters of the increasing sizes 2, then 4, etc. The inner
loop represents the operation of the £th round on whole clusters of length £ each. At
the beginning of the £th round the two indexes p and g respectively demarcate the
starting points of the first two clusters (of length £ each) for the round. After these
two clusters are merged, the two indexes are shifted up by 2¢, to merge the following

procedure NonRecursiveMergeSort (n: integer);
local p, g, ¢: integer;

begin
£« 1;
while £ < n do
begin
p < 0;
qg < ¢
while g + ¢ < ndo
begin
call Merge(p+1,p+€,q+1,q + £);
p<—q+¥¢
q<—p+4
end;
if g < nthencall Merge(p+1,p+4¢,q+1,n);
£ <« 2¢;
end;
end;

Figure 10.8. Nonrecursive BOTTOM-UP MERGE SORT algorithm.
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two clusters of length ¢ each, and so forth. Only once in each round an incomplete
merging operation may be performed, and only if certain conditions on the length
of the tail are satisfied. The if statement between the two loops looks out for this
special condition at the end of each round and completes the round by one additional
incomplete merge, if necessary. Figure 10.9 illustrates the operation of nonrecursive
BOTTOM-UP MERGE SORT on the same input file used for the illustration of the
top-down version version (Figure 10.4).

Let (bgby_1 ...b1bo)> be the binary expansion of n, with by being the most
significant 1 in the expansion, thus k = |lgn]. At the jth round, BOTTOM-UP
MERGE SORT performs |7/2/*! | merging operations on pairs of whole clusters of
size 2/ each, and when n is not an exact power of two, the algorithm may perform an

additional incomplete merge on the tail only if its size n — K ,(,J ) exceeds the size of
clusters of this round—that is, if and only if » mod 2/+1 < 27 So, the incomplete
merge takes place if and only if » mod 2/t > 2/, a condition captured if and only
if the product b;(bj_1bj_5...b1bg)2 > 0.

As we argued for the worst-case of the top-down version of MERGE SORT, the
best case for BOTTOM-UP MERGE SORT round occurs when every merge process
encounters the best instances possible for all complete merges, as well as for the
incomplete merge, when it exists. At the first round (j = 0), the algorithm performs
Ln/2] merges on pairs of singletons (one comparison for each pair). In the best case,
at the second round as the algorithm merges pairs of clusters (of size 2 each), it will
encounter a data arrangement giving only 2 comparisons for each pair of clusters;
there are |n/4| of these. An incomplete merge takes place only if a cluster of size 2
at the tail is to be merged with a cluster of size 1; that is, if the total size of the two
pairs is 3 (in this case b1bg = 1). In the best case, this merge takes one comparison
when the singleton key is smaller than the pair in the cluster of size 2. Generally,
at the jth stage, there will be |n/2/%!] pairs of clusters of size 2/ each, and in the

37 13 22 54 29 70 46

37 13 22 54 29 70 46
13 37 22 54 29 70 46

\ /A

13 22 37 54 29 46 70

\ /

13 22 29 37 46 54 70

Figure 10.9. Operation of BOTTOM-UP MERGE SORT in rounds.
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best case for each such pairs all the keys of one cluster in a pair are smaller than any
key in the other, requiring 2J comparisons for each pair of clusters. An additional
incomplete merge will operate on a cluster of size 2/ to merge it with a smaller one.
The total size of both is then at least 2/ + 1 (b; must be 1). In the best case, all the
keys of the smaller cluster (of size (b;_1 ...bg)2) will be less than any key in the
other cluster, requiring only a number of comparisons equal to the size of the smaller
cluster, thatis, b;b;_; - - - by in binary representation. In other words, the incomplete
merge takes b;(b;_; ...bp)2 comparisons in the best case. The best possible number
of comparisons for BOTTOM-UP MERGE SORT is therefore given by

k k
E :2Jl__2_thHJ + E (bjbj—1 ... biby)s.
j=0 J=0

This expression is a representation of the Trollope-Delange function Z(n) =
}:720 v(j), where v(j) is the number of I’s in the binary representation of j.
For example, v(14) = v((1110),) = 3. This curious connection to digital represen-
tations also appears in the best-case performance and other analyses of the top-down
version of MERGE SORT.

Exercise 1.11.3 outlines how the recurrence

zw=z(|5])+2(|5]) + 5]

is obtained for the Trollope-Delange function, and Exercise 10.5 shows how it relates
to the best-case performance of the top-down version. This representation of Z(n) is
a prototype recurrence relation for the Flajolet-Golin paradigm and an application of
Theorem 1.6 yields the following result.

Theorem 10.5 (Panny and Prodinger, 1995). The best input instance of size n for
BOTTOM-UP MERGE SORT gives a minimum number of comparisons with asymp-
totic value

1
En lgn 4+ néi(lgn),
where 81 is an oscillating function of its argument.

The oscillating function in the best-case behavior of BOTTOM-UP MERGE
SORT occurs at the lower-order terms. The oscillations have the shape of a self-
replicating function, bounded from above by 0 and from below by —0.2. Figure 10.10
shows the fractal nature of the very small oscillations of the function &;(n).

By similar arguments the worst-case is obtained.

Theorem 10.6 (Panny and Prodinger; 1995). The worst input instance of size n for
BOTTOM-UP MERGE SORT gives Theorem 10.6 shows that BOTTOM-UP MERGE
SORT a maximum number of comparisons with asymptotic value
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Figure 10.10. The fractal nature of the oscillations in best-case number of comparisons in BOTTOM-UP
MERGE SORT.

nlgn +néy(lgn) + 1,

where 83 is an oscillating function of its argument.

Theorem 10.6 shows that BOTTOM-UP MERGE SORT remains asymptotically
worst-case optimal. The next theorem shows that on average there is no noticeable
difference in performance between the top-down and the bottom-up versions (com-
pare with the result of Theorem 10.2).

Theorem 10.7 (Panny and Prodinger, 1995). The average number of comparisons
BOTTOM-UP MERGE SORT makes to sort a random input of size n has the asymp-
totic value

nlgn 4+ néz(lgn),

where 83 is an oscillating function of its argument.

EXERCISES

10.1 Construct a pair of sorted lists of sizes 3 and 4 so that when merged by
LinearMerge (Figure 10.2) only one key will be left to be transferred in
the transfer stage of the procedure. Construct a pair of sorted lists of sizes 3
and 4 so that, when merged, 4 keys will be left to be transferred. How many
comparisons does Linear Merge make in each case? You may assume the
seven keys 1, ..., 7 to be your data.
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10.2

10.3

104

10.5

Assume the integers 1,2, ..., m + n are partitioned into two distinct sorted
lists of sizes m < n. How many pairs of sorted lists of these sizes are possible
that leave only one key to the transfer stage of Linear Merge (Figure 10.2)?
How many pairs will leave n keys?

Let Y, be the number of key comparisons involved in the transfer stage of
MergeSort algorithm (Figure 10.3) (under Linear Merge (Figure 10.2)) at
the top level of recursion. Show that n — ¥, converges in distribution to
GEOMETRIC(1/2), a geometric random variable with rate of success 1/2
per trial.

Verify that nflgn] — 211871 4 1 is a solution to the recurrence
Wo = Winj21 + Winp2p +n— 1,

with Wi = 0. (Hint: Consider odd and even parity of n.)

Show that the best-case number of comparisons for the standard top-down
version of MERGE SORT satisfies the Trollope-Delange recurrence in Exer-
cise 1.11.3. (Refer to Exercise 1.11.4 for the asymptotic solution.)
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Bucket Sorts

Interest in the family of bucket sort algorithms peaked in the late 1970s as they
offered efficient alternatives to standard comparison-based algorithms. In Chapter 1
we extensively discussed bounds on the complexity of the class of comparison-based
sorting algorithms. Theorem 1.1 states that the complexity of this class both in the
worst case and on average is Q(nInn) to sort n keys. DISTRIBUTIVE SORT, a
bucket sort algorithm invented by Dobosiewicz in 1978, provided a basis for sev-
eral sorting algorithms with only O (n) average cost. The method had existed in the
literature since the late 1950s in various forms and flavors. Perhaps Dobosiewicz’s
(1978a) description was the first to translate it into a practicable algorithm.

Bucketing is a term used for identifying numerical keys by intervals. A bucket
sort algorithm sorts by “distributing” the keys into containers called buckets (hence
the name DISTRIBUTIVE SORT for some flavors of the algorithm). Bucketing is
usually achieved by simple arithmetic operations such as multiplication and round-
ing. For certain forms of input data, bucketing may be achieved at machine-level
instructions such as the shifting of the contents of a register.

In this chapter we present several flavors of bucket sorting algorithms and bucket
selection algorithms derived from them. The difference between various flavors of
bucket sorting is in the choice of the bucket size and in what they do within a bucket
targeted for subsequent sorting or selection.

11.1 THE PRINCIPLE OF BUCKET SORTING

Based on the idea of distributing keys into buckets several sorting algorithms can be
designed. The idea is related to a general class of hashing algorithms, whereby one
has a universe to draw data from and a hash table to store them. A typical example
familiar to all of us is the personal phone directory. We draw some names of partic-
ular significance to us (friends, relatives, etc.) from the population at large to insert
in our pocket phone directory, which is by necessity small. The usual alphabetical
arrangement then puts all names beginning with letter A first in the A section, then
all the names beginning with B in the B section, and so on. In a hashing scheme we
have a hash function /, that maps sampled data into positions in the hash table. In

250
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the pocket phone directory instance, a typical hash function is one that shaves off
the first letter: h(xo) = x, for x a letter from the English alphabet and o is a trail-
ing string of characters. It is evident that collisions are unavoidable. In this example
h(Johnson) = h(Jeffrey) = J and we have to have a collision resolution algorithm.
The most common collision resolution algorithm in pocket phone directories is the
algorithm that considers that a page corresponds to a number of positions, and within
one page we enter the data sequentially according to a first-come-first-served policy.

The assumption in this example is that we are not going to have too many friends
whose names begin with a certain letter like J. Generally the success of hashing
schemes depends on the assumption that there are “‘good” hash functions that uni-
formly distribute keys over hash positions.

In one flavor of bucket sorts based on hashing, keys are distributed over a large
number of buckets by a hash function. This family of bucket sorting algorithms is
called DISTRIBUTIVE SORT. In another recursive flavor, RADIX SORT, a fixed
number of buckets is used. (The terms fixed and large are with respect to n, the
number of keys to be sorted, as n — o0.) We shall denote the bucket size by b,
which may or may not depend on 7.

To unify the treatment across the various flavors of bucket sorting algorithms, we
assume that n keys are drawn from the UNIFORM(O, 1] distribution. This assump-
tion is probabilistically equivalent to the general hypothesis that underlies hashing
schemes and according to which good hash functions exist to distribute keys from
some domain uniformly over a hash table. The unit interval is divided into a number
of equally long intervals (0, 1/b], (1/b,2/b], ...((b — 1)/b, 1], where b is a num-
ber to be specified later. Think of these intervals as indexed from left to right by
1,2, ..., b.In all bucketing flavors, a key K is thrown into the [6K (th bucket by an
application of the hash function #(x) = [bx]1, for any x € (0, 1]. The application of
the hash function is one type of a bucketing operation, but other types will be taken
into consideration, too.

As an illustration, consider the 8-key input

X, = .45 Xy = .63
X3 = 77 Xy = 42
Xs = 22 X¢ = 85
X7 = 82 Xg = 47

With b = 10, there are 10 buckets corresponding to 10 intervals each of length 0.1. A
key with most significant digit d after the decimal point falls in the (d + 1)st bucket.
For instance, X| = .45 is hashed to bucket number [10 x .45] = 5. Figure 11.1
shows the distribution of these 8 keys into the 10 buckets.

SN

| I > | l T [ T T T |
00 01 02 03 04 05 06 07 08 095 10

Figure 11.1. Distribution of keys into buckets.
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At the outset of this presentation we write a distributional equation for all ver-
sions of bucket sorting algorithms. Suppose that within a bucket an algorithm, say
A, is used to sort the contents of the bucket. Suppose such an algorithm makes Y;
operations of some kind to sort a random input of j keys. If A is some standard algo-
rithm, the operation in question is typically a comparison of a pair of keys. Generally
Y; is arandom variable having its own probability distribution. We have to take into
account the possible difference between the bucketing operation, which typically in-
volves arithmetics and ceils or floors, and the operations of A. If we take the unit
cost to be that of a bucketing operation, a single operation of A may cost «. On a
modern computer, a typical value of o for comparison-based sorting algorithms is
somewhere between 0.01 and 0.1 (a measure of the speed of a comparison of keys
relative to a bucketing operation like the hash function already considered). In recur-
sive flavors A will be the same algorithm used at the top level, sorting the bucket by
the same bucketing operations, i.e., @ = 1.

For whatever flavor of complete sorting by bucketing, the sorting process must
continue in all buckets. Under our data uniformity assumption, the shares Ny, ..., Np
of the buckets 1, 2. .., b have a joint multinomial distribution on # trials and rate of
success 1/b per trial for each bucket. In particular, the marginal distribution of any
individual bucket’s share is BINOMIAL(n, 1/b), a binomial random variable on n
trials and rate of success 1/b per trial.

The distributional equation for Cy,, the cost of sorting n random keys, is

Co 2 a(Y) +YP +  + YD) +n, (11.1)

1

where for any j, Y;k) D Yjfork=1,...,b, anq for k # £, the families {Y;k)}‘;‘;l
and {Y;E)}?‘_’__l are independent (but of course (Y li,jj ) and ¥ lﬁ,l;) are dependent through
the dependence of N; and Ny ). The quantity

1 2
‘/Vn:Y](\/)‘i"Y](Vz)

1

(b)

is the only stochastic element in the equation. Introduce the probability generating
functions ¢, (u) = E[u™"] and v, () = E[u'"].

Lemma 11.1 Forn > 2,

n! Vi) (u) i, ()
¢n(u):ﬁ Z “L.l'_x"'x‘”l';T‘,
P - - bh:
where the sum runs over all non-negative integer solutions of the equation iy + - - -+

ip = n.

Proof. By conditioning on the shares of the buckets, we can write

YOy ety : :
Guw)= Y E[ M TN Ny =iy N =)
i1++ip=n
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xProb{N| =i, Ny =)
] Y_( b . Y_{h) n l
= > E[n ()2
f|+...+[/7=)1 l] 5 s .. l/) )
| i y b n
:BF Z E[u’l]x...xE[u ’b] ‘ .
i1+ tip=n s oooslh

! v, (0 i, ()
o2 hr X T
i+ tip=n gk Ip.

. ... Yy ® o M
valid for n > 2; the decomposition of E[u "/ oty ] into the product E[uy'l ] x
v e .
S X E[u b ] follows from the conditional independence of the action in the buckets.

11.1.1 Distributive Sorts

Suppose we apply bucketing to random numeric data from the interval (0, 1] to dis-
tribute them over b buckets. Several flavors along the main bucketing theme are pos-
sible. For example, the hash function

h(x) = [bx]

distributes the » random keys over the buckets, with n/b keys per bucket on average.
Buckets can then be sorted individually by a standard sorting algorithm. One can
even think of applying bucket sort recursively. However, some technical algorithmic
modification will be required as discussed in Exercise 11.5.

Several bucket sorting algorithms resort to list implementation within a bucket
because adding a key to an unsorted list is algorithmically trivial and because the
collection at the end of sorted lists is made easy if each stretch of data belonging to
a bucket has been reordered into a sorted linked list. This simplifies an initial and a
final bookkeeping stage, but may complicate sorting within buckets—linked lists in
bucket sorting tend to be a little bit restrictive for sorting (and more so for bucket
selection algorithms derived from them) because we have to use a sorting algorithm
suitable for linked lists, excluding many efficient sorting algorithms. For example,
we will not be able to directly use BINARY INSERTION SORT or the standard
form of QUICK SORT within buckets implemented as linked lists.

An elegant implementation called INTERPOLATION SORT manipulates only
arrays. This form of bucket sorting was first given by Gonnet in 1984. Gonnet’s
idea is to hash every key twice and use a secondary array to receive the final sorted
data (we can, of course, always transfer such an array back into the original array,
if necessary). During the first hashing round we estimate where a key falls in the
recipient array. Thus, we shall know the number of collisions at any particular slot.
Suppose A[1 .. n] is our source array of input data and R[0 .. b] is the recipient array.
The addition of a Oth position in R is only for a technical reason that has to do
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with the use of the sentinel version of INSERTION SORT within the buckets, as
will be shortly explained. If a bucket receives k keys, we shall need k consecutive
positions of R for it. The purpose of the first round is to determine the shares N,
N3, ..., Np, of the buckets. At the end of the first round, we know how many slots
of R are needed for each bucket. But this round does not tell us which keys fall in
which bucket. A second round of hashing can fill the buckets systematically. A key
falling into the jth bucket belongs to a bucket that will be stored into the locations
Ni+---+ Nj_1+ 1.Ny+---+N;. Wecan therefore scan A, and systematically
fill the buckets. The systematic scan can be done from the bottom of the bucket
up, or vice versa. The bottom filling is convenient—we rehash each key; the first
time a key falls into the jth bucket, we place it into R[N} + --- + N/], the second
time a keys falls into the jth bucket, we place it into R[Ny + --- + N; — 1], and
so on. Figure 11.2 gives the formal code for INTERPOLATION SORT—Gonnet’s
implementation of bucket sorting. Assuming the input data have already been loaded
into A[1..n], INTERPOLATION SORT produces the final sorted output in R[1 .. n],
via the counting array count[1 .. b]. At the end of the first round count[j] counts how
many keys fall at the jth bucket. We then turn the count into a cumulative count, that
is, the cumulative bucket sizes up to and including the jth bucket, by an accumulation
of all the contents of count up to its jth position, for all j. Thus, after accumulation
necessarily count[b] = n. The contents of count then guide the rehashing of the
second round. The jth bucket is to fill positions count[j — 1] + 1, ..., count[]
(the number of keys in a bucket can possibly be 0). Starting at the bottom position,
when a key falls in the jth bucket it is placed at position count[j], and count[j] is
decremented by 1, thus creating a corresponding index for the next bottom-up filling

R[0] « —o0;
fori < 1tondo
count[j] < 0;
fori <~ 1tondo
begin
J < h(Ali];
count[j] < 1 + count[j);
end;
{Accumulate bucket sizes}
fori < 1tob—1do
countli + 1] < count[i + 1] + count[i];
fori «- | tondo
begin
J < h(A[i]);
Rlcount[j]] < Ali];
count[j] < count[j] — 1;
end;
call LinearInsertSort(B);
Figure 11.2. INTERPOLATION SORT—an implementation of DISTRIBUTIVE SORT.
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of the jth bucket. The filling proceeds in this manner until all the locations of the
bucket are exhausted.

After the two rounds of hashing and rehashing, INTERPOLATION SORT may in-
voke any implementation of INSERTION SORT which is well suited for the purpose.
Supposing bucket j starts at position k = Ny +---+ N;_j + |, we are guaranteed
that all the elements above this position (those belonging to the first j — I buckets)
are smaller in value than any element in the jth bucket. Particularly, R[k — 1] is at
most R[k]. So, R[k — 1] can act as a stopping sentinel in the sorting of the stretch
R[Ny +--++ Nj_1+1..Ny+---+ N;]. Only the first bucket (stored in R[1 .. Nj])
is not preceded by a sentinel formed naturally by some other key in the data. That is
why we introduced R[0], which is to be initialized to —oo (refer to the discussion of
Section 2.3 for the practical meaning of —oo in the algorithmic sense).

For instance, if INTERPOLATION SORT is applied to the 8-key input given in
Section 11.1, with the hash function discussed there, the algorithm passes through
the stages described in Figure 11.3.

Even though LINEAR INSERTION SORT takes average time of quadratic or-
der @(nz) to sort n random keys, its use within buckets still gives linear overall
average time for INTERPOLATION SORT. After two hashing rounds, keys of rela-
tively close values are clustered together; the data are no longer random—the array
R[1..n] does not follow the random permutation model, but is rather a collection of
b subarrays (of total size n) each following the random permutation model. If b is
large, we shall add up small quadratic forms. First the stretch A[N} + - -+ Np_1 +
1..n] is sorted. Then the algorithm moves up to sort the bucket above it (the stretch
A[N{+ -+ Np_2+1..Ny + -+ Np_1], and so on. INTERPOLATION SORT
makes 2n applications of the hash function and its cost is therefore

Cyp=aW,+2n 2 a(Yl(\,ll)+Y1(\,22)+~--+Y1(\,L))+2n,

After First Hashing Round  After Accumulation

A count count R
0 0 -0
45 0 0 22
.63 1 1 47
77 0 1 42
42 3 4 45
22 0 4 .63
.85 1 5 7
.82 1 6 .82
47 2 8 .85
0 8

Figure 11.3. Hashing and rehashing in INTERPOLATION SORT.
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(ky D

with Y/ = Y;, INSERTION SORT’s number of comparisons when it sorts j keys,

J
fork =1, ..., b; the families {Y;k)} and {Y;E)} are independent (but of course, for
k # ¢, Yl(\i) and Yl(\,i) are dependent through the dependence of Ny and N;). More-

over, Y lilll)’ LY 1(\,? are equidistributed and on average INTERPOLATION SORT
costs

E[Cy] = 2n + abE[Yy,].

The intuition here is that, if b is large, N| (and subsequently E[Yx,]) is small and
the average complexity remains linear. For this form of bucket sorting we consider
the equation in Lemma 11.1 when specialized to the case » = n. The term DIS-
TRIBUTIVE SORT as originally used by Dobosiewicz (1987a) refers to the particu-
lar choice b = n. In choosing a large number b of buckets a natural value is b = n.
The choice b >> n will not help much as it gives several empty buckets, which
will increase the overhead as, for instance, in an implementation like INTERPOLA-
TION SORT at its accumulation stage. In other implementations based on lists, the
check for an empty list will be done too often. The choice b << n will lead to more
collisions. The idea in b = n is that on average a bucket contains one key.

We shall carry out the analysis for the choice b = n, and keep in mind that it
generalizes easily to other choices of large b. Specialized to the case b = n, the
right-hand side of the equation in Lemma 11.1 can be viewed as the nth coefficient
in a generating function. We can express the specialized equation in the form

n

00 J
() = %[x”](zo viw=)
=

This representation admits the following central limit result. The theorem follows
from a rather general result in Flajolet, Poblete, and Viola (1998) for hashing with
linear probing that broadly states that, under suitable conditions, coefficients of gen-
erating functions raised to large powers follow a Gaussian law. We work through
some of the details to obtain the first two moments as well in order to completely
characterize the limiting normal distribution. We shall assume that within the buck-
ets a “reasonable” sorting algorithm is used. All standard sorting algorithms have
polynomial time worst-case behavior. Thus, we assume, for example, that, uniformly
over all sample space points, ¥; < j?, for some fixed 6 > 0.

Theorem 11.1 (Mahmoud, Flajolet, Jacquet, Régnier, 2000). Let W), be the extra
number of operations within the buckets of DISTRIBUTIVE SORT to sort n random
keys. Suppose for some fixed 8 > 0, the algorithm applied in the buckets uses Y; <
;i operations. Then

W _
_i\-/_;ﬁ’l LN, 6D,
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where
1= ElY)]
j=0 J
2
2 -1 = E[Y ] 2
o =¢ —— — .
; J!
Jj=0

Proof. All derivatives in this proof are with respect to z. Let 1/, (¢*) be the character-
istic function of ¥, (we consider characteristic functions to avoid existence problems
of moment generating functions). Let us denote the bivariate generating function
Z;";O ¥ j(u)z/ /j! by W (u, z). Then by Cauchy’s formula,

on() = ! yg\pn(u’Z)dz,
r

2min® sl

where I' is any closed contour enclosing the origin. We choose I' to be a particular
contour consisting of the line segment connecting ¢ — i M to ¢ + i M (for some fixed
¢ > 0 and some large M) and a closing (left) arc of the circle centered at the origin
and passing through these two points. As M — o0, one can check that the integral
on the arc approaches O (see the proof of Lemma 1.4 for this type of argument).

To evaluate the remaining line integral asymptotically by the saddle point method,
write the last equation in the form:

.
bn(u) = n! /C looe"ﬂ“*)fl—f, (11.2)
2win" Jo—ico Z

where by definition g(u, z) = In{W(u, z)/z}. We shall eventually let u — 1. The
saddle point is the special value of z that solves the saddle point equation g’(u, z) =
0, or

2V (u, 2) = W(u, 2). (11.3)

One can verify that nearu = 1,z = 1 + O(1 — u) is a saddle point of the integrand
in (11.2). Therefore, we deform the line of integration to become one connecting
¢ — iocoto ¢ + oo and going through z = 1 through an angle picking up the steepest
descent of the function g.

Replacing n! by its asymptotic Stirling’s approximation, and using the saddle
point method (as u — 1):

W (u, 1)

el /g//(u, 1 ’

Let us now set u = ¢'’, and expand the characteristic functions ¥ (¢'’) around r = 0
(i.e., around u = 1) in powers of ¢ with coefficients that are moments of the cost.

¢n(u) ~
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Denoting the first two moments of ¥; respectively by u; and s;, near r = 0 we
obtain

(e, 2) = expn ln(i Vfﬂé”%)]
j=0 '

s Zj /»szj Sij 2 3
:exp{nln[Z(f—k — it — ——t )+O(t )“
i J! J! 215!

Letting u — 1 implies z — 1, and we have

2
: t
Ut 1) = exp{n ln[e(l + it — s;) + O(t3)“,
where
def 1\ M)
=
s
d:efe“l —j;
=0 7"

Expanding the logarithm with the usual calculus equality In(1 + x) = x — x2/2 +
O(x3), we get

eunit—aznt2/2+0(nt3)
VIRV

where 02 = s — u2. From the continuity of g, we can easily verify that g” (¢!’ 1) —
g”(1,1) = 1, as t — 0. The assumption that the sorting algorithm within buckets
is reasonable, with worst-case polynomial time, guarantees pu; = O( je) and s; =
O(jze). Thus, the series in u and o2 converge.

Finally, set t = v/+/n for a fixed v and let n — oo (so indeed u — 1). So,

bn (eit) — E[ew"it] ~

2

W, — un —o2p2/2
E[exp[——n————iv}] — "oV /2,
NG

the right hand side is the characteristic function of A/ (0, o2) and of course conver-
gence of characteristic functions implies weak convergence. [ ]

Theorem 11.1 covers a wide class of bucket sorting algorithms. We instantiate it
here with INTERPOLATION SORT and leave a number of other instances for the
exercises. INTERPOLATION SORT (see Figure 11.2) uses LINEAR INSERTION
SORT (with sentinel) in the buckets. For LINEAR INSERTION SORT Y, the num-
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ber of comparisons it performs to sort a file of j random keys, is a random variable
whose exact and limit distributions are completely characterized (cf. Section 2.3).
We recall here results concerning the first two moments:

i
By = 1900

(= D@Qj+5

Var[yj]:J(J 7>§./+ ).

So, u = %, and 02 = g—é, and the particular central limit theorem for INTERPOLA-

TION SORT’s cost is

ol

Cu— (2+5a/8)n D 91 ,
\/;’l_ —>N<0, :—3601 )

11.1.2 Radix Sorting

The bucketing operation in RADIX SORT is based on the digital composition of data
giving rise to a recursive flavor of bucket sorting with a fixed number b of buckets.
For example, if our data are distinct keys that are strings of 0’s and 1’s, the algorithm
separates those data into two groups (buckets): Those strings beginning with 0 go into
one bucket; those beginning with 1 go into the other bucket. RADIX SORT continues
its action recursively in each bucket, but at the jth level of recursion it uses the jth
character of the strings to further separate the data. The process continues until each
key falls in a bucket by itself.

In practical terms, the “separation” of data may be done by moving data around
within a host data structure, say like an array. For instance, if our data are distinct
keys that are strings of 0’s and 1’s, the first layer of bucketing according to 0’s and
I’s may be achieved by a partitioning algorithm that emulates the essence of the al-
gorithm PARTITION that we used with QUICK SORT. The difference here is that
partitioning is not based on a pivot, but rather on the first character of the keys. Fig-
ure 11.4 illustrates the principle of digital bucketing: After one application of the
partitioning algorithm (based on the most significant bit) a splitting position s iden-
tifies the boundaries—the s keys beginning with O are now in the subarray A[l .. s];
the subarray A[s + 1..n] contains keys beginning with 1.

A partitioning algorithm similar to Sedgewick’s algorithm (see Exercise 7.2) is
easy to implement. In the language of numerics, if we wish to treat our data as nu-
meric keys, say from the interval (0, 1], data grouping according to 0’s and 1’s at the
first layer amounts to creating the two intervals (0, 1/2] and (1/2, 1], then placing
keys beginning with 0 (whose numerical value is < 1/2) in the left bucket and plac-
ing keys beginning with 1 (whose numerical value is at least 1/2) in the right bucket.

1 ) n

[ 0. ] I... ]

Figure 11.4. Digital bucketing.
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This bucketing strategy of RADIX SORT continues recursively on nonempty buck-
cts after rescaling, that is, working on diminishing bucket sizes 1/2, 1/4, etc. until
enough information is gathered for complete sorting. One sees that RADIX SORT is
a digital counterpart of QUICK SORT.

At the lowest level of machine computing, data appear in binary form (a repre-
sentation of numbers and other data in the base 2 number system). The base of the
number system is also called its radix. Other common forms, at a slightly higher level
of interaction with machines, are the octal (base 8), decimal (base 10), and hexadec-
imal (base 16). Other forms of data suitable for direct application of RADIX SORT
are text and DNA strands.

In these forms, data are strings over a finite alphabet. In particular, numbers from
the interval (0, 1] may be thought of as infinite expansions. For rational numbers
there are two representations; we choose the infinite. For example, 1/2 in binary is ei-
ther 0.1 or 0.011111 ... and we choose the latter. Generally, irrational numbers have
infinite expansion and some rational numbers have two possible representations, one
finite and one infinite. For rational numbers with two binary representations we shall
choose the infinite expansion so that all our numeric data have the same uniform
infinite representation. In practice, real numbers are approximated by cutting off the
expansion at some finite precision. If a key is available as a binary expansion of bits
(binary digits):

K =0.didyds ...,

with every d; € {0, 1}, one can immediately access d; by direct indexing. For ex-
ample, the ith key may be the ith member of an array A[l ..r], and may be a fi-
nite string of type string[L], where L is a predesignated maximum key length. (In
many programming languages the type string[L] is used as a shorthand notation for
array [1 .. L] of characters.)

We shall discuss the algorithm and its analysis in the practicable case of binary
data, the case b = 2 (generalization of the algorithm and its analysis to higher
does not pose any additional difficulty). The bucketing operations of RADIX SORT
are bit extractions performed at the top level of recursion on the most significant
bit, then again recursively in the buckets on less significant bits. That is to say, the
comparative factor « that measures the units of operations in the buckets relative to
the top level operations is 1.

We can let the partitioning algorithm access position bit, where bit progressively
assumes the values 1,2, ..., L. An implementation, RadixSort, may proceed as
follows. The assignment of the initial value 1 to it is passed on to the algorithm by
the external call

call RadixSort(l,n, 1);

then the QUICK-SORT-like algorithm (Figure 11.5) first partitions (splits at position
s, say) then recursively invokes itsel{ twice: one call taking care of the left bucket,
and one call taking care of the right bucket. Each call passes on a higher bit position
to further recursive levels.
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procedure RadixSort (¢, u, bit: integer),
local s: integer;

begin
if £ < u then
begin
call Partition(€, u, s, bit);
call RadixSort (€, s, bit + 1);
call RadixSort(s + 1, u, bir + 1);
end;
end;

Figure 11.5. The RADIX SORT algorithm.

The bit accessing operation can be done arithmetically by integer division by 2.
For example, at the jth level of recursion in RADIX SORT, the jth bit is used for
further data separation and this value is passed via the variable bit to the partitioning
algorithm. The partition algorithm can take this value and extract the jth bit from any
key K by the operation [2/ K | mod 2. Arithmetic bucketing operations like the one
just discussed may be simplified in practice to hardwired machine arithmetic such
as register shift instructions. The algorithm is also directly applicable to nonnumeric
data, as in the lexicographic sorting of text or DNA strands.

As the bucketing operations of RADIX SORT are bit extractions, we shall mea-
sure the cost C,, of RADIX SORT by the total number of bits it extracts from the
n keys of the file presented to the algorithm to operate on. Equation (11.1) then be-
comes a distributional recurrence (with o« = 1):

where for each j, C(l) D C(z) D Cj, and the two families {C( )} —, and

{C(Q)} -, are mdependent but again Cz(v) and Cz(\?) are dependent. Let &,(u) =

E[u "] be the probability generating function of the cost, as measured by the num-
ber of bit inspection operations performed. Note that we are considering the total
cost and not the extra cost in the buckets; to the extra cost in the buckets we add
n (the number of bit inspections at the top level of recursion) to get the total num-
ber of bit inspections. This is reflected as an additional u™ factor in the formula of
Lemma 11.1, which now uses recursively the probability generating function in the
buckets, too. For n > 2, this gives us the functional equation

n(u) _ u” Z Sz. (u) éh(u)
n! ir!
11+12—n
where the sum runs over all non-negative integer solutions of the equation i|+i, = n.
Introduce the super generating function &(u,z) = Y je0§/ (u) 7/j1. To get a
functional equation on Z(u, z), multiply the last recurrence by 2" and sum over
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n > 2, the range of validity of the recurrence:

ooén()n oonnné.(u) én (u)
Y=y ey -

j=0 J! (n_J)'

Extend the sums on n from 0 to oo (to complete the super moment generating func-
tion): :

- éo(u) él(u) Ej(u) ruzNi  En—j(u) fuz\n—j
E(u,z) — _ZX(:) J <2) (n_jj)!<_2—>

1
B £ i)
D) -

j=0 J' (n_J)'

The boundary conditions Cp = C| = 0 (that is, &y(u) = & (u) = 1), come in handy
to simplify the functional equation to

I
109)]

2(u,f‘3)—1—2xf‘3,

B z) —1—z=
. 2) ¢ 2 2

which is

63

(1, 7) = 82<u, 525) +z(1 — ). (11.4)

Derivatives of this functional equation give us functional equations on the moments.
For instance, the kth derivative with respect to u, at u = 1, gives

o o)
Wa(l,)—z LT Rl

= dut TP

o0 Zj
Z [C;(C; =D ...(C; —k+1)]

an exponential generating function for the kth factorial moment of the cost. In par-
ticular, taking the first and second derivatives of the functional equation gives func-
tional equations on exponential generating functions of the first and second moments
as will be utilized in the following theorems to derive the mean and variance of the
cost of RADIX SORT.

For the sequence of means we define the exponential generating function

3 = z
M) = —-5(,2) =§)E[cj]—ﬁ.

If we take the derivative of (11.4) with respect to u once, at ¥ = 1, we obtain
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the boundary values in the functional equation are given by

E(l,2) = Zs,(l)——z

and

5B,y = Egéj(u) J! ‘u=1

= Zs (D= +Zs,(1>%j

zj“l

=) E[C;]— +z .
j=0 Jt j=1 (=D

= M(2) + ze*.

In terms of the mean generating function:

— 7,2/2 < 32/2}_
M(z) = 2e [M<2>+2e zZ.

263

In fact, e *M(z) has a Poissonization interpretation—had we started with N(z) =
POISSON(z) random number of keys, instead of a fixed n, the average cost of sorting

would have been

zfe ¢

=e *M(z).

E[Cny | = Z [Ch IN@ = j [ Prob(N () = j)
2He

Thus, if we let A(z) = E[CN(Z)} = e *M(z), the Poissonized average, we have

the functional equation

AQR) = 2A<-§-) tz—ze "

(11.5)

The situation here has led us in a natural way to a functional equation for the Pois-

sonized version of the problem. It is not as direct to get a functional equation for the

fixed population model. So, we can attempt to first solve the Poissonized problem,
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then revert back to the fixed population model, the model of our prime interest. This
amounts to working with a Poisson transform, then inverting it. We can of course do
the same for higher moments, but expect the functional equations to require tedious
handling. Indeed, that is how we shall get the variance, later in this section.

Let us start with the average cost of RADIX SORT, which will shed light on the
general approach. Once the reader appreciates the mechanics of the Poisson trans-
form and inversion process, the more tedious variance will appear to follow the same
mechanical path, only requiring more computation.

The average cost of RADIX SORT is presented next. Knuth (1973) attributes the
theorem to joint discussions with De Bruijn. Their proof uses the so-called Gamma
function method (an alternative nomenclature for the Mellin transform) and employs
approximating functions by their expansions. These basic ideas received much at-
tention and inspired a lot of research that resulted in a refined toolkit of analytical
methods (discussed in Section 1.11). The proof we present is based on that analytical
toolkit.

Theorem 11.2 (Knuth, 1973). Let Cy, be the cost of RADIX SORT (number of bit
extractions) to sort n random keys. Then

1
E[C,]=nlgn+ <1_)/§ 4+ - — Q(lgn))n + 0(n®),

where y = 0.5772156. .. is Euler’s constant, 0 < ¢ < 1, and the function Q is
periodic in its argument and is given by the Fourier expansion

L& 2miky g

T mkx.

Q) = 2, <1n2>e
k;é()

Proof. Let A(z) = E[CN(Z)] = ¢ *M (z). For this Poissonized cost we have derived
the functional equation (11.5). Iterating we get

A(z) = z(1 — ™) +2A<§)

=z(l—e ) +z(1—e¥?) + 4A<§)

i +2K+1A<2K+1>’

which is valid for any positive integer K. Because E[Cy] = E[C] = 0, the series

Jo—2
A = e M) =Y E[¢)] 7 ;, = 0(z%),
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as z — 0. Thus, for any fixed z. the remainder term is 2K+1 ()(2“2’() = 0(2"(),
as K — oc. The remainder approaches 0, as K — 0. Subsequently, by letting
K — o0, we can then write

o0

AR =2 (1 -7, (11.6)
k=0

The sum in this formula is one of our examples on the Mellin transform and
its inversion (see Example 1.1 of Subsection 1.11.2). The Poissonized average is
therefore

E[Cnp] =A@ =zlgz+ [ y

—d
1 2+——Q(1go} + 0z,

for any arbitrary d > 0; the function Q(lgz) is periodic and of a (small) bounded
absolute value.

What is left is to de-Poissonize the result back to the original fixed popula-
tion model. All the conditions for the de-Poissonization lemma are valid—the
Poissonized average A(z) ~ zlgz is O(z'™®) for any ¢ > 0, and apart from
O (n'/?*¢ Inn) error, the fixed population model has the same average as the Pois-
son model:

Y

- 2+——Q(lgn)j}n+0< : )+0( Y

E(Cn] ~ E[Cyn]+0(n*) = nlgn+|
the statement of the theorem follows because d > 0, and we can take ¢’ < 1. ]

Two small error terms appear in the last display in the proof of Theorem 11.2: one
coming from the Mellin transform inversion when the line of integration is shifted
to the right, the other from de-Poissonization. Combined, the two errors are bounded
by o(n).

We can now turn to the variance Var[C,] of the number of bit inspections in
RADIX SORT while it sorts n random keys. The machinery of the computation has
been demonstrated in some slow-paced detail for the mean. We shall only sketch this
lengthy variance computation. First introduce the Poisson generating function of the
second factorial moment S(z):

2

Siz) =e" Z~8—5 2(1, 2).

After somewhat lengthy algebra on (11.4) one finds

S(z) = 25(%) +4zA<§) + 2zA’<§) + 2A2<§) + 22

We introduce the function V (z) defined by V(z) = S(z) + A(2) — A%(z) which, in
other words, is the variance of the Poissonized cost.
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Plugging in the recursive representation (11.5) for A(z) gives the functional equa-
tion:

V() = 2v(%) + 2zA’<§) + 226 PAQ) + 2 — 2~ + 22",

Next, introduce the Mellin transform V*(s) of V(z). To go further one needs the
Mellin transform of A’(z). One can get it by differentiating (11.6) to have a series
representation of A’(z), whose Mellin transform is easily obtained:
(s — DI'(s)
MIA (2); s} = — 2 11.

{A@;s] > (11.7)
in the vertical strip —1 < Rs < 0. We leave it as an exercise to derive the Mellin
transform:

1 <2S+2SF(S +1)

* _
Vi) = 1 — 25+l 1 — 25+l

TG+ 1)+D(s)),

with

1 = 1
D(s)=T(s+2) |:22+s +2kX=(:)<1 —W>:|

From the singularity analysis of the above we may obtain the asymptotic ex-
pansion of V(z). The asymptotic expansion of Var[C,] is then obtained by de-
Poissonization:

Var[C,] = V(n) — n(A’(0))> + O(n1n?n).

The asymptotic equivalent of A’(n) is obtained by inverting the Mellin transform of
A’(z); cf. (11.7). The inversion gives an asymptotic approximation for A’(z), which
is de-Poissonized into A’(r). This lengthy process culminates into the result for the
fixed population variance.

Theorem 11.3 (Mahmoud, Flajolet, Jacquet, and Régnier, 2000). Let C,, be the
cost of RADIX SORT (number of bit extractions) to sort n random keys. Then

Var[C,] ~ (4.3500884 ... + 3(Ign))n,

where § is a periodic function of its argument, and with a small amplitude.

We note in passing that the periodic fluctuations in the variance occur in its lead-
ing term, unlike those in the mean, which only occur in the lower-order term. The
order of the variance is remarkably smaller than the order of the mean, indicating
good concentration around average value—as n increases the mean of the distribu-
tion shifts up, and the length of Chebyshev’s 3-standard-deviation interval that con-
tains at least 89% of the distribution grows at a slower rate. This shows that the rate
of convergence to a limit is fast.
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We are now in a position to turn to limit distributions. We have the mean and
standard deviation of the number of bit inspections. We use the leading terms in

these factors for centering and scaling and we expect the resulting normed random
variable

C,—nlgn
(43500884 ) + (g n))n

Cr =

n

to have a limit distribution. The proof technique is similar to what we did with
QUICK SORT; we guess a functional equation on the limit then use it to characterize
that limit. The success of this technique hinges on finding suitable representations.
Recall the fundamental recurrence

Co 2 Y +CP +n,

where Cﬁ.l) D Cj, fori = 1,2, and the two families {C( )}j ; and {C(z)} )
are independent. The share of the left bucket (keys begmmng with 0) is N1 =
BINOMIAL(n, 1/2), and that of the right (keys beginning with 1) is N = n — Nj.
Set v(n) = Var[C,], and think of it as a function of one argument, so v(/N;) and
v(N>) are random variables. We have

1 2
Cy,—nlgn _ C/(v,) —~ Nilg Ny v(Np) C,(Vz) - Mgh,

= +
Jon) S0\ v Jo (D)
v(N2)  gn(ND)
v(n) v(n)’

where

gn(u) défn —nlgn+ulgu+ (n—u)lgn —u).
In terms of normed random variables

U(N1 v(N2) gn(Nl)

*
Cn = CN W u(n) v(n) v(n)

where, for all j, C‘* C* and the families {C*} °,and {C*}] ; are independent
families.

Though technically involved, what is left is conceptually easy and similar to work
we already encountered in the analysis of QUICK SORT. After all, RADIX SORT
is the digital twin of QUICK SORT, but based on digital partitioning. So, RADIX
SORT has similar recurrences, but with different probabilities for partitioning. We
shall only outline the proof. If as n — 00, a limit random variable C exists for C;,
both C}; and C * will approach copies of the limit C, as both N1 and N, approach
infinity almost surely The fact that Ny is a BINOMIAL(n, 1/2) plays a crucial role
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P :
here. As a consequence, N1/n —> 1/2 and Ny/n i 1/2. Asymptotically, both
v(N1) and v(N,) are concentrated around v(n/2). The periodic part of v replicates
itself when its argument is doubled. That is,

v(N)) _ (43500884..)n/2+5(n/29n/2 p 1
v(n) (4.3500884 .. )n + 8(n)n 2

Similarly v(N3)/v(n) N 1/2. Furthermore, g, (N1)/+/v(n) N 0. These sketchy
calculations are treated more rigorously in the exercises.

Though CX,I and C‘X,z are dependent through Nj and N, their dependence gets
weaker as n goes up (the asymptotic tendency of Ny /n and Ny /n to 1/2kicks in) and
the dependence between CX,I and C‘X,z gets weaker, a phenomenon we are already
familiar with from the analysis of QUICK SORT. One therefore expects that, if a
limit C exists, it would satisfy a functional equation of the form

C+C
D % (11.8)

where ¢ 2 C, and is independent of it. To actually prove that a limit C exists
requires some additional technical work; one can show that such a limit exists from
recurrence equations on the moment generating function.

What remains to be shown is that a random variable satisfying (11.8) must nec-
essarily be a standard normal variate. This is intuitively true because the convolution
of A/(0. 1/+/2) with an independent copy of itself satisfies

1 1 D 1 IN b

—=NO. 1 ®—N©O 1) 2 N(0.5) e N(0,5) 2 MO, .
V2 V2 2 2

This argument only shows that A'(0, 1) satisfies the equation. One needs an addi-

tional argument to show that it is the only distribution that does. This follows from a

standard argument presented next. (This proof is different from the one in the original

study.)

Theorem 11.4  (Mahmoud, Flajolet, Jacquet, and Régnier, 2000). The cost C, of

RADIX SORT (number of bit extractions) to sort n random keys satisfies a Gaussian
limit law:

C,—nlgn

2 N, D).
(43500884 ..) + 8(1gn))n

*
Cll -

Proof. We have shown that the limit random variable C satisfies the distributional
equation:

n C+C
C = \/5
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Let ¢x (t) be the characteristic function of a random variable X. The convolution
in the distributional equation implies that the characteristic function satisfies a form
that can be iterated. For any fixed real 7,

AR SN AR SINAD
_ (-
_qbc(\/i)

2 n
t t 1 \72

The limit C is centered and normalized, with O mean and variance 1. That is, as
n— 00
2 n
t 1 \72 2
o) =[1 - gz +o(5)] =

the characteristic function of C converges to that of the standard normal variate.

11.2 BUCKET SELECTION

Several bucket sorting algorithms lend themselves to an intuitive adaptation to be-
come single or multiple selection algorithms. As in most selection problems, we are
given arank m € {1, ..., n} and we wish to identify the numeric key among n data
with rank m, i.e., the mth order statistic. Suppose N; is the share of the jth bucket,
i = 1,...,b. Under the data uniformity assumption, the shares Ny, ..., Np have a
joint multinomial distribution on n trials and rate of success 1/b per trial for each
bucket. In particular, the marginal distribution of any individual bucket’s share is
BINOMIAL(n, 1/b).
A bucket selection algorithm then continues its search for the desired order statis-
tic by considering the keys in the bucket indexed i, for an index i satisfying

Ni+--+N_j<m<N + - +N; (11.9)

interpret a sum as O when it is empty.

If the correct bucket containing the desired order statistic is found to contain only
one key, the process then terminates: The only key in the bucket must be the mth
order statistic, otherwise a selection algorithm is invoked to find the key ranked m —
Z’j;l N within the N, keys that landed in the jth bucket. Probabilistically, very few
keys fall in the correct bucket and either a recursive action or switching to some other
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selection algorithm should lead to rather fast termination. The bucketing operation is
performed n times on the initial list of keys, then followed by a stochastically small
number of operations. A bucket selection distributing the n keys over a large number
of buckets at the first step, such as the case b = n, will be called a DISTRIBUTIVE
SELECTION algorithm.

In all variations considered we shall regard m itself is chosen randomly according
to a uniform distribution on its range. Thus, m becomes a random variable M, =
UNIFORM][I .. n], independent of the shares of the buckets. We have already used
this averaging technique in analyzing QUICK SELECT. This averaging works as a
smoothing operator over all the fixed cases. It gives tractable recurrences and at the
same time brings out the character of the distributions involved.

Let C,, be the number of bucketing operations involved in the selection of a rank
M, = UNIFORM][1 .. n]. After the first layer of bucketing, the n keys have been de-
posited in the buckets. Once the correct bucket containing the required order statistic
is identified, some algorithm takes over to continue the search. (This algorithm is
possibly the same top-level bucket selection algorithm used recursively.) Suppose,
as we already did in bucket sorting, that the algorithm used in the buckets selects via
operations (possibly comparisons) that take « units of time relative to one bucketing
operation at the top level. Again, we assume that the selection algorithm in the cor-
rect bucket makes Y; operations to select a randomly selected order statistic (of rank
UNIFORM][1 .. j]) from among j random keys.

Let I be the indicator of the event (11.9). The recurrence for C, is just like (11.1),
with each term carrying an indicator—the indicators pick a term corresponding to the
number of operations in the correct bucket to resume searching in and truncate all
others:

D
Co 2 a(LiY) + LY+ + IbYy)) +n,

where, for each j > 1, Y;k) D Yj,fork =1,...,b, and for k # £, the families
{Y;k)}?‘f:l and {Y;e)};?‘;l are independent (but of course Yf(\’j;') and YI(\;Z) are dependent
through the dependence of N; and Ny). The quantity

2y 4y 4+ YY) (110

is the only stochastic component of the cost and captures the essence of the extra
cost after the first layer of bucketing. Introduce the probability generating functions
¢n() = E[u”] and Yy (u) = E[u""].

Lemma 11.2 Forn > 2,

1 L (n
= E s ; b— D"/ .
qbn(u) b1 & JW,, (u)( ) <j>
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Proof. Let P, be the probability Prob{N| = iy,.... N, = iy, My, = m}. We have
assumed M,, and the shares of the buckets to be distributed like UNIFORM[1 ..n]
and an independent multinomial random vector on r trials with 1/b chance for each
bucket. According to this independence and the respective distributions,

1 |
Po=Prob{N, =iy,...., Ny =iy} x Prob(My =m} = —( . = }x-—.
b \iy,...,Ip n

By conditioning the representation (11.10) on the shares of the buckets, we can write

(1) (2) )
hYy' +LYy +-+1Y . .
bn(u) = § PpE[u’ M1 T P | Ny =iy,...,Np=ip, My =m)]
i+t =
amen

(N 2)

= Y PEY (My=m]+ Y. PE[u'2 | My =m]

i etip=n iptotip=n
lsm=iy i <m=ip+ip
Y.(b)
4+ E PoE[u'® | M, =m],
it tip=n

i Hig i <mSiy g et

valid for n > 2; the sums above run over all nonnegative integer solutions of the
equation i| + --- + i, = n. By symmetry, the b sums are identical;, we can use b
copies of the first:

. g n 1
Gnw)=b Y zlE[uYIJ(. _ib)nbn

I1, ...,

i1+ +ip=n
1 " n (n—j)
- we(y) X S
nb" s J iyt ipen—j Il 1p!

When expanded by the multinomial theorem, the expression

A+1+-+ D" =@-1"

(b—1) times

coincides with the multifolded sum. ]

11.2.1 Distributive Selection

A distributive sorting algorithm can be turned into a distributive selection algorithm
by focusing on only the correct bucket containing the desired order statistic and
ignoring all the other buckets.

For example, one can derive INTERPOLATION SELECT from INTERPOLA-
TION SORT as follows. The algorithm sets up the same data structures: A[l..n] for
input data, R[1..n] a recipient (or R[0..n] if the selection algorithm in the bucket
plans on using a sentinel), and count[1 .. b] (count[ ] corresponds to the jth bucket,
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J =1,...,b), as in INTERPOLATION SORT (the algorithm of Figure 11.2). IN-
TERPOLATION SELECT goes through two rounds of hashing. The first hashing
round followed by the accumulation stage are the same as in INTERPOLATION
SORT. The difference between sorting and selection begins at this point. After accu-
mulation, count[j] contains exactly the number of keys that hash to a position less
than or equal to j. By examining the array count after accumulation, we know how
many elements lie in the bucket containing the desired order statistic—if our order
statistic is m, we shall look for the largest index i in count such that

count[i] < m;

in spirit we are implementing the event (11.9) on the accumulated counts. Determin-
ing the correct position i can be done in linear time in b by a scan of count as may
be done by a while loop that continues to advance an index i until the condition is
satisfied (i is initialized to 1). Of course, only one index value satisfies the condition
(the algorithm is specified in Figure 11.6).

In the second hashing round we only transfer the elements of the correct bucket
say to the top positions of the recipient array R. The elements that hash to position i
are “hits” and all the other are “misses.” The index of the correct bucket is stored in
hit. Input data whose hash position matches kit are moved sequentially to R. The
first of these is moved to R[1], the second to R[2] and so on. There are count[i] —
count[i — 1] keys that hash to position j. The algorithm therefore must sequentially
fill R[1..size] (the size of the correct bucket containing the desired order statistic)
with those keys, that is, size = count[i] — count[i — 1]. We can reuse i to step
through the input array A rehashing its keys. We designate the variable & to step
ascendingly through the filling process; every time a key is a hit, the key is copied
into the recipient array R, and k is advanced by 1, so that the next hit goes into a new
slot of R. The rehashing and data transfer can be stopped right after moving size
keys from A to R. So, we can iterate a while loop, diminishing size from the size
of the correct bucket by 1 each time we transfer a key and stop the while loop when
size becomes 0.

After the entire correct bucket has been moved to R[1 .. size], the selection pro-
cess can proceed with this portion of data. Any reasonable selection algorithm may
be used in the bucket, but now the key whose rank is m among all input keys will
have relative rank among the members of the bucket moved to R, shifted down by
the cumulative number of keys that fall in lower buckets, that is, a shift down by
le“:’l—l Nj. This cumulative share can be found in count[hit — 1], and the size can
be extracted from this information by assigning count|hit] — count[hit — 1] to size.
Any selection algorithm can then be applied to find the key ranked m —count[hit—1]
among R[1 ..size]. This selection algorithm does not have to be sophisticated for the
same reason discussed in bucket sorting: The bucket containing the order statistic we
are after has few keys, and any reasonable selection algorithm will terminate quickly
(even a complete sorting algorithm may be used).

To illustrate the general idea, let us assume that a selection algorithm based on SE-
LECTION SORT is commissioned with the task; let us call this algorithm CHOOSE;
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R[0] <« —o0;
fori <~ ltobhdo
countli] < 0;
fori < | ton do
begin
J < h(A[i]D);
count[j] < 1 + count[j;
end;
{Accumulate bucket sizes}
fori < 1tob—1do
count[i + 1] < count[i + 1] + count|[i];
i <1
while count[i] < m do
I <—i+1;
hit < i;
size < count[i] — count[i — 1];
R
k<~ 1;
while size > 0 do
begin
J < h(A[]);
if j = hir then
begin
R[k] < Ali];
size < size — 1;
k<—k+1;
end;
i <—i+1;
end;
call Choose(R, m — countlhit — 1], size);
Figure 11.6. INTERPOLATION SELECT—an implementation of DISTRIBUTIVE SELECT.

CHOOSE is capable of finding the mth order statistic among n keys, forany 1 < m <
n (CHOOSE is the algorithm that chooses the first »z minima, then stops). We now
compose the algorithm from the first two stages (first round of hashing and accumu-
lation) taken as is from INTERPOLATION SORT (Figure 11.2), then followed by a
stage of identification of the correct bucket and continuation of the selection process
with CHOOSE within that bucket.

For instance, if INTERPOLATION SELECT is applied to the 8-key input data
given in Section 11.1 to identify their 7th order statistic, with the hash function dis-
cussed there which uses 10 buckets, the rehashing stage will discover that only two
keys fall in the bucket containing the 7th order statistic and will place them in the
recipient array. CHOOSE will then operate on the recipient array to determine which
among the two keys is the 7th order statistic; see Figure 11.7.
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After First Hashing Round  After Accumulation

A count count R
0 0
45 0 0 .85
.63 1 1 82
7 0 1
42 3 4
22 0 4
.85 1 5
.82 1 6
47 2 8
0 8

Figure 11.7. Hashing and rehashing in INTERPOLATION SELECT.

The analysis of INTERPOLATION SELECT begins with Lemma 11.2. Extract
the coefficient of u* from the probability generating function in Lemma 11.2 when
specialized to the case b = n:

Prob{Z, =k} = ;},{ Z j[uk]lﬁj (u)(n — 1)~ (;’)
=1

= LanPrO'D{Yj =k}(n—1)”“j<rf>. (11.11)
= J

Let B, = BINOMIAL(n, 1/n). The term n™"(n — 1)"~/ () = n™7 (1 = 1/m)"~ (})
is the probability that B, = j, which for any given j converges to e~1/;! by the
standard approximation of the binomial distribution of B,, to POISSON(1). At any

fixed k, passing to the limit (as n — 00) gives us

00 ~1
lim_Prob(Z, = k} = ZlProb{Yj - k}(—j—e_—ﬁ.
j=
The Poisson probabilities appearing on the right hand side indicate that the number
of additional operations after the first level of bucketing is like the behavior of the
selection algorithm within the correct bucket on POISSON(1) + 1 random number
of keys. As the last limiting calculation is true for any fixed k, we can express the
behavior of Z,, simply as convergence in distribution.

Theorem 11.5 (Mahmoud, Flajolet, Jacquet, and Régnier, 2000). Suppose INTER-
POLATION SELECT uses a selection algorithm that makes Y j extra operations to

select a uniformly chosen random order statistic from among j random keys. Let Zy,
be the number of these extra operations when INTERPOLATION SELECT is applied
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to n keys. Then Z, satisfies the compound Poisson law:

D
Zy —> YPOISSON(1)+1-

For instance, suppose CHOOSE is the algorithm used within the bucket targeted
for further search. To find the kth order statistic among j keys, CHOOSE determin-
istically makes

1
(j—1)+(j—2)+~.+(j—k)=jk—5k(k+1)

additional comparisons after the first layer of bucketing. To find the average of

random selection in the bucket (all order statistics are equally likely), given that

the bucket size is j, we average the last expression by conditioning on the rank
R; = UNIFORM(] .. j] of the randomly selected order statistic

J
= > E[Y; | Rj = k] Prob{R; = k}
k=1
A
J k=1 2
%) _1

J
3

From the exact distribution in (11.11) and approximation of binomial probabilities
by their Poisson limits (as we did for the limit distribution), we now have:

o0

E[Z,] = ZkProb{Z,, = k)

k=0
o0 k o0 . . n
= > =" jProb{¥; = k}(n — )"~ ( )
n = J

k=0

o0 o0 e_l
N ZZkProb{Yj _k} "y
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only slightly more than one additional comparisons will be needed in the bucket
containing the order statistic and the average cost of the whole process is then

4o
E[C,] =2n + 3 + o(1).

Similarly, by a slightly lengthier calculation of second moments, one finds

589
Var[C —q.
ar[C,] — 1800:
Note that the variance is O(1) and does not grow with n, a highly desirable feature
in algorithmic design.

11.2.2 Radix Selection

As RADIX SORT is a digital analog of QUICK SORT, so is RADIX SELECT in
relation to QUICK SELECT (Hoare’s FIND algorithm). The digital analog follows
the same principle of truncating the side of the array that does not contain the sought
order statistic. Owing to the lack of a pivot in digital partitioning, the boundary stop-
ping conditions are only slightly different from QUICK SELECT.

Assume n digital keys are stored in the array A[1 .. n] and the algorithm is to select
the key whose rank is m. Like RADIX SORT, RADIX SELECT splits the data (at
position s) into two groups based on the first bit: A[1 .. s] contains all keys beginning
with 0 most significant bit, and A[s + 1 .. n] contains all keys beginning with 1 (see
Figure 11.4). At a higher level of recursion RADIX SELECT uses less significant
bits, and the bit position employed for the separation is incremented and passed on
in the variable bit to the next higher level of recursion. The algorithm is recursive and
takes in the two indexes £ and u to select from a subarray A[£ .. u] with delimiting
lower index £ and upper index u. Unlike QUICK SELECT, RADIX SELECT has no
pivot that may happen to match the required order statistic. This actually simplifies
the stopping condition slightly—the recursion must continue all the way down to a
subarray A[Z .. u] of size one (whose upper and lower limits are the same, i.e., £ = u).
The only element of that subarray is the required order statistic. Figure 11.8 shows
RadixSelect, aradix selection algorithm that uses Partition, an implementation of
the partitioning algorithm; the latter can be identically the same one we used for the
two-sided digital sorting algorithm RADIX SORT. The algorithm may be initiated
from outside by a call to RadixSelect (1, n).

To analyze this version of bucket selection, we want to develop asymptotics for
the probability generating function of the total cost. Consider the fotal cost (not the
extra cost in the buckets); to the extra cost in the buckets we add n (the number of bit
inspections at the top level of recursion). This is reflected as an additional u" factor
in the formula of Lemma 11.2, when b = 2. Note that RADIX SELECT is recursive
and bit inspections are its operation in the buckets, the same operation used for data
separation at the top level of recursion. That is, the probability generating function
¥ j (u) for the total number of bit inspections in the buckets is itself ¢ ; (1), the prob-
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function RadixSelect (¢, u: integer) : integer;
local s: integer;

begin
if ¢ = u then return(A[¢])
else begin
Partition(t, u, s, bit);
if s > m then return(RadixSelect (£, s, bit + 1))
else return(RadixSelect(s + 1, u, bit + 1));
end,
end,;

Figure 11.8. A digital algorithm for finding the mth order statistic.

ability generating function of the data separation at the top level. It is usually the
case that one develops ordinary or exponential generating functions for the sequence
¢n (u); however, in our case, the recurrence suggests developing a generating func-
tion for n¢, (u), as it is the combination that appears on both sides of a rearranged
version of the probability generating function of Lemma 11.2. So, we introduce the
bivariate exponential generating function

o0

du,7) = Zn¢,,(u)il—'.

n=0

It then follows from Lemma 11.2, by multiplying its two sides by z” and summing
over n > 2 (the range of validity of the recurrence), that

in%(u)z—’::zi ZJ¢ (U) 1 |

—
n=2 n n=2 Jj=l1 (n =Nt
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J n—j
S,z 2, ZZ 0 )(uz/2) , w2/

1! 0 10 (n— j)H

_2Z(u1)”21¢{(u) 3 1

=0t =gy

Observing the boundary values Cy = C; = 0, we have the adjusting boundary
probability generating functions ¢o(u) = ¢1(u) = 1, and it follows that

o8}
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which we can reorganize as
dP(u,z) = 2<I>(u, ftz—z)euz/z +z(1 — u).

The exponential factor on the right-hand side suggests that we can “linearize” this
functional equation by introducing a suitable multiplier:

euZ/zeuzz/4eu3z/8 R exp( uz )’
2—u

so that when we divide both sides by that multiplier, the exponential term on the
right-hand side will “clip” the first term in the infinite product. Subsequently, the
recursive term on the right-hand side will have the same nature as that on the left,
only with its second argument scaled:

d(u, z) _ d(u,uz/2) z(1 —u)
eUz/2ou2/dou32/8 T pulz/doudz/8outz/16 T puz/2pu%z/4ouz/8
So, if we let
d(u, z)
h ) = T aA s L

we have the equivalent simpler form

h(u,z) = 2h(u, %) +z(1 —u)exp(—zu_zu).

Think of h(u, z) as an exponential generating function in its own right, producing
a sequence of coefficients A (u). These coefficients can be extracted from the last
recurrence upon expanding its terms into series:

00 o %0 uk ok 0 o ou \kZh
,;)h"(”)ﬁ :2,;)hk(”)(k!)2k + e _”)k;)(_l) =) w

One has

1 k(1 —uw) u !
hk<u>:<—1>"‘1_21_kuk(2 ) ,
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nn (u) _

n!

(", ) exp(5—— )
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Thus,

| u \"k
cpn(u):zz(k) (2_) hi(w).

k=0

Inserting the expression for kg (1), we get

_1 u n—l n n k—1 l—u
= (55) L) 12

k=1

For instance, ¢4 (1) is given by the rational function

ut(8 + 8u? + 4ud + u)

P = TG i

The moment generating function of C,, is ¢, (¢"). One does not expect ¢, (¢') to
converge, but rather the moment generating function ¢(e) of a suitably normed
random variable (obtained from C,, by the usual centering by subtracting the mean
and by scaling by the standard deviation). It is sufficient for convergence of moment
generating functions to establish the existence of a limit in a neighborhood of the
origin. Thus, we shall look into the behavior of ¢} (e’) near + = 0 (or equivalently
that of ¢ () near u = 1). Note that the first term in the sum in (11.12) is simply n
and does not depend on u, whereas the rest of the finite series is multiplied by 1 — u.
Therefore, near ¥ = 1, the dominant factor of the probability generating function is
given by a simple expression:

&n(u) ~ (2 iu)”—l‘

Easy calculus, involving only finding the first three derivatives of the right-hand side
of the last expression then yields:
l‘2 3
bule") ~ 1+ 2nt +2nQ2n + D3+ 2n(4n* + 6n + D+ o).

The coefficient-transfer principle of Flajolet and Odlyzko (1990) broadly states
that under suitable (and rather mild conditions often met by generating functions
underlying algorithms), asymptotic equivalents of functions translate into asymptotic
equivalent of their coefficients. This general principle suggests that in our case the
coefficient of ¢ should asymptotically be equivalent to the mean, and the coefficient of
12 /21 should asymptotically be equivalent to the second moment. This heuristically
gives us the mean value

E[C,] ~ 2n,
and the variance

Var[C,] ~ 2n.



280 Bucket Sorts

This heuristic guides the intuition to the correct normed random variable (C, —
2n)/+/2n, which we can tackle rigorously to derive a limit distribution.

Theorem 11.6 (Mahmoud, Flajolet, Jacquet, and Régnier, 2000). Let C,, be the
number of bucket operations (digit extractions) performed by RADIX SELECT using
two buckets to find a randomly chosen order statistic among n keys. As n — 00,

C,—2n

Jn

Proof. We have developed the asymptotic relation

2, N, 2).

Ele®) = gne) ~ (o) -

e !t —1

and guessed that the mean and variance are both asymptotically equivalent to 2n.
This suggests centering C,, by 2n and scaling by ~/2n. Let us consider

Elesp(= 7)) e (2e—t/w71 -t

We can now develop local expansions:

E[exp(cnj_zn t)] ~ e—ztﬁexp[—(n -1

n
an2(s _#gw(#)) 1]
~ e—z’ﬁexp[—(n — l)ln[l — % + é + 0(;31/—2)“

Using the calculus equality In(1 — x) = —x + %xz + O(x3), we further have

Efexp(S240)] ~ e ewf o - b2 - &~ 0(3)
2 1

+5(G 5= olan)) o)l

~ O/ )

2
— e, as n — 00.

The right-hand side of the last relation is the moment generating function of A/ (0, 2).
]

We conclude this section with a few words about possible generalization of bolh.
RADIX SELECT and its analysis. We have considered the case of a fixed number ot
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buckets » = 2, which suits binary data, the most common type of internal computer
data. To handle digital data for a higher fixed radix » > 2, one can come up with
a “b-sided algorithm,” which partitions the data according to the / digits of the b-
ary number system: All data beginning with O go together into one segment, all data
beginning with 1 go into the next, and so on until the last segment which contains all
data beginning with the (b — 1)st digit. The algorithm then invokes itself recursively
to select within the bucket in which the required order statistic has fallen, but higher
levels of recursion will use less significant digits of the keys. The algorithm for b = 2
is the most practicable. The partitioning process becomes more complicated if b > 2.
For the mathematical analysis, the binary case has already illustrated simply all
the principles involved in the analysis for higher b. Extending the result to higher
(fixed) b follows the same route and poses no particular difficulty. The proof of The-
orem | 1.6 generalizes immediately to the case of a general bucket size b fixed.

EXERCISES

11.1 What is the probability that the hash function A (x) = [bx] maps n given in-
dependent keys from the UNIFORM(0, 1] distribution into a particular bucket
among b buckets?

11.2 Consider a RECURSIVE BUCKET SORT, when the sorting within a bucket is
done by bucket sorting itself. Give an example where RECURSIVE BUCKET
SORT may take at least 2" levels of recursion to sort n uniform random keys.

11.3 The saddle point argument becomes slightly more delicate with RECURSIVE
BUCKET SORT. Justify the following technical points in proving a central
limit theorem for RECURSIVE BUCKET SORT:

(a) The function @ (u, z) def Zjoc_’__o o (u)zj/j! involves the unknown func-
tions ¢ ; (). Why does the argument that the saddle point is at z = 1 still
hold?

(b) As Exercise 11.2 shows, the condition that ¥; < j?, for some 6 > 0,
uniformly for all sample space points is no longer valid. Argue that the
proof of central tendency still holds for RECURSIVE BUCKET SORT.

11.4 Derive a central limit theorem for RECURSIVE BUCKET SORT.

11.5 (Dobosiewicz, 1987a) In view of the practical difficulty of possible nontermi-
nation in the direct application of recursion (Exercise 11.2), describe at a high
level a RECURSIVE BUCKET SORT algorithm with guaranteed successful
termination. Your algorithm must avoid the degenerate case when all the keys
fall into one bucket, then recursively again they fall together in one bucket,
and so on. (Hints: Your algorithm can make sure that at least two keys fall
in two different buckets by adjusting the boundaries of the interval (0,1] to
(min, max], where min and max are the minimal and maximal keys. Your
algorithm also needs to rescale the hash function to work on diminishing in-
terval lengths.)
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11.6

11.7

11.8

11.9

11.10

Bucket Sorts

Let B, = BINOMIAL(n, 1/n). Show that

-1

-1, 2 .
L e e (J-—=3j+1) 1

Prob{B, = j} = “— — 0(—— .

(Bn = J) == 2n(j) * n2)

Consider the distributive selection algorithm INTERPOLATION SELECT,
that uses n buckets and a selection algorithm based on SELECTION SORT
within a bucket, under the standard probability models (UNIFORM(0, 1) data
and discrete UNIFORM][1 .. n] order statistic). In the text we developed the
cost’s mean and variance down to o(1). Based on the finer approximation of
binomial random variables by Poisson random variables, as in Exercise 11.6:
(a) Develop an asymptotic expansion for E[C,,], down to O (n~2) in the form

E[C,l=n+ag+a;/n+ O(n_z). Your answer should of course match
the text’s asymptotic result, which is developed only down to o(1) terms.

(b) Develop a series expansion for the variance down to O(n_z).

Consider RECURSIVE BUCKET SELECT, when distributive selection itself
is used recursively in the bucket identified as the one containing the desired
order statistic and is targeted for subsequent search. Give a good approxima-
tion by a series expansion in inverse powers of n for the mean of the cost of
RECURSIVE BUCKET SELECT, when it operates to find a uniformly cho-
sen order statistic. Show that the variance is O(1).

Let C, be the number of comparisons of RADIX SORT when it sorts n ele-
ments. Let v(n) be the function that agrees with Var[C,] at each n. It is proved
in Theorem 11.3 that the leading term of the variance is a periodic function
of its argument with an oscillatory behavior that repeats as n is doubled. So,
v(n)/v(2n) — 1, as n — oo. Show that this is true in the probabilistic sense,
too, that is, if ¥,, is a random variable such that ¥,, /n converges in probability

t0 12, then v(¥,)/v(n) — 1,2, too.

In the text, the average number of bits inspected by the digital algorithm
RADIX SELECT to choose a randomly determined order statistic in a file
of size n is shown to be asymptotically 2n. Using the analytic toolkit find the
more accurate asymptotic expansion

3 y 1 2mik 27Tiklgn
- + o(1).
E[C,] =2n-+1gn 2 2 2, E ( ln2) o(1)
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Sorting Nonrandom Data

Throughout the previous chapters the main focus has been the analysis of sorting al-
gorithms under certain models of randomness. For comparison-based algorithms, the
random permutation probability model was taken as our gold standard as it covers
a wide variety of real-life situations, for example, data sampled from any continu-
ous distribution. For the family of bucket sorting algorithms, uniform data models
were considered. Again, sorting by bucketing is based on hashing, for which several
practical hash functions are known to produce the required uniformity.

What if the data are not random? In this chapter we address questions on the
robustness of our sorting algorithms when the data deviate from the assumed prob-
ability model. What constitutes nonrandom data? There are many varieties of data
classes that are nonrandom. The most important families of data groups include al-
most deterministic files, nearly sorted files, and almost random files. Data that are
nonrandom according to one standard model, may still be random under another.
The models considered in previous chapters did not allow positive probability for
key repetition. Data replication appears in samples from a finite discrete distribution.

The first group of almost deterministic files includes files that are almost known
in advance apart from some perturbation. The second group of almost sorted files
includes files that are very nearly sorted apart from some perturbation. For example,
a database manager may decide to maintain files in sorted order. In a dynamic system,
insertions and deletions occur. The manager may decide to keep the file as it is and
add new entries at the bottom. The manager may perform periodic sorting updates
on such a file whenever the collection of new entries adds up to a certain proportion
of the whole file. Among the many sorting algorithms we have discussed, which is
favorable to this situation?

“Nearly random data” is a term that refers to data that are presumed to follow
some probability model, but for some reason or another they deviate slightly from
that model. For instance, the keys in digital models may be assumed to come from
an ergodic source that emits independent equiprobable bits of data. Such a hardware
device may age over time and lose some of its specifications. For instance, owing to
the aging of components, the bit probabilities may change to

Prob{bit =1} = p, Prob{bit =0} =1 - p,

283
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for p # 1/2. Does the quality of a digital algorithm like RADIX SORT or RADIX
SELECT change substantially by a small perturbation in the probability model? In
other words, are radix computation algorithms robust?

Questions regarding algorithm robustness or suitability for the prominent classes
of nonrandom data are highlighted in this chapter. This is a huge, newly evolving
domain by itself. We shall only try to bring the issues to light through tidbits of
information.

12.1 MEASURES OF PRESORTEDNESS

The amount of “disorder” in data files can be quantified in many possible ways and
according to many measures. Since these are measures of inherent disorder prior to
the application of any sorting algorithm, they are often called measures of presort-
edness. No single algorithm is universally superior across all measures of presorted-
ness. Take, for example, the number of inversions in a permutation as a measure of
presortedness. The number of comparisons made by LINEAR INSERTION SORT
(the sentinel version) to sort a permutation I, of {1,2, ..., n}1is

C(I1,) = n + I(I1,),

where I (I1,) is the number of inversions in the permutation IT,. Accordingly, LIN-
EAR INSERTION SORT performs well on permutations with a low number of
inversions. An already sorted, or nearly sorted file (one with say o(n) inversions)
will make only an asymptotically linear number of comparisons. Inverted files (files
sorted backwards) and nearly inverted files (files with 2 (n?) inversions) will require
the onerous © (n?) number of comparisons.

LINEAR INSERTION SORT is good with a low number of inversions. But, will
it be as good according to a different measure of presortedness? If we consider the
number of runs instead, a permutation like

My=m+1,n+2,n+3,...,2n,1,2,3,...,n)

has only two runs. Yet, it has n? inversions and will still require a quadratic number
of comparisons under LINEAR INSERTION SORT and under QUICK SORT. By
contrast, I, is one of MERGE SORT’s best-case inputs.

Other natural measures of the presortedness of a permutation are the minimal
number of data that if removed will leave behind a sorted list of numbers, and the
smallest number of data exchanges needed to sort the given permutation. Both mea-
sures are related to fundamental properties of permutations.

12.2 DATA RANDOMIZATION

Starting with any permutation, Il, = (my,...,m,) of {l,...,n}, one can per-
form a series of selections that will effectively obliterate any nonrandomness in
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the choice of TII,, even if it is deterministic. The selection process needs good
random number generation (or a simulator of such an operation), which is not
too much a restriction with modern pseudo-number generation technology. A ran-
dom permutation &, = (&,...,&,) can be generated in linear time and used
for randomization as follows. Starting with the ascending arrangement 2, =
¢1,...,8) = (1,2,...,n), the random number generator is invoked to produce
U, a UNIFORM]1 .. n] random variable. Positions U and n are swapped in E,. The
initial segment (&;,...,&u—1, &1, &y+1.--.,&r—1) now contains integers whose
relative ranks are a permutation of {1, ...,n — 1}. A penultimate index is then gen-
erated as U, a UNIFORM][1 ..n — 1] random variable, and the corresponding entry
at position U is swapped with &,_, and so on. By the arguments of Proposition 1.6
it is not hard to see that (g, , ..., g, ) is a random permutation.

If an algorithm is known to perform well on random data, we can randomize the
data first. “Working well” should typically mean achieving the average lower bound
®(nlnn). The randomization stage adds only O (n) preprocessing cost and will not
affect the asymptotic standing of the algorithm.

The randomization process can be integrated in some algorithms like the family of
QUICK SORT and all its sampling derivatives. QUICK SORT works well when its
pivot evenly splits the file under sorting at most levels of recursion. Slow quadratic
behavior occurs when bad pivots persist as in the cases of sorted and inverted files,
or files that are nearly so. By choosing a random pivot at every step of the recursion,
QUICK SORT will exhibit a behavior on sorted and nearly sorted files close to the
ideal ®(n In n) average speed of QUICK SORT on random data. Of course, this will
be achieved only “most of the time” because the random process of pivot selection
may still produce bad pivots by chance (but with rather low probability). Only a
minor modification of QUICK SORT is required to achieve a randomized version of
QUICK SORT. The algorithm is still based on PARTITION (Figure 7.2), but when
it sorts A[£ .. u] it first generates a random position uniformly from {, ..., u}. The
randomized QUICK SORT is shown in Figure 12.1. In the figure, Uniform(€, u) is
an implementation of the random number generator that generates an integer from the
set {£, ..., u}, with all numbers being equally likely. All variations of QUICK SORT,
like one-sided selection versions, multiple quick selection versions, and sampling

procedure Randomized QuickSort({,u: integer),
local p: integer;
begin
if £ < u then
begin
p <« Uniform(¢, u);
call Partition(¢, u, p);
call Randomized QuickSort(£, p — 1);
call Randomized QuickSort(p + 1, u);
end;
end;
Figure 12.1. Randomized QUICK SORT algorithm.
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versions, can be modified in a similar way to randomize the pivot and eliminate
nonrandomness in any given data file.

12.3 GUARANTEED PERFORMANCE

The case may arise when users demand guaranteed high-speed performance. A user
may insist on having O(nlnn) sorting algorithm for all inputs, regardless of the
model of randomness and regardless of the particular n-key input at hand. We have
already seen algorithms that accomplish that. HEAP SORT and MERGE SORT are
two paramount examples of practical fast algorithms with asymptotic n 1g n perfor-
mance. The question naturally arises, for any given n, what particular algorithm sorts
all inputs of that size with the fewest number of comparisons. A parallel question
arises for selection of one rank and other varieties of partial selection problems.

12.3.1 The FORD-JOHNSON Algorithm

It had been believed for quite some time that the FORD-JOHNSON algorithm (pre-
sented below) sorts with the fewest number of comparisons. This hypothesis checked
out forn = 1,2,...,11; the FORD-JOHNSON algorithm sorts any input of size
n < 11 with at most [lgn!] comparisons, the theoretical lower bound that cannot
be improved. No other comparison-based algorithm will do better for n < 11. For
n = 12 the FORD-JOHNSON algorithm sorts with 30 comparisons. The carefully
constructed experiments of Wells (1965) showed that for n = 12 no comparison-
based algorithm sorts all 12-key inputs with less than 30 > 29 = [lg 12! com-
parisons, raising the prospect that, after all, the FORD-JOHNSON algorithm may
be worst-case optimal in the exact sense. The exact sense of worst-case optimality
would mean here that, for all inputs, the FORD-JOHNSON algorithm sorts with the
fewest possible number of comparisons; in other words, the number of comparisons
the FORD-JOHNSON makes to sort its worst-case input of size n defines the true
lower bound on comparison-based algorithms, which is a little over [Ign!].

This remained a tantalizing open question for about 20 years until Manacher in
1979 published his findings that algorithms exist that can in the worst case sort with
fewer comparisons than the FORD-JOHNSON algorithm does. By the mid 1980s,
other algorithms were discovered that can slightly improve on that.

In any case, all the designs that followed the FORD-JOHNSON algorithm were
based upon that algorithm. They were variations that looked out for boundary con-
ditions and similar things. The FORD-JOHNSON logarithm and these offshoots are
not very practical algorithms. They are only of theoretical interest because they are
the best known algorithms (counting pair comparisons) that are closest to the theo-
retical [Ign!] bound. The FORD-JOHNSON algorithm therefore remains the core
for algorithmic studies of asymptotic lower bounds and we present it next.

Because the FORD-JOHNSON algorithm is only of theoretical value, we shall
not present an implementation; we shall give only an outline. Assuming there are 7
keys to be sorted, the steps of the algorithm are as follows:
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* Step 1: Divide the keys into |n/2] pairs, leaving one key out if n is odd. Call
the targer key of the /th pair ¢;, and the smaller b;.

* Step 2: Sort the [n/2] a;’s recursively by the FORD-JOHNSON algorithm.
Keep the pair correspondence, if g; is renamed a;;, reindex b; as b .

Step 3: We now have a known partial order captured essentially by the inequal-
ities

b <a Say=az...<app); (12.1)

bi <ai, i=1,2,..., |n/2).

We call (12.1) the main chain and we shall continue to grow it until it
becomes a complete order. Using the standard BINARY SEARCH algo-
rithm, insert the »’s into the main chain in groups (b3, by), then (bs, bs),
(b11. 610, .-, b6)s oo by by—10 .- by 1), -, where 1 is L(2%+1 4
(—=1)%) for increasing values of k. (Only the last group may not be complete.)

Figure 12.2 sketches the main chain after Step 2, and the chosen grouping within
the b’s. The algorithm would work for any choice of #; forming an increasing se-
quence. The choice %(2"'H + (—=1)%) is for worst-case efficiency. Let us develop the
insight for this choice. It is critical for fast insertion that we insert b3 before by—in
this order, b3 is inserted within the chain »; < a; < as (no need to consider a3 as
we have the prior information b3 < a3). Inserting an element in a sorted list of size
3 takes at most 2 comparisons in the worst case for BINARY SEARCH (probe the
median of the three elements, then one of the two extrema). When we insert 5, next,
we need only consider the elements preceding a; in the partial order as we have the
prior information > < a;. The two elements b1 and a; precede a;. We have no prior
information relating b, and b3. In the worst case, b3 will precede a; and the inser-
tion of b, among the three elements {1, a1, b3} will again require 2 comparisons. In
total, this order of insertion requires 4 comparisons in the worst case.

Had we followed the natural sequence, inserting by, b3, . . ., the worst-case input
arrangement would have required 5 comparisons for b, and b3 instead of the 4 com-
parisons we get in the FORD-JOHNSON algorithm—the element b, is inserted in
two elements, requiring two comparisons in BINARY SEARCH’s worst case. The
portion of the main chain relevant to the insertion of b3 has been lengthened by 1, and

aip a a12

/W/SM 1

by bio b1 b2 b13

S—— S — ~~

Figure 12.2. The poset discovered by the first two stages of the FORD-JOHNSON algorithm.
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we have no prior information on the relative order of b, and b3. So, by goes anywhere
on the chain b; < a; < ay. But then b3 must be inserted among {by, ay, az, b}, re-
quiring 3 comparisons in the worst case (for example, when b3 is second ranked in
the set {by, ay, as, by, b3}).

By the same token, for any group (by,, by, -1, - . ., by,_,+1), We insert keys in the
group starting with the highest index and coming down to the least index in the
group. Inserting a key in a list of 2¥ — 1 elements by BINARY SEARCH requires
k comparisons; the decision tree for this search is the perfect tree. If we proceed
with the keys in their natural indexing order 1, 2, 3, .. ., the list is lengthened after
each step. The corresponding decision tree grows by one node and is not perfect any
more; some leaves in the tree require k comparisons, others require K+ 1 comparison.
An adversary insisting on challenging the algorithm will choose the worst case for
each tree. The adversary will always choose the k£ + 1 case. The FORD-JOHNSON
algorithm takes advantage of the partial order obtained in its first two stages and
makes an insertion of all the keys indexed f, tr_1, ..., fx—1 + 1 in a list of size
2k — 1, each key requiring k comparisons in the worst case. This gives us a clue for
finding #;. Half of the nodes in the insertion tree are b’s, the other half are a’s. Up
to (and including) ay, , the pairs (a;, b;), i = 1. ..., tx—1 have been inserted (2
elements) as well as a;,_, 41, ar,_, 42, ..., ay (these are 1y — 1 elements). So, up
to (and including) a;, there are 21—y + (tx — tx—1) = tx + fx—1 elements. Each
of by, by —1, ..., by, is to be inserted with k comparisons. The first of these, by,
(which is known to be < a;, ), need not be compared with ay, . It need only be inserted
among f; + fx—1 — 1 elements. Without lengthening the chain, in the worst case each
inserted » will fall bellow the next inserted b in the chain, but the next » excludes the
a corresponding to it, maintaining the number of elements to insert among constant
(or the shapes of the insertion trees constant; all are the perfect tree of height k). We
want the constant number involved on the chain in the binary insertion to be 2F — 1,
the number of nodes in a perfect tree of height k. This maximizes the number of
nodes inserted with k comparisons. Setting

o+t —1=28—1
gives a recurrence (with #y = 1). This recurrence is easy to unwind:
k k—1
e =2"=@Q"7" = t2)

ok okl k2 gy

ok k=l ok=2 4 Lk,

This alternating geometric series sums up to #; = %(2""H + (=Dk).

The recursive structure of the FORD-JOHNSON algorithm gives a recurrence.
Suppose for a given n the index k is found from the inequality 7| < (%] < Itk
and let F (n) be the number of comparisons the FORD-JOHNSON algorithm makes
to sort n items in the worst case. The first step requires [n/2] comparisons. The al-
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gorithm then invokes itself recursively on |n/2] elements, requiring F(|n/2]) com-
parisons in the worst case. By construction, the worst-case number of comparisons
for each of by, by, —y, ..., by,_+1 keys 1s j, for j = 1,2,...,k — 1. Further, the
algorithm makes k& comparisons to insert each of brns21s -+ by +1. In the worst
case, Step 3 requires

Ii/(t, —ti-1) +k(|‘%‘| _tk—l) =k|‘%‘| — o+t 4+ +1-1).

j=I
The sum 79 + - - - 4 15, is given by

2/(-1-1 -2
k—1 k=1 5j+1 ¥ (=1)J —3 if k is even;
th p— —_— =
=0

. 3 2kt
Jj=0 5. ifkisodd.

This two-line formula can be written succinctly as

kz—:lt. N sz—i—l_‘
j = - .
j=0 3

So, for #x_| < [n/2] < &, we have the recurrence

rm=r(G) G- o

The recurrence is a bit unwieldy to be handled directly. However, we shall be able
to solve it from another consideration underlying the algorithm. That consideration
will allow us to find and solve a simpler recurrence.

When #,_) < [%n} < I, the goal of the FORD-JOHNSON algorithm is for
successive insertions of by, ..., by, 1 to add only k comparisons each. That is, the
goal of the algorithm is to have

F(n)—Fn-1)=k.

Lemma 12.1 (Knuth, 1973).

2k+1 2k+2

Fn)—Fn—D) =k iff LTJ<I’ZS[—3—~J

Proof. We prove the lemma by induction on n. The proof is a little different accord-

ing to parity. The sequence 7 = %(2"+1 + (= D) is a sequence of odd numbers.
When n is even, it cannot coincide with any ;. Thus, t%—1 < [r/2] = n/2 =

[(n —1)/2] < t, for some k. The parity of k£ determines the form of #. If k is even,
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1
=2 = 2tk—1 < n;

if k is odd,

t2k+l_' 2k+1 -1 2k+1 +2 22/( +1 2t
= < = = — .
3 3 3 3 k1=

For all parities of k,
Similarly,
Hence, for n even,

Since, for any j,

2/ 1) 2/+1
151=1515-)
(if j is even, both sides are %(ZJ — 1); if j is odd, both sides are %(2/' —2)), we also

have

zk 1 2k+1 n 1 2k+2 2k+1
EE IR
3 2L 3 2 2L 3 3

SO that
zk n 2k+1
[5]<3=[5]
3 2~ 3
Further, from the recurrence (12.2),

2k+l

rn-ro == (r(13)) + 2] #4312
() B4 ()

2
r(g) 5 -rGo)- G-
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=F<%)—F<g— ) +1.

Then by induction, the difference F(n/2) — F(n/2 — 1) is k — 1, and the lemma
follows.
For n odd, a similar argument applies. We leave it to the reader to verify this case.
The opposite direction of the theorem is proved by tracing the above proof path
backward. =

Lemma 12.] provides an easy expression to unfold F(n) recursively.
Proposition 12.1 (Hadian, 1969). The worst-case number of comparisons F(n)
for the FORD-JOHNSON algorithm to sort n keys is

n 3

F(n) = Z[lg %’]

j=1

Proof. The proof uses a form equivalent to Lemma 12.1. The floors may be removed
as n is an integer and 2/ is not a multiple of 3 for any positive integer j, that is,
F(n)— F(n—1) =kiff

2k+1 2k+2
—_—<n < —.

3 3
Taking base-2 logarithms

k+1<lgBn) <k+2,

or

(=[],

is an equivalent condition. We have a new simple recurrence

Fi) = Fn—1) + [1g 34'1]

which subsequenﬂy unwinds:

F(n)=F(n—2)+ [lgi@Z—_lq N [lgif-]

:Fél[lgg}. .
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Theorem 12.1 (Knuth, 1973). In the worst case, the FORD-JOHNSON algorithm
requires

nlgn+ (Ig3 —a, — 1 —217%y, 1+ O(nn)

comparisons to sort an input of size n, where a, =1g(3n) — [1g(3n)}.

Proof. Starting with the exact expression of Proposition 12.1, we can divide up the
sum over ranges of j for which the ceiled logarithm assumes the same value; over
the range 281 < 3 < 2, we have [lg(3/)] = k. Let L, denote [1g(3n)]. Note
that 3 is never of the form 2%; [1g(3n)] = L, + 1. Write

F(n) = Zn:(( 1g3/)] —2)

n

:i oo iG]+ Y. [1eBH]-2n |

k=1 2k=1.3; <2k j=%@Ln+b,) |

' Om) + R() —

where b, = 1, if L,, is odd, and b,, = 2, if L, is even. All the terms in the remainder
summation R(n) are the same, all equal to [1g(3n)]. So, |

2Ln by,
R(n) = i'lg(3n)—| (n - +1-— _g_)

2L
. ) + O(nn).

=(L,1+1)<n—

The main sum Q(rn) can be partitioned into £ odd and even:

Q(n) = Z Yook

k=1 2k=1.3j<2k

PR (EIRES R

Ly k _ 2k—l 1 Zk -2 2k—1 +2
k<2 L + +1)+Zk< — +1)
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Using the identity Y 7, 2* =1k = 2" (m — 1) 4 1, we can simplify:

On) = (%——(Ln — )+ %) + (_;)L" [%L}

2[41
= 5 (Lo = D)+ O(inn).

Ly

Putting Q(n) and R(n) together,

Ly+1
F(n) =n(Ly+1) — + O(Inn)
21g(3n)—ay+1
=n(lgBn) —ap — 1) — ————— +0(nn),

which further simplifies to the asymptotic expression in the statement of the theorem.
]

The factorIg3 —ay, — 1 —2'7% = 1g3 —3 4+ §(n) = —1.415... 4 §(n), where
d(n) is a positive oscillating function of small magnitude (not exceeding 0.087). For
example, §(4) = 5(8) = 0.081704166. .. . The coefficient of n in F(n) oscillates
between —1.329 and —1.415. Note how close F(n) is to the theoretical lower bound

Mgn'] = nlgn — —— + O(nn),
In2

with 1/1n2 a2 1.44. Probably that is why the FORD-JOHNSON algorithm remained
unchallenged for about 20 years. Manacher (1979b) discovered an improving algo-
rithm. The improvements are only in small bands, and within a band where improve-
ment is possible it is mostly by only a few comparisons. For example, the smallest
band for which Manacher’s algorithm offers an improvement is 189-191. Sorting
191 keys by the FORD-JOHNSON algorithm requires 1192 comparisons on its worst
input; sorting 191 keys by Manacher’s algorithm requires 1191 comparisons.

The oscillations are the key point that led Manacher to discover the improve-
ment, to which we hint in passing. The FORD-JOHNSON algorithm is based on
BINARY MERGE. A more flexible algorithm like the HWANG-LIN merging algo-

rithm can provide fewer comparisons for the right sizes of lists. The minima of § (x),
. . . . k+2
the continuation of §(n) to the positive real line, occur very close to u; = L2—3—j,

k = 1,2,....1Itis then conceivable that sorting u; + uj by first sorting u; keys
by the FORD-JOHNSON algorithm, then sorting u; keys by the FORD-JOHNSON
algorithm, then merging by a good algorithm may constitute an algorithm that bet-
ters the FORD-JOHNSON algorithm. The idea is that in Manacher’s algorithm, each
invocation of the FORD-JOHNSON algorithm operates on a file of size that allows
the FORD-JOHNSON algorithm to use the minimal value of its oscillating func-
tion. Admittedly, the minimal value is not much less than other typical values of
the function. However, these values appear in the linear coefficient of the worst-case
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function F'. This may lead to some rather marginal savings, if the merging is done by
a sensitive algorithm, one that senses the right way for each possible pair of sorted
lists. Versions of the HWANG-LIN algorithm can be designed to address just that.

12.3.2 Linear-Time Selection

The discussion in this section is on selecting the ith smallest in a given set. Prior
to the discovery of linear-time selection algorithms, it had been believed that the
complexity of the comparison-based selection of the ith item in a list of size n
i1s 2(nlnn). This is a problem of partial sorting. However, the only known solu-
tion to it was to do complete sorting followed by identifying the ith element. The
first worst-case linear-time selection algorithm was invented by Blum, Floyd, Pratt,
Rivest, and Tarjan in 1973. This algorithm selects the ith item in O (n), for any fixed
i = 1,...,n. For large n, this algorithm finds the key ranked i with at most cn
comparisons, for a constant ¢ > 0. Variations on this algorithm are then possible for
lowering the constant c. We are interested in presenting the idea in its simplest form
and shall leave the improving variations as exercises.

The idea in a linear-time selection algorithm is somewhat similar to Hoare’s FIND
algorithm, a one-sided QUICK SORT. In particular, it resembles a sampling version
of QUICK SELECT. The key point in linear-time selection is the choice of a “good”
pivot. Linear-time selection makes certain that a nonextremal pivot is used as the
basis for splitting. We saw that a SAMPLE SORT algorithm based on pivoting on
median-of-(2k + 1) can improve QUICK SORT. The idea used here is to divide the
input into a large number of small groups and find the median of each by a simple
algorithm. The median of medians must offer good pivoting. To illustrate the idea in
its simplest form, we shall use median of medians of groups of size 5 for splitting.
It should be immediately obvious that median of medians of groups of size 7, 9, etc.
will lead to successive improving variations.

The linear-time selection algorithm will be called SELECT, and will find the ith
ranked key in the host structure A[1 ..n]. Its implementation, Select, will receive as
input 7, the rank required, and A[£ .. u], the stretch of A on which the algorithm will
act. The lower end of that subarray is demarcated by the index £, the upper end by u.
The outside call is

call Select(A[l ..n],i);

the implementation Select is shown in Figure 12.3. Note that the algorithm has to
pass the array it is selecting from as a parameter, because various stages of the algo-
rithm apply the algorithm recursively to different arrays. Technically, in a program-
ming language, the call will be more like call Select (A, 1, n, i), but we shall stick
here to the more expressive notation chosen in the last display. This creates large
overhead in space, as the various calls will tend to build up a large stack of recursion.
Other time-related overhead is also inherent. The number of keys n will have to be
astronomically large before this algorithm outperforms other practical selection al-
gorithms. As mentioned above the algorithm is not particularly practical, but is, of
course, of interest from a theoretical point of view.
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function Select (A[¢..u), i) : integer;
local . p, s, m: integer;
Med : array]] .. s] of integer;

begin
S <—u—4€¢+1;
ifs < 5 then
return (Median(A[¢ .. u]));
else
begin
for j <~ Oto 3]~ 1do
Med[j + 1] < Median(A[£ +5j ..+ 5] +4]);
if s mod 5 # O then
Med[z + 1] < Median(Alu 4+ 1 — (s mod 5) .. u]);
m <« Select(Med[1..[$1], [$7£11):
call Partition(A[€ .. u], m, p),
if p =i then return(A[p])
else if p > i then return(Select(A[¢.. p — 1], 1));
else return(Select (Alp + 1..ul, i));
end;
end;

Figure 12.3. A guaranteed linear-time selection algorithm.

The n-key input is divided into [n/5] groups of size five each, except possibly
the last. (If n is not a multiple of 5, the last group is not a complete quintuple; it
may then have up to 4 keys.) The median of each quintuple is found by a worst-case
optimal median-finding algorithm for 5 elements with no more than 6 comparisons
(see Exercise 1.9.5). For the incomplete group, if it exists, at most 5 comparisons are
sufficient for the complete sorting of up to 4 keys. (In Figure 12.3 the implementation
Median is assumed to be a worst-case optimal function for finding the median of up
to 5 keys.) Finding all [n/5] medians of the groups therefore makes no more than
6[n/5] comparisons. These medians are kept in temporary storage, called Med. In a
call to SELECT on A[¢ ..u], Med[] ..[(« — € + 1)/57] is constructed. The median
of medians is then found by a call to SELECT on this array to find its median.

The median of group medians, m, can provide our good pivot. After finding m,
the information gathered so far is a partial order. Figure 12.4 illustrates the partial
order discovered after finding the median of medians of 29 keys (self-loops are not
shown). In the figure the group medians are drawn as squares and the black box
indicates the median of medians. There are about /5 group medians; about half of
them are below m. We can see right away that when used for splitting, this median of
medians pushes at least about n/10 keys below the pivot. In the worst case, when no
other keys will adjoin to the subfile of size n/10 to balance the situation even more,
the two final subfiles will be of sizes n/10 and 9n/10; both sizes grow linearly with
n. The algorithm will not face the bad cases that QUICK SORT occasionally suffers
from, where one side is very large, and the other very small because the pivot tended
to be an extreme value.
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Figure 12.4. The poset found by SELECT after it has determined the group medians (square nodes).

Lemma 1.1 ensures that when we identify the median of a quintuple, we also
know the pair of elements below it and the pair above it. Every quintuple with a
median below m forces two other keys to lie below m; a total of three keys in each
such group are below m.

The size of the remaining portion under selection is denoted by s (thus, s =
u — £+ 1). The median of medians is found by a recursive call to SELECT itself; the

call Select(Med[l . EH E EH)

finds the median element within the array of medians for this stage. Upon returning
with a median of medians, the algorithm goes through a splitting process similar to
QUICK SORT’s PARTITION algorithm (see, for example, Figure 7.2), but slightly
adapted to pivot on m. That algorithm returns p, the correct position of m. The split-
ting median of medians will go to its correct position (call it p) in the list; all the
elements less than the splitter will be transferred to the left of it, and all elements
larger than the splitter will be transferred to positions to the right of it.

If the splitter’s position p is i, we have found the ith order statistic in our input;
it is the splitter (now element A[p] in the array). If the splitter’s position is greater
than i, our required order statistic is to the left of the splitter. A recursive call on the
left data group A[£ .. p — 1] will complete the selection. Conversely, if the splitter’s
position is less than 7, a recursive call on A[p + 1 .. u] will complete the selection.

Let W (n) be the uniform worst-case number of comparisons of SELECT over all
i. The various components of SELECT contribute comparisons as follows. Finding
the [n/5] group medians requires at most 6[n/57 comparisons. The recursive call
for finding the median of medians in the worst case requires W ([n/5]) comparisons.
The partitioning process requires n — 1 comparisons. If i is below m, the algorithm
operates recursively on all the keys below /m. How many keys are below m in the
worst case? There are [% [n/5]7 — | medians below m. Two keys in each group are
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known to be at most the median of the group; three keys in each group are known to
be less than . The partial order discovered so far does not tell us anything about the
other two keys. In the worst case they will be added to the keys below m. That is, in
the worst case, all 5 keys from the [é—[n/S’H — 1 groups will be below m. Similarly,
if n is not a multiple of 5, there are [n/5] — [é—[n/Sﬂ — 1 complete quintuples
whose medians are above m. Each such group has two keys known to be above m
(keys above the group median); the other two keys (keys below the group median)
are not comparable to m. In the worst case each such group adds two keys to the
group below m. The remaining group adds

g(n) = [

ds
1 mo }—1, if (n mod 5) > 0.

2

Only a small adjustment is needed for (n mod 5 = 0). The middle group itself
provides 2 extra keys. For example, if the pivot is at position m > i, the recursion on
the left data group will be on at most

5([% « %} - 1)+2<% _ [% X %1)+2; if (n mod 5) = 0

B EE IR (R IR

+g(n)+2; otherwise.

This function is upper bounded by the simpler expression [%0(771 - 97

If i > m, a worst-case recursive call on the right side A[p + 1 .. n] will operate
on R, keys, a function that differs slightly from L, because of the effect of ceils and
floors. By the same counting arguments we find that the right call operates on at most
Ry < [15(Tn = 5)] keys.

Whether the recursion is invoked on the left side or the right side, we have an
upper bound on W (n). Uniformly in ¢,

W (n) 56[%}+W([%D+n—1+W({7”185D. (12.3)

Theorem 12.2 (Blum, Floyd, Pratt, Rivest, and Tarjan, 1973). In a list of n keys,
any order statistic i € {1, ..., n} can be found by making at most 23n comparisons.

Proof. We need to show that the inequality (12.3) can be satisfied if W (n) is linearly

bounded in n: That is, for some positive constant ¢, W (r) < cn, and identify c.
Assume by induction that W (k) < ck,fork =1,...,n— 1. We can then replace

the two occurrences of W on the right-hand side of ( 12.3) by ¢ times their argument:

n

5

7n—5‘|

‘l—}-n—l—}-cl‘ 0

F(n) < 6[%} +f
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§6<g+l)+c<g+l)+n—1+c<7n]gs +1)

<9c+22) +3c+5
n4+ — )
10 2

IA

The induction would be completed if the right-hand side of the inequality is upper
bounded by cn, for some induction basis. The question then is the following. Is there
a value of ¢ such that

<9c+22) + 3 L5 <
—C C
TRARE) = o

for all n greater than or equal to some ng? We are asking what c satisfies

<_,c_ _ ..2_2);1 > éc 5'7
10~ 10 +o

Clearly for any ¢ > 0, ¢ = 22 + ¢ can satisfy the inequality for large enough n. For
simplicity, we can take ¢ = 23, and the inequality is valid for all n > 395. Hence we
can take ng = 395, as the basis of induction.

For n < 395, we can use, for example, MERGE SORT to sort the file, then
identify the ith key with at most n[lgn] — 2M8"1 41 < 235 comparisons (refer to
Theorem 10.1 for MERGE SORT’s worst-case number of comparisons). =

The bound of 23# in the proof of Theorem 12.2 is rather crude. In the proof, the
number 23 is chosen for simplicity; we could have chosen, for instance, 22.5. More
importantly, the algorithm based on medians of quintuples was given for its sim-
plicity to prove worst-case linearity of selection. Slightly more complex algorithms
based on medians of groups of size 7,9, etc. can be employed to obtain better bounds.
The best known uniform bound is 3x.

12.4 PRESORTING

Presorting is a term that refers to preprocessing data to improve their profile for later
sorting by a standard algorithm. The idea has been recently introduced by Hwang,
Yang, and Yeh (1999). Naturally, presorting must be simpler than sorting and simple
enough not to introduce a higher order of magnitude, or even add too much over-
head to the existing orders of magnitude. For example, if we have at hand a sorting
algorithm that is O (n Inn) for all inputs of size n, we may consider presorting algo-
rithms of up to O(n) operations and we would require those to be based on simple
operations. One expects the effects of presorting to ripple through lower orders of
magnitude, for if it affects higher orders, that presorting algorithm together with the
sorting that follows would amount to a new major family of sorting algorithms.
Some rather simple operations are capable of reducing one measure of presort-
edness or another. For example, a single exchange of a pair that is out of its natural
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sequence may reduce the number of inversions in the input. We have an input permu-
tation I, = (my, ..., m,) on which we define an operation Sw;;(IT,), for I <i <
J < n, that transforms the given input into a new permutation I1;, = CLAT N
with 7, = 7y, for all k & {i, j}, and the pair (x/, Jr;.) = (m;, 7)), if 1; < 7, and
(n],n}) = (mj, ), if m; > 7. In words, the swapping operation Sw;; switches
i anc{ 7 if they are out of natural sequence. Clearly, the resulting permutation has
fewer inversions. How many inversions are eliminated on average by Sw;; ? The next
lemma answers this question. The answer will give us a clue on which pair will be

the optimal choice.

Lemma 12.2 (Hwang, Yang, and Yeh, 1999). Operating on a random permutation
I, of {1,...,n}, the single operation Sw;;(T1y,) reduces the number of inversions

by %(j —i)+ % on average.

Proof. Let the given permutation be IT, = (7y,...,m,). By basic properties of
random permutations, the triple m;, 7 ;, and 7 have relative ranks that are random
permutations of {1, 2, 3}. Let Z;;; be the number of inversions reduced in the triple
(mi, g, i), I < k < j, by the swap. The three subarrangements (7r;, 7y, 7 ;) with
relative ranks

1 2 3
1 3 2
2 1 3

are not changed by an application of Sw;; (for these ; < 7;); with probability 1/2,
Sw;; offers no reduction in inversions; Zixj = 0.
For subarrangements with relative ranks

2 3 1

3 1 2

Sw;; swaps 7; and 7; reducing inversions by 1 (event with probability 1/3); Z;x; =
1. For subarrangements with relative ranks

3 2 1

the swap reduces inversions by 3 (event with probability 1 /6); Zikj = 3.
Conditioned on the event that Sw;; induces a swap (i > 7}),

2, ifm >m>ny;

Zigjlmi>mj=1+ {0, otherwise.
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If there is a swap at all, positions k with i < k < j share the same reduction of

inversions. Hence Z;; = 3, 4. ; Zikj, the total number of inversions eliminated by
Swij is

1 1
E[Zij] = EE[Zij,ni < 7Tj] + EE[Z,']'IJT,' > JTj]

=0+%[1+ Z_(ox§+zx§-)].

i<k<j

_1+1(_ 1)
—5 5] l . ]

Lemma 12.2 unequivocably recommends that a single swap will be most effective
if the swapped elements are as far apart as possible (maximizing the distance j — i).
The most effective operation is therefore Swy ,, and the largest average reduction

in the number of inversions possible by a single swap is %n - %. Since the aver-

" age number of inversions is quadratic on average, a linear amount of reduction will

only affect the lower-order terms in the average value. The operation Swj, slightly
speeds up an algorithm like INSERTION SORT, which depends in a direct way on
the number of inversions.

Intuitively, the same kinds of Gaussian limits for plain inversions will prevail
for random permutations preprocessed by Swy,. Only the rate of convergence to
such a Gaussian law will change. We can develop this result technically by a simple
manipulation.

Theorem 12.3 (Hwang, Yang, and Yeh, 1999). Let I~n be the number of inversions in
a random permutation of {1, ..., n} preprocessed by the switching operation Sw,.
The probability generating function of 1, is

2 [1 +22+322 4+ (n— 1z" 2 ”—2(1 —zf)]

n! (1—27)"? Py
Proof. Let Swy, operateonI1, = (7, ..., 7Ty), arand0m~permut:1ti0n of {1,...,n},
to produce , = (Jr], T2, T3, ..., Ty—1,7,). Suppose I1, has I, inversions. The
number of inversions among members of the subarrangement (o, .oy Ty—1)
is distributed like 1,_», the number of inversions of a random permutation of
{1,...,n — 2}, with probability generating function (see (1.13))

l 11—2 l _ 7j

(=214 T2

Independently 7| and 7, will contribute additional inversions. Let us denote
this random number of additional inversions by 7},. (To visualize the independence.
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it is helpful to take a view similar to Proposition 1.6, whereby we can think of

(m2,...,m,—1) to have arrived first, then 7 2 UNIFORMII ..n — 1], and 7, L

UNIFORM|I ..n].)
The total number of inversions after the swap is the convolution

~ D .
In = 12+ Ty (12.4)
Each of the numbers 1,2, ..., Jrf — | causes an inversion with nf in ﬁn, and
each of the numbers Jr,’, + 1, Jr,; + 2, ..., n causes an inversion with Jr,’, n ﬁn. So,
Ty = (] — 1) 4+ (n — 7). For a fixed k, there are k + 1 possibilities that achieve
T, = (Jrf — 1) + (n — ;) = k; these possibilities are the feasible solutions to the

equation 7, — JT; = n — k — 1. Namely, these solutions are (7|, 7,) = (1,n —
k), 2,n—k+1),...,(k+1,n). A permutation I1,, = (), 72, 73, ..., gy, 7T,)
arises from either the permutation (|, 72, 73, ..., 7,1, 7, ), in which Swy , effects

/

no change, or from (m,, 7, 73, ..., W], Jrf), on which Swy, swaps the first and

last elements. Hence

_ 2(n -2)!

nd / /
Prob{Il, = (|, m2, 73, ..., W1, 71,)} -

which induces the probability generating function

1 +2z43224+ -+ (n—1)z"2
nn-—1) '

E[:"]=2 (12.5)
The probability generating function of the convolution (12.4) is the product of the
two generating functions of its independent ingredients. =

Asymptotic normality of the number of inversions in preprocessed random per-
mutations follows as an easy corollary. The convolution in (12.4) provides a direct
bridge to limit distributions. If the (asymptotically) centered random variable 7, — %—n
is normalized by n, it converges to a limit 7' (Exercise 12.6 establishes the limit dis-
tribution). However, to get a limit for /,,_», we must normalize /,,_» — E[],,_>] by
n3/2 to get the normal limit NV (0, 3%). Norming 7, — %—n by n3/? results in a random
variable that behaves like T'/+/n, which of course converges almost surely to 0. That
is,

In - }Tnz

_;_372___”»/\/@, L),

36
the same law as that of the number of inversions in a raw permutation.

In the preceding paragraphs we discussed the effects of a single swapping opera-
tion. The ideas and results extend easily to a sequence of such operations. A natural
sequence of operations to consider is Sw; i1, fori = 1,2,....[n/2]. Such a
sequence will produce a permutation with a (normalized) number of inversions hav-
ing the same limit distribution as a raw random permutation. The [ /2] operations
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require O(n) running time, and will not interfere with high-order asymptotics of
a sorting algorithm that follows. For example, if the presorting is followed by the
quadratic-time INSERTION SORT, the net result will be a quadratic-time algorithm,

convergence.

|
\
|
S ' still having a Gaussian law for its number of comparisons, but differing in its rate of
|
\
|
\
|
|

EXERCISES

12.1

12.2

12.3

124

12.5

A university’s Admissions Officer maintains a sorted data file A[1 .. n] of size
n. New records are placed in the file by LINEAR INSERTION SORT. Assume
the rank of a new entry to be uniformly distributed over the range of possible
gaps between existing keys. What is the distribution of the number of com-
parisons needed to insert the k& additional entries, for k fixed as n — 0c0?

(Mannila, 1985) Let M (T1,) be the minimal number of data that if removed
from a permutation I1,, of {1, 2, ..., n} will leave behind a sorted list of num-
bers. Show that M (I1,) = n — the length of the longest ascending subse-
quence of IT,,.

(Mannila, 1985) Let X (IT,) be the minimal number of pairwise exchanges
in the permutation I1, of {1, 2, ..., n} that result in a sorted list. Show that
X, = X({I1,) = n — C(I1,), where C(I1,) is the number of cycles in IT,,.
Hence, derive a central limit theorem for X,,.

A data source was designed to emit sequences of independent equiproba-
ble bits. Over time, the device calibration has slightly deteriorated. It still
produces independent bits, but now the 1’s and 0’s have probabilities p and
1 — p, respectively. What is the average number of bits inspected by RADIX
SORT (the algorithm of Figure 11.5) during the course of sorting n indepen-
dent digital keys taken from this source? Refer to the discussion of Subsec-
tion 11.1.2 for the model of randomness of digital keys. Comparing the result
with Theorem 11.2, would you consider RADIX SORT a robust algorithm?

(Hwang, Yang, and Yeh, 1999) Let 1,§") be the number of inversions in a ran-
dom permutation of {1, ..., n} preprocessed by the sequence of switching
operations Sw; i1, forz =1,...,k < [n/2] (see Section 12.4 for a def-

inition of these operations). Show that the probability generating function of
) i
Iy

k e n—-2k1_zj
Hl+2z+3z 4+ =2+ D" ")1_[
j=1 j=I1

2k

n!

1—z

Hence, or otherwise, derive the mean and varlance of I, *) . (Hint: Argue in-
ductively, building on the case of k = 1 (Theorem 12.3) for positions 1 and n,
then move on toward the “inner cycles.”)
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12.6 Let I, be the number of inversions in a random permutation (rry, ..., 7,) of
{1, ..., n} after it has been preprocessed by the single switching operations
Swy , (see Section 12.4 for a definition of this operation). As in the text, I, is
distributed like a convolution I, _» 4+ T,,, where I,,_» stands for the inversions
already present among (72, ..., 7,—1), and 7, is the number of additional
inversions caused by the keys at positions 1 and n.

(a) Derive the exact mean and variance of 7},.
(b) Show that

where the limiting random variable T has the density 2¢ + %, for --§- <

1
l<§.
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Epilogue

After taking the grand tour of standard sorting algorithms, a natural question to ask is,
Which method is recommended? The analysis shows that there is no simple answer
to this question. No one single sorting algorithm appears to be universally superior
to all other sorting algorithms across all situations. An algorithm excelling in its
average running time, like QUICK SORT, may have bad input cases on which its
running time is much higher than the average; an algorithm with guaranteed worst-
case performance, like MERGE SORT, does not operate in situ; MERGE SORT
demands about double the space that QUICK SORT needs. Arguing further, one
finds that every algorithm may have some shortcoming for a particular situation.

Table 13.1 summarizes the analysis of the standard sorting methods discussed
in the book. For every sorting algorithm discussed earlier, the table lists the leading
asymptotic equivalent of some dominant characteristic of the algorithm. For instance,
for comparison-based sorting algorithms, the number of comparisons is the selected
characteristic. Of course, in practice several other factors may alter the constants
of the actual running time. For example, while QUICK SORT’s average number of
comparisons is about 1.44n 1gn and HEAP SORT’s average number of comparisons
is only nlgn, in practice the average running time of practicable forms of HEAP
SORT is nearly twice QUICK SORT’s average running time.

The choice is situation dependent. The analysis, however, gives some general
guidelines:

* For very large random inputs following the random permutation probability
model, parsimonious divide-and-conquer methods are asymptotically fast. Both
MERGE SORT and HEAP SORT have guaranteed » g n performance (compar-
isons that dominate the running time). QUICK SORT is fast on average requir-
ing only 2nlgn comparisons asymptotically. While MERGE SORT requires
twice the space of the input, QUICK SORT and HEAP SORT run in situ. The
downside is that QUICK SORT has a few atypical inputs on which it runs in
@ (n?) time, and HEAP SORT has overhead that manifests itself if n is not large
enough.

* For medium and small files following the random permutation probability
model, some naive methods prove to be serious competitors to parsimonious
sorting algorithms. SHELL SORT is not a bad algorithm for this application.
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TABLE 13.1. Probabilistic Analysis of Standard Sorting Algorithms

Sorting Algorithm Mean Variance Limit Distribution

LINEAR INSERTION n? = normal

BINARY INSERTION nlgn n x oscillation  normal

(2,1)-SHELL SORT —%nz const x n3 normal; lower-order terms
form a Brownian bridge

Pratt’s SHELL ®(nIn? n) unknown unknown

BUBBLE In? — passes: Rayleigh

comparisons: about %

(high probability)

SELECTION Ln? 0 degenerate

COUNT ;nz 0 degenerate

QUICK 2nlnn const x n? fixed-point solutton of a
functional equation

MEDIAN-3-QUICK SORT 172;1 Inn const x n? fixed-point solution of a
functional equation

HEAP nlgn unknown unknown

MERGE nlgn n x oscillation  normal

INTERPOLATION const x n const x n normal

RADIX nlgn n x oscillation  normal

* For nearly sorted inputs an algorithm like SHELL SORT with very few incre-

ments, or even INSERTION SORT (the simplest SHELL SORT using only one
increment), is probably among the best methods for the task.

BUCKET SORT and its derivatives have an inviting O(n) average time. This
class of algorithms is based on smashing the input keys into their bare atomic
digital units. The average O(n) time is attained under the assumption of uni-
form data, or a hashing scheme that achieves that. The class of algorithms is
not in situ and their running time may tend to be a bit too high in the worst
case. The number crunching required by BUCKET SORT algorithms suggests
that one should select them with caution. A BUCKET SORT algorithm may be
good on mainframe computers that have fast registers for performing arithmetic
operations; the same algorithm on the same input may require a lot longer time
on a personal computer.

The situation is less clear for inputs not following the random permutation prob-
ability models. Not too much analysis has been done on these models. The gen-
eral rule of thumb may be: When in doubt, use a member of the parsimonious
class of sorting algorithms with guaranteed performance.
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CHAPTER 1.1

1.I.1 () 1.3 2.6 2.9 34 4.4 7.1.
(i) 17 29 33 47 56 60 71 84.
(iii) The sorting here is lexicographic:

Alice Beatrice Elizabeth Jim Johnny Philip.

1.1.2 () 2 1 6 5 4 3.
(i) 3 6 2 5 8 1 7 4.
(1) 4 2 6 1 5 3.
1.1.3 No special interpretation is needed because the ordering of the constraint (1.2)

includes the“less than” option. However, the permutation satisfying (1.2) may
not be unique. For instance, for

(X1, X2, X3, Xa, X5, X6, X7) = (6,2,6,6,8,5, 8)

we have
and

both satisfy (1.2). That is, the two permutations (2, 6, 1, 3,4, 5,7) and (2, 6,
3,4,1,7,5) both qualify as a map.
1.2.1 max < A[l];
for i <~ 2tondo
if A[i] > max then
max <~ Ali];

Clearly, this algorithm makes n — 1 data comparisons.
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1.2.2 The algorithm compares successive pairs and tosses winners into a bag W

and losers into another bag L. For n even, this requires n/2 comparisons.
For n odd, |n/2] comparisons pair all but the last clement. We can then
match the last element against a winner. If it loses, it gets thrown into L.
If it wins, it replaces the person it defeats, who then goes into L. For n odd
this requires [n/2] + 1 comparisons. For all parities, this initial classification
requires {n/27 comparisons. The maximum must be in W and the minimum
in L. We can then apply an algorithm similar to that of Exercise 1.2.1 to find
the maximum in W and a mirror image algorithm to find the minimum in L.
The algorithm of Exercise 1.2.1 can be easily turned into a procedure, say
max, that is called to find the maximum in a set B[1 .. s], of size s. The mir-
ror image for minimum finding can be implemented likewise and these two
procedures will be called. One of the two bags has size [n/2], the other has
size |n/2]. The identification of the two extremal elements in the two bags
combined requires ([n/2] — 1) + (ln/2] — 1) = n — 2. The total number
of comparisons to find the maximum and the minimum by this algorithm re-
quires [n/2] +n — 2 < 3n/2. Here is an implementation that assumes the
initial data in the array A[l..n]:

fori <— 1to |n/2] do
if A[2i — 1] > A[2{] then
begin
Wli] <« A[2i — 1];
L[i] < A[2i];
end '
else
begin
Wil <« A[2i];
Lii] <« A[2i — 1];
end;
if (n mod 2) = 1 then
if A[n] > W[1] then
begin
L[T51] < Wl
W] <« Alnl;
end
else L[[51] < Alnl;

print(min(L, (1), max(W, [4]));

1.3.1 The algorithm is comparison based and stable. The issue of “asymptotic”

extra space does not arise as the algorithm is specifically designed for three
keys, and not for sets of arbitrary size. Apart from compiled code and the
variables, no extra space is needed and we may consider the algorithm to be
in situ.
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1.4.1

if X1 < X2 then
it X2 < X3 then
print(X1, X2, X3)
else if X1 < X3 then
print(X1, X3, X2)
else print(X3, X1, X2)
else
if X2 > X3 then
print(X3, X2, X1)
else if X1 < X3 then
print(X2, X1, X3)
else print(X2, X3, X1);

1.4.2 If we want to switch the contents of two glasses, we need a third empty glass.

1.5.1

1.6.1

The same principle applies to the swapping of two computer variables. The
procedure is quite simple. It is written here for real numbers (the temporary
container must also be real). Similar algorithms will work for any type by
changing the declaration of the type of parameters and matching the change
in the temporary variable. In modern object-oriented programming systems,
one algorithm can be written for all feasible data types.

procedure swap (var x, y : real);
local :: real;
begin
! < x;
X < y;
y <t
end;

The minima are the prime numbers. This infinite partial order has no maxima.
The chains are all the multiples of a prime—for every prime p|, any sequence
of the form

Pl P1P2, PIP2P3s - - s

where all p; are primes (not necessarily distinct), is a chain associated with
p1. The set O of odd numbers is not compatible with the partial order; for
instance, 5 divides 20, yet 20 € A — O.

Revisit the proof of Proposition 1.1. The height of the complete binary tree
of order n is A}, = [lg(n + 1)7]. The leaves therefore live on the two levels
h)—1and h%. The lower of the two levels has an equivalent but more succinct
representation

Rt —1=lgn+D] -1 = lign),

The latter expression is used elsewhere in the book, whenever convenient.
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1.6.2

1.6.3

1.64

1.6.5

Answers to Exercises

Let the height of the complete binary tree of order n be 4}, and let Z,, be the
number of leaves at level 4. As argued in the proof of Proposition 1.1, levels
0,1,..., h} — 2 are saturated, and level 4}, — 1 may or may not be saturated.
The number of internal nodes on level A% — lisn — (1 +2+--- +2"2) =
n—2"=141.So, there are 22~ —n+2#2—1 _1 leaves on level 1% —1. The
total number of leaves is n+1. Hence Z, = n+1— Q"1 —p42m-1-1) =
2(n 41 ~2m"1).

Suppose T, is an extended binary tree with external path length X,. If its
height i, exceeds &}, the height of a complete binary tree on n nodes, there
must be a leaf on some level £ < A, — 1 (otherwise, all levels preceding A, —1
are saturated with internal nodes and 7;, is complete, in which case 4, cannot
exceed A ). There must also be two sibling leaves on level 4, (otherwise,
every leaf on level 4, has an internal node sibling; those siblings will force
leaves on levels higher than 4, a contradiction). Transfer the parent of the
two sibling leaves from level 4, to replace a leaf at level £, producing 7, a
new tree whose external path lengthis X,, + 2(£ + 1) —€ —2h, + (hy — 1) =
Xn+L—h,+1 < Xp.If all levels except possibly the last are saturated in 7,,
then 7, is complete; we are done. Otherwise, repeat the whole operation on
T,, to produce 7,’, whose external path length is less than that of 7. Continue
the process, always producing trees with smaller path length, until it is no
long possible (the final tree is complete).

The result can be proved by induction on #n. The basis of this induction is
trivial. Assume the assertion to be true for all trees of size less than n. Suppose
the given binary search tree is Ty, of size n, and let L; and R; be its left and
right subtrees respectively (of sizes i, j < n). The key K, of rank r,4|
(among all n + 1 keys) is to be inserted in 7,,. If 7,41 < i 4+ 1, insertion falls
in L;. Let Keys(T) denote the set of keys in the nodes of a binary search tree
T. Ranked among the keys of Keys(L;) UK, 11, thekey K,,+1 is the r,,+ st
largest. By induction, the insertion of K, 1 hits the r,4 st leaf in L; (in a
left-to-right labeling of leaves of L;), which is the r, 4 st largest in 7;,.

If rp41 > @ + 1, insertion falls in R;. Ranked among the keys of
Keys(Rj) U K11, the key Ky 41 is the (rp41 — i — 1)st largest and by
induction its insertion hits the (r,,+; — i — 1)st leaf in R; (in a left-to-right
labeling of leaves of R;), which is the r, st largest in 7},.

Proposition 1.4 gives the exact distribution Prob{S,(lj ) = k} in five ranges of
k.For j < (n+1)/2 the minimum in the first range k < min{j ~2,n—j—1}
is j — 2 and in this range

Prob{s\"™ =k} = 2

/ (k +2)(k +3)
In the second range j — 1 < k < n — j — | the probability is
1 G-
Ck+DKk+2)  k+DE+2Kk+3)

Prob{sj(.’” — k)
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The third range n — j < k < j — 2 does not exist. In the fourth range
max{j —1,n~ j} < k < n—2, the maximum is n — j and the probability is

2 L An—k-2)
(k+Dk+2)  (k+ Dk +2)(k+3)

Prob{S;.") =k} =
The fifth range is the singleton point k = n — 1, where the probability is

1
Prob{S(”) =n—1}=—.
n

Putting it together, one finds the rth moment:

E[(S(”))] Zk’Prob{S(”) k)
k=0

- n_j—l r .
Ktk+25+1
+ Z ( J+1)

Z(k+2)(k+3) ety e+ Dk +2)(k+3)

% 1
2t D Z R T T R

Simplify (computer algebra may be quite helpful here) forr = l andr = 2
to get the first two moments. The case j > (n + 1)/2 can be argued by the

symmetry of S,(lj) and S(" =/ , or directly as we did for j < (n + 1)/2 (here
one finds the second range empty).

1.6.6 The depth of a node is also its number of ancestors, and the required result
will establish an average symmetry principle between ancestors and descen-
dants. let T, be a permutation of {1, ..., n} that gives a binary search tree
where k is an ancestor of j. Swap j and k in I1,, to obtain the new permu-
tation &,. The tree constructed from &, has k as a descendant of j. We thus
find a one-to-one correspondence between the set of permutations giving bi-
nary search trees with k as ancestor of j, and the set of permutations giving
binary search trees with k as descendant of j.

Let A;”) and S;-n) be respectively the number of ancestors and descendants
of j in a binary search tree of order n. Further, it follows that

E[s{"] = 1; Prob({k is a descendant of )

kit

= Z Prob{k is an ancestor of j}

l<k<n

Ty
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_ (n)
= E[4""]
as given in Proposition 1.4.
Even though the number of ancestors of j has the same average as that

of the number of descendants, these random variables have different distribu-
tions. For instance,

1
Prob{A\” =0} = 3

whereas

N =

Prob{s"® = 0} =

Let Tz be the binary search tree constructed from a permutation E, and let
Pr.(j) be the path from the root to j in that tree.

We first show that (a) implies (b). The descendants of j must follow j in
I1,,. We show that if d; — 1 is feasible (in {1, ..., n}), it must be on Pry; ().
Toward a contradiction, suppose d; — 1 is feasible but not on Pr, (/). If d)
precedes di — 1 in IT,,, the insertion of d; — 1 must compare it with d;, and
d; — 1 is a descendant of d1, whence also a descendant of j, a contradiction.
Since d; — 1 cannot be a descendant of j and does not lie on P, (j), the
insertion of d; must fall in the subtree rooted at d; — 1, and d; is not a
descendant of j, another contradiction. The argument for di1 1 + 1 when it is
feasible is similar. We have shown that (a) implies (b).

Assuming condition (b), let IT; be a permutation obtained by truncating
I1,, right before j. This truncated permutation comprises the integers preced-
ing j in I1,. The tree Tn1, constructed from IT; contains whichever of d; — 1
and dy+; + 1 when feasible. Also, if ¢ — 1 is feasible, it is the largest num-
ber in the tree 77y, that is less than j. When j is inserted into 711, j must be
compared with d; — 1, and d; — 1 lies on Pry (j). A symmetric argument
shows that if dy 11 + 1 is feasible, it must lie on PTn,, (j).

When members of the set D — {j} are inserted, they will be sandwiched
between either:

(i) d; — 1 and some member of the subtree rooted at j;
(ii) dg+1 + 1 and some member of the subtree rooted at j;

(iii) two members of the subtree rooted at j.

In any of the three cases, the insertion must fall in the subtree rooted at j. So,
that subtree includes D. Since both feasible ¢ — 1 and feasible dy4 | + 1 are
on Py, (j), that subtree includes only D.
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1.6.8 By an argument similar to that of Exercise 1.6.3, we can demonstrate that the

1.69

complete binary tree has the least external path length among all binary trees
of the same order.

Let Z, be the number of leaves on level |Ign] + 1 in a complete tree of
order 1, and let X, be its external path length; Z, is given in Exercise 1.6.2.
The complete tree of order n has n + | leaves. There are n + 1 — Z,, leaves
at level |Ign . Hence,

Xn=(Ugnl+1)Zy+ llignl(n+ 1~ Zy)
=Zy+(n+1)]lgn]

=nllgn] +2n + (Ign] +2 — 2lienl+1,
def .
Let f, = lgn — |lgn]. Write

Xn=n(lgn — fo) + 21+ (gn — fp) + 2 = 2'8n~Jatl

2
—nlgn+lgn+2n+2—(m+1f, _EJ’;‘
This expression exceeds n Ign, iff
2n
lgl’l+21’l+2—(l’l+ l)fn - 'z_f— >0,

which is true because, for any n > 3 and any x € [0, 1], the function

gnx)=lgn+2n+2~-mn+ Dx — %’;

is concave, with negative second derivative (with respect to x). We have
gn(0) =lgn+2 > O and g,(1) = Ign + 1, with g;,(0) positive, and g/, (1)
negative—g, (x) reaches a peak between 0 and 1, and if it has roots they fall
outside the interval [0, 1]. Whatever the fractional part of Ign is, g, (fn) > 0.
Extend the m-ary tree by adding the appropriate number of leaves as sons of
nodes to make all internal nodes uniformly have m children. The propositions
now read:

Proposition 1.1’ The height hy, of an m-ary tree on n nodes satisfies:
[logn(n+1)] < hn <n.

Proposition 1.2' An extended binary tree on n internal vertices has (m —
Dn + 1 leaves.

Proposition 1.3’ Let 1, and X, be the internal and external path lengths of
an m-ary tree of size n. Then
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The proofs are essentially the same as in the binary case. For Propo-
sition 1.3/, one can guess the formula by generalizing the binary case
(Xn = I + 2n) to acase X, = kply + amn, and let the proof guide
us to the right choices of the coefficients k,, and ay,. _

Let the four numbers be a, b, ¢, d. Write a function min2 that returns the
minimum of two numbers:

function min2(u, v : integer) : integer;
begin
if u < v then return(u)
else return(v);
end;

Now invoke this function to pick the smaller of a and b; then invoke it again to
pick the smaller of ¢ and d, then again to find the smaller of the two minima:

print(min2(min2(a, b), min2(c, d)));

Assuming our programming language evaluates the argument of a function
of two variables from left to right, the decision tree is:

?
a<b

IA

\%
IA
%
IA
\%
IA
%

1.7.2
1.7.3

A total order.
There are n! permutations (leaves) in the decision tree. The minimum height
is [Ig(n!)7 by Proposition 1.1.

1.7.4 Consider the leaf w in Figure 1.6 and the path from the root to it. The root

is associated with no prior information. The only order known there is the a
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1.8.1

1.8.2

1.8.3

priori reflexive partial order
R=1{X| = X1, X3 = X2, X3 < X3}.

The left child of the root (let us call it node u; see Figure 1.6) induces the
partial order

P, =RU{X| < Xy}
The right child of u, that is, node v in Figure 1.6, induces the partial order
Py =RU{X] < X3, X3 < Xa}.
The chosen leaf induces the total order
Py={X1<X1,X2 = X2, X3 <X3,X1 <X2,X3 <X1,X3 <X5).

Yes, the algorithm of Figure 1.6 is a worst-case optimal algorithm for sorting
three numbers. This can be argued exhaustively. Any one query involving a
pair of numbers will leave us with no sufficient information on the third (of
course a single query involving the same key twice is redundant and will leave
us with more uncertainty). Any two nonredundant questions must involve
a key twice and each of the other two keys once. In a worst-case scenario
the repeat key will outrank the other two and a third question must address
the relation between the two non-repeat keys. The given algorithm asks only
three questions in its worst case.

Indeed, the algorithm makes n — 1 inputs on a particular input. However,
Theorem 1.1 does not fail; some other input will force the algorithm to switch
to a standard comparison-based sorting algorithm. If that other input is the
worst-case input for the standard sorting algorithm, it will force Q2 (nInn)
comparisons. The proposed algorithm then makes 2 (n Inn) comparisons in
addition to the n — 1 comparisons of the preprocessing stage.

Pair the first two keys and rank them a < b, then pair and rank the third and
fourth keys as ¢ < d. Compare b and d so that b < d; relabel if necessary to
maintain the correspondence a < b and ¢ < d. The fifth key, e, is incompa-
rable so far with any other. We have an induced poset (transitive information
is suppressed for clarity and self-reflexive loops are not shown, as usual):

b d
l ¢ °
a c e

We have consumed three comparisons. The longest chain in the poset is
a — b — d, with b the median of the three numbers. Insert e in this chain,
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starting with a comparison at the median (binary search on three sorted num-
bers). There are four “gaps” between numbers in this chain and e will fall in
one of the gaps. With two more comparisons we determine the gap, getting
one of the four cases in the following figure:

11T

What remains to be done is inserting ¢ in the longest chain of the resulting
poset. In all four cases the longest chain has length 4, but d on the chain is
comparable to ¢, (¢ < d). So, we insert ¢ in a chain of length 3 by binary
search, consuming the last two allowed comparisons.

”
The decision tree contains two nodes labeled a<b. Let the lower (closer to
the root) be labeled u and the higher be labeled v. Let w be the parent of
v. If v is in the left subtree of u, then a < b. The right subtree rooted at
v is completely redundant; on no input will the algorithm follow paths in
that subtree (it stands for inputs with a < b and @ > b simultaneously).
Eliminate v and its right subtree. Promote the root of the left subtree of v
to replace v as a child of w. A symmetric argument applies for the case v
is in the right subtree of u. The resulting decision tree corresponds to a new
comparison-based sorting algorithm. Obviously, the new tree has a shorter
total path length. Hence, the new algorithm has a smaller average running
time. Note that this procedure may not reduce the worst-case running time,
which may occur on a path not containing v and that path will not be affected
by the elimination of redundancy.

An adversary can present an input that always has the champion (largest num-
ber) playing and winning the first match. After that comparison, whatever
algorithm is given will still have to contend with finding the first & order
statistics among n — 1 elements.

Let us define the median of X, ..., X, as X(,;/2) (n even). A leaf £ in
the decision tree contains the median and thus determines a dichotomy
(Lemma 1.1) with B = {X(,/241), - .-, X»} and its complement. The corre-

sponding dichotomy for two medians bears information about the minimal
element of B (the larger of the two medians). Unlike the case of two medi-
ans, the dichotomy of the one-median problem does not bear information on
the minimal element of B (the case does not have the analog of the larger
median among two). An adversary can contrive an input for which no prior
information is available at £ on B. While the median remains to be known as
the maximal element of B¢, all elements of B can be its minimal element,
achieving | ming(B)| = n/2. The weight associated with £ becomes 214172,
violating property P2.
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1.9.3

1.9.4

Directly verity; if X, < X,
X1+ X2 N X1 —Xol X1+ Xo X1 —X3

=X

2 2 2 2 2
otherwise,

X1+X2_|X1—le_X1+X2*X2—X1_X

2 2 T 2 2 b

For the maximum, we have

X1+ X X —X
i 2+11 2!_

max{Xi, X3} = (Xj + X2) — min{X,, X»} = 5 3

Start with
min{X |, X2, X3} = min{min{X;, X5}, min{X», X3}};

use the formula of Exercise 1.9.3 for the minimum of two numbers to obtain

l(Xl +Xp X —Xof Xot Xy IXz—X3|)

2 2 2 2 2
1 <X1 +Xo X —le) _ <X2+X3 _ IXz—le)
2 2 2 2 2 ’

which simplifies to the given formula. Similarly, find the maximum from the
relation

max{X1, X2, X3} = max{max({X, X5}, max{X2, X3}}.

After the simplification you find

1
max{X, X2, X3} = Z(XI +2X5+ X3+ X1 — Xaf + X2 — X3
+|X1 — X3+ 1X; — Xa| — X2 — X31|).

Finding the maxima of the pairs {X1, X»}, {X2, X3}, and {X3, X} excludes
the minimum of the three. The minimum of the three maxima must be the
median:

median{X, X, X3} = min{max{Xl, X7}, max{ X3, X3}, max{Xs, XI}}.

Simplifying, one obtains

J—

median{X[, X2, X3} = <2X1 +3X, +3X;

8
+1X1 — Xol +2|X2 — X31 +1X; — X3

—[X) = X3+ 1X) = Xaf = X2 ~ X3
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—le - X1+ 1X2 — X531 —1X) —X3|]
—'Xz - X3+ 1X1 — Xof — [X1 — X3]
~|X1 = X3+ 1X1 — X2l — X2 — X3

X2 = X1 + X2 = Xs] = X1 = X ).

1.9.5 The idea is similar to that of Exercise 1.8.3. There we wanted to find a total

order. Here we want to jump as quickly as we can to the conclusion that cer-
tain elements are excluded from consideration. We focus on resolving order
relations among data still qualified to be in the “middle block.” Many paths
in the decision tree are symmetric. We consider essential cases that are not
mirror images. All other cases are argued by relabeling or symmetry. Follow
the same algorithm of Exercise 1.8.3 until you construct the first diagrammed
poset in Exercise 1.8.3 with three comparisons. The elements with the most
uncertainty at this time are ¢ and e; let us compare them. If e < ¢ we have
the poset

Now compare b and ¢ to get one of the two posets

b d b d
‘ ‘ c : c
a a
e e
We have gathered enough information to exclude extrema. For example, in
the left poset above, we have discovered d is the maximum, and there are
three elements above a and three below c. So, a, ¢ and d are out and we need

only to resolve the potential middle block {b, e} by one additional query. The
median is max{b, e}.
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[.10.1 Let &, = (&1, &2, ..., &) be an arbitrarily fixed permutation. Then

’ - 1
Prob(IT, = &) = Prob(Ily = (&n, 1.2 f0—1)) = —.

1.10.2 Let A, = (A1, X2, ..., An) be a fixed permutation of {1, 2, ..., n}. By con-

1.10.3

1.11.1

struction, Prob(§] = 41} = [/n, Prob{§, = 45} = 1/(n — 1), and so on,
until Prob{£,, = A,} = 1. Therefore,

Prob{E;:An}:; X X =

and &), is a random permutation. Note that the probability distribution p;
does not play any role in the construction. We get the same result no matter
what distribution is given. The randomization obliterates any nonuniformity
in the distribution of permutations.

The nth key ranks j with probability 1/x, by a fundamental property of ran-
dom permutations (Proposition 1.6). It was shown in Exercise 1.6.4 that this
insertion hits the jth leaf in a left-to-right labeling of the leaves with proba-
bility 1/n.

The given condition is easily satisfied by most probability generating func-
tions. Hold u fixed throughout de-Poissonization. Let P(z, u) be the Poisson

transform of ¢, (). The given condition on the bivariate generating function
gives

Zne-—z
!

n

P w| =] @)
n=0

oxQ Zn
= l Zcﬁn(u)—;l]e“z
- n!
<K,
for some constant K > 0. Hence, inside the de-Poissonization cone,
0
|P(z,u)| < Klzl°.

Outside the de-Poissonization cone
o0 Zn
Pewe] < | o | < Kle?| = ke 5 Keldeos?,
=0 n!

In the de-Poissonization lemma, we can take ¢ = 0 and o = cos 8 to write

Sn () = P(n,u) + 0('-;-_3).
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In terms of probabilities, we can approximate fixed-population probabilities
by the Poissonized probabilities:

I
Prob{X, = k} = Prob{X y( = k} + 0(-3_3),
n

where N (n) = POISSON(n). This path sheds light on the more general prob-
lem of de-Poissonization of doubly indexed arrays and whose Poisson trans-
form is bivariate.

While the analogous relation is true for means (the Poissonized mean is
the same as the Poisson transform of fixed-population mean), the relation
does not hold for variances basically because means are linear operators
and variances are not. It is sufficient to go through an instance. Let B; =
BERNOULLI(1/2),fori = 1,2, ..., be independent. Set X,, = By + B, +
---+ B,. We have

1 1
E[B;] = x Var[B;] = R
It follows that
n
and by independence
n
Var[Xn] = Z

When n is Poissonized into N = N(z), the Poissonized variance is most
easily computed from the conditional variance formula

Var[Xy (] = Var[E[X y | N1| + E[Var[X y | N1]

= Var[ >N ] + EEN]

The Poisson transform of fixed-population variances is

Z

X e”
V() = ZVar[Xn] py
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In this instance the Poissonized variance and the Poisson transform of fixed-
population variances are not the same.

The quantity Var[X y )] does not have a Poissonization interpretation
like that of E[X y(,)]. The correct view is to think of the fixed-population
variances Var[X,] as a sequence, with Poisson transform V(z). Then find
by de-Poissonizing that V (n) approximates Var[ X ,], with small quantifiable
errors.

1.11.3 If j is even, the binary representation of j has a O rightmost bit, and v(j) =
v(j/2); otherwise the binary representation of the odd number j has a 1 as
its rightmost bit, and v(j) = v(|j/2]) + 1. Hence

n—1

Zn) =Y v())

Il

<
N
DO~
N—

+
Hygl
—

<
N
—
N~
| I
N—

+
|_:_J

[n/2]—1 ln/2]—1
= Y v+ Y, [ +1]
k=1 k=0

=2([5D)+2(5D+[5)

1.114 Let b, = |n/2]. Then A v b, = (=1)"*1. Apply Theorem 10.2 to the

recurrence
2z =2(|5])+2([3]) +on

with boundary condition Z(1) = 0. The Dirichlet transform of the sequence
(A v ba)2, s

© .
:Z(zk—ns _Z(zk)s

k=1 k=1

X1 22X 1
=lv vl
- 01 5)

Delange’s recurrence equation has as solution
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Zn _ _—l’l— 3+io0 h(S)ns

27 Jasjeo S(s 4 1)1 —279)
|

By choosing an appropriate contour, we evaluate the integral via residues of
enclosed poles:

o0

L(s)n® 1
7, — [R R ] 1 —
n=n| Res + > s=2mit/In2 s(9+1)(1—2~S)( 2s—1)

k=—00

1 1 1 2+1In2
=n[——-+(—1g7r+—1gn—

5(1 ]
an  \2 2 41n2)+(g”)

2Inm —2—1In2
41n2

1 1
= Jnlgn+n| +80gm |+ 7,

where § is the fluctuating function:

() = 1 & C(2mik/ In2)e¥riku
~ In2 4~ Qmik/In2)(1+ 2mik/In2)’

k£0

Take the Mellin transform of both sides:

) = 25T ¥ (s) + T(s),

that is,

N I'(s)
P =

This transform exists in —2 < Ms < —1. (An alternative way to derive the
transform is to iterate for an (exact) infinite harmonic sum, then transform it.)

Invert the transform over a vertical line s = —3/2; the poles of the
integrand are simple poles at s = —1 + 2mwik/In2, for k = £1,+2, ...,
simple poles at §; = —j (for j > 2), a simple pole at s = 0, and a double
pole at s = —1. Move the line integral to the right (close the box at Rs = d,
d > 0). The poles to compensate for are si, for k = £1,+£2,... and the
poles at s = —1 and s = 0. A residue calculation yields

X x 5T (s)
s = -[fe v R+ D Rl

k0

I
=x1gx+(2y—2+1n2+5(1gx))21’;2 +1 +0(;3),
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1.11.6

where § is the oscillating function

1 ik ,
S e r'{—1 ~2mku.
W) =- 2, ( 2 )e

A;é()
The magnitude of §(u) is bounded:

sl =z 3 [r(-1+

k;é()

)j ~ 0.2488660506 x 107.

For any fixed x, the given function, f(x), is a harmonic sum with base func-
tion B(x) = 1/(e* —1). Let g*(s) be the Mellin transform of a function g(x).
Then

f*(s) = B* <s)}: = B*(5)¢(s),
with

B*s)=Mle*(1+ e+ + .. M[Z —x(j+1D), }

which is again the Mellin transform of a harmonic sum with base function
~*. The latter transform is M{e™; s} (s) = I'(s)Z(s). So,

) = T()2(s),

existing in the domain fRs > 1. Thepolesareats = 1,0, —1, =2, ... . Invert
the transform by an integral on the line s = 2. Close a contour to the left to
enclose poles (say by a large semicircle centered at 2). If the circle intercepts
the horizontal axis at d, —k — 1 < d < —k, the contour encloses the poles

= 1,s = 0,1, ..., —k. The further to the left the circle intercepts the
horizontal axis, the more poles are factored in and the higher the accuracy
will be. A full series expansion is obtained by taking an infinite radius for the
semicircle. One obtains

flx) = Z Res x” ST ()22 (s)
k=—1%

= Res+ Res + Res + --

s=1 s=0 s=-1

Il
[

|

I

+
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1.11.7 The first part of this problem is a special case of the function of Exer-

cise 1.11.6 (evaluated at In 2). This gives the general approach to this type of
problem. Look at the given series as a function evaluated at a special value.
The Mellin transform formulation may give a full asymptotic expansion near
x = 0. Let g*(s) denote the Mellin transform of g(x).

(a) Evaluate the function of Exercise 1.11.6 at In 2:

iz 21606699,

X, 1 _y—Inln2 /1 In2 In’2
; ~ In2 4 144 86400

(b) The given sum is f(In2), where
> 1

fO =) &

k=1

defined for x > 0. The setup is almost identical to part (a) of this prob-
lem. First one gets the Mellin transform

T(s)¢2(s)

i) = T o=

k4

by a routine almost identical to the steps in Exercise 1.11.6; the minor
deviation here is when we get to expanding the base function ¢* + 1 as a
series; it will have alternating signs. Invert the Mellin transform to get

In2 1 X x3

o=yt wtset
The constant of the problem is approximately
f(n2) = + 2, In°2 0.764498
n -4 — — ... a0. .
48 5760

(c) Let f(x) be the harmonic sum

flx) = iln(l + ;71—;)
k=1

The given sum is f(In2). The formal Mellin transform of the harmonic
sum is

f(x) = B(s) }:ki

where B(s) is the Mellin transform of the base function In(1 4+e¢7%). Use
the expansion
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20 _l /h—l v.j
ln(l+,\')=Z—————~—( ), . ,
=t

for y > 0, to obtain a harmonic sum for the base function. Then

_] J
B(S) = — } Z 5+)l ,

=

which can be reorganized as a combination of Zeta functions. Hence,

I
6 = T3+ D55 — 1),

existing in s > 1, and having singularities at 1, 0, —1, =2, ... . Thus,

Fl)=-— }: Res T(s)¢ (5)¢ (s + 1)( )=

k——l

2

T 1 1
— L lIn2— x ...

e T2ME Tt

Finally,

= I
2;1“(1 + 5;) = f(In2) ~ 0.868876.

1.11.8 Let S, be the given sum. Then

yg B(—z,n+ 1)

= o -2z

where A is the boundary of the box joining the four points 3/2 + i, and
n+1=+i. Apply Rice’s method to enlarge the contour to one with boundaries
at —d+iM and n+2+iM,d > O arbitrary, with M large and not allowing the

boundaries to coincide with any of the poles of the integrand. Any solution
of the equation

2% =1 = ik, k=0,41,+2,.

is a pole of the integrand (that is, zx = 2mik/In2), and so are Z; = j, for
J =0,1,...,n, the poles of the Beta function. So, all the poles are simple
except the double pole at 0. Rice’s method gives

B(=z,n+1) B(—z,n+1)
= —— > 4+ Res ————
Res =5 +Ry — g
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H, 1 4
=-n+ = §+5(n)+0(n ),

where &(n) is the oscillating function

1 0
) === Y Bl-zen+1),

k=—00
k#£0

whose magnitude is bounded:

1 & M(=z)Tn+1)
[5(n)[ = In2 k;w ' '(n+1—2z)
k£0

o0

g 2 Irewllel(1+0(3))

k=—00
k#0

(A

1 o0

(l—n—i Z IF(—Zk)I) + 0(%)

k=—00
k#£0

[A

by Stirling’ approximation. The fixed part is approximately 0.1573158429 x
107>, and of course the O(1/n) can be made arbitrarily small.

CHAPTER 2

2.1 Inthe sentinel version each new key in the given list will travel all the way back
to the sentinel (and be compared with it), giving a total of 1 +2+- .-+ 10 = 55
comparisons. BINARY INSERTION SORT makes O+ 1+1+4+2+2+2+2+
3+ 3 4 3 = 19 comparisons.

If the list is reversed, each new key is immediately stopped after one com-
parison in LINEAR INSERTION SEARCH, giving 10 comparisons. BINARY
INSERTION SORT still makes 0+ 1 +2+2+3+3+3+3+4+4=25
comparisons.

2.2 Simply remove the read statement read(K) from the algorithm (5th line in
Figure 2.3).

2.3 We discuss the case of integer data. All other types are sorted similarly. The
sorted list is pointed to from the outside by top, that points to the largest key
inserted so far. The key to be inserted is K. Each entry on the list is assumed to
be a record carrying the information field key, and the nexus field nexus, set
up in the following way:
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type pointer =tnode;
node = record
key : integer;
nexus . pointer;
end;

The nodes appear in decreasing order, each pointing to a node carrying a
smaller (or equal) key. A pointer p sets out to find the first clement that is less
than or equal to K. Another pointer g sets out to find the parent of that node.
So, g is made to lag one step behind p. Once a position is found, a new node
is allocated (by a call to the built-in procedure new) and linked. A sentinel
—oo key is placed at the end of the list to guarantee termination under a sim-
plified condition. In spirit, this algorithm is closest to BACKWARD LINEAR
INSERTION SORT (with a sentinel):

call new(top);
topt.key < —o0;
topt.nexus < nil,
fori < 1tondo
begin
read(K);
p < top;
q < nil;
while K > pt.key do
begin
qg <D
p < pt.nexus,
end;
call new(r);
rt.nexus < p;
rtkey < K,
if g =nil thentop < r
else gt.nexus < r;
end;

2.4 The general shape of the (deterministic) insertion tree at the ith stage is a right-

oriented “spine” and left-oriented “legs” that dangle from the spinal nodes
(each “complete” leg is of length ¢ — 1 internal nodes). If n is not an exact
multiple of ¢, one last incomplete leg hangs from last node in the spine. (See
the first few JUMP INSERTION trees for ¢ = 3 in Exercise 2.8 below.) Let us
refer to the leg attached to the root as the first leg, the leg attached to the root’s
right spinal node as the second, and so on. The jth leg has one leaf at each of
the levels j+1, j+2, ..., j+c—2, and has two leaves on level j+c—1. Let
X; be the random number of comparisons used to insert the ith key, in a tree of
size i — 1. There are [ (i — 1)/c] complete legs. The last (highest) spinal node
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is atlevel [(i — 1)/c]. There are r; = i — 1 mod c nodes in the incomplete leg,
each associated with a leat, except the highest in the leg, which has two leaves.
One leaf appears at each of the levels (i — 1)/c] + k,fork =1,...,r; — 1
and two leaves appear at level [ (i —1)/c] + r;. One computes

[Gi—1)/c]

E[X,']z—;- 3 [(z(j+k))+2(j+c—l)]+L,

j=1

where L; is the contribution of the incomplete leg:

L= :T[(r,-+1)ti—:-—lj+1+2+.--+(r,- —1)+2rf] - o(max[l, C—})
Hence

— ;L(i?i/d[cj N %(C_ 1)(c+2)] + o(max[I, Cl—z})
2

=]+ olmadn T

- 2
~ ‘2% + -;- + O(max{l, CT})

The number of comparisons over all the stages is
Ch=X1+Xo+- -+ Xy,
with average

E[C,] =E[X|+ X2+ -+ X,]

=2 (5 5+ ofmesf1- F)

2 n

2
n“+n cn C
e + 5 + max z

i=1

2.5 In Exercise 2.4 we found that the number of comparisons of JUMP INSER-
TION SORT is

2+ . n 2
E[C,] = 4cn + ‘—2'3+§0(max[1, ‘l—})

Of course, if ¢ is held fixed, as n — o0, the term nz/(4c) dominates and all the
other terms are subsumed in the O (1) term. If ¢ is allowed to grow with n other
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2.6

2.7

terms may become asymptoticdlly nonnegligible. If ¢ ()(nL ), the term
n? J4¢ alone contrlbutes Q(nite) comparisons. If ¢ = Q (137, the term cn /2

alone contributes 2 (n ’**) comparisons. The asymptotically optimal order is
¢ = O(y/n), as it achieves O (n3/?) comparisons, and the contributions of the
incomplete legs across the various stages add up to the negligible O (1 Inn). To
find the leading asymptotic term, let

X 2 cXY

f(C)—Z- ER

Set f’(¢) = 0 to find the (asymptotically) optimal choice ¢ = |/n/2].
By the same arguments of Exercise 2.4 we obtain

H/cl] o
E[X?]—% Z [Z (+0%+2G +c = 17?]

ri—1

(e ) R )

k=1

At c = |/n/2], E[C,] ~ n3/%/4/2, and
1
s,% = Var[C, ] = Var[X|]+ - -+ Var[X,] ~ ;_/——2_’15/2'

The height of the insetion tree is O(y/n). The growth rate in s, is faster than
the height’s. Theorem 2.1 then asserts that:

—-—————-————-—————ns/4 ———)N(O, '2‘)

BINARY SEARCH chooses position [xn/2] as its first probe into a list of size
n. Thus, [n/2] is the label of the root of BINARY SEARCH’s insertion tree.
As BINARY SEARCH is recursive, the left and right subtrees are the insertion
trees for BINARY SEARCH on [n/2] — 1 nodes, and n — [n/2] = |n/2]
nodes, respectively. By induction, the subtrees are complete on their respective
sizes. If n is odd, [n/2] is the data median, and the two subtrees have the same
order; two complete trees of the same height are attached to a root, yielding a
complete tree. If n is even, the left subtree has size that is smaller by [ than
the size of the right subtree. The two complete subtrees are of successive order.
If the left subtree is not perfect; the right subtree is complete and of the same
height. If the left subtree is pefect, the right subtree is complete with height
larger by 1. In all cases, attatching the particular patterns of complete trees that
arise on sucessive orders as subtrees of a root, yields a complete tree.
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2.8 In all the strategies below the tree T} is empty.
(a) The insertion trees 7>, ..., Tg for BACKWARD LINEAR INSERTION

SORT are:
1 2
®
v
1

The insertion trees 75, ..., Tg for FORWARD LINEAR INSERTION
SORT are:

The sentinel versions may probe one additional position. For example.
for BACKWARD LINEAR INSERTION SORT, the sentinel sits at position
0 and will be reached in the case of inserting a key less than all they keys
that have appeared so far. The insertion tree T, to insert the ith key Is
the same as 7; of BACKWARD LINEAR INSERTION SORT without a
sentinel, with a node labeled 0 at the bottom of the drawing. The following
figure illustrates Ty:
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The insertion trees of the sentinel version of FORWARD LINEAR IN-
SERTION SORT are mirror images of insertion trees of the sentinel version
of BACKWARD LINEAR INSERTION SORT with the labeling reversed
on the path from the root to the highest node (the sentinel in this case is
400 at the bottom of the array).

The proof of the tree-growing property is the same for any of these linear
search strategies. Take, for example, BACKWARD LINEAR INSERTION
SORT. The tree T;+1 grows from 7; with a new node adjoined as a left child
of the highest node. (The nodes have to be relabeled, though, to correspond
to the new probe sequences.)

(b) The insertion trees T», ..., Tg for BINARY INSERTION SORT are:

11 2 2 3
®
&m1 3 1 4
4 5

As discussed in Exercise 2.7, T; is complete. If 7; is not perfect, T; 4 is
a complete tree of the same height as 7;. The shape of 7+ can therefore
be obtained from 7; by adjoining a node at the highest level of 7; as a child
of a node at the second highest level. If T; is perfect, T;+1 has one node
hanging from the the triangular shape of 7;, a shape that can be obtained
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from that of 7; by adjoining a node as a child of a node at the highest level
of 7;. (In either case the nodes have to be relabeled to correspond to the
new probe sequences.)

(c) The insertion trees T3, . .., Tg for 3-JUMP INSERTION SORT are:

1 2 3 3
®
/ 2 2
I I

If 7; has an incomplete leg (n % 0 mod c), T; 1 grows from T; by ad-
Jjoining a new node as a left child of the highest node in the leg. Otherwise,
(n = Omod ¢), T; grows from 7; by adjoining a node as a right child of
the highest node on the spine. (In either case the nodes have to be relabeled
to correspond to the new probe sequences.)

The average cost of inserting the ith key is the average depth of a leaf in the
insertion tree (of order i — 1). That is,

Dy+Dy+---+ D
{

’

where D; is the depth of the jth leaf (in any systematic labeling of the leaves).
The cost is therefore A /i, where X; is the external path length of the inscrtion
tree. Among all binary tree shapes of order (i — 1), the complete tree has the
least external path length (a result of Exercise 1.6.8). A complete tree of order
i — I corresponds to the BINARY INSERTION SORT strategy at the i th stagc.

The insertion tree 7 for the jth key of this randomized algorithm is the random
binary search tree (of size j — 1) as can been seen inductively from the equal
probability of root selection (at the top level of recursion and recursively in the
subtrees). Note that 7; is independent of Ty, as if the algorithm oblilcr:u‘c.\
any information in 7; and constructs a new one at the (j + I)st stage. For
example, 77 may be a linear tree on 6 nodes, and 7y may be the complete hilllll'_\.
tree of size 7. One cannot appeal to Theorem 2.1, which assumes a sequence of
insertion trees of increasing heights.
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Let X; be the number of comparisons to insert the jth ky, and C, be the

overall number of comparisons to insert n keys. The first random probe P; =
UNIFORM([1 .. j ~ 1]. Given Pj, there are P; — 1 keys above it, defining P;
gaps. If the next insertion occurs above P;, 1t 1s equally likely to fall in any
of the P; gaps, so it will hit one of the gaps above P; with probability P;/;.
Insertion below P; follows similar reasoning. We have

Cn=X1+X2+...+X”.

and X ;’s are independent, with

Xp;, with probability ﬂ,

Xj=1+ : P;
Xj-p;, with probability 1~ Tj
We have
11 P; J—Pj
E[X;|Pil=1+ TXPj + F Xj-p;,
and
j—1
E[X;]= Y E[X;|P; = p]Prob{P; = p)
p=1
1 &= p j=p

2
=] E[X
+](J_1)Zp[p]

This telescopic sum is easily handled (as was done in the text on several other
instances) by differencing a version of the recurrence with j — | from the jth
version. The differencing eliminates the sum; one obtains

2
E[X;] = ; + E[X 1],

which unwinds to E[X ;] = 2H; — 2. By a similar routine, one obtains the

second moment from E[X2 | Pj], etc. One finds Var[X ;] =2H; — 4H(2) + 2.
For the overall number of comparisons we have

2]

E[C,] = Z(zH —2)~2nlnn.
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Compared with BINARY INSERTION SORT’s asymptotic average n Ig n, this
randomized algorithm performs only 21n2 & 138% worse. The variance is

n
2 def _ . ) -
= Var[C,] = § 1:(211, —4H;” +2) ~2nlnn.
j=:

Let ¢y(z) be the characteristic function of a random variable Y. So,
¢c,(t) = ]'I’}zl ¢x,(¢). All moments of X ; exist, and the characeristic func-
tion of X ; — (2H; —2) has an expansion up to any desired moment. We expand
up to the second moment (as ¢ — 0):

e(c,,—Z" ((2H;=2)i nde i—H;—-2) ()

j=

= ﬁ[l - %Var[Xj]r2 + 0(13)]

j=I
n 2

= exp{ Y in(1 - (28 —4111(2)+2)2 +0(%)))

j=1

n 2
= exp[— Z(ZHj —4H;2) +2)t—2- + 0(1113))}.
j=1

Sett = u/\/Z'}zl(2Hj —4H;2) +2), for fixed v. As n — o0,

Co~ Y 1QH; =2) . .
eXp[(\/Z o 1_ 4H(2) +2))zv} s o7V /2

Use Slutsky’s theorem to throw out nonessential factors to get

Cp~2nlnn+2(1—-y)n p
V2nlnn

Regardless of the search algorithm, in the array implementation an insertion
position is found and all data are pushed down one slot to create vacancy-
The number of moves is the same for all search strategies (including LINEAR
INSERTION SORT, where searching and data movement are integrated). 1-ct
M, be the number of moves while inserting n keys by LINEAR INSERTION
SORT (and consequently by any INSERTION SORT). The variable M), is an
accumulation of the moves done for the ith insertion, i = 1, ..., n. The num-
ber of moves for the /th insertion is: X; — I, where X; is LINEAR INSERTION
SORT’s number of comparisons for the ith key. Thus

— N(0, 1).

Mn:(Xl_])“"(XZ_])“""“"‘(XN—]):Cn_”a
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where C, is the overall number of comparison, and has a Gaussian law. It
follows that

CHAPTER 3

3.1 The distribution funcrion F(x) is strictly increasing. Its inverse F~!(u) is well

defined. For 0 < u < 1, the distribution function of the random variable F(X)
is

Prob{F(X) < u} =Prob{X < F '} = F(F ') =u,

like the distribution function of UNIFORM(O, 1).
3.2 (a) Any positive integer j can be written as

j=l4+14+ 41,

j times

Wetake R(1, s7,...,5¢) =0.
(b) Suppose each of the integers w, u + 1, ..., u +s; — 1 can be expressed as

a linear combination of s1, ..., s¢. For integer v > u + s;, we can write
v =pu+ j,with j = gs; +r,forqg > 1,and 0 < r < s;. Then for
al’ L] ak 2. O’

v=(u+r)+gsi
= (a1s1 + -+ + ase) +gsi
=a1s1 + -+ a8~ + (@ +o)si +iprSsivr + o+ arsk.

3.3 Leti and j be two positions in an array A[l ..n] that is k ordered and 4 ordered,
with & and 4 relatively prime, with j —i > R(h, k) = (h — 1)(k — 1) — 1. The
hint asserts that j — i can be represented in the form ah + bk, for nonnegative
integers a and b. This implies that A[{] < A[/], as we can go back a hops of
h (along the A-ordered file to which A[j] belongs) to reach A[j — ah] < A[j],
then go further back b hops of k (along the k-ordered file to which A[j — ah]
belongs), to reach A[i] < A[j — ah].

In the g-stage, we use LINEAR INSERTION SORT along files of g keys
apart. Starting at arbitrary j, we reach [ = j — sg in s steps. Then, for s suffi-
ciently large, j —i = sg > (h — 1)(k ~ 1), and A[i] < A[j]. The minimum
s sufficient to reach a stopper is therefore sy, = [(k — 1)(h —1)/g].Inthe g
stage, each of the n keys needs at most s,,;, comparisons to be inserted.

3.4 The hy-stage orders Ay arrays of sizes n/hs + O(1) by LINEAR INSERTION
SORT. Each such subarray requires O(n2/ hf) compasrisons by the results
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of Section 2.3; the hy-stage calls for at most O(nz/hs). For the k,,k, —
I,..., lkn/2] stages, a total of O(n%/(2kn — 1) + .. + n?/@lzknl _ 1y
comparisons are made. The function inside O is bounded by
2n? N 2n? s 2n> 2’
2Ugnl © 2llgn]-1 2L%ng”” — pllgn]

(1 +2+”.+2Htlgnﬂ)

<dn x o[ 1h1gnl]+1
< 16n+/n.

Each of the h-stages with hs € {2U/21—1, ... 1}, makes O (hyyohsr1n/hy) =
0252 x 25%1, /(25 — 1) = O(2°n) by Exercise 3.3. Combining the |k, /2] —
1, lkn/2] — 2, ..., 1 stages we have the bound

Onvm)+O0((1 +2+4+ -+ QL%UgnJJ—I)n) — 032y,

CHAPTER 4

4.1

42

4.3

4.4

The algorithm BUBBLE SORT (as implemented in Figure 4.3) handles repeated
data correctly and does not require any modification. Sooner or later, replicated
data will come together and will be considered good pairs.

Yes, BUBBLE SORT is a stable sorting algorithm—a good pair is left un-
changed in case of equality on a primary key. If the two keys in a good pair
are equal on the primary keys but are ordered according to a secondary key, the
two keys stay in the same order after they are compared.

The permutation

(1,2,3,....n~Pynn~1l,n~-2,....n~— P, + 1)

requires P, passes and corresponds to the sequence of assignments »n, n — 1.
n—2,...,n— P, + 1.
The permutation

(l)ll’Pll_ls---alaPn—"'I,P’1+2,...,n)

requires P, passes and corresponds to the sequence of assignments n, P, — .
P,—2,...,2, 1.

Implement the sequence 1y, ..., f; as an array ?[1..k]. Go through k — 1 passcs.
where at the jth pass, the increment #; ;] is used to compare and exchange
keys that are #;_ ;41 apart. A final pass with 7; = | amounts to an execution
of regular BUBBLE SORT. We assume that BUBBLE SORT (the algorithm of
Figure 4.3) is implemented as a parameterless sort procedure that sets up all its
local variables and accesses the subject array A[l .. n] globally:
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forj « 1tok —1do

begin

h=tlk~j+1]5

fori < 1ton ~hdo

if A[i] > A[i + Ah] then
swap(Ali], Ali + h));

end;
call BubbleSort,

CHAPTER 5

5.1

52

5.3

The only change needed is to reduce the iterations of the outer loop. Replace the
statement

fori < 1ton — ldo

for; < 1 to k do.

The algorithm deterministically makes

(n—1)+(n—2)+---+(n—k)=nk—%k(k+1)

comparisons.

SELECTION SORT is oblivious to the information gained over the stages. After
it has already progressed to the stage where the first j — 1 order statistics (ranked
i1, ...,1j—1) have been found and it is about to embark on finding the i jth order
statistic, the algorithm will still handle the task by finding the i; —i ;| smallest
among the remaining n — i keys in the manner of Exercise 5.1. This can
be directly implemented by invoking the adaptation in Exercise 5.1 to find the
ixth order statistic. Such an algorithm will find the first iy smallest (including the
keysranked iy, ..., ix)in a given set of n keys. At termination, the required order
statistics will be respectively at positions i, ..., iy of the array. The algorithm
makes ni; — %ik(ik + 1) comparisons.

LetY, ,§") be the random number of comparisons to select the random set. Let the
random ranks be i1, ..., ix. The distribution of the maximal rank iy is then

(0

Prob{i; = j} =
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According to the result of Exercise 5.2,
1
YO = iy — Skl + ).
(a) Averaging:
07 _ DN g1 - g2
E[Y,”] = (n~ 5 ) Elit] - 5ELi{],
2 2
involving the first two moments of ;. These are

j—1

o (1)t

, <n) T ok+1
j:
k

and

j—1
PR _2(k—1)_k(kn+k+n)(n+l)
E[’kl"gkf (n) T T k+DKk+2)
k

So,

k(n+1)(3n + kn — 2k — 2)
20k + Dk +2)

E[1,"] =

(b) The second moment of Yn(k) involves third and fourth moments of i;. Thesc

are
B k(n + 1)(k2n? + 2k*n + k2 + 3kn — k + 3kn® + n + 2n?)
l = f
k (k+ )2+ k)(k +3)
and

E(i}] = k(n + 1)(15kn? + 124202 + 2620 + k3 — kn + 61
— 5k% 4+ 6n° + 11kn> + 6k%n> + k303
+ 36302 4+ 3K%0) J[(k + DR+ G + k) (k +4)].

The variance of Yn(k) is therefore

Var[V,F] = k(n + 1)(136%n + 5kn> + 100 — 41kn® — 4k* — 10k
F11n3 — 18k% 4 45kn — 2112 — 24k2 + 48k%n
—14K2n2) /[ + b2k + 2B+ L)k +)].
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(c) If k = 1, the order statistic i} = U, that has a discrete uniform distribution
on {l,..., n}. Distributionally,

D 1
v’ 2 v, - 5Un(Un +1).

So,

I
Fox) & Prob{-——jY,fl) < x} = Prob{U, (2n — U, — 1) < 2xn?}.
n

Let gn(y) = y(2n — y — 1). The following figure illustrates this parabola:

gn(y)

2xn

0 iy y2 21 — 1 y

The function g,(y) is a parabola with apex at y = %(211 — 1), and in-
tersects the absissa at 0 and 2n — 1. So, g, (U,) < 2xn2, if U, < yjor
Un > yy, where y; = yj(n,x) and yp = y»(n, x) are solutions of the
equation g, (y) = 2xn?. Of course, U, is nonnegative, and the solution

1 1
yi = 5(2}1 - 1) - 5\/(211 —1)2 — 8xn?

corresponds to feasible values (I < U, < |y1]), whereas the solution

1 |
y = 5(211 - 1)+ 5\/(211 — 1)2 — 8xn?

does not correspond to any feasible values of Uy, (n < [y2] < Uy < 2n—1).
Hence,

Fn(x) = Prob{U, < y}
= Prob{U, < |y; ]}
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== %Dm’
- 5%[2,1— 1 —\/(2,1— 1)2—8xn2]+0(%>
— 1 —T=2x.

The limiting density of n ™2 Y,gl)is 1/4/1—2x .
5.4 Consider n = 3. Let 13 be a a random permutation of {1, 2, 3}, and let I'I/3 be
that permutation after it has been subjected to the stage of selecting the smallest
element. The following table shows all the possible outcomes:

I3 Ry, H/3 Uy
1 2 3 0 1 2 31 1
1 3 2 0 1 3 2| 2
2 1 3 1 1 2 371
2 3 1 1 1 3 2] 2
3 1 2 l 1 3 21 2
3 2 1 2 1 2 311

One sees from the table that

2
<= Prob{Ry,_| = 1,U; =2}

# PI‘Ob{RK3_1 = l} X PI‘Ob{Uz = 2}
3 3
= - X -,
6 6
5.5 The average cost of one search for a randomly chosen key is %(l +24 -+

n) = %_—(n + 1). On average, m searches cost m(n + 1)/2. This cost is less than
n(n — 1)/2, the cost of SELECTION SORT, if m < n(n — 1)/(n + 1). For all
n>2uptom = |n(n —1)/(n + 1)] = n — 2 searches, repeated searching is
cheaper. For more than n — 2 searches, SELECTION SORT will do better.

CHAPTER 6

6.1 COUNT SORT is stable; it does not move any data—if two keys are ordered
according to a secondary key, they remain so ordered after the count.

6.2 The comparison

if Alj] < Alil
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6.3

accounts for each key A[j] once its relatoin to A[i], favoring the higher in-
dex in case of a tie. Let iy, 7y, ..., iy be the positions of all the repeats of a
certain value. Suppose there are ¢ — [ keys smaller than A[i;]. At the end of
the algorithm count[i;] = c, position i| has never been favorite in breaking a
tie. Position i has been favored only once (the ties between A[i|] and A[is]),
and lost all decisions breaking the other ties (the ties between A[i;] and A[i,],
r =3, ..., k). The argument extends to positions i3, ..., i;: position i, has been
favored only » — I times (the ties between Alis] and Ali,],s = 1,...,r = 1)),
and lost all decisions breaking the other ties (the tie between Ali,] and A[i],
s =r+1,...,k). At the end of the count, count[i,] = ¢ plus the number of
times A[i,] has been favored in tie breaking, that is, count[i,] = ¢ +r — 1. The
algorithm assigns these repeats the ranks ¢, c+ 1, ..., c+ k& — 1. The next value
larger than these repeats will be considered the (¢ + k)th largest, as it should be.

The rate of convergence is O(1/+/n). This can be found from a result in Sec-
tion 2.3 for the number of comparisons, C,, of LINEAR INSERTION SORT on
n random keys. In Section 2.3 we established that

Ch=n+Yy,

where Y, is the number of inversions in a random permutation of {I, ..., n}.
Recall that the number of jumps J, is the same as Y,,. Thus,

J,,—zll-n2 D C,,—zll-rz2 n
L32 T A 7372

There are two components on the right hand side. The normalized number
of comparisons of LINEAR INSERTION SORT converges in distribution to
N(O, %) at the rate of O(1/./n), as discussed in Section 2.3. The deterministic
component n/n3/? = 1/./n converges to O (of course at the rate of 1/./n).
Combined, the two components approach A (0, 31—6) in distribution at the rate of

0(1/y/n).

CHAPTER 7

7.1 None.
7.2 Implement the algorithm on A[l ..n + 1], with A[] ..n] holding the raw data

and A[n + 1] initialized to co. While handling the stretch A[i .. j], take the
pivot as A[i]. Let i and j + 1 be respectively the initial values for F and B,
then let these pointers drift as described:

(a) pivot < Ali];
F <« i
B« j+1;
repeat F < F + l until A[F] > pivotor F > j.
repeat B «<— B — 1 until A[B] < pivor,
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(b)

(c)

(d)
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while F < B do
begin
swap(A[F], A[B]);
repeat F < F + 1 until A[F] > pivot;
repeat B < B — 1 until A[B] < pivot;
end;
swap(Ali], A[B]);

When QUICK SORT gets to work recusively on A[£..u], it has already
moved a pivot at the previous level of recursion to A[u + 1], or A[u + 1]
is 00 in the extremal case u = n. The key at A[u + 1] is larger than all the
keys of A[£ ..u]. So, A[u + 1] is the sentinel at no extra effort.
Suppose the pointer F moves a total distance f, and B moves a total dis-
tance . Each move corresonds to a comparison. At termination of PARTI-
TION, F and B have just crossed. Regardless of where the crossing point
is, we have committed to f +b = f 4+ (n — f + 1) = n + 1 comparisons.
In the best case for swaps (data in increasing order), one swap is made
(to exchange the pivot with itself). In the worst case for swaps, for every
pair A[F] and A[B] considered there will be a swap. One goes half the
way always swapping, then one last swap follows to put the pivot where
it belongs. The number of swaps in this worst case is 1 + L%_—(n —1J. An
instance of bad data for swaps is [%_—n], n,n—1,..., f%_—n] + 1, [%_—n] —
L, Min1-2,...,1

Let S, be the number of swaps that Sedgewick’s algorithm performs on
a random permutatoin (rry, ..., m,). Then

Sn =1+ Ympomy) + Ymysmyy) + 0 F l{ﬁf%?”f&%—lhl};

each indicator is a BERNOULLI( %_—) random variable, and the indicators
are i.i.d. The average number of swaps is

fs =1+ L ([2]-1)~

The variance is

s =} ([3]-1)~ b

The central limit tendency

Sp — 4]—111

£ u05)

n

follows from the Central Limit Theorem for i.i.d. random variables.
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7.3

7.4

7.5

7.6

Letk, = n— |n%],for 0 < a < 1. Let (my,72,..., 7, —1) be the
best-case permutation on {1,...,k, — 1} for QUICK SORT. The permu-
tation (my, o, ..., Tk, ~1, kn, ko + 1,...,n) uses the largest elements n,
n—1,...,k, as pivots (in this order), accumulating (n — 1) +(n —2) +-- -+
kn — 1 = 3[(n* = n) = (kn — 2)(kn — 1)] = ©(n**") comparisons in the first
n — k, + 1 stages. Each stage isolates the largest element in what is left, and
leaves the rest intact. When (), 7, ..., my, —1) 1s left, QUICK SORT finishes
off with additional ®(k, Inky) = ®(nlnn) comparisons. The total number
of comparisons is @(n““Ll + nInn). For instance, QUICK SORT performs in
©(n*/?) on the construction when k, = n — L.

The sample space €2, consists of n! points (permutations); each is a permuta-
tion w of {1, ..., n}. QUICK SORT takes the sample point w and partitions it
into w = o’ p &”, where p is the pivot and o’ is a permutation of {1, ..., p~1},
and ” is a permutation of {p+1, ..., n}. The permutation «’ gives rise recur-
sively to C,_; comparisons, which is thus well defined on Q. Similarly, «”
gives rise to C,—, comparisons, which is also well defined on ,,.

Taking variances
Var[C] = E[C?] = E[U?C?] + E[(1 - U)*C*] + E[G*()];

cross products disappeared because U, C and C are independent, and E[C] =
E[C] = 0. Hence

var[C] = E[U?]E[C?] + E[(1 — U)?]E[C?] + E[G*(U)]
= 2E[U?]Var[C] + E[G*(1)].
Reorganize as

I ~2 2

G“(u)du 2n

Var[C]:—[g——Tl————:7————.
1 -2 [y u?du 3

Convergence of the second-order Wasserstein distance implies

—2nl
Var[w] — Var[C],
n
or
1 272
ZEVar[Cn] - 7 - -—3——

Letds>(F, G) = infx.y [|X — Y||2 = infy y E[(X — ¥)?] be the second-order
Wasserstein metric between distribution functions ¥ and G, where infx,y 1S
taken over all pairs X, ¥ of random variables with distribution functions F and
G, respectively.
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(a) Under any reasonable measure, the distance between an object and itself
must be 0. This is the case here—Ilet V and W be two identically distributed
random variables with distribution function F'; in the infimum, the choice
X =Y yields 0, which cannot be reduced as d>(F, F) is non-negative. So,
dy(F,F) =0.

(b) Let Fz be the distribution function of a random variable Z. Then

dy(Fy, Fw,) = ginfgu E[(X Y(l T 1)>2]
13\ 2
< lef E[(X X(l—i— ))]
= —13 1nf E[X]
= ——/ u’ du
- 3n2
— (0,

. .. D
a sufficient condition for W, — U.

7.7 Let F, be the (degenerate) distribution function of the constant ¢ and G be that

7.8

of an arbitrary random variable with mean x and second moment s. Then:

dy(Fe, G) = inf E[(X - ¥)?]
—i _ )2
= 1§fE[(X )*]

:s—2,uc+cz.

Set to O the derivative of d5(F,, G) with respect to ¢, to obtain ¢ = p. The
constant u is the closeset number in the Wasserstein sense to a random variable
with mean u.

To identify the minimum, FIND must go through the partitioning stage (requir-
ing n — 1 comparisons), then it makes a definte move to the left (to locate the
minimum among the first P, keys), where P, is the landing position of the
pivot. The random number of comparisons to identify the minimum satisfies
the functional equation

D
On =n—14+0p1.

Taking averages,

E{Qnl=n—-1+E[Qp,-1]
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79

H
=n—1+ Y E[Qp,i| P, = plProb{P, = p)
p=I

l n
:n—l+;Z}E[Q,,_1J.

p=
The telescoping nature of this recurrence suggests differencing:

nE[Qu] — (n — DE[Q,, 1] =2(n — 1) + E[Q,_1],
from which we have

2n — 1
E[Qn] = —(—”T—) +E[Qn_1]

n J_l
=2y 12!
j=1 7
= 2n — 2H,

~ 2n.

The calculation of the variance is similar. We only outline the steps of this
longer task. Square the functional equation and take expectation. The expected
value of Q, appears and we can use the value E[Q,] already obtained. What
we have is a telescoping recurrence, which can be solved by iteration, just as in
the case of the mean.

As established in Exercise 7.8,

D
On = ”_1+QP,,—1-

Scaling with the asymptotic order of the variance:

Onp n=14+0p_1) _ 1 QOp,—1 XPn_l
no n n P,—1 no

If Q,/n converges to alimit Q, then so does Q p, 1 /(Pn —1), because P, 2%
00. With (P, —1)/n converging in distribution to U, a UNIFORM(O0, 1) random
variable, the functional equation for the limit might be

0 2ug+1.

This guessed solution can now be established by showing that the second-order
Wasserstein distance between the distribution functions of Q,/n and Q con-
verges to 0, with computations similar to those preceding and included in the
proof of Theorem 7.4.
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7.10 Let ¢ () be the characteristic function of Q. According to the functional equa-
tion established in Exercise 7.9,

¢ (1) = E["9]
=E[eit(l+UQ)]

ZeitE[eitUQ]
1

=eit/ E[eituQ] du
0

. 1
=e'! / ¢ (tu)du.
0

Change the variable of integration to v = tu, to obtain

t
te“”d)(l):/o ¢()dv.

Take derivatives with respect to ¢, to get the differential equation

l't_l_'

, e it
¢'(1) = ————0(0).

whose solution 18

o) =exp(/0t —e—if—_—;—_i’fdx).

The square of this characteristic function is the characteristic function of (ran-
domized) FIND’s normalized number of comparisons.

7.11 Suppose Y has bounded support. Then Prob{|Y| > M} = 0, for some
M < oc. The infinite divisibility of ¥ allows us to find i.i.d. random variables
Ay, ..., Ay, such that foranyn, Y = A; +---+ A,. The events A; > M/n,
i = 1,...,n, imply that Y > M. So, if Prob{A; > M/n} = p > 0, the
probability
Prob{|Y| > M} > Prob{Y > M}

> Prob{A| > M/n,..., A, > M/n}

= Prob{A| > M/n}...Prob{A, > M/n}

— pll

> 0,

a contradiction. We must have A; < M/n, almost surely. By independence.
Var[Y] = Var[A{] + --- + Var[A,] = nVar[A;] < nE[A}] < n(M?/n?).
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7.12

7.13

This is true for all n. Take limits to see that Var[Y] = 0. This is impossible
because we already know that Var[Y] =7 — %nz.
When the characteristing function ¢ (¢) is absolutely integrable, the random

variable X is absolutely continuous and has a density given by the Fourier
inversion formula

1 [ _;
fx(x) = ———/ e oy (1) dr.
27 Joo
The integrability of |¢y (¢)| can be seen from
1 itx :
et —1—irx
]¢y(t)] = Iexp(Z/ ———————————dx)!
0 X

t

W _ 1 —j
=exp(29t/ f——~————iLidu>
0 u
! cosu —1
:exp(Z/ E:—j——Li-————du);
0 u

the cosine integral in the exponentiation is a well known function with asymp-
totic expansion

! cosu — 1 1
———————du:—lnt—)/«—i—O(-), as t — 0o.
0 u t

Hence,
]¢y(t)] = exp(—ZInt -2y + 0(%)) = @(é—),
and [ ¢y (1)|dt < oo

Bound the upper tail probability with the moment generating function as fol-
lows:

Prob{Y > y} = Prob{¢tY > ty}
= Prob{etY > ety}

LB

< (by Markov’s inequality).
ey

Get the required moment generating function from the characteristic function

exp( 01 ff—tf—“—)-cl—“—’—’—x— dx) by replacing it with ¢. It follows from the convexity of

e'* — 1 that (for fixed ¢) the equation ¢’* — 1 = xe' has two solutions, one
of them is x; = O, the other is x, > 1. Consequently, we have the inequality

el olotx —; —IX < ¢! —1¢, in the interval x € (0, 1). Further,

Prob{Y > y} < exp(e’ —¢ — y1).
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Minimize the exponent by setting to O its derivative with respect to .
7.14 Bound the lower tail probability with the moment generating function as fol-

lows:
Prob{Y < —y} = Prob{—tY > ry}
E —tY
_E[e]
=T

< exp(t? - y1).

Minimize the exponent.
7.15 For Z,, = UNIFORM[1 .. n],

Z
Prob{——E < z} = Prob{Z, < nzj}
n

= Prob{Z, < [nz]}

inz)

n
- Z,

if 0 < z < 1. The distribution function of Z,/n is that of UNIFORM(O, 1).
Hence P,/n and M,/n converge in distribution two independent uniforms.
Further, let Y, = 1{y, <p,} Pn/n, and compute its distribution function

P
Prob{Yn < Z} = Z PrOb{l{M"<P,,}—£
n

I<m,p<n

<2l Py=p My =m}

x Prob{P, = p, M, = m)
= Z Prob{1(,, <) p < nz}
l<m,p<n
x Prob{P, = p}Prob{M, = m}

_15 Z Prob{l x p < [nz]}

I<m<p<n

+‘15 Z Prob{0 < |nz]}

n I<p<m<n

n n

n p=l
_ %ZZProb{pS anJ}+£§Z > !
p=1m=l

=

I

I ) 1 ]
o p};]@ ~ DProb{p < |nz]} + 55n(n +1)
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1 (nz}
==Y (p-D+
n p=1
Lnz)(lnz) — 1) Lt

2n? 2n
22+ 1
5

n—+1

On the other hand, ¥ = 1{w -y} U has the distribution function

1
Prob{Y <z} _—./ Prob{1(wuyu < z}du

0
¢ z
= Prob{l{w<u} < ——}du
0 u
! z
+/ Prob{Liw) < | du
P u
Z 1
:/ du—i—/ Prob{l{w<u} :O}du
0 Z
1

=z+/ Prob{W > u}du
4

1
:z—i—/ (1 —u)du
Z

22+ 1
7

Hence, Y, ~2> Y.
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7.16 Let a,(,p) = ||YP - Y,,(p) | |§- This upper bound on the second-order Wasserstein

distance converges to 0. The case a,(,l) was studied at length. The computation

here is similar and we shall only outline its salient points. Write

def
a? €y P~y )2
2
= E[((tP +2H,) = (v +21,) )]
L. nUT=1_¢ 2
_ (r) (p)
— e[y (Pl oroYk
r=0

+(” —~ [nU] ?(r)

- 2
n
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which follows from the mutual exclusion of the indicators K () (the cross prod-

uct K(p)K(p) = 0, when i # ;) and the fact that the families {Y(p)} and {Y (")
have O mean The norm can be computed by condltlomng on [nU7. One obtains

n p | —
RS s (ORI U

j=1r=0 "

)—>O,asn—>oo:

It can be shown by a double induction on » and p that a(p
Assume a( o, 0,asn — oo,forr =1,..., p—1.Then for p go through an
induction on n similar to that in the proof of Theorem 7.4.

7.17 (a) The two harmonics in the first moment are symmetric. When summed over

J, we can write

n

gE[SJ-] =2<,-Z ;) —2n=2( i

Jj=lk=I

) —2n.

R

Interchange the order of summation.
(b) Similar to (a).
(c) Let m > 3. The answer to Exercise 1.6.5 is developed for the general

moment before obtaining the special cases of first and second moments.
From the general expression there, uniformly in j < n/2 we have

Jj=2 n—j—1
E[S?z] ) Z[km—Z + O(km—3)] + Z [km—Z + O(kln—3)]
k=1 k=j—1
k%0
+2j Z [k'" S 1ok

k=j—1
k0

n—2
+2(n+1) Z [km—3+0(km-4”
k=n—j

+ nm—l + 0(’1111-2)

— 1 _ 2 .1 m—1
_<m—] m—2>[ =) ]

+ ( " )nm"l + O(nm*z).

m—2
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For n even,
n/2 np2 ”
;Ewy’]: e m2—2>[,.=1(”‘”'" 1+;J.m_1]
5 (s 0
1 2 chal - n/2 -
_(’n—l_m_z) j;n/zj +Jz::lj
+%<mni2 "+ 0 ("

By symmetry the sum over j = %n + 1, ..., nis the same. For n even the
required result follows.

For n odd, verify that the asymptotic result is the same—only few lower-
order terms are different. These are hidden in O anyway.

7.18 The reader is assumed familiar with sums of the form S, (m) = le‘.=l j™, for
small values of m:

(a) Write H, = Z;zl 1/j. Multiply out and exchange the order of summa-
tion.

(b) Obtain the first sum by multiplying out and using S,—1(1) and S,_1(2).
The second and third sums are symmetric and both are obtained as in (a).
The “squared” nature of A(z) indicates that A(z) is the square of some
elementary function. One finds

A(z) = <§)(j + I)szj>2 = (1 _IZ)4 [Z +1n<1 1z)]z'

The result is obtained upon extraction of coefficients.

7.19 Carefully review the proof of Theorem 7.10 and recall the definition of /; and
S; from the pragraphs preceding the theorem. Let S, be the number of partition
steps to sort n random keys. Then A, the size of the MQS tree, is given by

Ap = il'a
j=l1
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with average

E[A,] = Z E[/;]= Z Prob{/

We have developed most of the answer already in proving Theorem 7.10. Com-
pute Prob{/; = 1} by conditioning on §;:

(n —k - 1)
E[A,] = Z Z[ ————-—‘D———————]Prob{Sj = k).

=l )

Note that this expression is the same as a similar expression in the computa-

tion of E[C ,(lp ) 1, except that it is free of the multiplier k. Specifically after the
manipulation via the identity for signless Stirling number one obtains

[P ]on—p—kr

E[An]=n— Z Z[Z TEFESIS ]Prob{Sj = k};

Jj=1k=0

compare with (7.16). The strategy then is the same, except that E[Sj.] will ap-

pear instead of E[S ’H] after expanding (n — p—k)” ' by the binomial theorem.

Isolate the terms contalmng the zeroth and first moments of §;, we obtain:

(n—p)
E[An]_n—nZZ[ ]-—————-——<nipf_1>

j=lr=
+ZZ[ ]ME[S-]
Jj=lr= P+1>p ’
7] ()
j=lr=
(n—p)'
So,
n 14 p (n_p)l B _E
j;rzl[r](n—p-i—l)p_] n

By the result of Exercise 7.17, the first moments contribute
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nop [p]r(n—p)r"l n I

B = (o Es) (- D)o ()]

J=1

1 1
= —[21+ DH, —4n][p + O(>)]
n n
~2pH, + O(1).
By the result of Exercise 7.17, all higher moments contribute O(1), in view of

n E[S']  r41 1
Y= =ro)

j=

Putting 1t all together,
E[A;] = 2pH, + O(1).

Every partition step invokes comparisons of the pivot within the array of or-
der statistics sought to search for a splitting position within that array. However,
any reasonable search method (even an inefficient one like LINEAR SEARCH)
requires at most p comparisons. If index comparisons are to be taken into ac-
count (as in the case of integer data) these comparisons may only add at most
2 szn + O(1) (recall that p is fixed). This can only alter the second-order term
in the total number of comparisons.

CHAPTER 8

8.1 Start with the exact distribution (8.2). Form the distribution function

k p— p—
Prob(P, <k} = Z (p—1D(n—-p)

=0

k
- S p-Du-p
p=l1

nin —(n —2))

_3nk? = 3nk + 2k = 26°
- aln=-D(n=-2)

ForO<x <1,

P
Pmb{—-'i < x} ~ Prob{P, < xn}
n

= % (1 + 0 (l)) (3n anjz —3n|xn] + 2(xn] — 2anj3)

n n
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:%(]-i—O(l)) 3nxn +0(n))+0(n)
n
~2(xn?

= 322253 4 0(%)

+ 0(nH)]

— 3x2 — 2x3.

Hence P,/ n—-D~>L, where L has the distribution function 3x2 — 2x3, for 0 <
x < 1. The density of L is 6x(1 — x).

According to PARTITION, deterministically the insertion of A[1} into A[s +
1..n} costs Ny = n — s comparisons. There are N, keys that are at least as
large as A[1]. The insertion of A{2] into a subarray of N, elements will cost
N; comparisons, and it will leave N3 keys above A[2], and so on. The insertion
component of the sequential scheme makes Ny + Ny + -- - + N5 comparisons.
On average, E[N;]is about (n —s) — (j — Dn/(s + 1). The avearge number of
comparisons to insert all the sample under the sequential scheme is therefore

sth—gy— 8= bn Lo
2s+ 1) 2

The choice n = s Ins optimizes the quantile scheme. With this choice, asymp-
totically the sequential scheme makes - 58 2Ins comparisons, which is about
s/(2lgn) ~ s/(2lns) — o0 as much as the comparisons that the quantile
scheme makes. With this choice of s, the overall number of comparisons is

obtained as in Theorem 8.3, with (n — s)1gs replaced with s(n — s) — %—zi%l

which gives an expression asymptotic to —é—ns 21g nlgn, an almost quadratic
order of magnitude that is higher than optimal sorting (because s/lgn — 00
for this choice of s).

However, the sample size that minimizes the average cost in the insertion
stage for the sequential scheme may be different from the best sample size for
the quantile scheme. Toawrd a fairer comparison, let us minimize

g(s)=2slns+s(n —s) — 12%;—_:_1—]);— —2n(nn —Ins) — 2(n —s),

the total number of comparisons in the sequential scheme. This procedure gives
élln — o(n) as an asymptotic choice of sample size, leading to a quadratic order
of magnitude. Even the best choice in the sequential scheme cannot optimize
SAMPLE SORT.
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CHAPTER 9

9.1 One achieves the worst case in Floyd’s algorithm when every tree root consid-
ered travels all the way to become a highest leaf in the subheap it is a root of.
The arrangement

21 25 38 44 59 53 72 80 67 49

does that. With 1 +2 + 2 + 4 + 6 = 15 comparisons, Floyd’s algorithm orga-
nizes these data into a heap.

9.2 An application of Floyd’s algorithm on I1y4, arandom permutation of {1, 2, 3, 4},
results in one of the following three heaps:

Exchange A[1] = 4 with A[4] and let l'I’3 = (A[l], A[2], A[3]). Prune the
highest node in the tree. This results in one of the trees:

7o o o o o

Certain configurations do not appear. For example, Prob{l'I’3 =(3,2,1)} =0;
IT} is not a random permutation.

9.3 Let S, be the size of the subtree rooted at position & in the array. Let H, be
the number of heaps possible on # distinct keys. All these heaps are different
admissible labelings of one complete binary tree. A heap of size n can be made
up from a heap in the left subtree, a heap in the right subtree, and the largest
element at the root. The labels of the left subheap can be chosen in (”521). Then

n—1
Hp =Hs, Hs, s, )

Iterating this recurrence, we get

Hn

n!

1 Hs, Hs,
n Sh! S3!
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_ i [H54H55 } [H56H57 ]
S18283L 54! 85! Se! 57!

_ 1

=~ n
s
k=1

The number of heaps possible on 7 distinct keys is n! divided by the product of
the sizes of all subtrees in the structure.

CHAPTER 10

10.1 If merged by Linear Merge, the two lists

leave one key to the transfer stage. Linear Merge makes 6 comparisons to
merge the two lists.

The two lists

leave 4 keys to the transfer stage. Linear Merge makes 3 comparisons to
merge the two lists.

10.2 For only one key to be left over to the transfer stage, it must be the largest. It
can stay at the tail of the n-long list, in which case choose the m-long list from
the remaining m + n — 1 keys, or it can stay at the tail of the m-long list, in
which case choose the 7 list from the remaining m + n — 1 keys. The number
of such constructions is

m+n—1 m+4n—1
(7))
m n
For n keys to be left over to the transfer stage, they must be the n largest.

The first m smallest keys must go into the m-long list. Only one pair of lists 15
possible under this constraint.

10.3 Recall the relation between the leftover Ly, for the transfer stage and My, the
number of comparisons for merging. Here we are dealing with the special case
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104

10.5

of two lists of sizes |n/2] and [n/2]:
Yo = Mns2ytny2) = 10/2] +1n/21 = Linj2y, 102
For L, /2),11/21, we have an exact distribution (Equation (10.1)). Hence
Prob{n — Y, > y} = PrOb{LLn/ZJ,fn/Z] >y}
n pa— —
(t2) * (o)
Ln/2] [n/2]
()
n/2]

Work out factorial cancellations; for any fixed integer y apply Stirling’s ap-
proximation to obtain

_ (n=y!n/21Y  (n—y)!n/2]!
nl(fn/21 =y al(ln/2] — y)!
~n Y [n/2Y +n" Y |n/2)
1
~ 5T

Prob{n — ¥, > y}

This is the tail distribution for GEOMETRIC(1/2), for each integer y.

Let the truth of the assertion for 0, 1, ..., n — 1 be our induction hypothesis. If
n is even, we can remove the ceils in [#/2]. The recurrence is

W, =2Wn/2+n—l.

By hypothesis

W = 2(%[@%1 — 2Mle/21 4 1) +n—1

=nflgn —17-2x 21441
=nflgn] =2 x 218711 41
= n[lgn] —pMenl 4 1

The case » odd is handled similarly.

The algorithm divides the given list of n data into two halves of sizes /2]
and |n/2]. The best case arises in a data set when at any stage any pair of lists
to be merged are the best cases for their respective sizes. Thus in the best case
the division at the top level costs |7/2] comparisons, the least possible number
of comparisons for a pair of sizes [1/2] and [n/2]. After the division the cost
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in each half is for the best possible cases in these halves, giving the recurrence

n
Bn = Bin/21 + Binj2) + LgJ

CHAPTER 11

11.1

11.2

11.3

11.4

Let U be a UNIFORM(O0, 1] random variable and let us consider k to be the
bucket number in question. Then

Prob{#(U) = k} = Prob{[bU] = k}
= Prob{k — 1 < bU <k}

a result that can be seen from the symmetry of the buckets. For » independent
keys, the probability that they all hit the kth bucket is 1/5".

Take the case b = 2. It may happen (with small probability) that the » uniform
keys are all in the interval (0, 2-("tD) At the top level of recursion, all the
keys fall into the first bucket (the interval 1/2), then recursively again they fall
together in the first bucket of the rescaled interval (buckets of length 1/4), and
so on. After n recursive calls the data have not yet separated; they still fall in
the first bucket of that level (of length 1/2"). The same can be done for any b.

(a) The saddle point equation (11.3) becomes:
2®'(u, 2) = D1, 2).

The expansion technique that led to determining the saddle point at = =
1 + O(1 — u) still holds verbatim without any changes.

(b) The uniform bound is sufficient, but not necessary. All we really need in
the proof is a uniform bound not on Y; itself, but rather on its mean and
variance. It is an easy induction to show that ; <2 and s; < 6. Thus
both series in 4 and o converge and one can accurately compute their
values up to any number of places from exact recurrences.

The extra operations within buckets are recursively the same as those at the top

level of recursion (@ = 1 in the basic recurrence (11.1)). The extra operations
W, satisfy Theorem 11.1. The total number of operations C,, = W, + 7
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11.6

follows the central limit theorem

Ch—un p 2
T AT __—)NO, Y
NG (0,09
with
x>
_ M
u=1+e : —.‘{*J
j=0 7
o2 = ¢! i Sj ( 12
Jj=0

and uj and s; are the first and second moments of the number of operations
in a bucket containing j keys. To obtain these we have exact recurrences. For
example, conditioning on the binomially distributed share of the first bucket,
we have

n
Un =n+nZE[CjIN1 = jl1Prob{N;| = j}
Jj=0

L n\ 1 I\n—J
=n+ il . ——:(1——) .
”f;“’(f)nf n

One obtains the numerical value 1 = 2.302023901 ... . Similarly, by squar-
ing the basic recurrence (11.1), one obtains a recurrence for the second mo-
ments (involving the means 1 ; and the cross products ;i ;) from which one
gets the variance o2 = 6.456760413 . . . .

Find the minimum and maximum (min and max respectively) of the n data.
Divide the interval max — min into n equal intervals and apply the hash func-
tion A(x) = [(x — min)n/(max — min)] for bucketing. Two of the points
fall in the extreme first and last buckets. Apply the procedure recursively until
all data are separated into individual buckets. Collect the sorted data from the
buckets.

Approximate the binomial probability

Prob(B, = j} = ‘3;(1 - %>n-f (’;)

to the second-order asymptotic by expanding each term to second-order symp-
totic. We have

j—1

n 1 ' 1 . ._IJ~ P9
(j) =ﬁn(n—1)...(n—1+1)=ﬁl:nf —n’ l;k-i— O(n’ )]
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We also have

(1- l)”"j _ =) In(1=1/n)

n

Expand the logarithm to get
I\rn—=J 1 1
(1) =em-0 -0+ 55+ 0(5)]
n 2n
2j—1 1
-1
~ 1 0(—)].
¢ [ + 2n + n?
Compose the binomial probability down to second-order asymptotics:

prons, =)= 1= 22 0 () + Pt 03]

which expands to the desired result.
Each key 1s hashed twice; the extra cost in the buckets is

(D () (n)
Zpn=hYy + DYy +--+ LYy
operations (each is in proportion « to hashing). See (11.10), with ¥; being
the number of comparisons made by the selection-sort-like algorithm to find
a randomly chosen key from among j items. So,
Cn == 2n + aZn.
(@) Letu; = %(j2 — 1) be the mean of ¥; (as developed in the text). Follow
the text’s development, but push for the next term in the approximation of

binomial probabilities:

E[C,] = 2n + «E[Z,]

=2 +a Zk Z jProb(Y }Prob{BINOMIAL(n %) i]

2-3j+1 (L]
_2n+aZmJ F [1— S+ 0 n2>

j=0
do 2o |
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11.8 Operations within the bucket containing the required order statistic are hash-

11.9

ing operations (@ = 1). Let ¢;(u) be the probability generating function of
the cost C,, (whose average is i,,). Then

G () = u" ;]dﬁ;@:) X nil(l - l)""j (”)

n
j J

The average satisfies the recurrence

S 1
in = y(1) =n+ Y ju;ProbBINOMIAL(n, —) = j}.
n
=

It can be seen from an induction that x; < 2. The series converges quickly.

Use the finer approximation of the binomial probability in Exercise 11.6.
From the recurrence, one can inductively compute i, 12, 43, ... to provide
as many terms as necessary to get each series in the expression

noooeml &g 2 —3j+1 1
un=n+ZJuj-.~— ﬁ.A-—j—e‘lxi————L—*JrO(—z)
= j! = J! 2n n

accurately for as many digits as required. The series expansion of the average
18

np =n-+3.011281835... —

1.75185021 L 0(%)

Similar work for the variance gives

Var[C,] — 11.39004484 . ...

Given that Y, /n —1-)—> % which can be expressed as Y, /n = % + op(1), with
op(1) being a quantity approaching O (in probability), we have

u(Y,)  Yn(4.3500884...43(1g¥n)) +0p(Yn)
v(n)  n(4.3500884 ...+ 8(Ign)) + o(n)

The bounded periodic function § is continuous, whence 8(gY,) =46(gn/2))
+op(1). Also, by the periodicity of §, the part 8(1g(n/2)) is §(1gn). Then,

v(Yy) Y, p 1
n

v(n) +op(l) = 2
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11.10 Differentiate the probability generating function in (11.12) and evaluate at

u =1, to get

o I R
¢,(1) =E[Cy] =2n -2 n};( D 21~k—1<k)'

The sum (let us call it ;) is a good candidate for an application of Rice’s
method:

Sn=——L?§ f@B(—z,n+1)dz,
2mi Ja

where A is the rectangle with corners at 3/2 & i, and n 4+ 1 % i; the part
fk) = k/@'k — 1) has the analytic continuation f(z) = z/(2!7% — 1),
with simple poles at zz = 1 & 2mik/In2, k = 1,2, .... The beta function
doubles the pole zg = 1. Shift the contour in the usual way to a larger one
whose limit encloses all the poles on the vertical line %z = 1, as well as the
additional pole at O (coming from the beta function). Compute

Sn= 2. Res f@B(-zn+1+o(l).

k=—00

For k # 0, the residue at zz is —zx['(—zp)T(n + 1)/ (C(n + 1 —z) In2) =
l—nl—zr‘(l — zp)e%* "7 (1 4+ O0(1/n)), by Stirling’s approximation. The residue at
z9 = 1is =5 (1 + 2H,/In2). Assemble the result from these residues.

CHAPTER 12

. ] ) N oD
12.1 et X ,(ZJ ) be the number of comparisons to insert the jth entry. Then X ,(lj b2

UNIFORM(1 ..n + /], and

)
X
" P, UNIFORM(0, 1),

for any fixed j, as was shown in Exercise 7.15. In fact, because j is asymptot-
ically negligible relative to n, we have (n + j)/n — 1, and we can write the
simpler form

)
Xi_ D GNIFORM(O. 1),

n

by Slutsky’s theorem. Let C,(,k) = X,S” + -+ X,(f) be the cost of inscrting
k new entries, and let Uy, ..., Uy be k independent UNIFORM(0, 1) random
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12.2

12.4

variables. Then

e p def
— U+ Uz + -+ Uy = Ag.

The moment generating function of the convolution A, is the product of k&
identical moment generating functions of uniforms. This moment generating
function is [(e' — 1)/1]~.

Let (m;,, ..., ;) be the longest ascending subsequence of I1,. If elements
from ¥, = {1,...,n} — {n,-l,...,n,-j} are taken out of II,, inversions
will remain unless all the elements of Y, are removed—if not, there is
y € Y, in the remaining data lying in between m;, and 7; _,, and m;, > y
or y > ;. (If neither inequality is satisfied 7;, < y < m;,,, and
(Tiys -y T, Vo TCippys - .n,-j) 1s a longer ascending subsequence, a contra-
diction). Removal of Y, U Z, for any nonempty Z < {m;,, ..., n,-j} will surely
leave an ascending subsequence of I1,, but it will be shorter than that obtained
by removing Y, only. The length of the ascending subsequence obtained by the
removal of Y,, isn — J.

3 Suppose (7, ..., mys ..o, )and (5, ..., &), - .., §j,) are two distinct cy-

cles of I,,. The exchange of ;, and &; in I, amalgamates the two cycles into
the longer cycle

(nil, ~~~,7Tik_|’€jm’€jm+]’ ""gjx’gj] ""gjm_l,nika ~--,7T['r)'
The exchange of 7;, and 7;, in I, splits the cycle (m;, ..., ;) into the
two cycles (;,, ..., iy 1> Tiys Ty ys - o 7, ) and (”iw Tipprs oo Ti,_y)-

The goal is to move up from C(I,) cycles to n cycles (the maximal number,
which is that of a sorted permutation) by exchanges. For the exchanges to be
minimal, we must restrict them to the splitting type that increases the number
of cycles. A cycle of length £ needs £ — 1 splits to be decomposed into £ unit
cycles. Thus X (I1,,) = ZJCSIT”)(E; —1), with £, ..., £c(m1,) being the lengths

of the cycles of IT,,. Hence X (I1,) = n — C(I1,). Distributionally, (X, —n +
D
Inn)/In = —(Cp — Inn)/v/Inn —> — N0, 1) 2 N©,1).

Let B,, be the number of bits checked. The argument is the same as in the
unbiased case to establish the recurrence

B, :n+BN1 + By,

where Ny snd N, are the “shares” of the left and right subfiles after the splitting;
the equation is valid forn > 2. Let g = 1— p. The difference here is thatif p #

g, the shares are not symmetric; N| 2 BINOMIAL(n, p). So, conditioning
on N, we have
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n
E[B,] = Y E[B,|N| = j|Prob{N, = j}
j=0

n n
=n+ Z (n.)ijn_JE[Bj] + Z (n,>qun—jE[Bn_j].
=0 N j=o N

Now go through the Poissonization routine formulating the generating func-

tion B(z) = e ¢ Z;’;O E[B,]z"/n!. 1t is the same routine that led to (11.5);
multiply by z", sum over n > 2, etc. You get

B(z) = B(pz) + B(qz) + z(1 — %),

of which (11.5) is the special case p = g = % Take the Mellin transform of
the last recurrence to obtain

Cs+1)
pS+qg7 — 1’

B(s) =

existing in —2 < Ms < —1, which has a double pole at —1 that gives the
dominant asymptotic. All the other poles are simple and contribute O (z) lower-
order terms. Invert the transform:

By~ = Res pZ:JI;S:' 1—)1 - r(lp)zmz’
where
r(p)=—(plnp+qlng)
is the so-called information entropy. De-Poissonization gives ;(—1[7);1 Inn aver-

age for fixed n.

The coefficient r(p) is a continuous function of p. So, as p drifts away
slowly from 0.5, a small change will occur in the average. For example.
r(0.48) = —1.444362504 . . ., which is reasonably close to the ideal unbiased
case r(1/2) = —1/In2 = —1.442695041 .. .; one may view RADIX SORT as
a robust sorting procedure.

Let T,f'i ) be the number of inversions created by the swap Sw; ;1. After tl.lc
k swaps the relative ranks in the inner stretch (positions k+1. ..., n—k)remain

, . , 0 e
a fresh random permutation on n — 2k keys, with [, inversions, giving ris
to the convolution

- 2 (k ()
F I L IR SR Ao
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Let the probability generating function of l,g(l)zk be f,_2x(z) and that of Tn(j )
be t,(lj) (z). By independence,

. I 2 k .
. n(j) = I;E )(Z)tr(z )(Z) .- ~tlg )(Z)-f”“zk(Z)'

The function f,_24(z) is (ﬂ’;;i‘k(l — /(1 = 2))/(n — 2k)!, according
to (1.13). The swap Sw;,_;+| acts on a fresh random permutation in the
stretch i, ...n — i + | and does not unwind the effect of any of the swaps

Swip, ooy SWi—g p—j42. SO, t,gj)(z) is the same as (12.5), with n — 2j + 2
replacing n.
12.6 (a) Take the first and second derivatives at z = 1 of the exact probability
distribution function (12.5) to show that

2 4 2
E[T,] = an ~3 ~ an:

and

1, 1 1 1,
Var[Tn]=T§n —En—éfvﬁn N

(hence the center and scale factors).

(b) Let T;f = (T, — 2n/3)/n. From (12.5), Prob{T, = k} = (k + 1)/(3), for
feasible k. Hence, for r in the range specified

2
Prob({T* <1} = Prob{Tn < in +tn}

- ronfr <[ (341}

L(2/3+0)n)
= Z Prob{7, = k}
k=0

L/340n] 4

LG +0nl+ DUG +0nl +2)
Inmn—1)

P I
3 9

The derivative of this limiting distribution function is the stated limit den-
sity within the given range for z.



Appendix: Notation and
Standard Results from
Probability Theory

A.1 LOGARITHMS

The logarithm of x to the base b is denoted by log;, x. Bases in common use are 2, e,
and 10, but other bases appear in the book as well. The natural logarithm of x, log, x,
1s denoted by In . Base-2 logarithms appear in almost every aspect of algorithmics;
they have been christened with a special symbol: log, x is denoted by lg x.

A.2 ASYMPTOTICS

One says that a function f (x) is O(g(x)) (pronounced f (x) is big-oh g(x)) over the
set A, if for some ¢ > 0,

|f0)] <el|g)],  forall x € A.

The notation is sometimes referred to as Landau’s O. The most common application
in algorithmics is over a semi-infinite interval A = [xq, 00), for some xg > 0. When
such a semi-infinite range exists, the O notation is useful in identifying upper bounds
on the growth rate of f(x) by a suitable bounding function g(x), for large x.

Likewise, one defines lower bounds—one says that a function f(x) is Q(g(x))
over the set A, if for some ¢ > 0,

|f(0)] = c|g)], forall x € A.

Thus, f(x) = Q(g(x)), over A iff g(x) = O(f(x)) over A.
One says that a function f (x) is of the same order of magnitude as g(x) (written
®(g(x))) over A, if for some ¢y, ¢c2 > 0,

1 |g(x)| §|f(x)| §C2|g(x)|, forall x € A.
Thus, f(x) = ©(g(x)) over A, iff f(x) = Q(g(x)), and f(x) = O(g(x)) over A.

367
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To identify orders that can be relatively ignored, one says that a function f(x) is
negligible in comparison to g(x) (written o(g(x))), as x approaches xq, if

lim /) =0
X — X0 g(x)

To capture the essence of a function f(x), one says f (x) is asymptotically equiv-
alent to g(x), as x approaches xg, if

N
m

=1.
X— X0 g(x)

Symbolically f(x) ~ g(x), as x — 0, denotes the relation “f (x) is asymptotically
equivalent to g(x),as x — 0.”

A.3 HARMONIC NUMBERS

Harmonic numbers are ubiquitous in algorithmic analysis. The nth harmonic number

of order £ is the quantity Z?:l 1/j*, and is often denoted by H,Ek); the superscript
is usually dropped when it is 1. Harmonic numbers of the first two orders have the
asymptotic approximations:

1
H,=Inn+y+ 0(-);
n

) 1 <1>
HY =24 0(5),
" 6 n n?

where y = 0.5772156. . . is Euler’s constant.

A4 PROBABILITY

Many results from standard probability theory are used in the book. For a quick
reference, we state in this appendix (without proof) the major results employed. A
reader interested in the proofs and other background material may refer to one of the
many standard textbooks on probability.

Let X}, X2, ... be a sequence of random variables (measurable set functions de-
fined on a sample space). We sometimes refer to this sequence or family as {X;}72
or more simply as {X;}. We say that X, converges in probability to X, if for any
fixed ¢ > 0, we have

lim Prob{|X, — X| > ¢} =0.

n— 0o

. iy . P
When X, converges in probability to X, we write X,, — X.
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Theorem A.1 (The Weak Law of Large Numbers). If X |, X5, ... are independent,
identically distributed, absolutely integrable (E|X || < oo) random variables, with
common mean W, their partial sum S,, = X| + X2 + - -- + X,, satisfies:

S, P

— —> .
n

We say that X,, converges almost surely to X, it

Pmb{ lim X, = X} — 1.
n—od

When X, converges almost surely to X, we write X, A5 x . We use the notation
a.s. for equality almost surely.

Theorem A.2 (The Strong Law of Large Numbers). If X |, X2, . .. are independent,
identically distributed, absolutely integrable (E|X|| < o0) random variables, with
common mean [, their partial sum S, = X1 + X2 + - -+ + X, satisfies:

Sn a.s.

— > u.
n

We say that X,, converges in distribution to X, if its distribution Fy, (x) tends to
Fx (x), the distribution function of X, at every continuity point x of Fy. When X,

e e . D . D
converges in distribution to X, we write X,, — X, we reserve the notation = for
exact equality in distribution.

Theorem A.3 (Continuity Theorem). Let X1, X2, ... be a sequence of random

variables with corresponding characteristic functions ¢1(x), $2(x),.... Let X be a
random variable with distribution function ¢ (x). Then

Xo 25X i alx) — $(x).

Theorem A.4
a.s. . . P
X, —= X implies X, — X;
D
X, 5 X implies  Xu —> X;
for constant c,
D P
X, — ¢ implies X, —c.

The families {X ; } _and {Y } ~ | are said to be independent when the members
of one family are mdependent of each other as well as being independent of all the
members of the other family. Formally, the families {X ;j} and {¥;} are independent
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if X; and X ; are independent and Y; and Y are independent for every distinct pair
I # j,and X; and Y; are independent for every pair of indexes.

Let X1, X7, ... be a sequence of random variables. Let the mean and variance of
the nth random variable be defined by

un = E[X,], Var[X,] =0
Central limit theorems are concerned with the rate of convergence of the partial sums
Shn=X1+X2+ -+ Xn

to the sum of their means. In fact, central limit theorems apply to doubly indexed
arrays of random variables:

X11,.X12, ... X1
X12, X22, s X2,r

However, all the applications in this book assume that X; i=Xj, depending only on
Jj- In these cases a central limit theorems states a result about the sequence {X;}; we
shall write below central limit theorems in a simpler form that assumes the array to
be singly indexed. To state central limit theorems in their simplest forms we assume
that the variances are always finite (52 < 00). Let

n
= ZO’iz.

=1

Theorem A.5 (The i.i.d. Central Limit Theorem). If X1, X2, ... are independent
identically distributed random variables, with common mean u and common vari-
ance o < 00, then their partial sum S, = X1+ X2 + -+ + Xn converges in
distribution:

Sn— 1

n

Theorem A.6 (Lindeberg’s Central Limit Theorem). Suppose X1, X3, ... are in-
dependent, with corresponding distribution functions Fy, Fa, ... . If the family {X;}
satisfies Lindeberg’s condition

Iim —5 / Xza'F =0,
n—oo g Xil>es,

noj=1

n—)N(Oa)

for every ¢ > 0, then

SL STV

S”
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Theorem A.7 (Lyapunov’s Central Limit Theorem). Suppose for some § > 0 the
independent random variables X, X», ... have finite absolute moment E|X;|?*9,
foralli. If the family {X;} satisfies Lyapunov’s condition:

i it EXn — P2
H—> 00 g5+2 -
on
then
Y Xi—Yimi D NGO, 1)

Sn

Lyapunov’s theorem uses a condition that is sometimes easier to check than Lin-
deberg’s condition. Lyapunov’s condition involves an absolute moment higher than
the second. The third absolute moment is typical in applications (§ = 1).

To do “algebra” on converging random variables by performing the algebra on
the limits, we have the following theorems for addition and multiplication. Of course
subtraction and division can be treated as special cases of addition and multiplication.

Theorem A8 If X, 2% X, and Y, 2% Y then

X, + Y, =5 X +7;
X, Y, =% XY.

Theorem A9 If X, —P> X, andY, —P> Y then

X, +Y, —> X+7:

XY, —> Xxv.

Theorem A.10 Suppose {X n}i‘;l and {Yn}r‘:":1 are two families of random vari-

ables. Suppose further that X; and Y; are independent, for every i. Let X and Y be

D D
independent distributional limits: X,, —> X, and Y, —> Y. Then

X, +Y, -2 X +7.

Theorem A.11  (Slutsky’s Theorem). Suppose {X Yoo | and {Yu}32 | are two fami-

D D
lies of random variables. If X, —> X, and Y, — ¢, for a constant c, then

X,,+Y,,£> X+c;

D
X)—IY)—I_)CX.
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A sequence of random variables {M,,},‘q";1 is said to be a martingale with respect

to the sequence of sigma fields {F,}°2 | if:

(1) The sigma fields are increasing, that is, 7; € F; 1.
(i) X, is a measurable function on F,.
(iii) Foralln > 1, E|X,| < oo.

(@) E[Xp | Fact] = Xno1.

Theorem A.12 (Martingale Convergence Theorem). A square-integrable Martin-
gale with sup,, E[M,%] = K < 0o converges almost surely (and in L?) to an inte-
grable limit.

When {M,} is a martingale with respect to the sigma-fields {F,}, the backward
differences vy M, = M, — M, _ satisfy the property E[v M, | F,—1] 0. Gener-
ally, a sequence of random variables Y,, satisfying the property E[Y, | F,,_] L 0is
called a martingale difference.

Analogous to Lindeberg’s condition for the ordinary central limit theorems for
doubly indexed arrays, there is a conditional Lindeberg’s condition which, together
with another conditional variance condition, are sufficient to derive a martingale cen-
tral limit theorem for doubly indexed arrays of martingale differences. For a martin-
gale difference array Yy,, fork = 1, ..., k,, for n > 1 (over the increasing sigma-
fields Fi,,), the conditional Lindeberg’s condition requires that, for all ¢ > 0,

kn

ZE[Ykznl{lYknbs} |~7:k—1,n] —P> 0.
k=1

A Z-conditional variance condition requires that

k"

ZE[Y/?n |~7:k—1,/1] _P> Z,
k=1

for the random variable Z.

Theorem A.13 (Martingale Central Limit Theorem). Let {Xy,, Fin, 1 < k <
kn},?i] be a zero-mean, square-integrable martingale array, with differences Yip
(over increasing sigma-fields). Let Z be an almost-surely finite random variable. If
the differences satisfy the conditional Lindeberg’s condition and the Z-conditional
variance condition, the sum of the differences on the nth row

kll
Z Ykn = an

k=1

tends in distribution to a random variable with characteristic function Elexp(— % Zt7))
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