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Preface

Parallelism is a fairly common concept in everyday life. We all tend to
think intuitively that two equally skilled people working concurrently can
finish a job in half the amount of time required by one person. This is true of
many (but not all) human activities. Harvesting, mail distribution, and
assembly-line work in factories are all instances of tasks in which parallelism
is used advantageously. In situations of this sort, increasing the number of
workers results in an earlier completion time. Of course a limit is eventually
reached beyond which no time reduction can be achieved by putting more
workers on the job. In fact some tasks are purely sequential and cannot be
performed by more than one person at a time. For example, two marathon
runners cannot split the distance between themselves and claim a gold
medal!

It was natural for people to think of applying the idea of parallelism to the
field of computer science. From the dawn of the computer age to this day,
computer systems were built that carry out many operations at the same
time. Typically, while the central processing unit is busy performing the
instructions of a program, a new job is being read and the results of a
previous computation are being printed. Recently, however, a new meaning
has been given to the concept of parallelism within computers. With the
ever-increasing demand for faster computers, and the sharp decline in the
price of electronic components, the notion of a parallel computer was born.
Such a computer consists of several processing units (or processors) that can
operate simultaneously. A problem to be solved is thus broken into a
number of subproblems, each of which is solved on one of the processors.
The net effect of this parallel processing is usually a substantial reduction in

xi



xii PREFACE

the solution time. As a simple example, consider the problem of searching a
file for an element. With NV processors available, where N > 1, the file can be
subdivided into N subfiles, each of which is searched by one processor: the
parallel computer completes the job in (1/¥)th of the amount of time
required by a sequential (i.e., conventional) computer.

Unlike conventional computers, which have more or less similar archi-
tectures, a host of different approaches for organising parallel computers
have been proposed. The various designs differ in the way the processors are
interconnected, whether or not each has its own control unit, whether or not
they share a common memory, whether or not they operate in unison, and
so on. Some architectures are better suited than others for solving some
problems. That has to be taken into consideration when deciding on the
architecture to adopt for a given computing environment. For the designer
of parallel algorithms (i.e., problem-solving methods for parallel comput-
ers), the diversity of parallel architectures provides a very attractive domain
to work in. Given a computational problem, he or she can design an
algorithm for its solution on one of the many architectures available.
Alternatively, if none of the existing architectures is suitable, the designer
can be imaginative, limited only by reasonable technological constraints, to
develop a totally new architecture that best fits the purpose.

This book describes a number of parallel algorithms for the problem of
sorting a sequence of items on a variety of parallel computers. In writing it I
had two objectives. First, the book attempts to provide an understanding of
the important ideas involved when attempting to solve this fundamental
data processing problem in parallel. Second, it is my hope that through this
study of the sorting problem, the basic methods that are generally applicable
to parallel-algorithm design and analysis will be illustrated.

The material is organised into 11 chapters. In Chapter 1 the various
concepts and notations related to parallelism and used most often in our
subsequent treatment of parallel sorting are defined. Twenty different
algorithms are presented in the following nine chapters. Each of Chapters
2-9 is devoted to a particular parallel architecture, while the problem of
external parallel sorting is the subject of Chapter 10. Chapter 11 retrospec-
tively addresses the question of how fast we can hope to sort in parallel.

The book is intended for computer scientists and engineers who are
interested in learning about parallel algorithms. It can be used as a text in a
graduate course on the subject. The reader is assumed to possess the typical
background of a graduate in computer science. Knowledge of various
sequential algorithms mentioned in the book is important. These include
algorithms for sorting a sequence of items (such as Mergesort, Heapsort, and
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Quicksort), merging two sorted sequences (such as Straight Merge), and
selecting the kth smallest element of a sequence (such as Select), references
to which are given in the bibliography. In addition, familiarity with methods
of solving simple recurrence equations, of the type usually arising in the
analysis of algorithms, is required. Such a background should normally be
provided by an undergraduate course on algorithm design and analysis.

In conclusion, it is a pleasure to acknowledge the contributions of the
following people to this book. The staff of Academic Press offered help and
encouragement throughout. Ms. Irene LaFleche text-edited and formatted
the manuscript with her characteristic enthusiasm and skill. Mr. Gregory
Nestor read the entire first draft and suggested many improvements to the
style and presentation. I am deeply grateful to my parents, George and
Catherine AKkl, for everything they taught me, which led one day to the
writing of a book. And last but certainly not least I wish to thank my wife,
Karolina, who provided me with her unfaltering support when it was needed
most. As always, her love was an endless source of inspiration.



1 Introduction

1.1 Motivation

With the growing number of areas in which computers are being used,
there is an ever-increasing demand for more computing power than
today’s machines can deliver. Extremely fast computers are being sought
for many applications to process enormous quantities of data in reason-
able amounts of time. However, it is becoming apparent that it will very
soon be impossible to achieve significant increases in speed by simply
using faster electronic devices, as was done in the past three decades. This
is due, on one hand, to the fact that with today’s superfast circuit elements
more time is needed for a datum to travel between two devices than it
takes for it to be processed by either of them. On the other hand, the
reduction of distance between devices through very high scale integration
is quickly reaching a limit beyond which the reliability and speed of
circuit elements decrease.

An alternative route to the attainment of very high computational
speeds is to use a parallel computer, that is, one that possesses several
processing units, or processors. Here, the problem is broken into smaller
parts, which are solved simultaneously, each by a different processor. This
approach becomes truly attractive when one considers the rapidly decreas-
ing cost of computer components. Hundreds or even thousands of proces-
sors can thus be assembled to reduce dramatically the solution time for a
problem.

This book is devoted to the study of one particular computational
problem and the various methods proposed for solving it on a parallel
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2 1 INTRODUCTION

computer. The chosen problem is that of sorting a sequence of items and
is widely considered as one of the most important in the field of comput-
ing science. This book, therefore, is about parallel sorting.

1.2 The Sorting Problem

For both practical and theoretical reasons, sorting is probably the most
well studied problem in computing science. It is often said that 25-50% of
all the work performed by computers consists of sorting data. The prob-
lem is also of great theoretical appeal, and its study has generated a
significant amount of interesting concepts and beautiful mathematics. We
begin by giving a formal definition of sorting.

Definition 1.1 The elements of a set A are said to satisfy a linear order <
if and only if

(1) for any two elements ¢ and b of 4, eithera < b,a = b, or b < a;
and

(2) for any three elements a, b, and ¢ of 4, if a < b and b < ¢, then
a<c. 1

The linear order < is usually read “precedes.”

Definition 1.2 Given a sequence S ={x,, Xz, ..., Xx,} of n items on
which a linear order is defined, the purpose of sorting is to arrange the
elements of S into a new sequence S’ ={x;, X3, ..., Xxn} such that
x;i <xinfori=12,....n-1 1N

In order to get an intuitive understanding of this definition, it may be
helpful to think of .S as a sequence of names to be arranged in alphabeti-
cal order. Another example would be a sequence of numbers to be
arranged in nondecreasing order.

In designing and analyzing solution methods, or algorithms, for the
sorting problem, one appeals to a field of study known as computational
complexity theory. Generally speaking, this field is concerned with count-
ing the basic operations, or steps, required to solve a computational prob-
lem and establishing lower and upper bounds on the number of such
operations. The definition of what constitutes a step will of course vary
from one model of computation to another. Intuitively, however, compar-
ing, adding, or swapping two numbers are commonly accepted basic oper-
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ations in most models. Indeed, each one of these operations requires a
constant number of time units, or cycles, on a typical computer.

By defining a lower bound L(n) for a problem of size n, computational
complexity theory tells us that no algorithm can solve the problem in
fewer than L(n) steps in the worst case. On the other hand, an upper
bound U(n) is established by the algorithm that, among all known algo-
rithms for the problem, can solve it using the least number of steps in the
worst case. In the following definition we introduce some notation con-
ventionally used in conjunction with lower and upper bounds.

Definition 1.3 Let f(n) and g(n) be functions from the positive integers
to the positive reals.

(i) The function g(rn) is said to be of order at least f(n), denoted
Q(f(n)), if there are positive constants ¢ and »n, such that
g(n) = cf(n) for all n = ny.

(i) The function g(n) is said to be of order at most f(n), denoted
O(f(n)), if there are positive constants ¢ and n, such that g(n) <
¢f(n)foralln = no. N

We are now ready to examine lower and upper bounds on sorting. In
what follows we assume that sorting is performed primarily by comparing
pairs of items and that such comparisons are the most time-consuming of
all operations involved.

Theorem 1.1 For the problem of sorting a sequence of n items, L(n) =
Qnlogn)' 1

What this theorem tells us is that, asymptotically, a constant multiple of
n log n operations is required to sort in the worst case. This means that
no sequential algorithm running on a conventional (i.e. single-processor)
computer can sort in fewer than a constant multiple of # log » time units
in the worst case.

Theorem 1.2  For the problem of sorting a sequence of n items, U(n) =
O(nlogn). 1

This theorem implies that there exists at least one algorithm that can
sort asymptotically in a constant multiple of » log n steps in the worst
case. In fact several such sequential algorithms exist: Mergesort and Heap-

'All logarithms in this book are base 2. If 1 is not a power of 2, then log 7 is always rounded
to the next higher integer.
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sort are two examples. Because their running time matches the sorting
lower bound, these algorithms are said to be optimal.

In the remainder of this book, we assume that S ={x,, x,, ..., x,}isa
finite sequence of numbers. There is no loss of generality here since digital
computers, in effect, internally represent data of nonnumerical origin
with numbers. In fact, since such numbers are of finite precision, we
assume that the x; are integers. We believe that this assumption helps
clarify the presentation, especially in the case of numerical examples.
Because some definitions are more intuitive and easier to understand
when the items to be sorted are distinct, we further assume that the
elements of S are distinct integers. Sorting S will therefore mean arrang-
ing its elements in increasing order. However, it is important to stress here
that with very few exceptions, all algorithms in the book require no modi-
fication in order to sort a sequence with repeated elements. In the cases
where modifications are required, these are usually minor and are indi-
cated.

We shall find it convenient in some instances to index the elements of
S from 0 to n — 1, that is, S ={x¢, X, ..., X,_1). Also, in describing a
number of algorithms, we assume either that # is a perfect square or that
n =2" where m is a positive integer. In practice, it may be the case that
the size of the input sequence is not a perfect square or a power of 2. In
order to use one of those algorithms to sort such a sequence, dummy
elements (larger than any input element) are added to bring the size of the
input sequence either to the closest perfect square or to the closest power
of 2, to satisfy the algorithm’ assumption. When the sorting process
terminates, all the dummy elements are found at the end of the sequence
and can be ignored.

1.3 Parallel Models of Computation

Unlike the case with uniprocessor computers, which generally follow
the model of computation first proposed by von Neumann in the mid-
1940s and shown in Fig. 1.1, several different architectures exist for paral-
lel computers. In the case of sorting we distinguish between two general
approaches: special-purpose parallel architectures and multipurpose par-
allel architectures.

Special-purpose parallel architectures are designed with a particular
problem in mind. They result in parallel computers well suited for solving
that problem, but which cannot in general be used for any other purpose.
Sorting networks fall into this class. They consist of a number of proces-
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Fig. 1.1 Von Neumann computer.

sors arranged in a special way and connected to each other through com-
munication lines. Several such networks have been described in the litera-
ture on parallel sorting.

Multipurpose parallel architectures are, as their name indicates, des-
tined for computers with a broad range of applications. These are usually
classified into one of two main categories: single instruction stream multi-
ple data stream (SIMD) computers and multiple instruction stream multi-
ple data stream (MIMD) computers.

An SIMD computer consists of a number of processors operating under
the control of a single instruction stream issued by a central control unit.
Figure 1.2 shows the SIMD model, with the input and output units omit-
ted. The processors each have a small private memory for storing pro-
grams and data and operate synchronously: during a given time unit a
selected number of processors are active and execute the same instruc-
tion, each on a different data set; the remaining processors are inactive. In
order to be able to exchange data, the processors either communicate
through an interconnection network or share a common memory. Several
different configurations have been proposed for the interconnection
network; the most well known of these are the linear, mesh, cube, tree,
and perfect shuffle connections. Similarly, many models of the shared-
memory approach exist. In all such models, several processors can access
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the shared memory at the same time. However, models differ from one
another depending on whether two processors are allowed simultaneously
to read from or write into the same memory location. As we shall see in
later chapters, the SIMD architecture has been extensively used in the
design of parallel sorting algorithms.

In an MIMD computer, processors possess independent instruction
counters and operate asynchronously. Figure 1.3 shows the MIMD model,
with the input and output units omitted. As with the SIMD model,
MIMD computers are in turn classified into one of twa categories: multi-
computers, where the processors are connected only by communication
lines; and multiprocessors, where the processors share a common mem-
ory. A number of different algorithms have been described in the litera-
ture on parallel computation for sorting on MIMD computers.
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1.4 Parallel Algorithms

A parallel algorithm is simply one that is designed to run on a parallel
computer. Our purpose in this section is twofold. First, we define several
functions useful in evaluating and comparing parallel algorithms. The
language used to express algorithms in this book is then introduced.

14.1 Evaluating Algorithms

A number of metrics are available to the algorithm designer when
evaluating a new parallel algorithm for some problem. These are defined
in the next few paragraphs.
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Running Time

Since speeding up computations appears to be the raison d’étre for
parallel computers, parallel running time is probably the most important
measure in evaluating a parallel algorithm. This is defined as the time
required to solve a problem, that is, the time elapsed from the moment
the algorithm starts to the moment it terminates. Running time is usually
obtained by counting two kinds of steps executed by the algorithm: rout-
ing steps and computational steps. In a routing step data travel from one
processor to another through the communication network or via the
shared memory. A computational step, on the other hand, is an arithme-
tic or logic operation performed on data within a processor. For a prob-
lem of size n, the parallel worst-case running time of an algorithm, a
function of »n, will be denoted by #(n).

A good indication of the quality of a parallel algorithm for some prob-
lem is the speedup it produces. This is defined as

worst-case running time of fastest
known sequential algorithm for the problem

worst-case running time of parallel algorithm

speedup =

It is clear that the larger the ratio, the better the parallel algorithm. Ideally,
of course, one hopes to achieve a speedup of N when solving a problem
using N processors operating in parallel. In practice, such a speedup
cannot generally be achieved since

(1) in most cases it is impossible to decompose a problem into N tasks
each requiring 1/N of the time taken by one processor to solve the original
problem, and

(2) the structure of the parallel computer used to solve a problem
usually imposes restrictions that render the desired running time unat-
tainable.

Number of Processors

Another criterion for assessing the value of a parallel algorithm is the
number of processors it requires to solve a problem. Clearly, the larger the
number of processors, the more expensive the solution becomes to obtain.
For a problem of size n, the number of processors required by an algo-
rithm, a function of », will be denoted by p(n). The processors, numbered
1 to p(n), will be denoted by P,, P,, ..., Ppnu. Occasionally, when the
number of processors is a constant p, the latter will be used instead of
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p(n). We shall find it convenient in some instances to index the proces-
sors from 0 to p(n) — 1, that is, Py, Py, P2, ..., Ppnyr.

Cost

The cost of a parallel algorithm is defined as the product of the previ-
ous two measures; hence

cost = parallel running time x number of processors used.

In other words, cost equals the number of steps executed in solving a
problem in the worst case. If a lower bound is known on the number of
sequential operations required in the worst case to solve a problem and
the cost of a parallel algorithm for the problem matches this lower bound
to within a contant multiplicative factor, the algorithm is said to be cost-
optimal, since any parallel algorithm can be simulated on a sequential
computer. In the particular case of sorting, a parallel algorithm whose cost
is O(n log n) will be cost-optimal in view of Theorem 1.1. Alternatively,
when a lower bound is not known, the efficiency of the parallel algorithm,
defined as

worst-case running time of fastest known
sequential algorithm for the problem

cost of parallel algorithm

efficiency =

is used to evaluate its cost. In most cases,
efficiency < 1;

otherwise a faster sequential algorithm can be obtained from the parallel
one!

For a problem of size n, the cost of a parallel algorithm, a function of n,
will be denoted by c(n). Thus c(n) = t(n) x p(n).

Other Measures

Besides the three criteria outlined above, other measures are sometimes
used to evaluate parallel algorithms. For example, if the parallel computer
is built using very large scale integration (VLSI) technology, where nearly
10® logical gates can be located on a single l-cm? chip, then the area
occupied by the processors and the wires connecting them, as well as the
length of these wires, must be taken into consideration. Note that these
two criteria are not unrelated to the three previous ones: area is deter-
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mined by the number of processors and the geometry chosen to intercon-
nect them, while the duration of routing steps (and hence running time) is
a function of wire length.

A third parameter sometimes used to evaluate parallel computer
designs based on VLSI technology is the period of a circuit. Assume that
several available sets of inputs are queued for processing by a circuit in a
pipeline fashion. If {a,, a,,...,a,) and {b,, b,,...,b,)} are two such
sets, then the period of the circuit is the time elapsed between the begin-
ning of processing of a; and b;, which is the same for all i. Evidently, a
small period is a desirable property for a parallel algorithm.

142  Expressing Algorithms

We conclude this section by introducing the language that will be used
in this book to express algorithms. In treating such a fairly novel topic as
parallel algorithms, our purpose is to stress intuition rather than strict
formalism. We therefore resort to a high-level description that combines
plain English with well-defined programming constructs. Sequential oper-
ations will be described by statements similar to those of a typical struc-
tured programming language of today (such as ALGOL or PASCAL).
These should be readily understandable to someone familiar with any of
these languages.

In expressing parallel operations, on the other hand, we appeal to two
kinds of statements.

(1) When several steps are to be done in parallel, we write

Do steps i to j in parallel
step i
stepi +1

étep j.
(2) When several processors are to perform the same operation simul-
taneously, we write

for i = j to k do in parallel
{operation to be performed by P;}
end for.
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We remark here that the notation
a<b

will be used throughout to indicate that the value of the variable b is
assigned to the variable a. Similarly, the notation

a<—b

will be used to indicate that the variables a and b exchange their values.

1.5 Lower Bounds on the Parallel Sorting Problem

Before embarking on the design of algorithms (whether sequential or
parallel) for some problem, an algorithm designer is well advised to con-
sider existing lower bounds on the problem. A lot of frustration can
sometimes be saved this way. In this section we consider two obvious
(sometimes called “trivial”’) lower bounds on the problem of sorting in
parallel as a simple introduction to the topic. The question is dealt with in
more detail later.

151 A Lower Bound for n Processors

Assume that n processors are available to sort # items in parallel. It is
clear that no algorithm using this number of processors can sort in fewer
than a constant multiple of log n parallel steps in the worst case. Other-
wise, the worst-case cost of such an algorithm would be smaller than a
constant multiple of n log n thus contradicting the lower bound of Theo-
rem 1.1.

15.2 A Lower Bound for Sequential Input and Output

Assume that a parallel computer receives its input (or produces its
output) sequentially, that is, one datum for every time unit. Then no
algorithm can sort » items on such a computer in fewer than n steps,
regardless of how many processors are available. We should point out in
this context that this kind of lower bound is the subject of a small contro-
versy among parallel-algorithm designers. Most analyses of parallel algo-
rithms in the literature do not take input or output times into considera-
tion when deriving the parallel running time. This often leads to sublinear
running times for problems of size n. A small number of researchers,
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however, believe that this is unfair: any parallel computer, in their opin-
ion, must communicate sequentially with the outside world and therefore
any parallel algorithm, no matter how sophisticated, is bound to have a
running time at least linear in the size of the problem. This is a valid and
important argument, especially in view of today’s technology and applica-
tion areas. It may be pointed out in response, however, that computers
with parallel input and output are not totally unimaginable. For the case
of real-time input and output, for example, a computer may be collecting
several measurements or producing several control signals simultaneously,
using its many processors. In this book, we assume that such parallel
input and output capability is available whenever desired.

1.6 Organization of the Book

The book is organized into 11 chapters. Following this introductory
chapter, a number of sorting networks are described in Chapter 2. Our
decision to treat sorting networks first is based on historical as well as
pedagogical reasons. Indeed, sorting networks not only were the first
attempt to implement the sorting process in parallel, but also exposed
some fundamental properties of parallel sorting thereby giving an insight
on how it can be performed efficiently.

Chapters 3 to 8 are devoted to parallel sorting algorithms for SIMD
computers. There is a wealth of important algorithms for these machines
that deserve an extensive and detailed treatment.

Unlike the case with SIMD algorithms, the literature on algorithms for
MIMD computers is scanty. We describe the most relevant of these algo-
rithms in Chapter 9.

In Chapter 10, we discuss parallel external sorting, which is the problem
of sorting a sequence too large to fit in the parallel computer’s memory.

Finally, in Chapter 11, we continue and conclude our study of lower
bounds on parallel sorting begun in Section 1.5.

1.7 Bibliographical Remarks

There are several references in which the need for parallel computers is
discussed. In Levine (1982), Baer (1980), Bernhard (1982), and Schaefer
and Fisher (1982) a number of application areas are mentioned that
involve problems whose solution requires extremely fast computers. The
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physical limits beyond which the speed of computers cannot be increased
by relying solely on smaller and faster electronic components are recog-
nized in Stone (1980), Wallich (1983), Hoeneisen and Mead (1972), and
Keyes (1981). A general introduction to parallel computers is provided in
Stone (1980) and Baer (1980).

The most complete reference on sequential sorting up to 1973 is Knuth
(1973). Theorems 1.1 and 1.2 are from Knuth (1973). Some recent work on
this topic is surveyed in Akl and Meijer (1982). For an introduction to
applied computational complexity theory and the design and analysis of
algorithms, the reader is referred to any one of the existing excellent texts
on the subject, such as Horowitz and Sahni (1978) Reingold ez al. (1977),
and Kronsjo6 (1979).

Von Neumann’s computer, which has been, for nearly 40 years, the
conventional model of computation, was first proposed by Burks,
Goldstine, and von Neumann in a 1946 report that is considered by many
as the most influential paper in the history of computing (von Neumann,
1963). Exactly two decades later, it was the pioneering ideas of Flynn
(1966) that layed the foundations of research on parallel architectures.
More recent reviews of the field including descriptions of existing parallel
computers, can be found in Stone (1980), Baer (1980) Hockney and
Jesshope (1981), Haynes (1982), Booth (1980), Theis (1981), and Feng
1977).

An introduction to parallel algorithms is offered in Goodman and
Hedetniemi (1977). Kung (1980) provides a taxonomy of parallel algo-
rithms and illustrates the strong relationship between algorithms and
architectures. Some important papers describing parallel algorithms are
collected in Kuhn and Padua (1981). For an in-depth treatment of the
topic, see ICPP (1972- ), TOC (1969- ), and FOCS (1960- ),
where research results are regularly reported. The rapid progress of VLSI
technology over the past few years is reviewed in an excellent article by
Lyman (1983). Different points of view regarding the various issues
involved in the design of parallel algorithms for VLSI circuits are
advanced in Mead and Conway (1980), Leiserson (1983), Chazelle and
Monier (1981a,b), Bilardi et al. (1981), Thompson (1980, 1983), Lang ef al.
(1983), Schroder (1983), and Leighton (1983).

A number of arguments for taking input and output time into consider-
ation when measuring the running time of a parallel algorithm are
presented in Akl (1982), Orenstein et al. (1983), DeWitt et al. (1982), and
Yasuura et al. (1982).

Meggido (1983) and Cole (1984) show how parallel sorting algorithms
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can be used to obtain faster sequential algorithms for several computa-
tional problems.

Finally, comparative analyses of a number of parallel sorting algorithms
are provided in DeWitt ez al. (1982), Thompson (1983), Lakshmivarahan
et al. (1984), and Ullman (1984).
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2 Networks for Sorting

21 Introduction

This chapter is concerned with algorithms for sorting the sequence S =
{x(,Xx2,..., %, of distinct integers on a variety of sorting networks.
These are special-purpose networks consisting of a number of processors
interconnected in a way that directly implements a parallel sorting algo-
rithm.

2.2 Enumeration Sort

Our first network implements one of the simplest sorting algorithms:
the position of each element of S in the sorted sequence is determined by
counting the number of elements smaller than it. The network consists of
n? processors configured as follows:

(1) The processors are placed in a square array consisting of # rows of
n processors each; a processor in row i and column j is denoted by P(i, j)
fori,j=12,...,n.

(2) The processors in row i are interconnected to form a binary tree;
for j = 1to |n/2], processor P(i, j) is linked directly to processors P(i, 2j)
and P(i, 2j + 1), with P(i, 2|n/2] + 1) nonexistent if n is even.!

(3) The processors in column j are interconnected to form a binary
tree; for i = 1 to |n/2), processor P(i, j) is linked directly to processors
P(2i, j) and P(2i + 1, j), with P(2|n/2] + 1, j) nonexistent if » is even.

'For a real number , |r] denotes the largest integer smaller than or equal to 7 (the “floor” of
r), while [r] denotes the smallest integer larger than or equal to r (the “ceiling” of r). Thus
16.5) = 6, [6.5] = 7, and [6.0] = [6.0] = 6.
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Each processor P(i, j) in the network has the following capabilities:

(1) It can store two elements of S in two local registers 4(i, j) and
B(i, j).

(2) It can compare the contents of 4(i, j) and B(i, j) and put the
result of the comparison in a third local register RANK(, j).

(3) Using the binary-tree connections, it can send (or receive) the
contents of any of its registers to (or from) another processor.

(4) It can add the contents of a register or a constant to the contents of
RANK (i, j).

In the following algorithm, each row of processors is associated with
one of the input elements. The algorithm consists of three stages. In the
first stage, each element is compared with all other elements of S. Then
the position of element x; in the sorted array is determined from

rank(x;) = 1 + number of elements smaller than x; .

In the third and last stage, each element is routed to its final destination.
The algorithm is known as Enumeration Sort.

ALGORITHM 2.1
(1) fori =1to n do in parallel

(1.1) Each processor P(i, j) in row i receives two inputs x;
and x;, where j = 1, 2, ...n, which it stores in A (i, j)
and B(i, j), respectively

(1.2) if B, j) <A@, j)
then RANK(i, j) < 1
else RANK(i, j) < 0
end if

end for.
(2) fori =1to n do in parallel

(2.1) The contents of the RANK registers of all processors
in row i are added up and the sum placed in
RANK(i, 1)

(2.2) P(i, 1) computes rank(x;) from

RANK(i, 1) « RANK(i, 1) + 1

end for.
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(3) fori =1to n do in parallel
if RANK (i, 1) =j
then x; is routed from A(i, 1) to A(j, 1)
end if

end for. B

When the algorithm terminates, processors P(1, 1), P(2, 1), P(3, 1), ...,
P(n, 1) contain the sorted sequence, with the smallest element in A(l1, 1)
and the largest in A(n, 1).

EXAMPLE 2.1

The working of Algorithm 2.1 is illustrated in Fig. 2.1 for S =
{9, 8, 10, 7, 6). For simplicity, the connections among processors are not
shown. In Fig. 2.1a, the labelled arrows indicate the two initial inputs to
each processor; the number inside each processor is the value of RANK
after step 1. Figure 2.1b shows the first column. of processors: the number
inside P(i, 1) is the value of RANK after step 2. The contents of A(i, 1)
after step 3 are shown in Fig. 2.1c.

Analysis

In order to analyze the running time of Algorithm 2.1 it is important to
specify how each of the steps of the algorithm is actually implemented.

Implementation of step I Element x; must be broadcast to all processors
in row i and column i. We now show how this can be done for row i. The
idea is to use the binary-tree connection for this purpose, as shown in the
following procedure.

procedure PROPAGATE (x;)
(1) A@, 1) «<x;.

(2) for k =1to ((log n)— 1) do
for j = 27! to 2“~1 do in parallel

(2.1) A(i, 2j) - 4G, J)
(2.2) 4G, 2 + 1) < 4 (i, j)

end for
end for. B
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Fig. 2.1 Sorting {9, 8, 10, 7, 6} by Algorithm 2.1.
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This procedure, which clearly requires O(log n) time, can be repeated
simultaneously for all rows. A similar procedure with the same time
requirement can be used to propagate x; down column i, for all i, simul-
taneously. Since all processors compare the contents of their 4 and B
registers in parallel, this operation takes constant time. The overall time
requirement of step 1 is O(log n).

Implementation of step 2 The binary-tree connection over row / is used
to compute the sum of all RANK registers in that row and put it in
RANK(i, 1) as shown in the following procedure. Note that since the B
registers have now done their job they are used as temporary storage in
the computation of the sum.

procedure SUM(i)
for k = ((log n) — 1) down to 1 do
for j = 2! to 2*~ 1 do in parallel

(1) B(i, j) < RANK(, 2j)

(2) RANK(i, j) - RANK(i, j) + B(, j)
(3) B(, j) - RANK(i, 2j + 1)

(4) RANK(i, j) -~ RANK(, j) + B(i, j)

end for
end for. 0

This procedure, which also requires O(log 7) time, can be run simulta-
neously on all rows. Thus step 2 takes O(log n) time.

Implementation of step 3 In this step, processor P(i, 1) is required to
route x; to P(j, 1), where j = rank (x;). This is done in three stages:

(1) P(i, 1) uses the binary-tree connection on row i to transfer
RANK(i, 1), that is, j, to P(i, i).

(2) Now, P(i, i) uses the binary-tree connection on column i to trans-
fer A(i, i), that is, x;, to P(j, i).

(3) Finally, P(j, i) uses the binary-tree connection on row j to transfer
x; to P(j, 1).

Each of these transfers can be implemented using a procedure similar to
PROPAGATE, and thus requires O(log n) operations. Step 3 therefore
also runs in O(log »n) time.

The preceding analysis leads us to conclude that the overall parallel
running time of Algorithm 2.1 is O(log #). Thus, since
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t(n) = O(log n) and p(n) =n?
we have
c(n) = t(n) x p(n) = O(log n) x n* = O(n® log n),

which is clearly not optimal.

Discussion
A number of observations are in order regarding Algorithm 2.1.

(1) The algorithm is extremely. fast: with a running time of O(log n),
it achieves a speedup of O(n) over the best (and indeed optimal) sequen-
tial algorithms. We note in this context that no parallel algorithm for any
reasonable computational model is known that is faster, regardless of the
number of processors used.

(2) Although fast, the algorithm is wasteful of the resources. Indeed,
the O(n) speedup over the sequential algorithms is achieved with n?
processors. As pointed out in Chapters 8 and 11, however, other algo-
rithms achieve the same speedup using fewer processors but are highly
impractical.

(3) Besides the prohibitive number of processors required by the
network, the binary-tree connections over the rows and columns give
some reason to believe that the model is unrealistic. Indeed, the farther
from the root, the longer the wires connecting a node to its descendants.
Consequently, the propagation time between adjacent levels of the tree is
no longer a constant but rather a function that grows exponentially.
Therefore, if our model is one that takes wire length into consideration,
we can then no longer assume that a PROPAGATE operation, say,
requires O(log n) time.

(4) In Chapter 3 an algorithm will be described that implements the
enumeration sort approach of this section on a more realistic model of
computation in which p(n) = n and no tree connections are required.

(5) Our final observation concerns sequences with repeated elements.
Algorithm 2.1 as described cannot handle such sequences. Indeed, if
Xi=X,, say, then rank(x;) = rank(x;) and the two elements occupy the
same position in the final sorted sequence (i.e., they are routed to the
same processor in step 3). One way to solve this “collision” problem
would be to assign a larger rank to the element with the larger index. This
can be accomplished by adding the following test to step 1I:
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If (B(ij)=A(,j)and i > j)
then RANK(i,j) < 1
end if.

In this way, the relative positions of equal input elements are preserved in
the sorted sequence.

23 Sorting by Odd-Even Merging

The networks described in this and the following sections are composed
of a collection of processors with the following characteristics:

(1) Each processor has two input lines and two output lines.

(2) Each processor can compare only its two inputs and produce the
smaller of the two on one of its output lines, labelled L (for LOW), and
the larger of the two on the other output line, labelled H (for HIGH). If
the two inputs are equal, then their relative positions are unchanged, that
is, the top (bottom) input element is produced on the top (bottom) output
line.

Such a processor known as a comparison element (CE), or comparator
for short, is displayed in Fig. 2.2.

Comparators are used to build merging networks as follows. Assume
that it is required to merge two sorted sequences {a,, a,, ..., a,} and
{b,, b,, ..., b,) to form a single sorted sequence {c,, ¢z, ..., C2.}, Where
n is some power of 2. If n = 1, then obviously one comparator will suf-
fice. If n =2, then it is possible to verify exhaustively that the 2 x 2
merging network in Fig. 2.3 will correctly merge the two sorted sequences
{a,, a,) and {b,, b,). In general, the odd-numbered elements of the two
sequences, that is, (a,,as,as, ...} and (b, b3, bs, ...}, are merged

L———» min (a, b)

= max (g, b)

qQ ——¥

-

I

b——

Fig. 2.2 Comparison element.
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Fig. 2.3 2 x 2 merging network.

using an (n/2) x (n/2) merging network to produce a sequence
{d,,d,,ds, ...}). Simultaneously, the even-numbered elements of the
two sequences, that is, {a,, a4, as, ...} and {(b,, by, bg, ...}, are also
merged to produce a sequence {e,,e,,es, ...}. The final sequence
{ci,¢2, ..., C2,) is now obtained from c,=d,, ¢ = min(d.,, ;) and
Crin=max(d;,,e)fori=12,...,n—1,and ¢y, = e,.

An n x n merging network is illustrated in Fig. 2.4. Note that each of
the two (n/2) x (n/2) merging networks is constructed by applying the
same rule recursively, that is, by using two (n/4) x (n/4) merging net-
works followed by a rank of (n/2) — 1 comparators. The correctness of
this method, known as Odd-Even Merging, is established in the following
theorem.

Theorem 2.1 Given two sorted sequences {(a,,a,, ...,a,} and
{b,, by, ..., b,}, Odd-Even Merging correctly merges them into a single
sorted sequence {Cy,Cz, ..., Can) by

(1) first merging the odd-numbered elements and the even-numbered
elements of the two input sequences, to produce {d,, d,, ds,...} and
{e,, e, e3,...}, respectively,

(2) then computing c, = min(d;,,, e;) and ¢y ., = max(d,,, e;) for
i=12,...,n-1,

(3) and finally letting ¢, =d, and c,, = e,.
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Fig. 2.4 n x n merging network.

Proof Consider the subsequence {d,,d,, ...,d;,} for some i. If k
elements of this subsequence belong to {a,,as:,as, ...}, then
i + 1 - k elements belong to {b,, b3, bs,...}. Thus 2k — 1 elements of
{a,,a,,as, ...} and 2i +1 -2k elements of (b, b,,b;, ...} are
smaller than or equal to d.,.

Consequently,

din=cyi. (2.1)
By a similar reasoning,
e;i=Cyi. (22)

Now assume that k elements of {c,,c;, ...,czn} belong to
{a\,a,,a;, ...) and therefore that 2/ + 1 — k elements belong to
{b,, by, b5, ...}. Thus ¢y, is greater than or equal to

k elements of {a,, a,, a;, ...},

k/2 elements of {a,, a3, as, ...} [or (k + 1)/2 if k is odd],

2i +1 -k elements of (b, , b,, b3, ...}, and

i +1-k/2elements of (b,, b3, bs, ...} [or (2i + 1 - k)/2 if k is odd],
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that is
Coint = djs. (2.3)
By a similar reasoning
Cain = €. (2.4)
Since ¢, < ¢, < ¢3 < - - -, inequalities (2.1)-(2.4) imply that
¢y =min(d,,,, e;) and Cais = max(d;,;, e)).
Finally since
d, =min(a,, b)) and e,=max(a,, b,),
the proof is complete. B

Having established that it is possible to merge two sorted sequences
using a merging network, it should be obvious how a sorting network
based on the same concept can be constructed. The idea is simply to take
the unsorted input sequence S of length #n and, using one rank of n/2
comparators, create n/2 sorted sequences of length 2. Pairs of these are
now merged using a rank of 2 x 2 merging networks into sorted sequences
of length 4. Pairs of these are now merged using 4 x 4 merging networks
into sorted sequences of length 8, and the process continues until a sorted
sequence of length » is obtained. The algorithm is known as Odd-Even
Sort. It should be noted that the » elements to be sorted must be available
and presented as input to the network simultaneously.

EXAMPLE 2.2

A network for sorting the sequence S =(8, 7, 6, 5, 4, 3, 2, 1} using Odd
—-Even Sort is shown in Fig. 2.5.

Analysis

The total number of CEs and of parallel steps required to sort a
sequence of length n, where n = 2™ for some positive integer m, using
Odd-Even Sort, is obtained as follows. Since the size of the merged
sequences doubles after every stage, there are log n (i.e., m), stages in all:

the first stage requires 2"~ CEs;

the second stage requires 2™~? 2 x 2 merging networks each with 3 CEs;

the third stage requires 2™ 4 x 4 merging networks each with 9 CEs;

the fourth stage requires 2™ 8 x 8 merging networks each with 25
CEs; etc....
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Fig. 2.5 Sorting (8,7, 6,5, 4, 3, 2, 1} by Odd-Even Sort.
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In general, if we denote by ¢(2') the number of CEs required in the ith

stage to merge two sorted sequences of 2'~' elements each, then we have
the recurrence

q(2)=1

q(2')=2gQ2"")+2'-1
whose solution is

for i=1,

for i>1,

g2)=0G-1D2"+1

Therefore the total number of CEs required to sort a sequence of 2™
elements is

i 2mig(2') = % 27 - 1) 27+ 1)
i=l i=l

=(m*-m+4)2" 2~ 1.
Hence
p(n)=0(m™2"?)
= O(n log? n).
To obtain the number of parallel steps required to sort we note that

the longest path in the first stage consists of 1 step;
the longest path in the second stage consists of 2 steps;
the longest path in the third stage consists of 3 steps; etc.. ..

In general, if we denote by s(2°) the maximum number of parallel steps

required in the ith stage to merge two sorted sequences of 2’ elements
each, then we have the recurrence

s(2)=1

sQ2H)=s27)+1
whose solution is

for i=1,

for i>1,

sQ)=1.

Therefore the longest path in a network for sorting a sequence of 2™
elements consists of

M3

i=1

sRH)=Yi= m(—’gtﬂsteps.
i=1
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Hence
t(n) = O(m?*) = O(log® n).
Consequently,
c(n)=t(n)x p(n) = O(n log* n),

which is not optimal.

Discussion

Comparing the network of this section with that of Section 2.2, we note
that Odd-Even Sort is slightly slower than Enumeration Sort, but uses
fewer processors and has a better cost. Furthermore, the architecture is
quite simple and makes no unrealistic technological assumptions.
Although smaller than previously, the number of processors, however,
remains unreasonably large.

2.4  Sorting Based on Bitonic Merging

In this section we introduce a second method for constructing sorting
networks using comparison elements. As before, the networks will be
based on the idea of merging pairs of subsequences possessing some prop-
erty. The following definition and theorem provide the background neces-
sary to understand the new algorithm.

Definition 2.1 A sequence {a,, a,, ..., d,} is said to be bitonic if either
(i) there is an integer 1 < j < 2n such that

A=A =...=4;20jh= ...2 4y,

or
(ii) the sequence does not initially satisfy condition (i) but can be
shifted cyclically until condition (i) is satisfied. W

For example, (1, 3, 5, 6, 7, 9, 4, 2} is a bitonic sequence as it satisfies
condition (i). Similarly, the sequence {7, 8, 6, 4, 3, 1, 2, 5}, which does not
satisfy condition (i), is also bitonic as it can be shifted cyclically to obtain
2,5,7,8,6, 4, 3, 13.
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Theorem 2.2 Let {a,,a,,...,a,,} be a bitonic sequence. If
d;=min(a;, a,,;) and e; = max(a;, a,,;) for | <i <n, then

M0 (d,,d,,...,d,}and {e,, e,,..., e, } are each bitonic, and
(II) max(dlad29-~~9 dn)S min(el » €254, €, )’

Proof Since a cyclic shift of {a,, a,,..., a, ) affects {d,,d,,...,d,)
and {e,, e,, ..., e, ) similarly while not affecting properties (I) and (II), it
is sufficient to prove the theorem for the case where

aA)=0=<...<04;1=<4;20jy1=...2 0
is true for some 1 <j < 2n.

Furthermore, since the reversed sequence {as,, @2,-1,...,a;} is also
bitonic and properties (I) and (II) are not affected by such reversal, we
assume without loss of generality that n <j < 2n and prove the theorem
for this range.

Casel: Ifa, <a,,,thena; <a,,;. Consequently d, =a; and ¢; = a,.;
for 1 < i < n, and both properties (I) and (II) hold.

Case2: Ifa, > a,,, thensince a;., < a;anindex k, j < k < 2n, can be
found such that

Ain < Qg and Akeonet > Aiat

(To see this, take k = j, which satisfies the first inequality; if the second
inequality is not satisfied, that is, @, > d«_».1, take kK =j + 1 and repeat
the process. If no value of j < k < 2n — 1 satisfies both inequalities, then
we must have a,,_, > a,_; . But then k = 2n — 1 satisfies both inequalities,
since d,,-; > @, and a,, < a, . Hence such a k can always be found.)

It follows that

di=a; and €=, for l<i<k-n
and

di=an. and e.=a; for k-n<i<n.
(To see this, note that when | <i < k —n,

Apei = ... 202 Agp=...24; for j=n+i<k
and

Apei =...24; for n+i<j.
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Similarly, when k —n <i < n,
A= . 2 App = Apy = ... 2 Apyi.)
Hence
d,<din for l<i<k-n
and
di=d. for k-n<i<n,

which means that {d,, d,,..., d,} is bitonic. Also

e, <e, for k-n<i<n,
e, <ey, 4
e < e for 1<i<j-n,
e, =e. for j—n<i<k-n,

which means that {e,, e;,..., e, )} is also bitonic. This completes the
proof of (I). To prove (II), note that

max(dl ) d2 ) dn ) = max(dk—n 5 dk-n+l ) = max(ak—n s k4 )

and
min(e,, e;,..., €,)=Min(€s_n , €x_ns )= MiN(Ay , Agopsr ).
Since
Ak Z Aprys Ak = Agon » Akonst = kop ANA Apopa = A,
we have

max(@x-n, Aker ) < Mikay , A pyy). B

Theorem 2.2 implies that we can sort a bitonic sequence {a,, a,, ...,
a,, } into increasing order as follows:

(1) Using n comparators the two subsequences
min(a,, @,a ), Min(a@,, dns2), ..., Mn(@,, d2,)
and
max(a,, An. ), max(az, @ns2), ..., max(a,, az )

are created.
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Fig. 2.6 Bitonic Merger.
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Fig. 2.7 Bitonic Merger for a sequence of length 4.
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a, L + L L >c,
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Fig. 2.8 Bitonic Merger for a sequence of length 8.

(2) Each of these two subsequences being bitonic it can be sorted
recursively using a sorter for bitonic sequences of length n. Since no
element of the first subsequence is larger than any element of the second
subsequence, the n smallest elements of the full sorted sequence will be
produced by one of these sorters and the n largest elements by the other
one. The general setup of such a network known as a Bitonic Merger is
shown in Fig. 2.6.

A Bitonic Merger for a sequence of length 2 is of course a single com-
parator. Examples of bitonic merging networks for sequences of length 4
and 8 are shown in Figs. 2.7 and 2.8, respectively.

For the sorting networks discussed so far in this section, we have
assumed that their inputs are bitonic sequences. If an arbitrary sequence
S of n elements in random order is to be sorted, then bitonic subse-
quences of S are sorted and combined to form larger bitonic subse-
quences until a bitonic sequence of length n is obtained, which is finally
sorted. To sort each bitonic subsequence we use a Bitonic Merger as
described above. The algorithm is known as Bitonic Sort. It should be
noted that the # elements to be sorted must be available and input to the
network simultaneously.
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EXAMPLE 2.3

A network for sorting the random sequence S = {4, 8, 1, 3, 2, 7, 5, 6}
using Bitonic Sort is shown in Fig. 2.9. Note:

(1) In order to produce the decreasing part of a bitonic sequence,
some of the comparators invert their output lines and produce a pair of
numbers in decreasing order.

(2) After the input goes through the first rank of comparators, two
bitonic sequences each of length 4 are produced. Each of these is then fed
into a Bitonic Merger for sequences of length 4 (the comparators in
columns 2 and 3). This results in a single bitonic sequence of length 8,
which is now sorted using a Bitonic Merger for sequences of length 8 (the
comparators in columns 4, 5, and 6).

Analysis

The total number of CEs and of parallel steps required to sort a
sequence of length n, where n = 2" for some positive integer m, using
Bitonic Sort, is obtained as follows. Since the size of the bitonic subse-
quences doubles after each stage, the network consists of log n (i.e., m)
stages in all:

the first stage requires 2" 'CEs;

the second stage requires 2”2 four-element Bitonic Mergers each with 4
CEs;

the third stage requires 2™~ eight-element Bitonic Mergers each with 12
CEs; etc....

In general, if we denote by ¢(2') the number of CEs required in the ith
stage to sort a bitonic sequence of 2’ elements, then we have the recur-
rence

qg(2)=1 for i=1,
q(2")=2""+2q(2"") for i>1,
whose solution is
q(2')=i2"".
Therefore the total number of CEs required to sort a sequence of 2”
elements is

i 2m—iq(2i )= i 2m—i(i2i-l )= 2m_|m(”; + 1)
i=t i=1
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Hence
p(n)=0(n log? n).
To obtain the number of parallel steps required to sort we note that

the first stage consists of one step;
the second stage consists of two steps;
the third stage consists of three steps; etc.. ..

In general, if we denote by s(2') the number of parallel steps required
in the ith stage to sort a bitonic sequence of 2' elements, then we have the
recurrence

s(2)=1 for i=1,
sQ)=1+s2") for i>1,
whose solution is
s =1i.

Therefore the total number of steps in a network for sorting a sequence of
2™ elements is

Hence
t(n) = O(log® n)
and
c(n)=t(n)x p(n) = O(n log* n),

which is not optimal.

Discussion

The approach described in this section for building sorting networks
appears at first glance to provide no advantage over sorting by odd-even
merging. Indeed, Bitonic Sort achieves the same parallel running time as
Odd-Even Sort, while using more processors. However, the analysis given
above reveals an interesting property that can be exploited to improve the
algorithm’s performance significantly. Indeed, as it can be easily seen, the
network for sorting a sequence of 2™ elements consists of m(m + 1)/2
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ranks of 2™ comparators each. Because of this regularity, Bitonic Sort
leads, when implemented on some other architectures, to a very efficient
parallel sorting algorithm, as will be seen in Chapters 4 and 5.

25 Bibliographical Remarks

An early treatment of the subject of sorting networks is provided in
Knuth (1973). The basic idea of Algorithm 2.1 is due to Muller and
Preparata (1975) with various implementations later appearing in Leigh-
ton (1981), Nath et al. (1983), and Hsiao and Snyder (1983). Networks for
Odd-Even Sort and Bitonic Sort were first described in Batcher’s seminal
paper (Batcher, 1968). Many researchers extended Batcher’s fundamental
ideas and adapted them to a variety of parallel architectures. Such work is
described, for example, in Stone (1971, 1978), Lorin (1975), Thompson
and Kung (1977), Nassimi and Sahni (1979, 1982), Baudet and Stevenson
(1978), Preparata (1978), Meertens (1979), Schwartz (1980), Preparata and
Vuillemin (1981), Brock et al. (1981), DeWitt et al. (1982), Flanders (1982),
Perl (1983), Kumar and Hirschberg (1983), and Rudolph (1984). Other
sorting networks were proposed in Mukhopadhyay and Ichikawa (1972),
Chen et al. (1978 a, b), Moravec (1979), Chung et al. (1980 a, b), Chin and
Fok (1980), Mukhopadhyay (1981), Winslow and Chow (1981, 1983), Lee
et al. (1981), Armstrong and Rem (1982), Carey ef al. (1982), Hong and
Sedgewick (1982), Miranker et al. (1983), Dowd et al. (1983), Ajtai et al.
(1983), De Bruijn (1984), Wong and Ito (1984), and Tseng and Lee (1984).
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3 Linear Arrays

3.1 Introduction

In this chapter we describe four parallel sorting algorithms for SIMD
machines in which processors are interconnected in a (one-dimensional)
linear array. This is perhaps the simplest and most fundamental of all
‘interconnection schemes. Here we have p(n) processors numbered 1 to
p(n), each processor P; being linked by a communication path to proces-
sors P;_, and P;,,, with no other links available, as shown in Fig. 3.1 for
p(n) = 6. In the first two algorithms of this chapter, this geometry allows
P; to directly communicate and exchange data with its two neighbouring
processors (with the exception of P, and P, , which have one neighbour
only). In the other two algorithms data flow is unidirectional, with P;
always receiving input from P, for 2 <i < p(n).

3.2 Odd-Even Transposition Sort

The Odd-Even Transposition Sort algorithm assumes that there are as
many processors available as there are elements in the input sequence
S ={x,x,2,...,x,} to be sorted, that is, p(n) = n. At any time during
the execution of the algorithm, let y;, denote the integer of the input
sequence held by processor P; for all | < i < n. Initially, y, = x; . In a first

| P2 p3 P4 5 6

Fig. 3.1 Linear array of processors.

41



42 3 LINEAR ARRAYS

step all odd-numbered processors P; are activated and obtain a copy of
Vin from P, . If y; >y, then P; and P,,, exchange their integers. The
second step is identical to the first one except that this time even-num-
bered processors are activated. These two steps are repeatedly performed
in this order. After [n/2] iterations, no further exchange of integers can
take place. Hence, when the algorithm terminates, y; < y;,, for all
l<i=zn-1

ALGORITHM 3.1

for k = 1to [n/2] do
(1) fori=1,3,...,2[n/2] - 1 do in parallel
if ;> yin then y;, < y;,, end if
end for
(2) fori=2,4,...,2|(n - 1)/2] do in parallel
if y; >y, then y; < y,,, end if
end for
end for. il

EXAMPLE 3.1

The operation of Algorithm 3.1 when applied to the sequence
S=(7,6,5,4,3,2, 1) can be illustrated by the diagram in Fig. 3.2,
known as a sort diagram. Note that although the algorithm terminates
after eight steps, it actually produces a sorted sequence in seven steps.
Indeed, as shown in Theorem 3.1, the maximum number of steps required
to sort is 7.

Theorem 3.1 Algorithm 3.1 correctly produces a sorted sequence after at
most n steps, which is (asymptotically) the best that can be achieved on the
linear SIMD model of computation.

Proof The proof of correctness is by induction on #. It can be shown
exhaustively that the theorem is true for n» < 3. We now assume that the
algorithm sorts a sequence of m elements in at most m steps. It remains
to show that every sequence of m + 1 elements is sorted in at most m + 1
steps. We do so with the help of the sort diagram describing the operation
of the algorithm on the set S = {x;, X2, ..., X+ (). In this diagram we
trace the route of the largest element of S, denoted by M. Depending on
whether M is initially held by an odd- or an even-numbered processor,
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Fig. 3.2 Sort diagram for (7, 6, 5, 4, 3, 2, 1).

two different diagrams are possible, as shown in Figs. 3.3a and b. Note
that in each case the diagram is claimed to represent a complete sort of
m + 1 integers, which takes, say, K steps. Also, in each case, the route
followed by M splits the sort diagram into two parts, A and B. Let us
now assume that M did not exist, and erase its route from the sort
diagram, as in Fig. 3.4a. By joining parts 4 and B as in Fig. 3.4b we
obtain a diagram that, from the second row downwards, is a complete sort
diagram of m integers. Since m integers are correctly sorted in at most m
steps by the inductive hypothesis, we have K — 1 =m and hence
K=m+ 1

That no algorithm can do better than Algorithm 3.1 on the linear array
is shown by the case where M, the largest element in S, is initially in P,
and must therefore move n - 1 times before settling in its final position in
P,. 0

Analysis

Each of steps 1 and 2 performs one comparison and two transfers and
thus requires constant time. Since the loop containing these two steps is
executed [n/2] times, we have that the parallel running time of Algorithm
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Fig. 3.4 Sort diagram for the proof of Theorem 3.1.

3.1is t(n) = O(n), and hence its cost is
c(n) = t(n) x p(n) = O(n) x n = O(n?,
which is not optimal.

The analysis given above does not take into consideration the amount
of time elapsed during the input and output phases. However, if all x; are
initially loaded into the P, simultaneously, and if at the end of sorting all
P; produce their y; to the outside world simultaneously, then input and
output both require a constant number of time units (i.e., an amount of
time independent of #) and the analysis is essentially unchanged.

33 Merge-Splitting Sort

It is possible to generalize Algorithm 3.1 to the case where each proces-
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sor holds a subsequence of S rather than a single integer. The comparison
-exchange operation is now replaced with a merge-split operation.
Assume that there are p processors available, numbered 1 to p, where
p < n, and that each processor holds a subsequence of length n/p. (If n/p
is not an integer, then dummy elements—larger than any input element—
are added to S to bring its size to the closest integer multiple of p.) We
denote by S; the subsequence held by processor P;. Initially, the S; are
random subsets of the input sequence .S to be sorted. In a preprocessing
step, each processor locally sorts its associated subsequence using a
sequential sorting algorithm. In the first step of the parallel algorithm,
each odd-numbered processor merges the two subsequences S; and S,
and then retains the first half of the resulting sorted subsequence while
assigning to its neighbour P,,, the second half. The second step is identical
to the first except that this time even-numbered processors are activated.
These two steps are repeated alternately. After [p/2] iterations no further
exchange of integers can take place between two processors. Hence when
the algorithm terminates, the sequence S = S, S,,..., S, is sorted.

ALGORITHM 3.2
Preprocessing step:

fori=1,2,..., p do in parallel
processor P, sorts S; using a sequential algorithm
end for

End of preprocessing.

for k =1to [p/2] do
(1) fori=13,...,2|p/2] - 1do in parallel

(1.1) merge S; and S;,, into a sorted subsequence S,
(1.2) S, « first (n/p) elements of S;
(1.3) Si. < second (n/p) elements of S

end for
(2) fori=2,4,...,2|(p — 1)/2] do in parallel

(2.1) merge S; and S,,, into a sorted subsequence S;
(2.2) S; « first (n/p) elements of S’
(2.3) S.. < second (n/p) elements of S;

end for
end for. 1
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Fig. 3.5 Sorting (12,9, 10, 11,7, 4, 3,6, 2, 1,8, 5) by Algorithm 3.2.

EXAMPLE 3.2

The operation of Algorithm 3.2 when applied to the sequence
S =(12,9,10,11,7, 4, 3,6, 2, 1, 8, 5} with p = 4 is illustrated by the sort
diagram of Fig. 3.5.

Theorem 3.2 Algorithm 3.2 produces a sorted sequence in at most p
steps.

Proof Similar to the proof of Theorem 3.1. B

Analysis

If each processor uses an optimal sequential sorting algorithm, such as
Heapsort, to sort its subsequence initially, then the parallel time needed
for the preprocessing step is O((n/p) log(n/p)). Transferring S;,, into P,
takes O(n/p) time. Merging two sequences of length n/p, using an optimal
sequential merging algorithm such as Straight Merge, requires at most
2n/p steps. Finally, transferring S;,, back ito P, takes O(n/p) time.
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Thus each of steps 1 and 2 requires O(n/p) time units. Since the loop
containing steps 1 and 2 is executed [p/2] times, the total running time of
Algorithm 3.2 is given by

t(n) = O[(n/p) log(n/p)] + O(n) = O((n log n)/p) + O(n).

The analysis given above does not take into consideration the amount
of time required for input and output. However, if all p processors receive
their inputs (sequences of length n/p) simultaneously and produce their
outputs (sequences of length n/p) simultaneously, then each of these oper-
ations requires O(n/p) time and the above analysis is essentially
unchanged. Therefore, the cost of the algorithm is

c(n)=t(n)xp =0(nlog n) + O(np),

which is optimal for p < log n.

We have managed to achieve optimality by applying a general design
principle for parallel algorithms: fewer, but more powerful, processors are
used and basic operations on input elements in the original algorithm are
replaced in the new algorithm by operations on whole sequences of ele-
ments. In the case of sorting, this principle is formulated as follows.
Assume that p processors, each capable of holding at most two elements,
can sort a sequence of length p by an algorithm requiring e(p) compari-
son-exchange steps and r(p) routing steps. Now assume that n = kp
elements are to be sorted, for some positive integer k, and that each of the
p available processors is capable of holding a subsequence of k = n/p
elements and of sorting it locally using an optimal sequential sorting
algorithm. Following this initial sorting of the subsequences, which in the
worst case requires O(k log k) steps, the original algorithm is applied.
Each comparison-exchange on a pair of elements in the original algo-
rithm is replaced by a merge-splitting of two subsequences, each of length
k, requiring 2k steps, equivalent to comparison—-exchanges, and 2k addi-
tional storage locations. Similarly, each routing step of one element
between processors in the original algorithm is replaced by a routing of k
elements requiring k steps. Therefore, if each comparison-exchange takes
the same amount of time as s routing steps, for some constant s, then the
running time of the new algorithm can be written

t(n) = O(k log k) + 2ke(p) + skr(p).

Thus, c(n) = O(n log n) + 2ne(p) + snr(p).

A choice of p satisfying e(p) < log n and r(p) < log n yields an opti-
mal algorithm. We shall make use again of this general principle in
Chapters 4, 5, and 6.
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34 Mergesort on a Pipeline

We saw in Section 3.3 how a Mergesort algorithm can be adapted to
run in parallel when several processors are available to perform indepen-
dent parts of the merging process. The algorithm of this section is, to
some extent, based on the same idea but with some differences in the
implementation. The first difference is that the input sequence is not
assumed to reside in the processors at the beginning of computation;
rather, the integers are “pumped” into a pipeline formed by the proces-
sors. The second difference is that not all processors merge subsequences
of the same length: the further down the pipeline a processor is, the longer
the subsequences it merges. As a result, processors are activated only
when the desired input reaches them: this means that not all processors
are simultaneously busy all the time.

We begin our description of the algorithm by recalling how the sequen-
tial Mergesort algorithm operates to sort a sequence of 7 integers. Initially,
the input is considered as consisting of n subsequences of length 1. A first
pass creates sorted subsequences of length 2. A second pass merges subse-
quences of length 2 into sorted subsequences of length 4. The ith pass
creates sorted subsequences of length 2‘. After log n passes the input
sequence is sorted. This is illustrated in Fig. 3.6. Since » comparisons are
executed during each pass, the algorithm has a complexity of O(n log n).

In the parallel adaptation, passes are run overlapped on a pipeline. Let
n = 2’ for some positive integer r, and let r + 1 processors be available,
numbered 1, 2, ..., r+1. The processors run synchronously and are capa-
ble of reading an integer, comparing two integers, and writing one integer
during a single time unit (or cycle). The setup of the pipeline is shown in

INPUT LB L 7)L6) LSy 141 L3]L2]) L]
PASS |

L7 81 L5 6] L3 4 | L 2]
PASS 2

LS 6 7 8 J L 2 3 4 |
PASS 3
OUTPUT 1l | 2 3 4 5 6 7 g

Fig. 3.6 Sorting (8,7, 6, 5, 4, 3, 2, 1} by Mergesort.
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[T
O A F P o] P P, [TTTITTD)
1] [I 1T

Fig. 3.7 Pipeline for Algorithm 3.3.

Fig. 3.7 for r = 3, with data flowing from left to right. Processor P, has
one input line and two output lines. Processor P,,, has two input lines
and one output line. All other processors have two input lines and two
output lines, with P;’s output being P;,,’s input. During each time unit, P,
reads an integer from the input sequence and produces it as output. For
2 <i <r + 1, processor P; receives two subsequences of length 2'-2 from
P,_,, each on a different input line, which it merges into one subsequence
of length 2~'. Processors P, to P, produce their merged subsequences
alternately on the top or bottom output lines. Each processor (with the
exception of P,) starts merging when the previous processor has produced
a complete subsequence on one line and the first element of the next
subsequence on the other line.

In the following formal description, we denote by g, and gy, the
input and output sequences, respectively, implemented as queues. Proces-
sors P; and P;,; communicate through two queues ¢,; and g,;,, . Since the
merged subsequences produced by P; alternate between ¢g,; and g»;., wWe
introduce a notation to indicate which of the two queues is to receive the
output. For some integer a and two integers b and ¢, where 0 < b < ¢,

a modc=»5
if and only if there exists an integer k such that
a=>b+ke.

In other words, a mod ¢ = b indicates that b is the remainder when qa is
divided by c. Using this notation, if the current subsequence produced by
P; is placed on ¢,;.; , then the next subsequence is placed on gz;i.+tymod2)
where j = 0 or 1. Algorithm 3.3 consists of three steps: step 1 is performed
by P,, step 2 is performed by P,, P;, ..., P,, and step 3 is performed by
P r+l -
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ALGORITHM 3.3

Do steps 1, 2 and 3 in parallel
(1) P, performs the following steps

(1.1) read x, from ¢,
(1.2) j«0
(1.3) fori=2ton do

(i) place x,, on gy,
(ii) read x; from g,
(ii) j«<j+1 mod?2
end for
(1.4) place x, on ¢;.

(2) for i =2 to r do in parallel

2.1 j+«0
22) k+«1
(2.3) while k < n do
if g»i_y) is 2'* elements long and ¢,; )., contains
one element
then (i) for m = 1to 2! do
P; compares the first element in gy
to the first element in g5,y ,
removes the larger of the two and
places it on ga;.;
end for
(i) j<j+1 mod?2
(i) k <k + 2"

end if
end while
end for.

(3) If g5, is 2" elements long and ¢,,,; contains one element
then for m = 1to 2" do
P,., compares the first element in ¢,, to the first ele-
ment in ¢,,., , removes the larger of the two and places
1t On G4y
end for
end if. B



3.5 ENUMERATION SORT s1

EXAMPLE 3.3

The operation of Algorithm 3.3 is illustrated in Fig. 3.8 for the input
sequence S = (1, 5, 3, 2, 8, 7, 4, 6}.

Analysis

Processor P; starts merging as soon as there is a subsequence of length
2" on one of its input lines and another of length 1 on the other, that is,
2i=2 4+ 1 cycles after P,_, has started. Thus, given that P, starts during cycle
1, P, starts processing its first input

i-2
1+>2+1=2""+i-1
j=0

cycles later. After having processed all remaining n — | elements, P, stops
in cycle (n — 1) + 2" + i — 1. Since P,,, is the last processor to stop, the
sort completes in cycle

n+2 +r-1=2n+logn - 1.
Hence Algorithm 3.3 has a running time of O(n). Its cost is given by
c(n)y=t(n) x p(n)=0(n) x (log n + 1) = O(n log n),

which is optimal.

35 Enumeration Sort

The last algorithm to be described in this chapter combines the features
of the ones in the previous sections in that it uses a linear array of »
processors, numbered 1 to n, as a pipeline. However, in addition to the
usual communication lines between neighbouring pairs of processors, one
additional line (or bus) is available whose purpose is to route a single
input integer either (i) from the input line to processor P;, or (ii) from
processor P; to processor P;, where P; and P; are not necessarily neigh-
bours. For reasons that will become apparent shortly, we assume that each
processor is equipped with four registers C, X, ¥, and Z. The setup is
shown in Fig. 3.9 for n = 4.

The sorting process consists of four phases: input, count acquisition,
rearrangement, and output. The input phase assigns to each processor P;
an integer x; . In the count acquisition phase, each processor P; computes
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(a) CYCLE O: INITIAL CONDITION
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(TEBEIEE] P, P, Py Ry IITTTTT]
1 11
(b) CYCLE I: P READS AND WRITES FIRST INTEGER
11
EEIEEL] P P, Py P, [TITITTT
[14] 1T
(c) CYCLE 2
7 16
EII]IEEIZIE(P. 3] U L S TTTTTTT]
(d) CYCLE 3: P, STARTS ITS FIRST MERGE
7 [aT6 TT
ED]:IHEE]; A P, o Py = Po [LITTITT]
(e) CYCLE 4:
7 [aT6
P P P Fp HIIITTT]
EEDI[IEE' : ¢ 11 3 a1 ¢
(f) CYCLE 5: P, STARTS ITS SECOND MERGE
[a [
(TITI11E| P - P, . Py - P 11111
7
(g) CYCLE 6: Py STARTS ITS FIRST MERGE
3l4al6) 7
OTTTTTT P P, P Py HITTTTT]
| T 2 3 T 4
(h) CYCLE 7
5 231 Tel7
UTIiOf R e P b ™
(i) CYCLE 8: P, STOPS
2 416] 7,
P e, P2 ey B8 6, T
| 11

(j) CYCLE 9: P, STARTS ITS FINAL MERGE

Fig. 3.8 Sorting {1, 5, 3, 2, 8, 7, 4, 6} by Algorithm 3.3 (continued).
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(s)CYCLE 18: B, STOPS; THE SORT IS COMPLETE

Fig. 3.8 (continued)
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c c c c
iNpUT | (€ ¢ < < OUTPUT
Y Y Y Y
z z z z
P, P, Py Py

Fig. 3.9 Pipeline for Algorithm 3.4.

the number c; of integers of the input sequence smaller than integer x;.
During the rearrangement phase, x; is routed to processor P; such that
Jj = c;. Finally, during the output phase, the sorted sequence is shifted
through the pipeline with P, producing its integer first and P, last.

We now explain how these steps are performed such that input of the x;
to the P; is overlapped with computation of the ¢; and rearrangement.
Initially, for all processors, the register C in which ¢; is stored is set to 1.
During cycle k, where 1 < k < 2n, the following operations take place:

(i) provided the input has not yet been exhausted, input integer x; is
fed simultaneously to P, (using the pipeline) and to P; (using the
bus): processor P, stores x; in Y while processor P; stores it in
register X;

(ii) forl < i < n - 1, processor P; shifts to processor P;,, the content
of its register Y (provided it is nonempty): this is stored in turn by
processor P;,, in its register Y;

(iii) every processor whose X and Y registers are nonempty, compares
X to Y and if X is larger increments C by I;

(iv) if k > n, then processor P,_, uses the bus to route the contents of
its register X to processor P;, where j is the value stored in register
C of P,_,: processor P; stores the received value in its register Z.

After 2n cycles, the output process starts. Each processor P; shifts the
contents of its Z register into the Z register of P;,, with P, producing the
sorted sequence.
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ALGORITHM 34

(1) for i = 1to n do in parallel
P, sets its register C to 1

end for.

(2) for k = 1to 2n do

2.1)
2.2)

(2.3)

(2.4)

(2.5)

end for.

if Kk < nthen h < lelse h <« k—n end if
for i = h to n do in parallel
if its registers X and Y are nonempty and X > Y
then processor P; increments its register C by 1
end if
end for
for i = h to n — 1 do in parallel
if its register Y is nonempty then processor P; shifts
the integer in it to P;,; which stores it in its own
register Y end if
end for
if k < n then processors P, and P, read the next inte-
ger x, from the input queue and store it in their regis-
ters Y and X, respectively end if
if k > n then processor P,_, stores in register Z of P;
the contents of its register X, where j is the value
stored in its register C end if

(3) fork =1ton do

(3.1

(3.2)

end for.

processor P, places the contents of its register Z on the
output queue
for i = k to n — 1 do in parallel
processor P; shifts the contents of its register Z to
the register Z of P;,,
end for

EXAMPLE 34

The operation of Algorithm 3.4 on the input sequence S = (8, 9, 7} is
illustrated in Fig. 3.10.
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Fig. 3.10 Sorting (8,9, 7} by Algorithm 3.4 (continued).
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Fig. 3.10 (continued)
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Analysis

It takes n cycles to read the input sequence. During each of the subse-
quent n cycles, one processor finishes counting and routes its associated
integer to the processor representing the integer’s correct position in the
sorted sequence. The output is produced in » additional cycles for a total
of 3n cycles. Hence

t(n)=0(n)
and
c(n) = t(n) x p(n) = O(n) x n = O(n?),

which is not optimal.

Discussion
The following observations are in order regarding Algorithm 3.4.

(1) Our running-time analysis of the algorithm assumes that an
input element can be propagated down the bus from the input to proces-
sor P; (or from P; to P;) in constant time. If, however, the propagation
time of an element is assumed to vary with the length of the link connect-
ing source and destination, then obviously our analysis is no longer valid.
This propagation time is sometimes taken into consideration in theoreti-
cal analyses of algorithms to be implemented using VLSI technology.

(2) Algorithm 3.4 as described cannot handle input sequences with
repeated elements, for the same reason given in Chapter 2 regarding
Algorithm 2.1. In order to sort such sequences properly, the algorithm
should be modified as suggested in Chapter 2.

3.6 Bibliographical Remarks

Algorithm 3.1 is described in Knuth (1973). A number of early refer-
ences to the idea of parallel sorting by odd—even transposition are given
in Knuth (1973) and Kung (1980). One such early reference is Demuth
(1956). The proof of Theorem 3.1 is from Goodman and Hedetniemi
(1977). Other implementations of odd—even transposition are described in
Chen et al. (1978), Lee et al. (1981), Kramer and van Leeuwen (1982), and
Miranker et al. (1983). The extension of Algorithm 3.1 to its more general
form of Algorithm 3.2 is due to Baudet and Stevenson (1978). Descrip-
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tions of Heapsort and Straight Merge can be found in Reingold et al.
(1977). Another extension of Algorithm 3.1 based on merge-splitting is
described in DeWitt et al. (1982), which uses p processors and runs in
O(n + n log (n/p)) time. In contrast with the algorithm of Baudet and
Stevenson (1978) which is faster but requires 4(n/p) storage locations in
each of the p processors to merge two lists of size n/p, the algorithm of
DeWitt et al. (1982) requires only n/p + 1 locations per processor.

Algorithm 3.3 is from Todd (1978) where other issues are also consid-
ered such as the case where »n is not an exact power of 2. A description of
Mergesort can be found in Horowitz and Sahni (1978). Algorithm 3.4 was
originally proposed in Yasuura et al. (1982). Both Todd (1978) and
Yasuura et al. (1982) contain a number of variations and extensions of the
basic algorithms therein, as well as various details of hardware implemen-
tation.

A parallel sorting algorithm for the linear array is proposed in Akl and
Schmeck (1984) together with a hardware realization based on VLSI tech-
nology. The algorithm is particularly suited for an environment with
sequential input and output. It can sort m sequences of n k-bit numbers
in O(([m/2] + Dn + k) time. Using the same hardware, mn k-bit
numbers can be sorted in time O(mn log’ m) without needing more
memory than for storing the mn numbers. A detailed comparison of the
algorithm with those of Lee et al (1981), Miranker et al. (1983), and
Yasuura et al. (1982) is also provided in Akl and Schmeck (1984).

Two implementations of the Odd-Even Merging of Chapter 2 on the
linear array are described in Thompson and Kung (1977) and Kumar and
Hirschberg (1983).
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4 The Perfect Shuffle

4.1 Introduction

Assume that a deck of playing cards is split into two piles of equal size,
which are then interleaved as shown in Fig. 4.1. The process is known as a
perfect shuffle and lends its name to the interconnection scheme for
SIMD machines studied in this chapter.

Let n processors Py, P,, P,,..., P,_, be available, where n = 2" for
some integer m.

Fig. 4.1 Perfect shuffle of a card deck.

Definition 4.1 In the perfect-shuffle interconnection scheme a one-way
link connects P; to P;, where
._{Zi for 0<i<n/2-1
“2i+1-n for n2<i<n-1 1
This is illustrated in Fig. 4.2 for n = 8.

A second definition of the perfect shuffle uses the binary representation
of the indices of the processors.

61
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lDO Pl 2 3 4 5 6
|

) P
P, P
P2 P2
)
) P3
)
Pn _ P,
2! 4
Pa P5
2
R )
S+l
°®
R
n °
5 +2
® Pn—3
°
F’n—2 P“'2
F’n—l IDn—l

Fig. 4.3 Perfect-shuffle interconnection viewed as a mapping.
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Definition 4.2 Let the binary representation of i be b, bp- - - b b,
where b, =0or |, for 0 < k < m - |, that is,

i= bpa 2" +bp22™ 2+ - -+b 2+ b,.
Then in the perfect shuffle, P; is connected by a one-way link to P;, where
the binary representation of j is b,,.2 b,n_3- - - bo by, that is,
J= b2 4 by 32 -+ b2+ b, 1
In other words, the binary representation of j is obtained by cyclically

shifting the binary representation of i one position to the left. Thus, for m
= 3, we have

000 -~ 000, 001 - 010, 010 - 100, 01t - 010,
100 - 001, 101 - 011, 110 ~» 101, 111 - 111.

The two definitions above are clearly equivalent since
j=2i when b,,., =0, thatis, when 0 < i <n/2-1
and
j=2i+1-2" when b,,_, =1, thatis, when n/2 < i <n - L

It is often helpful to visualize the perfect-shuffle interconnection
scheme as a mapping from the set of processors to itself. This is shown in
Fig. 4.3, where the set of processors is drawn twice and the perfect shuffle
links go from the processors on the left to the processors on the right.

4.1.1 Properties of the Perfect Shuffle

The perfect shuffle possesses two interesting properties, which we now
examine. Let the processors be loaded with n items of data {x,, x,, ...,
Xq-1), one to each processor. By a perfect shuffle of the data, we mean
moving the data item in P; through the one-way shuffle link to P, for all i
and j.

Property 4.1 After m applications of the perfect-shuffle mapping, the
data items return to their original positions.

This property can be easily seen if one refers to Definition 4.2: after m
cyclic shifts, the binary representation of i recovers its original form.
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EXAMPLE 4.1

Figure 4.4 shows that after three mappings the elements of the set of
data items {xy, X,, X2, ..., X7) return to their original positions.

The second property deals with data items in pairs of processors that
are physically adjacent (but not necessarily connected by a perfect-shuffle
link), namely, (Po, P,), (P2, P3), (P3, Py), ..., (P,_2, P,_,). These proces-
sors are such that the binary representations of their indices differ in their
rightmost bit.

Property 4.2 Consider the data items originally in pairs of processors
whose indices have binary representations b,,_, b,....b, by and
bpoibyea...bibg, which differ only in position m-k for some

XO Xo Xo XO
XI X4 Xz Xl
Xo X Xa X2
X3 X5 Xg X3
X4 X2 X Xa
Xs XG X3 Xs
XG X3 X5 XG
X7 X2 X2 X7

Fig. 4.4 Illustration of Property 4.1.



4.2 BITONIC SORTING USING THE PERFECT SHUFFLE 65

1 < k < m. After k shuffles, these data items are located in adjacent
processors.

This property is also seen by referring to Definition 4.2. Assume that
the set {xo, x,, ..., Xn1} is held by the processors Py, P,,..., P,_, such
that x; is originally in P,. If the index j of the processor containing x;
after k shuffles is obtained by cyclically shifting the binary representation
of i to the left k times, then obviously index i of the element in P; after k
shuffles can be obtained by cyclically shifting the binary representation of
j to the right k times. Thus the position in which the binary representa-
tions of the indices of elements in adjacent processors differ moves to the
right after each shuffle operation.

EXAMPLE 4.2

Figure 4.5 illustrates Property 4.2 for m = 3 and the set of data items
{xo0, %1, ..., x7}, where x; is originally in P;. The binary representation
of the index i of x; is shown inside the processor in which x; is located at
every stage. A vertical line is used to indicate adjacent processors.

In this chapter we show how the perfect shuffle can be used to sort the
sequence of distinct integers S = {x¢, X, ..., X,;} into increasing order.
The idea is to adapt the bitonic sorting algorithm of Chapter 2 to a set of
processors interconnected by the perfect-shuffle scheme. As it turns out
this leads to a very efficient sorting algorithm.

4.2 Bitonic Sorting Using the Perfect Shuffle

We begin by introducing some notation to be used in the diagrams of
this section to represent the comparators of Chapter 2. Recall that a
comparator is a simple processor that performs a comparison-exchange
operation on its two inputs and produces two outputs. Hereafter, a con-
ventional comparator, that is, one that places the smaller of its two inputs
on its top output line and the larger on the bottom one, is labelled with a
0, as shown in Fig. 4.6a. A comparator that reverses the order given above
is labelled with a 1, as shown in Fig. 4.6b. For reasons to become apparent
shortly, we also need a comparator that does not alter the order of its
inputs; such a comparator is labelled with a -1, as shown in Fig. 4.6c.

Let us now recall the bitonic sorting network for n = 23 of Fig. 2.9. This
is reproduced for convenience in Fig. 4.7 using the conventions just intro-
duced. The figure shows a definite pattern of alternating Os and Is. In
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Fig. 4.5 Illustration of Property 4.2.

x; —» ———» min(x,, xj)
x. f——® max(x;, "i)
(a)
, ———» F——— mox(x;, x;)
xj ——» ——»min (x;,x;)
(b)

xi— |
xj ———» ——x;
(c)
Fig. 4.6 Three types of comparison elements.
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Fig. 4.8 Different representation of bitonic sorting network.

general, since stage s of Bitonic Sort for # = 2™ elements produces bitonic
sequences of length 2°*', I < s < m, then 2°"' comparators labelled 0
alternate with 2°~' comparators labelled 1, starting with the former, for a
total of 2™ comparators. Also, since stage m produces a single sequence
of length 2™ sorted in increasing order, then all comparators in that stage
are labelled 0.

In order to explain how the bitonic sorting algorithm can be carried out
on a perfect shuffle, we find it useful to redraw the network in Fig. 4.7 as
shown in Fig. 4.8. Here the horizontal lines represent the input lines to
the network, numbered O to 7 and labelled with the binary representation
of their number. A vertical arrow represents a comparator. The two lines
connected by the arrow are the inputs to the comparator. The arrow
points towards the position of the larger of its two inputs when produced
as output. We note that the labels of every pair of lines connected by an
arrow differ by a single bit.

Definition 4.3 At each step within a stage of Bitonic Sort, the pivot bit is
defined to be the bit position in which the labels of every pair of lines
connected by an arrow differ. 0

Let the binary representation of line i be b,y bnp- - -b by where
n=2™ is the total number of lines. Then the pivot bits for successive stages
of bitonic sorting are as follows:
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stage 1: by
stage2: by, by
stage 3: b,, b, bo

stagém: bm_l,bm_z,...,b[,bo.

In other words the sequence of pivots consists of m subsequences: the
subsequence in stage s has length s and consists of bits b,_, to by, in this
order.

From the observations given above and the properties of the perfect-
shuffle interconnection scheme, it appears that the sequence
S ={x¢,Xx1,...,Xn}, n =27 can be sorted using the parallel computer
shown in Fig. 4.9. Here we have »n storage modules numbered 0 to n ~ 1
that contain the array to be sorted and »/2 comparators numbered 0 to
n/2 — 1. The n output lines, numbered 0 to n — 1, of the storage modules
are connected to the 2(n/2) input lines, numbered 0 to n — 1, of the
comparators by a perfect-shuffle interconnection. The 2(»n/2) output lines,
numbered O to n — 1, of the comparators feed back to the »n input lines,
numbered 0 to n — 1, of the storage modules, such that lines of the same
number are connected.

Assume that the sequence S is initially loaded in the storage modules
such that x; is in storage module i. After one shuffle, each comparator
receives two elements of S whose indices differ in the leftmost bits of their
binary representations. Each subsequent shuffle moves the differing bits
one position to the right. Thus if the pivot is b; at a given moment, then
one shuffle later it is b -pmod m-

It is now clear that, in order to implement bitonic sorting on the paral-
lel computer of Fig. 4.9, what we need is to shuffle the sequence S a
number of times before each stage to ensure that the pivot bit at the
beginning of stage s is b,,. Then for each of the pivots, a compare-
exchange step followed by a shuffle are performed on S until bit b, the
end of the subsequence of pivots associated with each stage, is reached.
Since there are s pivots associated with stage s, the sequence S must be
shuffled m — s + 1 times before stage s. This is then followed by s com-
pare—exchange steps and s — 1 shuffle steps.

The question that must be asked at this point is: How do the compara-
tors behave? Obviously, during the m-s+1 shuffles preceding stage s, the
comparators are inactive, they let their two inputs go through without
altering their order. Then during the s comparison-exchange steps for
this stage, they operate on their inputs placing the smaller on the top
output line and the larger on the bottom output line, or vice versa, to



70

4 THE PERFECT SHUFFLE

0o o 0 0
I | [
2 2 2 2
303 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7

Fig. 4.9

Parallel computer using the perfect shuffle for sorting.
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produce a bitonic sequence. In order to distinguish between these three
states, we introduce the concept of a mask. An array MASK is used whose
ith component determines the behaviour of comparator i; thus

0 when the comparator behaves as in Fig. 4.6a
MASK(i)=4 1 when the comparator behaves as in Fig. 4.6b
-1 when the comparator behaves as in Fig. 4.6c.

In some instances the array MASK will have to be shuffled, as we explain
shortly, using a shuffle interconnection with # lines. For this reason, we
assume that MASK is of length n, although only the first n/2 of its entries
are in effect used. Thus, each storage module should be capable of storing
one entry of the MASK array, in addition to one entry of the sequence S.
Note also that, because of their versatility, the comparators used here are
more complicated than the ones in Chapter 2. Each comparator should
now be capable of

(1) reading two elements of .S, each from a different memory mod-
ule,

(2) reading one entry of MASK from a memory module

(3) adapting its behaviour according to the value of the mask,

(4) routing its two outputs (two elements of S) to two different
memory modules, and

(5) computing and manipulating the MASK array.

Furthermore, since two elements of S and one element of M4SK must
be held simultaneously, each comparator should posses at least three regis-
ters. One additional register, to hold a second entry from MASK will be
used during the process of shuffling MASK, for a total of four registers.
The two memory modules directly connected to each comparator should
also be counted as part of its storage capacity. So, in effect, each compara-
tor may be thought of as a complete processor.

We now explain why the MASK array needs to be shuffled. Recall that,
in stage s of Bitonic Sort for n = 2™ elements, 2°~' comparators labelled 0
alternate with 2°”' comparators labelled 1, starting with the former, for a
total of 2”~' comparators. Thus, for example, when m = 3 and s = 2, the
MASK array entries for the four comparators should be 0, 0, 1, 1.

However, we must also recall that when the perfect shuffle is used to
sort a sequence S, the sequence must be shuffled m — s + 1 times before
performing the first comparison-exchange in stage s, in order to obtain
the correct initial ordering of pivots. It is therefore necessary to also
shuffle the MASK array. Using the same example as above, where m = 3
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and s = 2, the array of length 8, containing (two juxtaposed copies of) the
four mask values 0, 0, 1, 1, is shuffled m — s + 1 times, that is, twice, to
obtain (two juxtaposed copies of) the four new mask values 0, 1, 0, 1. In
general, when a binary string of 2™ elements consisting of alternating
sequences of 2°' 0s and 2°~' 1s is shuffled m — s + 1 times, the result is a
binary string of alternating Os and Is. Thus, without having to shuffle, we
assume that at the beginning of every one of the m stages of Bitonic Sort,
the MASK array (of length 2™) is a string of alternating Os and 1Is. Then,
after every one of the s — 1 shuffles of the sequence S during stage s, the
MASK array will also be shuffled. Hence, when the last of the s compari-
son-exchanges of stage s is to be executed, the MASK array would have
in effect been shuffled a total of m times thus returning to its initial state,
that is, a sequence of 2" elements consisting of alternating sequences of
2°'0s and 2°7' 1s.

We note here that the MASK array must be shuffled from the storage
modules to the comparators and back without the comparators affecting
the order of their inputs. This process can be performed without the need
for a second mask array (to set comparators to —1) by reserving two
special registers in each comparator for the MASK values, which are
distinguished from the registers holding the S values. The contents of
these two special registers never undergo a compare—-exchange operation.

We are now ready to describe formally the parallel sorting algorithm for
the perfect shuffle based on bitonic sorting. As mentioned above, the
sequence S to be sorted initially resides in the storage modules with one
element per module. The instructions circulate(S), shuffle(M/ASK), and
mask(j) are used in the algorithm and are explained below.

(1) circulate(S)
When this instruction is executed the following operations take place:

(a) every storage module routes the element of S it contains to a
comparator through the perfect-shuffle interconnection;

(b) each of the first 2™ storage modules routes the entry of the
MASK register it contains to the comparator it is connected to through
the perfect shuffle;

(c) upon receipt of two inputs from S as well as MASK (i), compara-
tor P; behaves as in Fig. 4.6a, b or ¢ according to whether MASK
(i) =0, 1, or -1, respectively;

(d) the output of the comparator is routed back to the associated
storage module.
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(2) shuffle(MASK)

This instruction is used to shuffle the MASK array as follows:

(a) each of the second 2™~! storage modules routes its entry of MASK,
through the shuffle interconnection to a comparator;

(b) the two entries of MASK in each comparator are now routed back
(order unchanged) to the associated storage modules through the feedback
lines.

(3) mask())

This instruction computes the entries of the M4SK array. Given an
integer j, an array of length 2" is created as follows:

-1, -1 if j=-1
MASK ={0,1,0,1,...,0,1 if j<m—1
0,0,0,0,...,0,0 if j=m.

The algorithm for sorting on the perfect shuffle is given below.

ALGORITHM 4.1

for s=1to m do

(1) mask(-1)
2) fork=1tom-s do
circulate(S)
end for
(3) mask(s)
@) fork=m-s +1tom do

(4.1) circulate(S)
(4.2) shuffle(MASK)

end for
end for. B

Analysis

The main step in the algorithm and the one executed the most often is
the circulate step. It consists of one comparison-exchange and two route
steps (for elements of .S) and one route step (for elements of MASK). For
each of the m stages (i.e., for each value of s), circulate is performed m
times, for a total of m? times. Since m = log n we have
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t(n) = O (log’ n).
Also, since #n/2 comparators are used
p(n)=n/2.
Therefore
c(n) =t(n) x p(n) = O(n log’ n),

which is an improvement over Bitonic Sort. The smaller cost of Algo-
rithm 4.1 is due to the use of fewer processors than in the bitonic sorting
network of Chapter 2.

The analysis given above does not take into consideration the amount
of time elapsed during the input phases. However, if all x; are initially
loaded into the storage modules simultaneously and if at the end of sort-
ing all the storage modules produce their contents to the outside world
simultaneously, then input and output both require a constant number of
time units (i.e., an amount of time independent of #) and the analysis is
essentially unchanged.

Note also that our analysis assumes that the amount of time required to
route an integer from a storage module to a comparator or vice versa is
the same for all storage module-comparator pairs. This need not be true
in practice, especially when » is very large, as the length of the wires
connecting the storage modules to the comparators is not constant for all
storage module-comparator pairs. This factor should be accounted for
when VLSI technology is used to implement the perfect-shuffle intercon-
nection scheme.

EXAMPLE 4.3

The behaviour of Algorithm 4.1 is illustrated in Fig. 4.10 for the
sequence S = {4, 8, 1, 3, 2, 7, 5, 6). Since for n = 23, there are three sort-
ing stages each consisting of three steps, we have, for illustration purposes,
redrawn the set of storage modules and comparators nine times together
with the perfect-shuffle links connecting them. The feedback lines of Fig.
4.9 connecting the comparators back to the storage modules are replaced
here with links going left to right connecting the comparators in every
step with the storage modules in the next step. The elements of S are
shown inside the storage modules, while values of MASK appear inside
the comparators.
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4.3 An Optimal Merge-Splitting Algorithm

Although more efficient than the bitonic sorting network of Chapter 2,
Algorithm 4.1 is still not cost-optimal. We now show how to obtain a cost-
optimal parallel sorting algorithm for the perfect-shuffle interconnection
scheme. The basic technique is the same one adopted to extend Algorithm
3.1 to Algorithm 3.2: fewer, but more powerful, processors are used to
reduce the cost of the parallel algorithm.

Assume that instead of n storage modules, only p are available, num-
bered 0 to p — 1, for sorting the sequence S = {xo, X, ..., X,_1}, where p
and n are powers of 2 and p < n. Each of these modules instead of being
able to store just one element can now store n/p elements. Furthermore,
instead of n/2 processors, we now have p/2 processors, Py, P, ...,
P, . Each processor is capable of:

(1) sorting a sequence of length 2n/p elements using a sequential
sorting algorithm such as Heapsort (which in the worst case sorts a
sequence of length r in O(r log r) time), and

(2) merging two sorted sequences of length n/p each into a single
sorted sequence of length 2n/p using a sequential merging algorithm such
as Straight Merge (which merges two sequences, each of length 7, in 2r
steps, each equivalent to a compare—exchange, and using 2r additional
storage locations).

The storage modules are connected to the processors as in Fig. 4.9.
Initially, the » elements to be sorted are distributed at random among the
p storage modules, each module receiving n/p elements. A high-level
description of the extended algorithm follows.

ALGORITHM 4.2

(1) Each storage module routes its subsequence (of size n/p) to a
processor through the perfect-shuffle interconnection. Thus each proces-
sor P; receives 2n/p elements, which it sorts using a sequential sorting
algorithm. The first n/p elements of the resulting sorted sequence are
routed back from P; to storage module 2/ through the feedback line
connecting them. The second n/p elements are sent in the same way to
storage module 2i + 1.

(2) Algorithm 4.1 is now applied but modified as follows:

(a) each route operation from a storage module to a processor, or vice
versa, now involves routing »n/p elements;
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(b) each comparison-exchange operation is now replaced by a merge-
splitting operation where two sorted sequences of length n/p are now
merged into a single sequence, the n/p smallest elements of which are
routed back to one storage module and the n/p largest to another one. W

Analysis

In step | of Algorithm 4.2, routing the elements from the storage
modules to the processors requires O(»n/p) time. Sorting within each proc-
essor takes O((n/p) log(n/p)) time. An additional O(n/p) time units are
needed to return the sorted subsequences from the processors to the stor-
age modules. Thus step 1 requires O((n/p) log(n/p)) time.

Since Algorithm 4.1 consists of log’p comparison-exchanges and
2 log?p route operations, step 2 of Algorithm 4.2 requires 2(n/p) log? p
comparison-exchanges and 2(n/p) log? p route operations. Assuming that
comparison—exchanges and route operations require the same amount of
time, the running time of Algorithm 4.2 is therefore

1(n) = O((n/p) log(n/p)) + O((n/p) log’ p).

The analysis given above does not take into consideration the amount of
time elapsed during the input and output phases. However, if all
sequences (of length n/p) are initially loaded into the storage modules
simultaneously, and if at the end of sorting all sequences (of length n/p)
are unloaded from the storage modules simultaneously, then both input
and output require O(n/p) time and the analysis given above is essentially
unchanged.

Since p(n) = p/2, we have
c(n) =t(n) x p/2 = O(n log(n/p)) + O(n log? p).
For p < 2'¢"" ¢(n) = O(n log n), which is optimal.

44 Bibliographical Remarks

Most of the ideas in Sections 4.1 and 4.2 are due to Stone, who was the
first to show in Stone (1971) how to implement Batcher’s Bitonic Sort
(Batcher, 1968) on the perfect shuffle. Various implementations based on
Stone’s original work are described in Knuth (1973), Stone (1978), Meer-
tens (1979), Hoey and Leiserson (1980), Schwartz (1980), Kleitman et al.
(1981), Brock et al. (1981), and Leighton (1983). It is shown in Siegel (1979)
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how the perfect shuffle can be simulated by other interconnection
schemes. The shuffle operation is used in Lang ez al. (1983) to sort on a
two-dimensional array of processors.

Algorithm 4.2 originally appeared in Baudet and Stevenson (1978).
Descriptions of Heapsort and Straight Merge can be found in Reingold et
al. (1977). Algorithms that use ideas similar to the one of Algorithm 4.2
were proposed by Fishburn (1981) and DeWitt et al. (1982). Fishburn’s
algorithm uses the perfect shuffle to sort a sequence of 2”*? elements in
O(2%(m + q)?) steps with 2™ processors. In contrast with the algorithm of
Baudet and Stevenson (1978), which requires 4(n/p) storage locations in
each of the p processors to merge two lists of size (n/p), the algorithm of
DeWitt ef al. (1982) requires only n/p + 1 locations per processor and
sorts a sequence of size n on the perfect shuffle using p processors in
O((n/p) log’ p + (n/p) log(n/p) log’ p) time.

Finally, a sorting algorithm for the perfect shuffle is described in Nas-
simi and Sahni (1982) which sorts a sequence of length n, using n '
processors, 1 < k < log n, in O(k log n) time. This algorithm assumes
that each processor P; is connected to three other processors. Let
bp-1bm-a ... b by be the binary representation of i. Then P; is connected
to the three processors whose indices have the following binary represen-
tations:

(1) bub,s...b\by, where by is the binary complement of b, (this is
called the exchange connection);

(2) bmsbm-3...bob,. (this is the usual shuffle connection);

(3) bobpm-ibm-z...b; (this is called the unshuffle connection).

Another reference to this algorithm is given in Chapter 7 in connection
with the ability of the perfect shuffle to simulate a cube-connected
machine.
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5 Mesh-Connected
Computers

5.1 Introduction

This chapter is concerned with parallel sorting algorithms for (two-
dimensional) mesh-connected parallel computers. This machine model of
parallel computation is attractive for two reasons. First, several theoreti-
cally efficient algorithms for a number of fundamental computational
problems have been developed to run on it. Second, from a practical
point of view, the regularity and modularity of the machine makes it very
well suited for implementation by VLSI technology.

We begin by describing the mesh-connected parallel computer in Sec-
tion 5.2. The sorting problem for this computational model is defined in
Section 5.3. This is followed in Section 5.4 by a derivation of a lower
bound on the parallel running time required to sort on such a model. A
parallel sorting algorithm for the machine, which requires # processors to
sort n elements, is presented in Section 5.5. It is extended in Section 5.6
to handle the case where there are fewer processors than elements to sort.

5.2 Model of Computation

An m x m mesh-connected parallel computer (or mesh, for short) is an
SIMD machine consisting of 7?2 identical processors P, , P, ..., P, con-
figured as follows. The m? processors are arranged into an mxm array.
Thus processor P; is placed in row j and column k of the array and is
denoted by P(j,k)forl <i<m?, 0<j<m-1,andO0O<k <m - 1.

81
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The indexing of the processors refers to the relationship between i, j, and
k in this notation. A number of choices exists for this indexing. For
example, if { =jm + k + 1, then this results in a top-to-bottom left-to-
right ordering known as row-major indexing.

Once the processors have been arranged as an mxm array, each proces-
sor P(j, k) is connected by two-way links to its neighbour processors
PG+ 1, k), P(j-1,k), P(j,k + 1), and P(j, k — 1), with processors on
the boundary rows and columns having fewer connections. These are the
only communication links available among the processors, as illustrated
in Fig. 5.1 (with row-major indexing).

Each processor has a local memory consisting of a number of registers.
It can perform a number of operations on data stored in these registers.
Such operations include comparing and interchanging the contents of two
registers and routing the contents of a register to a neighbouring processor.
This latter operation will be referred to as a unit-routing step.

The machine being of the SIMD type, all specified processors perform
simultaneously the same instruction issued by a central control unit, each
on its own data. This implies that during a route instruction all data move
in the same direction, that is, up, down, left, or right.

COLUMN O | 2 3 m-l
ROW
o A L e LY o [—eee P
| Pm-H M Pm+2 | Pm-'a ] Pm+4 —® & & —] sz
2 | Peme Pomaz [ Pom+3 Pomsa|—0 @0 — P3y
3 PBmol | P3m+2 1 P3m+3 - P3m+4 —©® & © — P4m
[ ] l ) l [
e o . . .
[ ]
m-l P(m-l)m+| W F(’m-l)m-rz__{ FZm-I)mdh_‘ ’?m-l)moq see— F2

Fig. 5.1 Mesh-connected computer.
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5.3  The Sorting Problem

Assume that the sequence S = (x,, x,, ..., X, } of distinct integers is to
be sorted on a mesh-connected parallel computer, and let m = n'/? that
is, n processors P,, P,,..., P, are available. The elements of S are ini-
tially loaded in the n processors, so that each element resides in a different
processor. The purpose of sorting is to permute the elements of .S such
that, for | <i < n, P; is to contain the ith smallest (largest) element when
sorting is complete.

As mentioned in Section 5.2, a number of different indexing rules exist,
which determine the position of P; in the m x m processor array. Three
such rules are defined below.

5.31  Row-Major Indexing

Here, P; is placed in row j and column k of the processor array such
that i=jm+k+1 for l<i<n, O<j<m-1, and O<k=<=m-1.
This is illustrated in Fig. 5.2 for m = 4. Note that for simplicity, only the
processors are shown in the figure, whereas the communication links have
been omitted. We henceforth adopt this representation of the mesh-con-
nected parallel computer. When this indexing rule is used the sorted
sequence is said to be in row-major order.

O I 2 3
o\ P [P, |Ps|Ps

P567
2(P
31A

8
9 PIO PIl 2

=
Pl
3 14|15 P|6

Fig. 5.2 Row-major indexing.

5.3.2  Snakelike Row-Major Indexing

Here P; is placed in row j and column k of the processor array such
that

_{jm+k+l for j even
" lm+m -k  for jodd

and for | <i<n, O0<j=m-1, and 0 <k <m — 1. This indexing,
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which is obtained from row-major indexing by reversing the ordering in
odd rows, is illustrated in Fig. 5.3 for m = 4. When this indexing rule is
used the sorted sequence is said to be in snakelike row-major order.

Fig. 5.3 Snakelike row-major indexing.

5.3.3  Shuffled Row-Major Indexing

For 1 <i <n, let P, be the processor occupying position P(j, k),
O<j<m-1,0=<k <m -1, of the processor array in a row-major
indexing, and let b,b,b5...b, be the binary representation of (i — 1).
Further, let b1b(q/z)ﬂb2b(4/2).,21)3b(q/2)+3b4b(q/2)+4...bq/zbq be the result of
shuffling b,b:b5...b,. For example, b,bsbbsbsb:b4by is the result of
shuffling 5,6,03b4b5b6b1bs. If 16 121b2Dg 1202030 ¢/2043b 4D g 120s - - -bgpabg
is the binary representation of the integer i’, 0 <i’ <n — 1, then P,
occupies position P(j, k) in a shuffled row-major indexing. This indexing
is illustrated in Fig. 5.4 for m = 4. When this indexing rule is used, the
sorted sequence is said to be in shuffled row-major order.

Since sorting, as defined above, consists of placing the ith smallest
(largest) element in P;, the desired representation and subsequent use of
the sorted sequence dictates the choice of the indexing rule and hence the
sorting algorithm.

We have so far assumed in defining the sorting problem that m =n'"?,
and therefore that the number of processors available on the mesh-con-
nected parallel computer is equal to (or may be even larger than) the
number of elements to be sorted. This, of course, need not be true in
general. If m? < n, then the n elements to be sorted are distributed among
the processors so that each processor receives a subsequence of length
n/m?. The sorting problem now consists of producing a single sorted
sequence such that its /th subsequence is in P;, according to any proces-
sor indexing rule.
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3lp, |k

Fig. 5.4 Shuffled row-major indexing.

54 A Lower Bound

Consider the case where the processors in a mesh-connected parallel
computer are ordered by row-major indexing. Now assume that the maxi-
mum and minimum elements of the sequence S = {x,, x5,..., X,} to be
sorted in increasing order are initially loaded into P, and P,:, respec-
tively. For the outcome of the sorting to be correct, P, and P,: have to
exchange their initial elements during the sorting process. It takes
2(m - 1) unit-routing steps to transfer the maximum element from P, to
P,... Another 2(m — 1) unit-routing steps are needed to transfer the mini-
mum element from P, to P,. Therefore, at least 4(m — 1) unit-routing
steps are needed to sort in this case.

In general, and for any indexing rule, processors at opposite corners
may have to exchange, during the sorting, the elements of S initially
loaded in them, as shown in Fig. 5.5. This leads us to conclude that no
algorithm can sort on an mxm mesh in fewer than Q(m) steps.

(a) INITIALLY (b) AFTER EXCHANGE

Fig. 5.5 Illustration of the lower bound on sorting using the mesh.
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When m = n"?, this means that n elements cannot be sorted in fewer
than Q(n"?) steps. Similarly, recall that when m < n'"?, each processor is
loaded initially with a subsequence of length n/m?. In this case, the lower
bound on sorting is Q(n/m) as the subsequences initially loaded in oppo-
site corner processors may have to be interchanged.

5.5  Sorting on the Mesh

In this section we introduce our first algorithm for sorting the sequence
S ={x;,x,,...,Xx, on a mesh-connected parallel computer, where »n is a
perfect square. The algorithm is an adaptation of Bitonic Sort described
in Chapter 2 and produces an increasing sequence in row-major order. We
begin by stating a number of assumptions regarding the machine model.
This is followed by an intuitive description of the algorithm. The algo-
rithm is then presented formally and analyzed.

55.1 Machine Features

Our adaption of Bitonic Sort requires the mesh-connected parallel com-
puter of Section 5.2 to satisfy the following conditions.

(1) m =n"? thatis, n processors (as many as there are elements to be
sorted) are available.

(2) Row-major indexing is used to arrange the n processors.

(3) Each processor has three registers: one routing register R, and two
storage registers R, and R, as shown in Fig. 5.6. Each register is capable of
storing one element of S.

(4) Each processor can perform the following three instructions.

(i) A register—exchange instruction in which the processor
interchanges the contents of two of its registers. When this instruc-

RO 1]
R 1
R

P.

Fig. 5.6 Registers required by each processor of the mesh.
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tion is issued, it is performed simultaneously by all processors in a
number of selected rows (or columns), all acting on the same two
specified registers.

(i) A route instruction in which the processor transfers the
contents of its R, register to the R, register of one of its four
immediate neighbours. When this instruction is is issued, it is
performed by all processors of the mesh simultaneously, all the
transfers taking place in the same direction. This is equivalent to a
unit-distance shift of the entire array of R, registers in one of the
four directions. The first row (column) of R, registers in the shift-
ing direction is filled with zeros while the last row (column) loses
its contents.

(iii) A compare-exchange instruction in which processor
P(i,j), where 0 <i <m ~1and 0 <j <m - 1, performs the fol-
lowing operation on the contents a and b of R, and R,, respec-
tively:

If mask (i, j,q)=0
then

(i) R.=max(a,b)
(i) R,=min(a, b)

else

(1) R.=min(a, db)
(i) R, =max(a, b)

end if

where g is a “pass number” of the algorithm and mask is a function that
computes the MASK array required by Bitonic Sort (see Chapter 4). Both
q and mask will be defined more precisely later. The contents of R, after
this instruction are to be retained by the processor (“accepted”), while
those of R, are to be transferred to another processor (“rejected”). When
this instruction is issued, it is performed simultaneously by all processors
of the mesh. (It should be noted that, if each processor is initially assigned
a distinct input element, then, when executing this instruction, at most
n/2 processors would be comparing two elements of S; the comparisons
taking place in the other processors are of no consequence).

Owing to the row-major indexing used to arrange the processors, a
sequence sorted on this machine will be in row-major order.
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5.5.2  Bitonic Sorting on the Mesh

We now show how Bitonic Sort can be implemented on the mesh-
connected parallel computer. Recall that a sequence {a,, a,,...,a,} is
said to be bitonic if either (1) there is an index 1 <j < n such that

a,=ar=..=a;z=zajyw=...24,,

or (2) the sequence can be shifted cyclically so that condition (1) is satis-
fied.

The following is an intuitive description of the algorithm for bitonic
sorting S ={x;, x;,..., X} on a 4 x4 mesh in increasing row-major
order. Initially, the 16 elements are loaded into the array of processors,
each of the 16 processors receiving one element.

(1) In a first pass, the 4 x 4 array of input elements is treated as eight
1 x 2 arrays that are sorted individually as shown in Fig. 5.7, where the
arrow in each sorted array points to the largest element in the array.

>
| e——
>

IEEREN

| ——

Fig. 5.7 First pass of bitonic sorting on the mesh.

(2) In a second pass, the 4 x 4 array is treated as four 2 x 2 arrays
each containing a bitonic sequence of length 4. Each 2 x 2 array is sorted
individually as shown in Fig. 5.8.

7 —-
~ ~

Fig. 5.8 Second pass of bitonic sorting on the mesh.

(3) In a third pass, the 4 x 4 array is treated as two 2 x 4 arrays each
containing a bitonic sequence of length 8. Each of these arrays is sorted
individually as shown in Fig. 5.9.



5.5 SORTING ON THE MESH 89

v
~7

v

V-I

-
A

44
I
I
[
1

Fig. 5.9 Third pass of bitonic sorting on the mesh.

(4) In a final pass, the 4 x 4 array containing a bitonic sequence of
length 16 is sorted as shown in Fig. 5.10.

Fig. 5.10 Final pass of bitonic sorting on the mesh.

5.5.3 The Formal Algorithm

We are now ready to give a formal description of the adaptation of
Bitonic Sort for the mesh. This will be done by specifying a series of
procedures and finally presenting the main algorithm. In our analysis,
which will follow each procedure, we denote by N, N., and N, the
number of route, register-exchange, and compare-exchange steps,
respectively, required by the procedure. An appropriate superscript will be
used to identify N,, N, and N. for each procedure.

A. Row Merge

Procedure ROW MERGE below sorts (into either increasing or
decreasing order) a bitonic sequence of length K stored in K adjacent
processors on one row of the m x m processor array. Each of the K
processors initially holds one element of the bitonic sequence in its R,
register. Upon termination of the procedure, each processor holds one
element of the sorted sequence in its R, register.
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procedure ROW MERGE(X)

(1

(2)
3)

Q)]
()
(6)
(M
®)

Let P;, P..,..., Pi.x, be the processors holding the bitonic
sequence in their R, registers.
If K = 1 then return end if.
Processors P;, Pi.,..., Pi.xp- perform a register—exchange
instruction on their R, and R registers.
Transfer the elements in (the R, registers of) P,.x/2,..., Piki,
respectively to (the R, registers of) P;, ..., Pixp -
Processors P;,..., Piikp perform a compare-exchange
instruction (on their R, and R registers).
Transfer the rejected elements from (the R, registers of) P; , ...,
P, k-1, Tespectively to (the R, registers of) Pk, ..., Pk .
Processors P;, ..., P;,x;- perform a register-exchange instruc-
tion on their R, and R; registers.
Do (8.1) and (8.2) in parallel

(8.1) ROW MERGE(KX/2) for P, ..., Pix;

(8.2) ROW MERGE(K/2) for Piixpy-ovs Pk

It is not difficult to see that the procedure described above is a straightfor-
ward implementation of the Bitonic Merger of Chapter 2 on a (one-
dimensional) linear array of processors. Note that the value of mask
needed in step 5 by the compare-exchange instruction is determined for
all processors as follows:

(1

if the sequence is to be sorted in increasing order, then mask

should be 0
(2) otherwise mask is 1.

Analysis

The number of route steps is given by

K + NP (K/2) for K>1

N (K)z{o for K=1.

Hence Ni** (K) = 2K - 2.
The number of compare-exchange steps is given by

1+N&Y(K/2) for K>1

N?W(K)={o for K= 1.
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Hence NP (K) =log K.
The number of register—exchange steps is given by

N (K)=2NY(K) =2log K.

B. Column Merge

Procedure COLUMN MERGE sorts (into increasing or decreasing
order) a bitonic sequence of length K stored in K adjacent processors on
one column of the m x m processor array. Each of the K processors
initially holds one element of the bitonic sequence in its R, register. Upon
termination of the procedure, each processor holds one element of the
sorted sequence in its R, register.

This procedure is therefore identical to ROW MERGE and, conse-
quently,

N (K)=2K -2,

N® (K) =log K,
and

Ne (K)=2log K.

C. Vertical Merge

Procedure VERTICAL MERGE below sorts into (either increasing or
decreasing) row-major order a bitonic sequence of length JK held in the
R, registers of a J x K array of processors. Initially, the increasing part of
the bitonic sequence is stored in row-major order in the upper J/2 rows of
the array; the lower J/2 rows hold the decreasing part also in row-major
order.

procedure VERTICAL MERGE(J, K)
(1) for all columns do in parallel
COLUMN MERGE(J)
end for.
(2) for all rows do in parallel
ROW MERGE(K)
end for. &
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COLUMN MERGE (4)

COLUMN MERGE (2)

2|1 3|68
131516
14112|10] 9
715]4]1
(a)
213| 6|8
715)4]1
141210 9
I]13[1s5}te
(b)
7NN
21341
7|5(|6(8
I]12(110] 9
141131516
(c)
NN
2111413
65|78
109 |Il]I2
1413 [15}16
(d)
| 21 3| 4
56| 7| 8
gllojll]l2
13114115] 16

(e)
Fig. 5.11 Sorting a bitonic sequence by VERTICAL MERGE.

ROW MERGE (4)

ROW MERGE (2)
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Theorem 5.1 Procedure VERTICAL MERGE correctly sorts into row-
major order a bitonic sequence stored in a J x K array.

Proof The proof is based on the correctness of the bitonic merging algo-
rithm of Chapter 2. We show that VERTICAL MERGE correctly imple-
ments a Bitonic Merger.

Recall that, in sorting a bitonic sequence {a,, a2, ..., a,) a Bitonic
Merger performs a compare-exchange operation on elements whose indi-
ces are, consecutively, n/2 apart, n/4 apart, n/8 apart, ..., | apart. Simi-

larly, VERTICAL MERGE performs a compare-exchange operation on
elements whose indices are, consecutively, JK/2 apart, JK/4 apart,..., K
apart (during the COLUMN MERGE phase), then K/2 apart, K/4
apart, ..., | apart (during the ROW MERGE phase). @

EXAMPLE 5.1

An example illustrating the working of VERTICAL MERGE on two
2 x 4 arrays holding a bitonic sequence of length 16 is given in Fig. 5.11.
Elements involved in a compare-exchange are paired by an arrow. The
larger element is retained by the processor to which the head of an arrow
points. The sequence is sorted into increasing row-major order.

Analysis
The number of route steps is given by
Ny (J,K)=NO'(J)+ NP (K) = 2(J + K)-4.
The number of compare—exchange steps is given by
N¥ (J,K) =N (J) + N (K) = log(JK).
The number of register—exchange steps is given by
N (J, K)= N2 (J) + N2¥ (K) = 2 log(JK).

D. Two Column Merge

Procedure TWO COLUMN MERGE below sorts (into increasing or
decreasing order) a bitonic sequence {(a;, ai,, ..., @2y} Initially stored
in J adjacent processors in some column, k say, of the m x m processor
array, namely, P(i, k), P(i + 1, k),..., P(i+J - 1, k), such that, for
i <x=<i+J-1,P(x k)contains a, and a,,, in its R, and R, registers,



94 5 MESH-CONNECTED COMPUTERS

respectively. If the sorted sequence is denoted by (b, b1, ..., bisast),
then upon termination of the procedure, processor P(i + x, k), where
0 < x < J - |, contains elements b;,,, and b,,,,,, respectively, in its R,
and R, registers.

procedure TWO COLUMN MERGE(J)

(1) Let P(i, k), P(i+1, k), ..., P(i+J-1, k) be the J processors
holding the bitonic sequence.

(2) These processors perform a compare—exchange instruction.

(3) ifJ > 1then

(3.1) The rejected elements of P(i, k), ...,
P(i + J/2 - 1, k) are exchanged with the accepted
elementsof P(i + J/2, k), ..., P(i + J - 1, k),
respectively. This is performed as follows:

i) PE+J/2,k),...,P(i+J—- 1, k)performa
register-exchange on R, and R,.

@) PG, k),..., P>+ J/2 - 1, k) route the contents
of their R, registers to the R, registers of
Pi+J/2,k),...,P(i+J- L k).

@iy PG+ J/2,k),...,P(i+J- 1, k)performa
register—exchange on R, and R..

Giv) PG+ J/2,k),...,P3i+J- 1, k)route the
contents of their R, registers to the R, registers
of P(i, k),..., P(i + J/2 - 1, k).

~v) PG+J/2,k),...,P(i+J- 1, k)performa
register—exchange on R,and R..

(3.2) Do (i) and (ii) in parallel
(i) TWO COLUMN MERGE(J/2) on P(i, k), ...,
PGi+J/2-1,k)

(i) TWO COLUMN MERGE(J/2) on

Pi+J/12,k),...,Pi+J -1, k)
endif. M

As pointed out earlier for procedure ROW MERGE, the value of mask
needed in step 2 above depends on whether the sequence is being sorted
into increasing or decreasing order.



5.5 SORTING ON THE MESH 95

Theorem 5.2 Procedure TWO COLUMN MERGE correctly sorts a
bitonic sequence stored in a column of J processors.

Proof The proof is similar to that of Theorem 5.1. B

EXAMPLE 5.2

The working of TWO COLUMN MERGE is illustrated in Fig. 5.12 for
the sequence (2, 4, 5,8, 7, 6, 3, 1). As before an arrow pairs elements
undergoing a compare-exchange. A double-headed arrow indicates ele-
ments that are unconditionally exchanged in step 3.a. The sequence is
sorted in increasing order.

(a) (b) (c)

(d) (e) (f)
Fig. 5.12 Sorting a bitonic sequence by TWO COLUMN MERGE.
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Analysis
The number of route steps is given by

J+N¥J/2) for J>1
tc -
Ne W)= {0 for J=1

Hence N¥ (J)=2J - 2.
The number of compare-exchange steps is given by

1+NEWJ/2) for J>1
tc — <
Ne () {1 for J=1.
Hence N¥(J)=1+log J.

The number of register—exchange steps is given by

3+NEWJR2)  for J>1
tc _
N°(J)‘{0 for J=1

Hence N¥ (J)=3logJ.

E. Horizontal Merge

Procedure HORIZONTAL MERGE below sorts into (either increasing
or decreasing) row-major order a bitonic sequence of length JK held in
the R, registers of a J x K array of processors. Initially, the increasing part
of the bitonic sequence is stored in row-major order in the first K/2
columns of the array; the remaining K/2 columns hold the decreasing
part also in row-major order.

procedure HORIZONTAL MERGE(J, K)

(1) Let the indices of the J rows and K columns be j, j + 1,...,
j+J-landk k + 1,..., k+ K - 1, respectively.
(2) for x=k to k + K/2 — 1do in parallel
for y=j toj+ J— 1do in parallel
processor P(x, y) performs a register—exchange on its R,
and R, registers
end for
end for.
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3)

Q)

)

(6)

)

for x =k to k + K/2 — 1 do in parallel
for y=j toj+.J— 1do in parallel
processor P(x + K/2, y) transfers the element it contains
to processor P(x, y)
end for
end for.
for x =k to k + K/2 — 1 do in parallel
TWO COLUMN MERGE(J) on P(j, x), PG+ 1, x),...,
PG+J-1x)
end for.
for x = k to k + K/2 — 1 do in parallel
for y=j toj+ J— 1do in parallel
processor P(x, y) transfers its rejected element (the ele-
ment in R,) to processor P(x + K/2, y)
end for
end for.
for x =k to k + K/2 — 1 do in parallel
for y=j toj+J~ 1do in parallel
processor P(x, y) performs a register-exchange step on
its R and R, registers
end for
end for.
if K > 2 then

(7.1) the J x K array is regarded as consisting of 2J rows
each containing K/2 adjacent processors (each of the
J rows is split into two rows of K/2 elements each)
(7.2) for each of the 2J rows do in parallel
ROW MERGE(K/2)
end for

end if. @

Theorem 5.3 Procedure HORIZONTAL MERGE correctly sorts into
row-major order a bitonic sequence stored in a J x K array.

Proof The proof is similar to that of Theorem 5.1. B
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25|16} 14 2,16(5,14 2,3| 1,4
6|8 (l2(I0 6,12(8,10 6,715,8
S || 7]4 9,711,4 9,12]I0,!!
13115 3| 1 13,3]15, 1 13, 16(14,1S
(a) (b) (c)
N 7N
2111314 121314
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1314 (16|15 13{14 |15 (16
(d) (e)

Fig. 5.13 Sorting a bitonic sequence by HORIZONTAL MERGE.

EXAMPLE 5.3

The working of HORIZONTAL MERGE is illustrated in Fig. 5.13 for
two 4 x 2 arrays holding a bitonic sequence of length 16. The sequence is

sorted into increasing row-major order.

Analysis
The number of route steps is given by
N (J,K)=K/2+N¥E(J)+K/2+ NP (K/2)=2(J + K)-4.
The number of compare-exchange steps is given by
Nt (J,K)=NE(J) + N©¥ (K /2) = log(JK).
The number of register—exchange steps is given by
N (J,K)=NE(J)+ N (K/2)+2=3logJ +2log K.
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F. The Main Algorithm

The main sorting algorithm is given by procedure MESHSORT below,
which sorts m? elements into increasing row-major order. In invoking the
various procedures described earlier, the algorithm defines a pass number
q, which determines which element is to be “accepted” and which is to be
“rejected” by a processor after a comparison—exchange operation.

ALGORITHM 5.1
procedure MESHSORT(m, m)

(1) K«1
(2) g-1
(3) while K < m do

(3.1) The m x m processor array is regarded as consisting
of several adjacent K x 2K subarrays
(3.2) for each K x 2K array do in parallel
HORIZONTAL MERGE(KX, 2K)
end for
(33) g<qg+1
(3.4) The m x m processor array is regarded as consisting
of several adjacent 2K x 2K subarrays
(3.5) for each 2K x 2K array do in parallel
VERTICAL MERGE(2K, 2K)
end for
(36) g<qg+1
3.7 K+«2K

end while. 1

Theorem 5.4  Procedure MESHSORT correctly sorts a sequence of length
m? into increasing row-major order.

Proof Given a sequence of length m? procedure MESHSORT invokes
procedures HORIZONTAL MERGE and VERTICAL MERGE alter-
nately; for i =0, 1, 2,..., log(m/2)

(1) using HORIZONTAL MERGE, sorted sequences of length 2%+
are created,
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(2) pairs of these sequences are regarded as forming bitonic sequences
of length 2%*?, which are sorted using VERTICAL MERGE.

Since HORIZONTAL MERGE and VERTICAL MERGE have already
been proved correct, procedure MESHSORT correctly implements the
Bitonic Sort of Chapter 2. The correctness of MESHSORT therefore fol-
lows from the correctness of Bitonic Sort. @

Analysis
The while loop is executed for K =1,2,4,..., m/2. Therefore, for
m > 1, the number of route steps is given by
log(m/2) o . _
N:on(m’ m) = z {N:IOY(ZI , 21+l ) + N‘\"cr(znl , 2:+1 )}
i=0
= 14(m - 1) — 8 log m.

The number of compare-exchange steps is given by
log(m /2) o ' '
Nzort(m, m) = z (NL“"(Z' , 21+| ) + NZ“(Z'H s 2:+| ))
i=0
=2log’m +5log m — 4.
The number of register-exchange steps is given by
log(m /2)

Nzon(m’ m) = Z’O (N:or(zi , 21+l ) + N:er(ziﬂ , 21‘+I )}
=45log>m +10.5logm - 9.

Lett,, t., and ¢, be the number of time units required by a route step,
a compare—exchange step, and a register-exchange step, respectively. It
follows that the running time of procedure MESHSORT can be written

t(n)=Ne(n'?, nV )t + NEY(n'2, ')t + N2, ' ).

Assuming that ¢, >t.> (., it is clear that the running time of the algo-
rithm is dominated by the route steps. Thus #(n)=O(n"?). Since
p(n)=n, we have

c(n) = t(n) x p(n) = O(n*?),

which is not optimaf.
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G. The Mask Function

We have tacitly assumed in our discussion of procedure MESHSORT
above that whenever procedures HORIZONTAL MERGE or VERTICAL
MERGE sorted a sequence of length 2* they correctly chose to do so in
either increasing or decreasing order, thus properly creating a bitonic
sequence of length 2¢*! as required by the next step of Bitonic Sort. We
now specify the means by which the increasing or decreasing order is
chosen by these procedures. This is the mask function invoked during the
execution of a compare-exchange instruction by a processor P(i, j) and
used to determine whether the “rejected” element is to be the smaller or
the larger of the two elements @ and b being compared.

As defined earlier, the compare—exchange instruction is given by

If mask (i,j,¢q)=0
then

(1) R,=max(a,b)
(i1) R,=min(a, b)

else

(i) R.=min(a, b)
(2) R;=max(a,b)

end if.

Therefore if the mask function is equal to 0 for all processors of an array
on which a sequence is being sorted, then the sequence will be sorted in
increasing order. If the mask function is equal to 1, then the sequence will
be sorted in decreasing order.

Aided by Figs. 5.7-5.10, we see that the value of mask alternates
between 0 and I:

(i) for alternating rows when (the pass number of the algorithm)
q=1
(i1) for alternating pairs of columns when g = 2,
(iii) for alternating pairs of rows when g = 3,
(iv) for alternating quadruples of columns when g =4, ....

Therefore the following function mask will behave as required.
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Fig. 5.14 Sorting (13, 3, 15, 7, 6, 10, 1, 14, 12, 16, 11, 5, 2, 9, 4, 8} by MESHSORT.
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function mask (i, j, q)
If ¢ is odd then
if [i/2192)] is even then return 0
else return 1
end if
else
if [i/2!921] is even then return 0
else return 1
end if
endif. A

Thus if g is broadcast to all processors, each P(i,j) can determine the
value of mask for every compare-exchange instruction it executes during
the current pass of the algorithm.

EXAMPLE 54

The behaviour of procedure MESHSORT is illustrated in Fig. 5.14 for
the sequence S = (13, 3, 15, 7, 6, 10, 1, 14, 12, 16, 11, 5, 2, 9, 4, 8). The
contents of the 4 x 4 processor array are shown for each step. When the
pass number of the algorithm is updated and a different procedure
invoked, this is indicated below the array. Whenever the value of mask is
the same for all processors in a row (or in a column), it is indicated to the
left of the row (or above the column).

Input and Output Considerations Procedure MESHSORT assumes that
the sequence to be sorted is already loaded in the m? processors forming
the mesh. Similarly, after the sorting is complete, the sequence remains in
the mesh. We now briefly discuss the question of data input and output to
and from the mesh.

If all processors are provided with input and output lines, then input
and output can be performed in constant time: during input all processors
simultaneously receive the elements of the sequence to be sorted, one
element per processor; similarly, during output all processors operate
simultaneously, every processor producing one element of the sorted
sequence. Clearly this adds only a constant amount to ¢(n), the running
time of MESHSORT.

If, however, only one row or one column of the m x m mesh of proces-
sors can communicate with the outside world, then input and output can
each be performed in a pipeline fashion in m steps. Say, for example, that
the processors in the topmost row (row 0) are the only ones to possess
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Fig. 5.15 Pipelining input from top row.

input and output lines. Then, during output, the sequence to be sorted is
loaded into the mesh row by row, such that whenever a new row is
entered, the current contents of all processors are shifted one row down-
wards, as shown in Fig. 5.15. Similarly, during output, the sorted sequence
is unloaded from the mesh row by row, such that whenever a new row is
produced, the current contents of all processors are shifted one row
upwards, as shown in Fig. 5.16. For a sequence of length n therefore,
input and output require O(n"?) units of time and since 1(n) = O(n"?),
the asymptotic running time of MESHSORT is again not affected.

In a variation of the approach just described, row 0 is in charge of the
input while row m — 1 is in charge of output. In this case the data move
in the same direction during input and output: input is as in Fig. 5.15,
while output is as in Fig. 5.17. This arrangement has the following
interesting property when several sequences are waiting in line to be
sorted by the mesh: as soon as one sequence has been sorted and begins to



5.5 SORTING ON THE MESH 105

I 2 3 4
I 2 3 4 5 6 7 8
4 4 4 4 4 4 1+ 9
112314 5(6|7]|s8 gliofrin]iz
s|e| 7|8 g o112 13|14 (15|16
9 (o112 131141516
13(14 (1516
(a) (b) {c)
1 2 3 4
I 2 3 4 5 6 7 8
5 6 7 8 9 10 Il I2
9 10 (I I2 13 14 15 16
4 4 4 ¢ 4 4 4 @
13(14]15|186
(d) (e)

Fig. 5.16 Pipelining output from top row.

be flushed out from the bottom of the mesh the next sequence can be
input from the top of the mesh. Input and output are thus overlapped
with the consequence of reducing the period of the circuit by »n'"? time
units.

The discussion given above brings up the following important question:
is it possible to achieve a constant period on the mesh? The answer is yes,
but not with procedure MESHSORT. The idea is to implement the odd-
even transposition sort (Algorithm 3.1) on an n x n mesh. The # elements
to be sorted are fed in the mesh through the first row where the first step
of an odd-even transposition is performed. They are then shifted to the
next row to undergo the next odd-even transposition, while the n ele-
ments of the following sequence to be sorted are loaded in the top row,
and so on. The time between two inputs is thus constant. The first sorted
sequence is produced by the bottom row after n steps. Subsequently, a
new output is obtained at every step and thus the time between two
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Fig. 5.17 Pipelining output from bottom row.

outputs is constant. Note, however, that this is an expensive way to sort
requiring n? processors and O(n) time units, as opposed to n processors
and O(n'"?) time units for procedure MESHSORT.

5.6  An Optimal Algorithm

As we saw in Section 5.5, procedure MESHSORT is not cost-optimal.
We now show how to obtain a cost-optimal parallel algorithm for a mesh-
connected parallel computer. The basic technique here is the same one
adopted to extend Algorithms 3.1 and 4.1 to Algorithms 3.2 and 4.2,
respectively: fewer, but more powerful, processors are used to reduce the
cost of the parallel algorithm.

Assume that instead of n processors, only p are available, numbered 1
to p, for sorting the sequence S = {x,, X2, ..., X, )}, where p is a perfect
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square smaller than n. Each of these processors, instead of having just
three registers as previously, has 4n/p registers. (If n/p is not an integer,
then dummy elements—Ilarger than any input element—are added to S to
bring its size to the closest multiple of p.) Furthermore, each processor is
capable of

(1) sorting a sequence of length n/p elements using a sequential sort-
ing algorithm such as Heapsort (which in the worst case sorts a sequence
of length 7 in O(r log r) time), and of

(2) merging two sorted sequences of length n/p each into a single
sorted sequence of length 2x/p using a sequential merging algorithm such
as Straight-Merge (which merges two sequences of length r each in 2r
steps, each equivalent to a compare-exchange, and using 2r additional
storage locations).

The p processors are interconnected as in Fig. 5.1 to form a p'? x p'?
mesh. Initially, the #» elements to be sorted are distributed at random
among the p processors, each processor receiving #/p elements. A high-
level description of the extended algorithm follows.

ALGORITHM 5.2

(1) Each processor locally sorts its subsequence (of size n/p) using a
sequential sorting algorithm.

(2) Algorithm 5.1 is now applied but modified as follows:
(a) each route instruction now involves routing #n/p elements;
(b) each register—exchange instruction now involves exchanging
a subsequence of n/p elements with another subsequence of n/p
elements;
(c) each compare-exchange instruction is now replaced by a
merge-split instruction where two sorted subsequences of length
n/p each are now merged into a single sequence, half of which is
“accepted” and the other half “rejected.” B

Analysis

Step 1 requires O((n/p) log(n/p)) time. From our analysis of Algorithm
5.1 we know that sorting a sequence of length p on a p'2 x p> mesh
requires O(p'?) route steps as well as O(log? p"?) register—exchange and
compare-exchange steps. Since Algorithm 5.2 performs these operations
on sequences of length n/p, step 2 will require
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(i) (n/p) O(p"?) route steps;
(i) (n/p) O(log? p'?) register—exchange steps; and
(i) 2(n/p) O(log? p'/?) compare-exchange steps.

Assuming that a route step takes the same amount of time as a register—
exchange step and a compare-exchange step, we can write the overall
running time of Algorithm 5.2 as

1(n) = O((n/p) log(n/p)) + (n/p)O(p"*) + (2n/p)O(log? p'?).

The analysis given above does not take into consideration the amount
of time required for input and output. However, if some form of parallel
input and output is available as described in Section 5.5, then both these
operations can be performed either in O(n/p) time (when all processors
have input and output interfaces) or in O(n/p"?) time (when only one
row or one column has such an interface). Therefore, the above analysis is
essentially unchanged.

Since p(n) = p, we have

c(n) = O(n log(n/p)) + O(np"?) + O(n log’ p).
For p < log? n,
c(n)=0O(n log n),

which is optimal.

5.7 Bibliographical Remarks

Two different implementations of the mesh-connected parallel com-
puter model of Section 5.2 are described in Barnes et al. (1968) and
Flanders et al. (1977). The ability of the model to simulate (and be simu-
lated by) other models of parallel computation, such as the perfect shuffle,
is demonstrated in Siegel (1979).

The three indexing schemes in Section 5.3, as well as the lower bound
in Section 5.4, are from Thompson and Kung (1977). Most of the mate-
rial in Section 5.4 follows the work of Nassimi and Sahni (1979). Besides
procedure MESHSORT, a second algorithm is described in Nassimi and
Sahni (1979) for sorting a sequence of length # into snakelike row-major
order on a n2x n"? mesh in O(n"?) time. It is also pointed out in
Nassimi and Sahni (1979) that after a sequence has been sorted into
snakelike row-major order, its elements may be rearranged into row-
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major order with an additional 2(n"? - 1) route steps and an additional
O(log n'?) register-exchange steps, to reverse the order of elements in
odd-numbered rows. In Thompson and Kung (1977) the Odd-Even Sort
and Bitonic Sort algorithms of Chapter 2 are adapted for an n'? x n'"?
mesh to sort a sequence of length # into snakelike and shuffled row-major
order, respectively, in O(n"?) time. It is also shown in Thompson and
Kung (1977) that if n elements have already been sorted according to
some indexing scheme and if each processor can store n"? elements, then
the n elements can be sorted with respect to any other indexing scheme
using an additional 4(n'" - 1) route steps. Other sorting algorithms for the
mesh with similar behaviour are described in Kumar and Hirschberg
(1983), Lang et al. (1983), and Schroder (1983). Algorithms for meshlike
architectures are proposed in Chern and Murata (1983), Chern (1984),
and Flanders and Reddaway (1984).

Descriptions of Heapsort and Straight Merge can be found in Reingold
et al. (1977). Algorithm 5.2 was inspired by Baudet and Stevenson (1978),
where it is shown how a sorting algorithm for the mesh (Orcutt, 1974) can
be adapted to run optimally provided that the number of processors p is
less than ((log »n)/(log log n))>. A result similar to the one in Section 5.6 is
described in Fishburn (1981), where it is shown how a parallel algorithm
for a mesh-connected array of processors can be performed on an array of
smaller size. The idea is to partition the large mesh into square regions.
Typically, an algorithm for a 2"** x 2" array can be performed on a
2° x 2° array: every node of the small array “emulates” 2% nodes of the
large array.

Finally, we note that most algorithms designed for the mesh have a
running time dominated by the time required to route the data among the
processors. Techniques to speed up the routing are described in Nassimi
and Sahni (1980) and Flanders (1982).
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6 Tree Machines

6.1 Introduction

In this chapter we study parallel sorting algorithms for SIMD comput-
ers in which the processors are interconnected to form a binary tree. Such
a tree has d levels, numbered O to d — 1, and 2%~1 nodes, each of which is
a processor. This architecture, which we refer to as a tree machine, is
illustrated in Fig. 6.1 for d = 4. Branches of the tree represent two way
links. Each processor at level i is thus connected to a single parent proces-
sor at level i — 1 and to each of its two child processors at level i + 1, with
the exception of the root processor at level 0 (which has no parent) and
the leaf processors at level d — 1 (which have no children). Through this
two-way link, a processor can send or receive a single data item at a time
to or from its parent or children. The root and leaves are the only proces-
sors that have an interface with the outside environment and thus handle
input and output. The number of processors needed on the machine and
the storage and computational capabilities of each processor vary from
one algorithm to the other. Therefore, the processor requirements will be
stated separately for each of the three algorithms described in this chapter.

We should point out that all analyses in this chapter assume that the
time taken by a datum to propagate between any two adjacent levels of
the tree is a constant. If, however, propagation time is assumed to vary
with the length of the wire connecting the source and destination, then
our analyses no longer hold. This is because the links between adjacent
levels do not have the same length throughout the tree. This observation
was also made in Chapter 2 in connection with Algorithm 2.1.

111
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LEVEL O

LEVEL |

LEVEL 2

LEAVES

Fig. 6.1 Tree machine.

6.2 Minimum Extraction

Assume that a tree machine with #n leaves, and hence (log n)+1 levels
and a total of 2n — 1 processors, is available for sorting the sequence
S ={x,, x,,..., x,) of distinct integers. Each leaf processor can store one
integer. Each nonleaf processor (i.e., a processor with children) is capable
of storing two integers and determining the smaller of the two.

Our first algorithm is based on the idea of repeated extraction of the
minimum. The n integers to be sorted are initially loaded in the leaf
processors, one integer to a processor. Now, each processor determines the
smaller of the two integers held by its children and routes it to its parent.
After (log n)+1 steps, the minimum element of S exits the machine from
the root and is placed in a memory buffer holding the output. If the
process is continued, the next element in increasing order is obtained at
every other step. A formal description of the algorithm follows.

ALGORITHM 6.1

(1) for all leaf processors do in parallel
the processor reads one element of the input sequence S
end for.
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(2) for i=1to 2n+(log n)-1do
for all nonleaf processors do in parallel
if the processor is the root and contains an integer
then it places it in the output buffer
else if the processor is empty
then

(i) it invokes the contents of its two children
(i) if both children are empty
then it does nothing
else if one child is empty
then it keeps the integer received from the
non-empty child
else it retains the smaller of the two
received integers and returns the
larger to the child from which it origi-
nated
end if
end if
else it does nothing
end if
end if
end for
end for. B

EXAMPLE 6.1

The working of Algorithm 6.1 is illustrated in Fig. 6.2 for the sequence
$=(8,7,6,5,4,3,2, 1}

Analysis

Step 1 requires a constant number of time units. As mentioned earlier,
since the tree machine has (log #n)+1 levels, the first element of the sorted
sequence is produced after (log n)+1 steps. The root requires one step to
get the minimum of the two integers held by its children and another step
to place it in the output buffer. Thus each of the remaining n—1 elements
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Fig. 6.2 Sorting {8, 7, 6, S, 4, 3, 2, 1) by Algorithm 6.1 (continued) .
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Fig. 6.2 (continued)

requires two steps to be produced. Therefore, as indicated in the algo-
rithm, a constant multiple of 2n+(log n)-1 time units are needed by step
2 to produce the sequence correctly sorted. It follows that the running
time of the algorithm is linear in the size of the input, that is, 1(n) = O(n).
Since p(n) = 2n — 1, we have

c(n) = t(n) x p(n) = O(n?),

which is not optimal. In the next two sections we show how fewer but
more powerful processors can be used to obtain cost-optimal parallel
sorting algorithms for the tree machine.

6.3 Bucket Sorting and Merging

Let the number of elements to be sorted be a power of 2, that is, n = 2™
for some positive integer m (itself a power of 2), and assume that a tree
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machine with m leaf processors is available. Such a machine has
(log m)+1 levels and contains a total of 2m — 1 processors, that is,

p(n)= 2logn) -1

Each leaf processor can store n/m integers and is capable of executing an
optimal sequential sorting algorithm such as Heapsort (which in the worst
case sorts r elements in O(r log r) steps). Each (nonleaf) processor at level
i, 0<i <logm, can store n/2' integers and is capable of executing an
optimal sequential merging algorithm such as Straight Merge (which in
the worst case merges two sorted sequences each of length r in 2r steps).
A high-level description of our second algorithm for sorting the sequence
S ={x,, x5, ..., x,) of distinct integers follows.

ALGORITHM 6.2

(1) Distribute the elements of the sequence to be sorted evenly and
at random among the leaf processors.
(2) Each leaf processor sorts its subsequence using a sequential sort-
ing algorithm.
(3) for j=1to log m do
for all processors at level (log m)—j do in parallel
the processor merges the two sorted subsequences held by
its two children, using a sequential merging algorithm, to
form a single sorted subsequence which it retains
end for
end for.
(4) The root processor places the final sorted sequence in the output
buffer. @

EXAMPLE 6.2

The working of Algorithm 6.2 is illustrated in Fig. 6.3 for the sequence
S$=(521014,13,4,15,12,1, 8,11, 9, 6, 16, 7, 3). Note that m = log n
= 4. The output step is omitted.

Analysis

In step 1 every leaf processor reads n/(log n) elements; this requires
O(n/(log n)) time units. If Heapsort, say, is used in step 2, then this step
requires O((n/(log n)) log(n/(log n))), that is, O(n), time units in the
worst case. During the jth iteration of step 3, each processor at level
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Fig. 6.3 Sorting (5, 2, 10, 14, 13,4, 15, 12, 1, 8, 11,9, 6, 16, 7, 3) by Algorithm 6.2.
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i = (log m) — j merges two sorted subsequences of length n /2™ to form a
single sorted subsequence of length n/2'. If Straight Merge is used, then
the jth iteration of step 3 requires k»n/2' time units, where k is a constant.
Thus step 3 takes

(log m)-1 kl’l

& 7700
time units. In step 4, the sorted sequence is produced in O(rn) time units.
Hence t(n) = O(n). Since p(n) = O(log n), we have

c(n)=t(n)x p(n) = O(n logn),

which is optimal.

Discussion
The following two observations are in order regarding Algorithm 6.2.

(1) The first observation deals with the case where a continuous
stream of input is available, that is, several sequences S, S’, S’’, ..., are
queued and await to be sorted by Algorithm 6.2 on the tree machine.
These sequences can be sorted one after the other in a pipeline fashion as
follows. During the first iteration of step 3, all leaf processors deliver their
sorted subsequences to their respective parents. Subsequently, the leaves
are free and can now receive the elements of the next sequence S’ to be
sorted. Hence Algorithm 6.2 is applied to S’ while S is still being pro-
cessed by the tree. Continuing in this way, up to 1 + log m sequences can
coexist in the tree, each on a different level and hence in a different stage
of sorting.

(2) The second observation concerns our assumption that each proc-
essor at level i, 0 < i < log m, can store n/2' integers and is capable of
executing a merging algorithm such as Straight Merge. It should be clear
that a different implementation of the algorithm is possible, which
removes the need for the above assumption. Here, no processor above the
leaf level is required to store more than two elements. The idea is to start
the merging process as soon as one element from each of the two sorted
subsequences to be merged is available. Merging then proceeds in a man-
ner similar to Algorithm 6.1. Every node receives one element from each
of its two children: the smaller is routed to the node’s parent, while the
larger is retained. If the latter came from its left (right) child, then the
node receives a new element from its right (left) child and repeats the
above process. This version of the algorithm is given in Chapter 10, in
connection with parallel external sorting.
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6.4  Median Finding and Splitting

In this section we show how the tree machine used in Section 6.3 can be
used to obtain a different cost-optimal parallel sorting algorithm. As
before, assume that

(i) n = 2™ for some positive integer m (itself a power of 2);
(i1) a tree machine with m leaf processors is available;
(iii) each processor at level i, 0 < i < log m, can store n/2’ integers;
(iv) each leaf processor can execute an optimal sequential sorting
algorithm such as Heapsort.

Furthermore, assume that each nonleaf processor is capable of execut-
ing an optimal sequential median-finding algorithm such as Select (which
in the worst case determines the kth smallest of 7 elements, ]l <k < r,in
O(r) steps). A high-level description of our third algorithm for sorting the
sequence S = {x,, x,,..., x,) of distinct integers follows. Note that in the
algorithm, the median of a sequence of length r refers to its (r/2)th
smallest element.

ALGORITHM 6.3

(1) The root processor reads the sequence S to be sorted.
(2) for i=0 to (log m)-1do
for all processors at level i do in parallel

(2.1) find the median M of the currently held sequence
using a sequential algorithm
(2.2) for each element x of this subsequence do
if x<M then route x to the left child processor
else route x to the right child processor
end if
end for

end for
end for.
(3) for all leaf processors do

(3.1) sort the currently held subsequence using a sequen-
tial algorithm
(3.2) place the sorted subsequence in the output buffer

end for. B
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EXAMPLE 6.3

The working of Algorithm 6.3 is illustrated in Fig. 6.4 for the sequence
S=1{2,57,1,8,4,6, 3). The median found by a processor during each
iteration of step 2 is indicated inside the processor. The output step is
omitted.

Analysis

In step 1 the root processor requires O(n) time units to read the input
sequence. During iteration i of step 2, a processor at level i finds the
median of a subsequence of length n/2". If Select is used, then this can be
done O(n/2") time units. Splitting the sequence into two subsequences,
each of length n/2*', is also done in O(n/2‘) time units. Thus step 2
requires a constant multiple of

(log m)-1 n

& 27
that is, O(n), time units. In step 3, each leaf processor receives a subse-

quence of length n/(log n), which it sorts in O((n/(log n)) log(n /(log n)))
time units (using Heapsort, say) and places it in the output buffer in

(b) ITERATION { OF
STEP 2

| m=2 ] [ M=6 ]

[2]1] 14[3] [5]6] 718]

(c) ITERATION 2 OF STEP 2 (d) STEP 3
Fig. 6.4 Sorting (2, 5,7, 1, 8,4, 6, 3) by Algorithm 6.3.
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O(n/(log n)) time units. Thus step 3 also requires O(n) time units. It
follows that 7(n) = O(n). Since p(n) = O(log n), we have

c(n)=t(n)x p(n)=0(n logn),

which is optimal.

Discussion
The following two observations are in order regarding Algorithm 6.3.

(1) The first observation is similar to the one made about Algorithm
6.2 with regard to sorting several sequences S,S’,S",..., on the tree
machine in a pipeline fashion. Here, during the first iteration of step 2,
the root processor subdivides S into two subsequences, each of which is
transmitted to one of its children. The root is therefore ready to receive
the next sequence S’ to be sorted. Algorithm 6.3 is now applied to §’
while S is still being sorted at another level of the tree. As before, up to
1 + log m sequences can thus coexist in the tree, each on a different level
and hence in a different stage of sorting.

(2) The second observation concerns our assumption that the input
elements are all distinct. Note that, if the input sequence contains
repeated elements, then Algorithm 6.3, as described, may not work prop-
erly. To see this, consider step 2.2. A processor finds the median M of the
subsequence it is holding and routes all of its elements that are smaller
than or equal to M to its left child and the remaining elements to its right
child. If several elements are equal to M, then we are no longer
guaranteed that the two children wiil receive subsequences of equal size.
To correct this situation, step 2 can be restated as shown below.

for i=0 to (log m)-1 do
for all processors at level i do in parallel

(2.1) find the median M of the currently held sequence (of size
r) using a sequential algorithm
(2.2) route all the elements smaller than M to the left child
(2.3) while fewer than r/2 elements have been routed to the left
child do
route to the left child an element equal to
M
end while
(2.4) route the r/2 remaining elements to the right child

end for
end for.
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6.5 Bibliographical Remarks

The concept of a tree machine is not totally new. The reader will recall
that tree connections were used in Algorithm 2.1 to propagate and collect
data to and from a set of processors. This idea of using a tree structure in
conjunction with a square array of processors for parallel sorting was
originally put forward in Muller and Preparata (1975). Leighton derives
several lower bounds for computations done on this model, which he
refers to as a “mesh of trees” (Leighton, 1981). In Nath er al. (1983)
networks based on so-called “orthogonal trees” are used to construct
algorithms for various problems, including sorting.

Parallel sorting on a tree machine by repeatedly extracting the mini-
mum was suggested by many authors under a number of different guises,
such as in Leiserson (1979), Song (1980), and Ottmann et al. (1982).
Heapsort and Straight Merge are described in Reingold ef al. (1977).
Algorithm 6.2 first appeared in Orenstein ef al. (1983). Variants of that
algorithm are given in Cheung et al. (1982), and Dohi et al. (1982). A
description and analysis of Select can be found in Aho et al. (1974).
Algorithm 6.3 is also due to Orenstein et al. (1983).

A parallel adaptation of the sequential sorting algorithm Heapsort to
run on a tree machine is given in Mead and Conway (1980). The machine
uses log n levels of processors, and requires O(n) time units to sort a
sequence of length n. A similar algorithm is described in Tanaka ef al.
(1980).

Bentley and Kung (1979) describe a tree machine with two roots as
shown in Fig. 6.5. The machine consists of three kinds of processors:

(a) circle processors are used to propagate input data from the top
root downwards to the square processors;

(b) square processors store these inputs and can execute arithmetic
and logic operations on them,;

(c) triangle processors are used to collect outputs from the square
processors and propagate them downwards until they eventually exit
through the bottom root.

A parallel sorting algorithm that uses such a tree machine with n square
nodes (and hence p(n) = 3n — 2) to sort n elements is described in Bentley
and Kung (1979). The algorithm is based on rank computation and reord-
ering (i.e., the sorting by enumeration scheme of Algorithms 2.1 and 3.4).
The elements to be sorted are first loaded into the square processors, one
element per processor. In a second step, these same elements are propa-
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Fig. 6.5 Tree machine with two roots.

gated one at a time in a pipeline fashion, to all square processors. In this
way, each square processor can “see” all the other elements and, using a
counter, determine the rank of its associated element, that is, how many
elements are smaller than it. The third step consists of producing as
output each element together with its rank. Finally, a single processor is
used to sequentially rearrange the elements of the sequence in increasing
order based on their ranks. Since, for this algorithm, the running time of
each of the steps is linear in the size of the input, ¢(n) = O(n).

Horowitz and Zorat (1983) use a divide-and-conquer algorithm on a
tree machine with p processors to sort a sequence of length n in
O(n(1 - 1/p) + (n/(log n)) log(n/p)). The best running time of this algo-
rithm is achieved with p = n, for which case t(n) = O(n). Therefore, the
algorithms of Bentley and Kung (1979) and Horowitz and Zorat (1983)
both have a cost that is asymptotically identical to that of Algorithm 6.1,
but which compares unfavourably with those of Algorithms 6.2 and 6.3.
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Another algorithm is described in Tanimoto (1982) for sorting n ele-
ments in O(#n) time units on a processor-array computer architecture that
combines features of the (two-dimensional) mesh-connected computer
with those of tree machines. The processors P(k, i, j) are arranged in a
pyramidal configuration such that

0<k<logn'? 0<i,j<2t-1,

where k is the level index of a processor, and i and j its row and column
indices, respectively. Thus, the pyramid machine uses (4n—1)/3 processors.

Stout generalizes the pyramid machine concept to apply to any desired
dimension (Stout, 1983). Typically, a one-dimensional pyramid machine is
a binary-tree machine with additional two-way links connecting proces-
sors at the same level (into a linear array) as shown in Fig. 6.6. A two-
dimensional pyramid is the machine described in Tanimoto (1982),
though with fewer connections. Each processor on level k is connected to
nine others: one on level & — 1 (its parent), four on level k + 1 (its chil-
dren), and four on level k (its immediate neighbours on the mesh, if they
exist). The concept is similar for d-dimensional pyramid machines, where
d = 3. An Q (n/(log n)) lower bound for sorting # elements on an »n-leaf
one-dimensional pyramid is derived in Stout (1983), assuming input and
output are done in parallel at the leaves and thus require constant time.
Also in Stout (1983), an algorithm is described for sorting » elements on
an n-leaf one-dimensional pyramid machine, which is based on Mer-
gesort (Horowitz and Sahni, 1978) and requires O(n/(log n)) time. This
running time is therefore within a constant multiplicative factor from the

/N AN

Fig. 6.6 One-dimensional pyramid machine.
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best sorting time achievable on such a machine. Pyramid machines are
also discussed in Aggarwal (1984).

Higgkvist and Hell (1981a, b) use “comparison trees” to derive upper
and lower bounds on parallel sorting. A sequential comparison tree is a
model of computation used to describe a comparison-based algorithm. In
such a tree, a comparison between two elements of the input sequence
takes place at each node; depending on the outcome of the comparison,
the algorithm branches to one of the node’s children to perform the next
comparison. When a leaf is reached the algorithm terminates: in the case
of sorting, each leaf is associated with one ordering of the elements of the
input sequence. Figure 6.7 shows a sequential comparison tree for deter-
mining the order of three elements {x,, x,, x;}. The comparison that
takes place is shown inside each node, and the branching condition is
shown on each branch. The ordering of the elements is shown at the
leaves. A parallel comparison-based algorithm is modelled by a compari-
son tree in which several comparisons can take place at each node. Theo-
retically, if (}) processors are available, then a tree with two levels (a single
root and n! leaves) can determine the order of the input elements in the
sorted sequence in one time unit, as shown in Fig. 6.8. For a parallel
comparison tree T, let the maximum total number of comparisons in any
root-to-leaf path in T be cp(7T') and let the maximum number of compari-
sons in any node of T be cn(T'). Define

SORT(k, n) = min cp(T),

where the minimum is taken over all parallel comparison trees 7 with
k + 1 levels that sort » elements; similarly

SORTP(k, n) = min cn(7T)

over the same set of trees 7. From Fig. 6.8,

SORTP(], n) < SORT (1, n) < (’2’)

In Hiaggkvist and Hell (1981a, b) it is shown that, for each fixed k,
Q (n"%) < SORT(k, n) <O(n*)

where s, is a sequence with limit 1. Thus the exponents of » in both the
upper and lower bounds for SORT(k, n) have the same limit. The same
bounds apply to SORTP(k, n).

In the same vein, Bentley and Brown (1980) show that if a sequential
algorithm for sorting n elements can be modelled by an n-leaf tree with
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D + 1levels and B children for each nonleaf node, then a corresponding
parallel algorithm that uses Bn processors to sort n elements in
O(D log n) time units can be derived. This is a generalization of the
result in Hirschberg (1978), Preparata (1978), and Nassimi and Sahni
(1982), where it is shown how n""* processors can sort #n elements in
O(k log n) time units for fixed k.

One of the (theoretically) fastest algorithms for sorting (on any model)
is due to Ajtai et al. (1983). It runs on a tree machine with log n levels,
each level containing n processors, and sorts # elements in O(log n) time
units. Since p(n) =n log n, c(n) = n log? n, which is clearly not optimal.

Rather than conducting a worst-case analysis, some authors derive the
time required by a parallel algorithm on the average. Here, the elements
of the input are assumed to obey a given probability distribution, and the
expected running time is obtained. Using the comparison-tree model,
Reischuk (1981) proposed an algorithm that sorts # numbers with n pro-
cessors and runs in O(log n) expected time. Various issues related to the
implementation of tree machines in VLSI technology are discussed in
Mead and Rem (1979), Leiserson (1980), Valiant (1981), Ruzzo and Snyder
(1981), and Bhatt and Leiserson (1982).
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7 Cube-Connected
Computers

71 Introduction

We now turn to the fifth and final processor-interconnection scheme
for SIMD parallel computers to be studied in this book. The scheme is
known as the cube connection (or cube, for short) for reasons to become
apparent shortly. Several efficient parallel algorithms exist for solving a
number of important computational problems on the cube. In this chap-
ter, we present a very fast parallel sorting algorithm for the cube.

We begin by describing the cube-connected parallel computer in Sec-
tion 7.2. The sorting problem for this computational model is defined in
Section 7.3, and a lower bound on the parallel running time required for
its solution is derived. Section 7.4 is devoted to detailing the specific
requirements and configuration of the cube on which our sorting algo-
rithm is to be performed. The algorithm itself and its analysis are the
subject of Section 7.5.

7.2 Model of Computation

Assume that 27 processors Py, P,, ..., P, are available on an SIMD
machine for some g = 1. Further, let i and i’ be two integers, 0 < i,
i®) <27 -1, whose binary representations differ only in position b,
0 <b<gq;inother words if i, ...ipnipip_s...0 i0 is the binary represen-
tation of i, then i, ...1i5ui4ip ...01io is the binary representation of i,
where bit i; is the binary complement of bit i,. The cube connection

133
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Fig. 7.1 Cube-connected computer.

specifies that every processor P; is connected to processor P;» by a two-
way link for all 0 < b < q. The g processors to which P; is connected are
called P;’s neighbours. An example of such a connection is illustrated in
Fig. 7.1 for the case ¢ = 3. The indices of Py, P,,..., P; are given in
binary notation. Note that each processor has three neighbours.

The name of this interconnection scheme derives from the fact that
each of the 27 processors can be placed at one of the corners of a g-
dimensional cube, with the cube’s edges representing the links among
processors. This is illustrated in Fig. 7.2, again for the case g = 3.

As customary for SIMD machines, each processor has a small local
memory consisting of a few registers. It can perform a number of opera-
tions on data stored in these registers, such as comparing and interchang-
ing the contents of two registers and routing the contents of a register to a
neighbour. The same operation is performed simultaneously by all speci-
fied processors.

7.3 The Sorting Problem

Assume that the sequence S = {x,, x|, ..., X,) of distinct integers is to
be sorted on a cube-connected computer with p(n) = 2% processors
Py, Py, ..., Pyn., where p(n) = n. The elements of S are initially
loaded in the computer so that each element resides in a different proces-
sor. The purpose of sorting is to permute the elements of S such that, for
1 <i=<n,P,, is to contain the ith smallest element when sorting is
complete.

In order to derive a lower bound on the number of operations required
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P, Py
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Ps P
P, Py

Fig. 7.2 Three-dimensional cube.

to sort on the cube, consider the case where the smallest element of S is
initially loaded in P, and must therefore be routed during the sorting
process to its final destination in P,. Since the binary representation of 0
and p(n) — 1 differ in all of their ¢ bits, ¢ such routing steps are required.
This means that the parallel running time for sorting » elements on a
cube with p(n) = n processors is Q(log p(n)).

7.4 The Sorting Machine

In this section we provide a detailed description of the cube-connected
computer to be used for sorting. Assume that the sequence S to be sorted
consists of n = 2° elements and that p(n) = n'** where k = s/m for some
integer m, | < m <s. Thus p(n) =2°".

We shall find it convenient to regard the p(n) cube-connected proces-
sors as forming a 2™ x 2° array with 2” rows numbered 0 to 2” — 1 and 2*
columns numbered 0 to 2° — 1. The array is indexed in row-major order
as shown in Fig. 7.3, where the links among processors are omitted for
simplicity.
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Fig. 7.3 Cube-connected computer viewed as a two-dimensional array.
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Each processor P; possesses six registers denoted X (i), R(i), Y (i), Y (i),
T(i), and T" (i). The special symbol & is used to indicate that a register is
empty. In what follows we introduce some terminology related to our
view of the cube-connected computer as a 2™ x 2° array. We then con-
clude this section by discussing data routing using the cube connections
within the rows and columns of the array.

7.4.1. Terminology

(1) A 2" block is defined as a sequence of 2" processors, Py,
Py, ..., Piap., where 0 < i < 2™ — |, The binary representations
of processor indices in a 2" block are all equal in bits s+ m - 1,...,
h + 1, h, and differ in at least one of bits 2 — 1, h — 2, ..., 0. Typically,
each row of our 2™ x 2° processor array is a 2° block. Figure 7.4 shows 2?
blocks in a 2% x 23 array.

(2) A 2'-column block is defined as a sequence of 2* consecutive
columns, such that each row of the block is a 2" block. The binary
representations of indices in a 2*-column block are all equal in bits
s —1,..., h+1, h and differ in at least one of bits # — 1, h - 2,..., 0
along each row, and in at least one of bits s+ m — 1,..., s + 1, s along
each column. Figure 7.5 shows 2'-column blocks in a 2? x 23 array.

(3) A processor P is said to be diagonal under 2" blocking if and only
if

li/2°) = 1i/2’] mod 2.

Figure 7.6 shows the diagonal processors under 2" blocking in a 2™ x 2°
array, with r =0, m =2, and s = 4. We will assume that a function
diag(r, i) is available, which returns the value true if and only if P; is
diagonal under 2" blocking.

(4) A diagonal 2" block is a sequence of 2" diagonal processors (under
2" blocking). Figure 7.7 shows the diagonal 2" blocks in a 2™ x 2° array,
withr =2, m =2, and s = 4.

(5) A processor P; is said to be a left processor (under 2" blocking) if
and only if

[i/2°) > [i/2"] mod 2™.

Similarly, a processor P; is said to be a right processor (under 2" blocking)
if and only if

[i/2°) < [i/2"] mod 2™.
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Fig. 7.7 Diagonal 4 blocks in a 4 x 16 array.

In Fig. 7.7, Py, ..., P\ are left processors whereas P, ..., P; are right
processors. We assume that two functions left(r, i) and right(z, ;) are avail-
able, which return the value true if and only if P; is a left processor and a
right processor, respectively, under 2" blocking.

(6) A left 2" block is a sequence of 2" left processors (under 2" block-
ing). A right 2" block is defined similarly.

7.4.2 Routing

We now show that in a cube-connected computer regarded as a 2™ x 2°
array of processors, an element originally in processor P; can be routed to
all processors in the column and row containing P; in m steps and s steps,
respectively.

Recall that in a cube with 2™* processors, each processor has m + s
neighbours. When the cube is regarded as a 2™ x 2° array, each processor
has m column neighbours and s row neighbours. Specifically, since the
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array is a 2°-column block, each processor P; is connected to P;» where
(1) s+m —1=<b < s within P;’s column

and
(2) s-1<b < 0 within P;’s row.

Assume that the contents of X (i) are to be routed to the (initially
empty) registers of all processors in P;’s column. In a first step P; routes
the contents of X (i) to P; where j = i). In a second step P; and P, route
the contents of their X registers to P;.. and P,.., respectively. This con-
tinues until the column is filled with copies of the original contents of
X (7). Since at every step the number of nonempty X registers in the
column doubles, the number of steps required is log 2™, that is, m. A
similar argument shows that P, ’s row can be filled with X(i)’s contents in
s steps.

7.5 Sorting on the Cube

We are now ready to describe a parallel algorithm for sorting the
sequence S = {xo, X1,..., X,_1)}, where n = 2° for some positive integer s,
on a cube-connected parallel computer with 2°*” processors regarded as
forming a 2™ x 2* array. The algorithm is an adaptation of sorting by
enumeration previously studied in Chapter 2 (Algorithm 2.1) and Chapter
3 (Algorithm 3.4). We begin by presenting an intuitive description of the
algorithm. The algorithm is then stated formally and analysed.

751 Enumeration Sort

Assume that the elements of S are initially loaded in the processors in
row 0 (of the cube viewed as a two-dimensional array), one element to a
processor. Specifically, x; is initially in the X register of P,,
0 < i < n — L. Our adaptation of sorting by enumeration consists of three
steps, namely, counting, ranking, and routing.

A. Counting

The sequence S to be sorted is divided into a number g of subse-
quences S, S,,...,S,, each of which is sorted recursively. Then, for
each x; in S; determine C;, the number of elements in S, that are
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(1) smaller than or equal to x; for f< d,
(i1) to the left of x; for f= d, and
(iii) smaller than x; for > d.

B. Ranking

The rank of x; in the sorted sequence S is computed from

d
rank(x;) = > Cy.
A

C. Routing

Element x; is routed to Py, . Processors Py, P,,..., P,., now con-
tain the sequence S in sorted order.

Note that Enumeration Sort as stated above does not require all the
elements of the input sequence to be distinct. Indeed, because of the way
the C, are computed in A, equal elements will be assigned different ranks
in B, and therefore no two elements are routed to the same processor in
C. Hence, for the remainder of this chapter, we no longer assume that all
the elements of S are distinct.

When implemented on the cube, the above algorithm requires [s/m]
passes. In the first pass, the input sequence is divided into subsequences of
length 2%, where h = s — (|s/m] — )m. Each of these subsequences is
sorted individually, using a 2-column block. The jth pass, where
2 <j < [s/m], receives sorted subsequences of length 2", where
r=h+ m(j - 2). Each of these subsequences is sorted in a 2'-column
block with one element per column. Sets of 2™ such sequences are merged
such that at the end of this pass, sorted subsequences of length 2™ are
obtained, each stored in a 2"*"-column block.

7.5.2  The Formal Algorithm

The ideas discussed above are now stated formally in procedure
CUBESORT below. As mentioned earlier, X(i)=x; for 0 <i <n - L
The X registers of all other processors are assumed to be empty. Further-
more, registers R, Y, Y, T, and T in all processors are also assumed to be
initially empty. The procedure invokes another procedure COUNT, which
we define later in this section. Note that, for an integer i smaller than
27, i, denotes bit b in the binary representation i i, ...iio Of i.
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ALGORITHM 7.1

procedure CUBESORT(s,m)
for i = 0 to 2°*"—1 do in parallel

(1) r«<0
(L) h «s - (s/m]-)m
(2) forj =1to [s/m] do
(2.1) @) Y@ - X0G)
(ii)) forb=stos+h-r— 1do
if Y(i) #+ J then
Y(i®) « Y(i)
end if
end for
(2.2) (i) if diag(r, i) then
TG) « Y(i)
else T() - I
end if
(1) X@)« T@)
23) forb=rtoh —1do
if T(i) #+ & then
TG ®) « T(@i)
end if
end for
(2.4) COUNT(r)
25) forb=stos+h—-r —1do
R(i) < R(i) + R(i"®)
end for
(2.6) for b=h — 1 down to O do
if X(i) + & and (R(i)), # i, then
1) X(®)«X@)
(i) R(@®) « R(i)
(i) X(@) -
(iv) R()~@
end if
end for
27 (@) r<h
i) h<h+m
end for
(3) forb=stos+m~- ldo
if X(i) #+ & then
X@@®) « X(@i)
end if
end for
end for. B
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In procedure CUBESORT, the [s/m] passes of Enumeration Sort are
performed in step 2. Each pass merges sorted subsequences of length 2" to
get sorted subsequences of length 2% . In the first pass, r = 0 and h < m;
subsequently, 7 = r + m. The counting stage of Enumeration Sort is per-
formed by steps 2.1-2.4. In step 2.1 the single element in each column is
routed to all the processors in the same column. As a result, the Y
registers of every 2"-block now contain a sorted subsequence of length 2"
and all 2" blocks in a 2'-column block contain copies of the same sorted
subsequence. In step 2.2, the contents of the Y registers in each diagonal
2" block are assigned to the T and X registers, while the T and X registers
in all other processors are set empty. Then, in step 2.3, the sorted subse-
quence contained in the T registers of the only diagonal 2" block in each
2" block, is copied in the T registers of all nondiagonal 2" blocks (of the
same 2" block). At this point, every 2" block contains two sorted subse-
quences: one in its Y registers (received in step 2.1) and another in its T
registers (received in step 2.3). Note that for diagonal 2" blocks the two
subsequences are identical. In step 2.4 procedure COUNT computes and
stores in R(i) the “count” associated with the element in Y (i), according
to our earlier definition of the counting stage.

The ranking stage of Enumeration Sort is performed in step 2.5. The
rank of each element stored in the Y registers of a column is obtained by
summing up the contents of the R registers in that column. As a result of
step 2.5 the rank of an element associated with some column is replicated
in the R registers of that column.

The routing stage of Enumeration Sort is performed in step 2.6. At the
end of each pass every element must be routed to the correct column. The
elements in the X registers of the single diagonal 2 block in each 2" block
are routed to the X registers of the appropriate processors within the 2"
block. This is carried out by first moving all elements in the 2" block to
processors such that the processor’s index and R (i) agree in bit # — 1. The
next routing ensures that the destination processor’s index and R (i) agree
in bits A — 1 and A — 2. This is continued until all elements have been
routed to the correct processors. Note that by considering only bits 2 — 1,
h —2,..., 0 of the processor’s index, the processors in a row can be
thought of as being numbered from 0 to 2* — 1, which is exactly the range
of values the ranks take. After this step, the nonempty registers of each 2"-
column block contain a sorted subsequence of length 2*.

Following [s/m)] iterations of step 2, the whole input sequence has been
sorted, that is, the nonempty X registers of the (single) 2° block contain a
sorted sequence of length 2*. In step 3, the contents of each nonempty X
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register in a column are routed to all X registers in the same column.
Thus, upon termination of the procedure, processors Py, P, ..., P,y
contain the sequence S in sorted order.

7.5.3  Counting on the Cube

Recall that when procedure COUNT is invoked, each 2" block contains
two sorted subsequences: one in its Y registers and another in its T
registers. The procedure is to find the “count” R (i) corresponding to each
element Y(i). From our earlier discussion of the counting stage it is clear
that

(i) R(i) = number of T elements smaller than or equal to Y(i), for
left 2" blocks;
(i) R(i) =i for diagonal 2" blocks; and

(iii) R(i) = number of T elements smaller than Y(i) for right 2’

blocks.

In order to compute the R values, the sequences Y and T are merged.
Since we need to be in control of the relative positions of equal elements
in the merged sequence, a stable merging algorithm is used (i.e., one that,
in principle, produces a merged sequence that preserves the original rela-
tive positions of equal elements).

It should be obvious that if Y (i) occupies position j after the merge,
then R(i)=j—i.

EXAMPLE 71

The contents of the Y and T registers of a 2? block are shown, before
the merge, in Fig. 7.8a. Processor indices are given mod 22 The result of
the merge appears in Fig. 7.8c with, on top of each element, its final
position in the merged sequence. The contents of the R registers after the
counts have been computed are shown in Fig. 7.8d.

The Bitonic Merge algorithm of Chapter 2 will be used to merge the Y
and T sequences. Recall that in sorting a bitonic sequence {a,, a», ...,
a»), the Bitonic Merger performs a compare-exchange operation on
elements whose indices are, consecutively, 2*~' apart, 2*~2 apart, ..., 1
apart. As shown in Fig. 7.8a, the contents of the Y registers followed by
those of the T registers in a 2" block form a sequence of length 2'*'. This
sequence (which is not bitonic) can be made bitonic by reversing the
sorted subsequence stored in the T registers as shown in Fig. 7.8b.

Procedure COUNT is formally stated on pages 144-145.
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Y(O) Y(I) Y(2) Y(3) T(O) T(I) T(2) T(3)
24 44 52 71 23 32 40 45
(a)

Y(O) Y(I) Y(2) Y(3) T(O) T(1) T(2) T(3)
24 44 52 71 45 40 32 23
(b)

0] I 2 3 4 5 6 7
23 24 32 40 44 45 52 71
(c)
R(O) R(I1) R(2) R(3)
| 3 4q 4
(d)

Fig. 7.8 Counting on the cube.

procedure COUNT(r)
for i = 0 to 2°*” — 1 do in parallel

(1) forb=0tor —1do

T3 ) « T@)
end for

2) Y'(i)<i mod?2
(2.1) if left(r, i) then T'(i) < -1 end if
(2.2) if right(r, i) then T'(i) < 2" end if
23) ber-1
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(3) whileb = -1do
3.1) ifYGE)>T@{)or (Y(@)=T(3G) and
Y (i) > T'(i))
then (i) Y(i) < T(@i)
(i) Y'@)~T'G)
end if
(3.2) if b = 0 then
if i, = 1 then
i) TE®) e Y@
() T'E®) e Y'(i)
end if
end if
33 beb-1
end while
@) Y(i) < 2(i mod 2")
@1 TG)<«YE)+1
S) ifY(@)=2orY'(i)=-1
then Y(i) « &
end if
G.1) fT'()=2"or T'(i)=-1
then 7(i) -« &
end if
6) forb=0tor —1do
6.1) if(Y(@)=Fand (Y (i) =1)
or (T(i) + & and (T'(i)), = 0)
then (i) Y(i) « T(@)
(i) Y'@) TG
end if
6.2) ifi,=1
then (i) T(@(®) e Y(i)
() T'(®) e Y'@)
end if
end for
7 fTH)+S
then (i) Y(i) <« T(i)
(i) Y'()-T'G)
end if
(8) if diag(r,i)
then R(i) < i mod 2’
else R(i) « Y(i) - Y'(i)
end if
end for. B
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In step 1 of procedure COUNT the subsequence stored in the T regis-
ters of every 2" block is reversed. In step 2 the original position of the
element in Y (i) within a 2" block is saved in Y'(i) for later use. Also in
this step, left and right 2" blocks are identified by storing an appropriate
label in their T’ registers. Note that for any two processor indices i and j
within the same 2" block,

(1) Y'()> T'()ifitis a left 2" block,

(i) Y'(i) < T’'(j) if it is a right 2" block.

Bitonic merging is carried out in step 3. At every iteration of the while
loop, elements 2°*' apart are in the ¥ and T registers of the same proces-
sor. Thus, initially, elements 2" apart are in the same processor. In step 3.1
these two elements are compared and interchanged if necessary. In
step 3.2 elements 2° apart are brought into the same processor in prepara-
tion for the next iteration.

EXAMPLE 7.2

Figure 7.9 illustrates the working of step 3 on the contents of the Y and
T registers of a 2? block. For each processor, the binary representation of
the processor’s index (mod 2?) is indicated. The value of the loop parame-
ter b is also given. Figure 7.9a shows the bitonic sequence of Fig. 7.8b. In
Fig. 7.9a, elements 2? apart are compared and interchanged (step 3.1). In
Fig. 7.9b, elements 2' apart are brought in the same processor (step 3.2),
to be compared and interchanged in Fig. 7.9c. This is repeated in
Figs. 7.9d and e, for elements 2° apart. The merged sequence of Fig. 7.8¢c
appears in Fig. 7.9f.

Figure 7.9f illustrates that when step 3 is completed, the merged
sequence resides in Y (0), 7(0), Y(1), T(1), Y(2), T(2),..., in this order,
where processor indices are given mod 2’. The final position of each
element is computed in step 4 and stored in the Y and T registers. Since
the counts are to be obtained only for elements that were originally stored
in the Y registers of the 2’ block, elements of the merged sequence which
originated from a T register are destroyed in step 5.

In order to compute these counts, the final position of each element
(which originated from a Y register and therefore has not been destroyed
in step 5) must now be routed back to the processor that originally con-
tained this element. This is done in steps 6 and 7. In these two steps, the
paths traversed by elements, originally in Y registers, during step 3 are
now traversed backwards. To see this, note the following. In step 6, for



7.5 SORTING ON THE CUBE 147

i= 00 Ol 10 Il i= 00 Ol 10 I

Y |24 |44 | 52 71 Y (24| {40 32 23

Vil o7

T |45 40| |32 23 T 145 44 52 71

(a) b=l (b) b=l
i= 00 Ol 10 i i= 00 Ol 10 I

Y |24 |40]| |45]| |44]| v |24 |23||4a5] |44

I R

T |32 231 152 71 T (32| |40 |52 |7]
(c) b=0 (d) b=0
i= 00 ol 10 I i= 00 Ol 10 1

Y |24 321 | 45 52 Y |23 32| |44 52

Pl

T |23 40| | 44 71 T |24 40| | 45 71

(e) b=—| (f)

Fig. 7.9 Step 3 of COUNT.
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b=0,1,...,r — 1, if the element in Y (Y (i) + &) came originally from a
processor whose index has a binary representation with a 1 in the bth
position ((Y'(i)), = 1), then it must have come there through an inter-
change within this processor (step 3.1) since normally at this stage the
elements in the Y registers come from processors whose indices have
binary representations with a 0 in the bth position (step 3.2). Similarly, if
the element in T(7T'(i) #+ &) came originally from a processor whose index
has a binary representation with a 0 in the bth position ((T'(i)), = 0)),
then it must have come there through an interchange within this proces-
sor (step 3.1), since normally at this stage the elements in the T registers
come from processors whose indices have binary representations with a 1
in the bth position (step 3.2). Therefore, steps 6.1 and 6.2 undo what was
done in steps 3.1 and 3.2, respectively. Step 7 undoes the effect of step 3.1
during the first iteration of the while loop in step 3.

EXAMPLE 7.3

Figure 7.10 illustrates steps 6 and 7 for a 22 block. Figure 7.10a shows
the 2% block in Fig. 7.9f after the final positions have been computed and
the elements originally from T registers have been destroyed. Note that 1,
4, 6, and 7 are the positions of elements 24, 44, 52, and 71, respectively, in
the merged sequence. The contents (in binary notation) of the Y’ and T’
registers corresponding to nonempty Y and 7 registers, respectively, are
also shown. Figures 7.10a-d and Fig. 7.10e demonstrate the working of
steps 6 and 7, respectively.

After step 7 has been carried out, each processor contains in its Y’ and
Y registers the initial and final positions in the merged sequence of the
element originally in its Y register, as shown in Fig. 7.10f. The counts are
computed and placed in the R registers in step 8. This concludes our
description of COUNT and hence of CUBESORT.

EXAMPLE 74

Assume that 2° processors are available on a cube. Figure 7.11 illustrates
how CUBESORT sorts the sequence

S = (40, 23, 45, 32, 57, 54, 66, 72, 29, 81, 92, 35, 44, 24, 52, 71),

on such a cube. Note that » = 16, that is, s = 4, and hence m = 2. Each
small square in the figure represents a processor, and the number inside
the square indicates the contents of a specified register. A blank square
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i= 00

00 Ol 10 I
4 6
ol 10
| 7
00 [
(a) b=0
o] 10 i
[ 4
00 Ol
6 7
10 1
(c) b=l
oo o 10 I
[
o 111
4 6 7
Ol 10 I
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00 Ol 10 1l
| 6
00 10
4 7
orf |

(b) b=0
00 Ol o 1
I 4
00 ol
6 7
o]l

(d) b=l
00 ol 10 Il
| 4 6 7
oof {oi|frof]
4 6 7
oo

(f)

Fig. 7.10 Steps 6 and 7 of COUNT.
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40|23145132|57|54]|66]72|29|81 192|35|44]|24|52|7I

(a) CONTENTS OF X REGISTERS

40(23]45]32(57|54|66|72|29]|81(92(35|44{24(52]|7I
40(23(45|32|57|54|66|72|29(81(92|35(44|24{52 |71
40(23|45|32|57]|54|66(72(29|81|92|35|44|24(52|7|
40123 (45]32|57|54(66|72(29(8192(35 (44 (24|52 |7I
(b) CONTENTS OF Y REGISTERS AFTER STEP (2.1)

40 57 29 44
23 54 81 24
45 66 92 52

32 72 35 7!
(c) CONTENTS OF X AND T REGISTERS AFTER STEP(2.2)

40(40|40)40|57|57|57|57|29129|29(29|44(44|44|44
23123|23(23154|54|54|54|81 |81(81|81]|24|24|24|24
45145/45|45|66|66|66(66]92 (92]|92|92|52 |52|52 |52
32(32(32]3272(72({72{72[35|35|35(35(71 (71|71 |71
(d) CONTENTS OF T REGISTERS AFTER STEP(2.3)

ojojrjojojoftrjrfo|tr|tjtjofol ]!
Fjofryrjprjofrfrfofoljtr|o]t joy} 1t
ojojojojojojojtjofo|ofojoijo |
Ijoftrjojojo|jofo|jofrjtrjojojofof|o
(e) CONTENTS OF R REGISTERS AFTER STEP (2.4)
20|31 |j1joj2(3jo0f(2(3(t|l{O0|2]|3
210131 (l1]O|2|3{0}|2(3|1]|1|0(2]3
2|10 |31 (rtofz2(3(of2(3|y1{1jo|1213
20|31 |t{O0j2|3j0f2(3(1({1]0|2|3
(f) CONTENTS OF R REGISTERS AFTER STEP (2.5)

Fig. 7.11 Sorting {40, 23, 45, 32, 57, 54, 66, 72, 29, 81, 92, 35, 44, 24, 52, 71) by CUBESORT.
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Fig. 7.11 (continued)
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23 32 40 45

s4|s7|e6| |72

29 35 81|92
24 44 52 71

(m) CONTENTS OF X REGISTERS AFTER STEP (2.6)

23124129132|35|40(44|45 |52|54 57|66 7! (72|81 [92
23124|29|32|35]|40/|44(45|52|54 |57|66|7I |72|8] |92

23(24129]32(35|40{44]|45|52|54|57|66|7! |72|8I |92
23124 (29132|35|40|44|45|52|54 |57 (66|7! |72(8! |92

(n} CONTENTS OF X REGISTERS AFTER STEP (3)

Fig. 7.11 (continued)

represents an empty register. Initially, the elements of .S are loaded into
the X registers of processors Py, P,,..., Pi;s, such that X(i)=x;, i =
0, 1,..., 15. Sorting will consist of two passes. Pass 1 is illustrated in Figs.
7.11a-g and pass 2 in Figs. 7-11h-n. During pass 1, » = 0 and 4 = 2, and
during pass 2, r =2 and & = 4. Observe that, upon termination of the
procedure, the sorted sequence is replicated over the four rows.

Analysis

Let us define a route operation (or route, for short) as the transfer of
one data element from one processor to a neighbour, or the simultaneous
exchange of one data element between two neighbours. We denote by
f(s, m) the number of route operations executed by procedure
CUBESORT.

To derive an expression for f(s, m), we note that each iteration of step 2
requires 44 routes as follows:

(i) h - r routes in step 2.1,

(ii) & - r routes in step 2.3,

(iii) 3 routes in step 2.4 (steps 1,3, and 6 of COUNT each contains

one route and is executed r times),

(iv) h - r routes in step 2.5, and

(v) & routes in step 2.6.
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Step 3 requires an additional m routes. Hence

fs,m)=4( -(s/m|-Dm+ --- +(s -2m)+(s -m)+s)+m
=4((s = (Is/m] = Dm)[s/m] + (m/2)([s/m] = 1) [s/m]) + m
=2s([s/m]+ )+ m
< 2s([s/m] + L95), since m <s.

It is easy to see that the number of routes dominates the number of all
other operations. It is also reasonable to assume that the duration of a
route is longer than that of any other operation. Therefore, the running
time of Algorithm 7.1 is given by

t(n) = O(f(s, m)) = O(k log n),

where k = [s/m)].

This running time does not include the time elapsed during input and
output. If we assume, however, that both input and output are done in
parallel with Py, P,,..., P,_, simultaneously receiving their inputs and
simultaneously delivering their outputs, then these two operations require
constant time and ¢(n) is unaffected.

Since p(n) = n"*Y |

c(n) = t(n) x p(n) = O(kn""* log n),

which is not optimal. Nevertheless, Algorithm 7.1 shares an interesting
property with Algorithms 3.2, 4.2, and 5.2 studied earlier. Its running
time varies with the number of available processors since ¢(z) and p(n)
are related through the parameter k: the larger p(n), the smaller ¢(n), and
vice versa. An algorithm which behaves in such a way is said to be adap-
tive. In one extreme, m = s (i.e., k = 1) and Algorithm 7.1 would be using
n? processors to sort a sequence of length n in O(log n) time. This per-
formance is reminiscent of that of Algorithm 2.1: indeed in this case, the
two algorithms are equivalent. At the other extreme, m = 1 (i.e., k = s),
and the algorithm would use 2n processors and sort in O(log? n) time.
(Other adaptive algorithms are described in Chapters 8, 9, and 10.)

We conclude this chapter with the following observation. Recall that
Q(log p(n)) was found to be a lower bound for sorting on the cube.

When p(n) = 2**™, this means that

t(n)y=(s + m)c,, for some positive constant c, .

On the other hand, we have just demonstrated that
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t(n) < 2s([s/m] + 1.5)c,, for some positive constant ¢, .
This means that, when m = s,
cis =t(n) <css,

for two positive constants c¢; and c¢;. In other words, Algorithm 7.1
achieves, to within a constant multiplicative factor, the best running time
possible for sorting on the cube, when m = s.

00 000
00! 00l
010 010
oll oIl
100 100
101 101
110 110
1] 11

Fig. 7.12 Perfect shuffle interconnection for eight processors.
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7.6 Bibliographical Remarks

An early reference to the use of the cube-interconnection scheme in
parallel computation is Pease (1977). Enumeration Sort as described at the
beginning of Section 7.5 is due to Preparata (1978), who first proposed it
for implementation on a shared-memory SIMD machine. Algorithm 7.1 is
due to Nassimi and Sahni (1982).

Siegel (1979) demonstrates how the cube can simulate and be simulated
by various other interconnection schemes for SIMD machines. The ability
of the perfect shuffle to simulate the cube was first pointed out in Stone
(1971). Recall that the perfect shuffle allows the pairing of data elements
from processors whose indices have binary representations differing in
one bit. This means that all connections on the g-dimensional cube can
be obtained by the perfect shuffle. To see this, assume that g = 3; the
perfect shuffle for eight processors is displayed in Fig. 7.12 (the binary
representation of the processors’ indices are shown and “neighbour” pro-
cessors are linked by a vertical line). This interconnection simulates the
cube of Fig. 7.2, where each processor is linked to three neighbours, as
follows. Consider Fig. 7.13, where processors whose indices differ in their
binary representations in bits 0, 2, and 1 are linked in Figs. 7.13a, b, and c,
respectively. In the left column of Fig. 7.12 the pairs of processors
(Py, P), (P;,P3;), (P4, Ps), and (Ps, P;) are neighbours. This
corresponds to the situation in Fig. 7.13a. After one shuffle, the elements
from the pairs (P, P4), (P,, Ps), (P,, Pg), and (P;, P;) are brought into
neighbouring processors, as illustrated in Fig. 7.13b. A second shuffle
creates the adjacencies (Pg, P,), (P,, P3), (P4, Ps), and (Ps, P;)) shown
in Fig. 7.13c. One more shuffle and we cycle back to the situation in
Fig. 7.13a. Thus, if one adjacency is available, then the perfect shuffle can
obtain any other adjacency on the g-dimensional cube in at most g ~ 1
shuffles. This means that Algorithm 7.1, whose running time is #(»n) can
be simulated on the perfect shuffle and requires O((m + s)t(n)) time. In
fact, Nassimi and Sahni (1982) derive the following surprising result: a
parallel computer with the links in Fig. 7.12 plus the unshuffle connec-
tions (as defined in Chapter 4) can simulate Algorithm 7.1 in at most
3t(n) time.

One advantage of the perfect shuffle over the g-dimensional cube con-
nection is that the number of connections per processor is fixed in the
former and equal to ¢ in the latter. Specifically, the sorting scheme based
on the perfect shuffle and displayed in Fig. 4.9 has exactly two input lines
and two output lines per processor. This is an important consideration,
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particularly if the circuits are to be constructed using VLSI technology.
The same observation is made by Preparata and Vuillemin (1981), who
propose an alternative interconnection scheme called the cube-connected
cycles, which can simulate the cube. Like the perfect shuffle, this scheme
uses a fixed number of connections per processor. It requires # processors
to sort a sequence of n elements in O(log? n) time.

Note, however, that both the perfect shuffle and the cube-connected
cycles share one disadvantage with the cube connection described in this
chapter. Assume that ¢ > 2 and that a g-dimensional cube is to be real-
ized on a two-dimensional chip. Then, obviously, in such a realization
links connecting pairs of processors are not of equal length for all such
pairs. It follows that our running-time analysis for Algorithm 7.1 would
significantly change if we assume that the time required to propagate a
datum from one processor to another varies with the length of the wire
connecting these processors. This factor is sometimes taken into consider-
ation in theoretical analyses of algorithms based on VLSI technology.

As discussed previously for other interconnection schemes, there may
be situations in which the actual number of available processors is smaller
than the number required by an algorithm to solve a problem. One possi-
ble solution is to modify the algorithm so that-the small circuit of proces-
sors emulates the larger one. The only penalty here is the additional
running time, since every processor is doing sequentially what several
processors would have done in parallel. In the case of the cube, it is shown
in Fishburn (1981) how a cube of size 2?*?" can be emulated by a cube of
size 27.

A randomized (or probabilistic) algorithm for some problem is one that
produces a solution that has a given probability of being correct. Reif and
Valiant (1983) describe a randomized sorting algorithm for the cube-con-
nected cycles interconnection scheme of Preparata and Vuillemin (1981).
Their algorithm sorts # elements using # processors in ab log n time with
probability 1 — n~? for some constant b and all large enough a.
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Shared-Memory SIMD
Computers

8.1 Introduction

As mentioned in Chapter 1, SIMD computers are divided into two
broad categories according to the way used by the processors to communi-
cate and exchange data. In one category, the processors communicate
through an interconnection network, such as the (one-dimensional) linear
array, the perfect shuffle, the (two-dimensional) mesh, the tree, and the
(g-dimensional) cube. Algorithms for sorting on such computers were
studied in Chapters 3-7. The other category comprises those computers
in which the processors communicate through a shared memory. Here
again, several incarnations of this approach have been proposed, which
differ from one another depending on whether two processors are allowed
simultaneously to read from or write into the same memory location.

This chapter is concerned with parallel algorithms for shared-memory
SIMD computers. Because of the great flexibility of such computers, we
require the associated parallel algorithms to possess a number of desirable
properties. Assume that a parallel algorithm is intended for solving a
problem of size n on a shared-memory SIMD computer.

(1) The first two properties concern the number of processors used by
the algorithm, which is a function p(n) of n. First, it is important that
p(n) be sublinear in 7 (i.e., a power of »n smaller than 1): no matter how
inexpensive computers become, in most practical situations it is unreal-
istic on the part of algorithm designers to assume that the number
of processors they have at their disposal is bigger than or equal to n,

159
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especially when n is extremely large. Second, p(n) should adapt to the
actual number of processors on the available parallel computer: thus func-
tions such as log n or n"? (although sublinear) will not do, because of
their inflexibility.

(2) The next two properties concern f(n), the worst-case parallel run-
ning time of the algorithm, which is also a function of n. Obviously, it is
required that ¢(n) be significantly smaller than the time required by the
best sequential algorithm for the problem. Furthermore, ¢(n) should vary
inversly with p(n): the larger p(n), the smaller #(n), and vice versa.

(3) Finally, the last and ultimate goal of the algorithm designer is that
the cost c(n) of the parallel algorithm (i.e., the product of p(n) and t(n))
be optimal in the sense that it matches a known lower bound on the
number of sequential operations required in the worst case to solve the
problem at hand.

In this chapter we describe a parallel sorting algorithm for the shared-
memory SIMD computer. It uses 7'~ processors, where 0 < e < 1, to sort
a sequence of n integers in O(n° log n) time, for a cost of O(n log n) that
is optimal. The parameter e is quite important here, as it depends on the
number of available processors on a given parallel computer. If N proces-
sors are available and a sequence of length # is to be sorted, where n > N,
then e is computed from N = n'¢. We note in passing that all real quanti-
ties used throughout this chapter should in practice be rounded to a
convenient integer. The rounding should be done pessimistically. Thus,
the real n'™ representing the number of processors used by an algorithm
should be rounded down to ensure that the resulting integer does not
exceed the actual number of available processors. By contrast, the real n°¢
representing the worst-case running time of an algorithm should be
rounded up to ensure that the resulting integer is not smaller than the true
worst-case running time.

A crucial step in the sorting algorithm is the selection of the kth smal-
lest element of a sequence of # integers in random order where | < k < n.
We show how this step can be performed by a parallel algorithm that uses
n'-¢ processors, where 0 < e < 1, and runs in O(n°) time, for an optimal
cost of O(n). Note that both the sorting and the selection algorithms
satisfy the properties listed above.

Our model of a parallel computer is described in Section 8.2. The
parallel selection algorithm is the subject of Section 8.3. The sorting algo-
rithm itself is presented in Section 8.4.
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8.2 Model of Computation

In our shared-memory SIMD machine shown in Fig. 8.1, N processors
P,,P,,..., Py share a common memory and operate under the control
of a single instruction stream issued by a central control unit. In addition
to the shared memory, each processor possesses a local memory in which
programs and data are stored. The processors operate synchronously:
during a given time unit, a selected number of processors are active and
execute the same instruction each on a different data set; the remaining
processors are inactive. When two processors wish to communicate, they
do so through the shared memory: one processor writes a datum in the
shared memory, which is subsequently read by the other processor. Differ-
ent processors can access the shared memory at the same time. However,
no two processors are allowed simultaneously to read from or write into
the same memory address. When more than one processor need the same

SHARED MEMORY

CONTROL

Fig. 8.1 Shared-memory SIMD computer.
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datum at the same time, a broadcast operation is performed, which is best
described by procedure BROADCAST below. The input to the procedure
is a datum m in shared memory to be broadcast to N processors num-
bered 1 to N using a shared-memory array B of length N, which is
initially empty. The ith position of B is denoted by B(i). When the
procedure terminates, each of the N processors has received m.

procedure BROADCAST(m, N, B)

(1) Processor P, copies m in its own memory and then writes it into
B(1).
(2) fori =0to(log N - 1)do
for j =2' + 1 to 2'*' do in parallel
processor P; copies B(j —2') in its own memory and then
writes it into B(j)
end for
end for. N

Procedure BROADCAST requires O(log N) time. Note that BROAD-
CAST simulates procedure PROPAGATE of Chapter 2.

It should be clear from the description given above that a shared-
memory SIMD machine can simulate another SIMD machine of the type
in which the processors communicate by an interconnection network.
Therefore, the algorithms described in Chapters 3-7 can be modified to
run on a shared-memory SIMD machine while keeping their number of
processors and (asymptotic) time requirements unchanged. This modifi-
cation is straightforward if the direct links connecting the processors are
simulated by alternated write and read operations by the processors, into
and from the common memory, respectively.

A particularly useful application of broadcasting in the context of this
chapter is in letting the processors know the value of the important
parameter e when a problem of size # is to be solved. Initially, each of the
N processors knows its own number i, 1 <i < N, but not the value of V.
Thus, before executing any algorithm, the values of n and N are broad-
cast to all processors, each of which computes e from N = n'¢. We there-
fore assume henceforth that e is initially known to all processors at the
beginning of computation.

We assume further that each processor is capable of executing an opti-
mal sequential selection algorithm such as Select (which in the worst case
determines the kth smallest element of a sequence of r elements,
1 <k < r,in O(r) steps). Finally, each of the n'™ processors is assumed to
possess enough local memory to store a sequence of length n° elements.
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To conclude this section, we present another parallel procedure, which
will be invoked often by the algorithms in this chapter. Assume that
processor P;, | <i < N, contains in its local memory a number s;. The
following procedure ALLSUMS replaces the s; in each processor by the
sums, +S,+...+5;.

procedure ALLSUMS(s,, s2,...,5n)
for j =0 to (log N — 1) do
for i =2 + 1 to N do in parallel
processor P; obtains s;_, through shared memory then computes
SicS;i+Si-»
end for
end for. N

This procedure also requires O(log N) running time.

83 A Parallel Algorithm for Selection

Given a sequence S of »n integers and an integer k, 1 <k < n, the
selection problem calls for finding the kth smallest element in S. We now
describe a parallel algorithm for solving this problem. The following pro-
cedure PARALLEL SELECT runs on a shared-memory SIMD machine
with n'¢ processors P, , P,, ..., P, where 0 < e < 1. It receives .S and k
as input and returns the kth smallest element of S. As mentioned in
Section 8.2, it is assumed that each of the processors can independently
execute a sequential procedure Select to solve the same problem. We use
the notation |S| to denote the size of a sequence S.

procedure PARALLEL SELECT(S, k)

(1) If |.S| < 3 then using one processor (and at most one compari-
son) return the kth element
else subdivide S into |.S | subsequences of |S |¢ elements
each and assign a subsequence to each processor end if.
(2) fori =1to |S|'* do in parallel
(2.1) P; finds the median m; (i.e., the [|S|¢/2]th smallest
element) of its associated subsequence using the
sequential procedure Select
(2.2) P, writes m; in M (i), the ith position of an array M in
shared memory
end for.
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(3) Find the median m (i.e., the [| M |/2]th smallest element) of M
by calling PARALLEL SELECT (M,[|M |/2)).
(4) Subdivide S into three subsequences, S,, S,, and S;, of ele-
ments smaller than, equal to, and larger than m, respectively.
(5) If |S\| = k then PARALLEL SELECT(S, k)
else if |.S,| + |S2| = k then return m
else PARALLEL SELECT(Ss, k- |S,| - |S2])
end if
endif. B

Analysis

Let t(n) be the running time of PARALLEL SELECT for an input of
size n. A step-by-step analysis of the procedure follows.

(1) The beginning address 4 of sequence S in the shared memory and
its size n, as well as the value of k, are broadcast to all processors; this can
be done in O(log n'*) time using procedure BROADCAST. Processor P;
computes, in constant time, the address of the first and last elements of its
associated subsequence from 4 + (i — )n® and A4 + in® — 1, respectively.
Hence step 1 requires ¢, log n time units where ¢, is a constant.

(2) Using procedure Select, the median of each subsequence can be
found in O(n°) operations. Hence step 2 required c,n° time units, where
c, is a constant.

(3) Since |M| =n'"*, step 3 requires ¢(n'¢) time.

(4) Subdividing S into S,,S,,and S; can be done by letting each
processor P; split its associated subsequence into three lists S, S5, and S
of elements smaller than, equal to, and larger than m respectively. The

i, the S%, and the S are then merged to form S, S,, and S;, respec-
tively. Broadcasting m to the n'™ processors can be done in O(log n'™)
time using procedure BROADCAST. The time required by each processor
to split its subsequence is linear, that is, O(n®). Merging the S} can be
done in O(n*) time by the following procedure (similar procedures, with
the same running time, can be used to merge the S and S}, respectively).
Let s; denote the size of S}, that is, s, = |Si|. Foreach i, 1 <i <n'*,
the sum

M-

Z;= S;

J

is computed. All such sums can be obtained by n'*° processors using



8.3 A PARALLEL ALGORITHM FOR SELECTION 165

procedure ALLSUMS in O(log n'¢) time. Taking z, = 0, all processors
simultaneously write their lists in .S, , with processor P; starting to copy
S! in position z;_, + 1 of array S,. The time elapsed during this step is
proportional to the length of the longest S|, which cannot exceed n°.
Note also that |S,|, the size of S, needed in step 5, has already been
obtained through the computation of z,... Hence the time required by
step 4 is dominated by c;n¢, where c; is a constant.

(5) Since m is the median of M, n'"¢/2 elements of S are guaranteed
to be larger than it. Furthermore, every element of M is smaller than at
least n¢/2 elements of S. Thus |S,| < 3n/4. Similarly, |S;| < 3n/4.
Hence step 5 requires at most 7(3n/4) time.

From the above, we have
t(n)y=c,logn +cyn®+1(n"°) +csn° +1(3n/4),

whose solution is t(n) = O(n°¢), forn > 4.
Since p(n) = n'™°, we have

c(n)=t(n)xp(n)=n"*x0(n°)=0(n).

This cost is optimal in view of the following (trivial) lower bound: any
algorithm for sequential selection must consider each of the » input ele-
ments at least once, hence (n) steps are required to find the kth smal-
lest.

EXAMPLE 8.1

Assume that there are five processors available on a shared-memory
SIMD machine (i.e., N = 5). Assume further that S = {18, 35, 21, 24, 29,
13, 33, 17, 31, 27, 15, 28, 11, 22, 19, 25, 34, 32, 16, 12, 23, 30, 26, 14, 20}
(i.e., n = 25). Hence, 25" = 5 and e = 0.5. Let k = 6, that is, the sixth
smallest element of S is to be selected. The working of procedure PARAL-
LEL SELECT for this input is illustrated in Fig. 8.2. The sequence is
initially in the shared memory as shown in Fig. 8.2a. The effect of step 1 is
shown in Fig. 8.2b: the sequence has been distributed among the five
processors, with each processor receiving a subsequence of five elements.
In step 2, each processor determines the median of its associated subse-
quence; the sequence M of medians is created and placed in the shared
memory, as shown in Fig. 8.2c. A recursive call to PARALLEL SELECT
in step 3 determines the median m = 24 of M. In step 4, S is subdivided
into the three subsequences S,,S,, and S; of elements smaller than,
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Fig. 8.2 Selecting the sixth smallest element of a sequence by PARALLEL SELECT.
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equal to, and larger than m, respectively, as shown in Fig. 8.2d. Since
|S1]=13and k =6, |S,| > k and PARALLEL SELECT is called recur-
sively in step 5 with S =S, and k =6. Note that 13°° (i.e., ~3.6) is
rounded down to 3, and hence three processors are used during this level
of recursion. In step 1, each processor is assigned four elements, with the
third processor receiving the leftover element, as shown in Fig. 8.2e. The
sequence M of medians after step 2 is shown in Fig. 8.2f. The median
m = 16 of M is obtained recursively in step 3. In step 4, the sequences
S.,5,,andS; are created as shown in Fig. 8.2g. Since
[Si] +|S2]=6and k =6, |S,| + |S2| = k and the integer 16 is returned
as the sixth element of §.

84 Sorting on a Shared-Memory SIMD Computer

We now describe a parallel algorithm for sorting the sequence S =
{x\, x2,..., x, ) of distinct integers in increasing order. The algorithm is
an adaptation of the sequential algorithm Quicksort to run on our shared-
memory SIMD model of computation. As mentioned earlier, the algo-
rithm uses # '~ processors, where 0 < e < 1, runs in O(n* log n) time, and
is therefore cost-optimal.

It may be helpful to first recall how Quicksort operates. This is best
done through the following recursive procedure. The procedure takes as
input a sequence S of distinct integers in random order and returns S
sorted into increasing order.

procedure Quicksort(S)
(1) HIf |S| < 3 then sort S directly using at most one comparison
and return
else find m, the [|S |/2]th smallest element of S end if.

(2) Create the two subsequences S| and S, of S, of elements smaller
than and larger than m, respectively. Place m in position
[151/2] of S.

(3) Quicksort(S).

(4) Quicksort(S,;). &

Ideally, in a parallel version of Quicksort, steps 3 and 4 above would be
executed simultaneously, since each of the two subproblems .S, and S, has
the same structure as the original problem S, and contains at most half as
many points as S. Unfortunately, this is not possible here: if n'° proces-
sors solve a problem of size # in time ¢(n), then (n/2)"¢ processors would
be needed to solve a problem of size #/2 in time ¢(n/2). In our case, only
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n'=¢/2 processors would be assigned to each of S, and S,, which is clearly
less than the number required. On the other hand, implementing steps 3
and 4 sequentially would mean that we are solving a problem of size n/2
using 7'~ processors (more than the (n/2)° required), and many proces-
sors would be idle. More important, however, such an implementation
would not achieve the desired performance, as can be easily verified.

We now show how this difficulty can be surmounted. Let m;, where
1 <i < 2" 1, be defined as the [in/2"*]th smallest element of .S. Proce-
dure SHARESORT, the parallel version of Quicksort for shared-memory
SIMD computers, uses this concept as follows. First, the elements m; of S
are found for i = 1, 2, ..., 2Y¢ — 1. These elements are then used to divide
S into 2"¢ subsequences of size n/2"¢ each. These subsequences, denoted
by S, S3,...,8,8,8%,..., 54, where j = 2"¢!, are such that

(1) every element of S! is smaller than every element of Si"' for
l<i=<j-1;

(2). every element of .S is smaller than every element of S};

(3) every element of S} is smaller than every element of S§' for

l<i<j-1
(4) the union of the subsequences Si, Si,..., S| forms S,; and
(5) the union of the subsequences S3, S%, ..., S forms S,.

Procedure SHARESORT is now applied in parallel to half of these subse-
quences (namely, S;) using n'*/2"¢"! processors per subsequence. The
same is then done for the other half (i.e., S,). Note that the number of
processors used- to sort each subsequence of size n/2"¢ is exactly the
(n/2"¢)"¢ required for a proper recursive application of the algorithm.

In practice, of course, if e is smaller than 0.5 and does not satisfy the
two conditions

(i) 1/e is an integer less than or equal to 10 (say)
(i) n =2,

then the smallest real number larger than e and satisfying (i) and (ii) is
taken as e. Note that (i) guarantees that 2"¢ is an integer of finite size,
while (ii) ensures that the m; will be found!

In order to convey the main idea behind the algorithm in the simplest
and most intuitive way possible, a formal description of SHARESORT is
given below for the case e = 0.5, that is, when N the number of available
processors is equal to n%° . The procedure takes as input a sequence S of n
distinct integers in random order and returns S sorted into increasing
order. Note that 2"¢ — 1 in this case is equal to 3.
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ALGORITHM 8.1

procedure SHARESORT(S)
(1) If |S| < 3 then sort S directly using one processor and at most
one comparison and return
else find m,, m,, and m; end if.
(2) Split S into four subsequences of approximately equal size,
namely:

Sie{x;xi<my),

S%“{xi Tm <X, <my},

Sy {x;: my<x;<ms;)}, and
S3e{x;:my<x;).

(2.1) Place m,, m,,and m, in positions [[|S|/4], [|S /2],
and [3|S |/4], respectively, of S.
(3) Do (3.1) and (3.2) in parallel
(3.1) SHARESORT(S'})
(3.2) SHARESORT(S?).
(4) Do (4.1) and (4.2) in parallel

(4.1) SHARESORT(S})
(4.2) SHARESORT(S?). ®

Analysis

Let ¢(n) be the parallel running time of SHARESORT. From Sec-
tion 8.3 we know that steps 1 and 2 can be implemented in O(n°) time.
Thus for some constant b,

t(n) = bn® + 2t(n/2"°)
whose solution is ¢(n) = O(n° log n). Hence, since p(n) = n'¢, we have
c(n)=t(n)xpn)=n"*x0n*logn)=0(n logn),
which is optimal.

The analysis given above does not take into consideration the time
required for input and output. If, however, we assume that the n'*®
processors can receive their inputs (subsequences of length 7n¢) si-
multaneously and produce their outputs (subsequences of length #°¢)
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(b) STEP 2
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(c) STEP 3
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(d) STEP 4

Fig. 8.3 Sorting (20, 15, 24, 11, 17,22, 13, 19, 16, 25, 12, 21, 26, 18, 23, 14) by SHARESORT.

simultaneously, then both these operations require O(n¢) time, and our
analysis is unchanged.

EXAMPLE 8.2

Assume that there are four processors available on a shared-memory
SIMD machine (i.e., N = 4). Assume further that S = {20, 15, 24, 11, 17,
22,13, 19, 16, 25, 12, 21, 26, 18, 23, 14} is to be sorted (i.e., n = 16). Hence,
16 =4 and e = 0.5. The working of procedure SHARESORT for this
input is illustrated in Fig. 8.3. Initially, the sequence S is read by the
processors from some input medium and placed in the shared-memory as
shown in Fig. 8.3a. During step 1, m, =14, m,=18,and m; =22 are
computed using procedure PARALLEL SELECT. In step 2 the four subse-
quences S|, S?, S}, and S} are created, as shown in Fig.8.3b. The effect
of the recursive calls to SHARESORT in steps 3 and 4 is illustrated in
Figs. 8.3c and d, respectively. Note that 4°° (i.e., 2) processors are used to
sort each of the subsequences S}, S?,S3,and S3. The final sorted
sequence is now produced as output, with each processor placing a subse-
quence of length 4 on the output medium.
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A few concluding remarks are in order regarding procedure
SHARESORT.

(1) SHARESORT satisfies the requirements on p(n), t(n), and c(n)
stated in Section 8.1:
(i) p(n) is sublinear and adaptive;
(ii) ¢(n) is smaller than n log n and varies inversely with p(n);
(iii) c¢(n) is optimal.

(2) All the parallel sorting algorithms for SIMD machines studied in
this book that are asymptotically faster than SHARESORT, use more
processors, and are not cost-optimal. For example, Algorithm 4.1 runs in
O(log? n) time and uses 71/2 processors.

(3) The assumption that the elements of .S are distinct can be easily
removed by modifying SHARESORT as follows. In step 2, all the ele-
ments equal to m,, m,, and m; are grouped together in three sequences
M, M,,and M,, respectively. Then, the elements of M, M,, and M,
are placed in their positions in the final sorted sequence, a shown in
Fig. 8.4. Note that PARALLEL SELECT does not require its input to
consist of distinct elements.

b=} —f-Mf— ST ——M, s mp— 57 —|
[ [ 1T l [ T 1 ]

Fig. 8.4 Handling repeated elements in a modified SHARESORT.

8.5 Bibliographical Remarks

A description and analysis of Select can be found in Aho et al. (1974).
Procedure PARALLEL SELECT is essentially an adaptation of Select for
shared-memory SIMD machines, which first appeared in Akl (1984a). A
nontrivial lower bound of Q(n) on sequential selection is derived in
Hyafil (1976). Other parallel algorithms for the selection problem are
described in Valiant (1975), Reischuk (1981), Tanimoto (1982), and Stout
(1983a, b).

A description and analysis of Quicksort is provided in Knuth (1973).
The recursive definition of Quicksort given in Section 8.4 is not the one
usually found in the literature and is certainly not the most efficient in
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practice. It has the property, however, of running in O(n log n) worst-case
time. To see this, note that the median of a sequence can be found in
linear time using procedure Select. Thus the running time of Quicksort
for a sequence of length # is

t(n)=an + 2t(n/2),

where a is a constant. Thus #(n) = O(n log n). By contrast, the efficient
version of Quicksort commonly used chooses a random element (rather
than the median) for splitting the sequence and has a worst-case running
time of O(n?). Procedure SHARESORT and its analysis are from Akl
(1984b).

In Valiant (1975) a parailel algorithm based on sorting by merging is
proposed. It sorts a sequence of length » on a shared-memory SIMD
machine in O(log n log log n) time using 7 /2 processors.

Two parallel algorithms are described in Hirschberg (1978) for sorting n
numbers on a shared-memory SIMD machine. The first algorithm, which
is based on the principle of bucketing, assumes that the input numbers
belong to the set {0, 1,..., m — 1}. It distributes the elements among a
number of buckets, which are then sorted individually. Sorting is com-
pleted in O(log #) time using n processors and O(mn) memory locations.
The second algorithm uses n'*V* processors, where k is an arbitrary inte-
ger, to sort random inputs in O(k log ») time on a model of computation
that aliows more than one processor to access the same shared-memory
location at the same time. An algorithm that allows such multiple access
is said to have memory fetch conflicts, and is generally considered to be
impractical.

Hirschberg’s ideas are extended by Preparata, who also describes two
sorting algorithms for shared-memory SIMD machines (Preparata, 1978).
The two algorithms are based on the idea of sorting by enumeration
discussed in Chapters 2, 3, and 7. The first algorithm uses the odd-even
merging of Chapter 2 to achieve the same performance as Hirschberg’s
second algorithm mentioned above but without memory fetch conflicts.
(Recall that the same result is achieved by CUBESORT of Chapter 7).
The second algorithm is based on a fast parallel merging algorithm due to
Valiant (1975) and uses n log n processors to sort n numbers in O(log n)
time with memory fetch conflicts. Another algorithm with memory fetch
conflicts and comparable performance is proposed by Kruskal (1983). It
uses n processors to sort 7 elements in O(log n (log log n)/(log log log n))
time.
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An adaptive parallel sorting algorithm is described in Shiloach
and Vishkin (1981). The algorithm runs on a shared-memory SIMD
machine with N processors, where 1 < N < n, and sorts n elements
in (n/N)logn +lognlog N time. The algorithm is cost-optimal for
N < n/(log n). This performance is comparable to that of SHARESORT
except that the algorithm has memory fetch conflicts and is cost-optimal
only for a restricted range of values of V.

As mentioned in Section 6.5, the time required by a parallel algorithm
on the average is sometimes the subject of study. In the case of the shared-
memory model of computation, where memory fetch conflicts are
allowed, two examples of such analysis are provided in Reischuk (1981)
and Horowitz and Zorat (1983). A parallel sorting algorithm is proposed
in Reischuk (1981). It uses n processors and runs in O(log n) expected
time. Another extension of Quicksort (different from SHARESORT) is
described in Horowitz and Zorat (1983): it uses N processors to sort 7
numbers in an expected time of O(n(l — 1/N) + (n/N) log (n/N)).

A comparative analysis of various algorithms for shared-memory
SIMD machines is provided in Borodin and Hopcroft (1982).
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9 Asynchronous Sorting on
Multiprocessors

9.1 Introduction

Like other algorithms for parallel computers, parallel sorting algorithms
cover a very wide spectrum. At one end of the spectrum are the networks
of Chapter 2. These are special-purpose computers, each of which is spe-
cifically designed as a direct hardware implementation of a sorting algo-
rithm. They are followed by the algorithms of Chapters 3-7, which are
designed to run on parallel computers in which the processors are inter-
connected by a communication network obeying a regular geometry.
Unlike the networks of Chapter 2, these computers are capable of effi-
ciently solving other computational problems besides sorting, such as
problems involving polynomials and matrices. Then comes the sorting
algorithm of Chapter 8, which uses a number of processors communicat-
ing through a shared memory. This latter model of a parallel computer is
a powerful one. It is much less structured than its predecessors, and hence
comes very close to being a general-purpose parallel computer on which a
variety of algorithms can be executed. However, because all processors
must execute the same instruction synchronously, the range of problems
that can be solved on such a computer is still limited. We now arrive at
the other end of the spectrum, where we find algorithms for the least
structured and hence the most flexible of all parallel computers, the
MIMD machine.

An MIMD machine consists of p processors, each of which is a com-
plete computer with its own control, memory, and arithmetic and logic
units. The processors possess independent instruction counters and

175
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operate asynchronously. Because each processor of an MIMD computer is
a full-fledged computer capable of operating on its own data stream under
the control of its own instruction stream, such a computer offers a great
deal of power and flexibility when compared with an SIMD computer.
Usually, however, the price for this flexibility is the substantial difficulty
involved in programming MIMD computers. There is also the problem of
predicting the performance of such programs.

As shown in Fig. 9.1, for p = 6, MIMD machines are divided into two
categories: multicomputers, where the processors are connected by a com-
munication network; and multiprocessors, where the processors share a
common memory and use it for communication.

Algorithms for multicomputers are known as distributed algorithms.
One characteristic of multicomputers is that the number of processors is
usually small relative to the size of the problem being solved. The proces-
sors exchange messages while cooperating on the solution of a problem.
Usually, the time required to perform computations on data within a
processor between two message exchanges is negligible when compared to
the time it takes a message to travel from one processor to another. It is
for this reason that we count the number of messages exchanged when
analyzing a distributed algorithm: the fewer the messages, the better the
algorithm. Some distributed sorting algorithms have been proposed in the
literature. Judging by their performance, however, it is safe to say that
none of them succeeds in exploiting the unique properties of multicom-
puters.

Algorithms for multiprocessors are known as asynchronous parallel
algorithms. The number of processors is large, and they rarely communi-

COMMUNICATION
NETWORK
OR
SHARED MEMORY

Pa Py Ps

Fig. 9.1 MIMD computer.
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cate. The processors share a number of global variables stored in a com-
mon memory. The quality of an asynchronous algorithm is measured
primarily in terms of the amount of time required to solve the problem.
In this chapter, we describe two parallel sorting algorithms for multipro-
cessor computers.

Some issues pertaining to the execution of algorithms on multiproces-
sors are discussed in Section 9.2. Our first asynchronous algorithm is
presented in Section 9.3. It is based on idea of sorting by enumeration
previously encountered in Chapters 2, 3, and 7. Our second algorithm is
an extension of the sequential algorithm Quicksort and is described in
Section 9.4.

9.2 Running Asynchronous Algorithms

When discussing asynchronous algorithms, it is important to distin-
guish between the notion of a process and that of a processor. An asyn-
chronous algorithm is a collection of processes, some or all of which are
executed simultaneously on a number of available processors. Initially, all
processors are free. When the parallel algorithm starts to be executed on
an arbitrarily chosen processor, it creates a number of computational
tasks, or processes, to be performed. A process thus corresponds to a
section of the algorithm: there may be several processes associated with
the same algorithm section, each with a different parameter.

Once a process is created, it must be executed on a processor. If a free
processor is available, the process is assigned to the processor that per-
forms the computations specified by the process. Otherwise (if no free
processor is available), the process is queued and waits for a processor to
be free.

When a processor completes execution of a process, it becomes free. If a
process is waiting to be executed, then it can be assigned to the processor
just freed. Otherwise (if no process is waiting), then the processor is
queued and waits for a process to be created.

The order in which processes are executed by processors can obey any
policy that assigns priorities to processes. For example, processes can be
executed in a first-in-first-out or in a last-in-first-out order. Also, the
availability of a processor is sometimes not sufficient for the processor
to be assigned a waiting process. An additional condition may have to
be satisfied before the process starts. Similarly, if a processor has al-
ready been assigned a process and an unsatisfied condition is encountered
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during execution, then the processor is freed. When the condition for
resumption of that process is later satisfied, a processor (not necessarily
the original one) is assigned to it. These are but a few of the scheduling
problems that characterize the programming of multiprocessors. Finding
efficient solutions to these problems is of paramount importance if mul-
tiprocessors are to be considered useful general-purpose parallel comput-
ers. We note here that such scheduling problems are not present in the less
flexible but easier to program SIMD machines.

93 Asynchronous Sorting by Enumeration

Our first asynchronous sorting algorithm is based on the now familiar
method of sorting by enumeration. In order to sort the sequence
S ={x;,x,, ...,x,) on a multiprocessor, the algorithm creates n pro-
cesses. Process i, where | < i < n, compares Xx; to all other elements of S
and counts, using a local variable k, the number of elements smaller than
x,;. When all comparisons have been made, x; is placed in position k + 1
of the sorted sequence. Thus each process operates independently of all
other processes, and no communication is required.

In the following algorithm, let X be an array of length n in shared
memory, initially containing the sequence to be sorted, that is, X(i) = x;
for 1 <i <n. When the algorithm terminates, the sorted sequence
resides in a second array T of length # in shared memory. The variables i,
j, and k are local to each process created by the algorithm.

ALGORITHM 9.1

(1) fori=1ton do
create process I
end for.
(2) process i:

21 k<0
(2.2) forj=1ton do
if X(i)> X(j)thenk <« k +1
else if (X(i) = X(j) and { > j)
thenk <« k +1
end if
end if
end for
23) Tk+1)«X@@). 1
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Discussion

A number of observations are in order regarding Algorithm 9.1.

(1) The algorithm does not assume that its input consists of distinct
elements: if x; = x;, then x,’s counter is incremented, provided i > j.

(2) Since all processes need to have access to the entire array X simul-
taneously, the algorithm possesses the memory fetch conflicts defined in
Chapter 8. Note that in this case the processes need to be able to read
from but not write into X simultaneously.

(3) Since the algorithm terminates with the sorted sequence residing
in T, then, if needed, a process can be added to the algorithm to copy T
back into X. As will be seen from the analysis to follow, the O(n) steps
required by this process do not change the asymptotic running time of the
algorithm.

(4) As discussed in Section 9.2, each process is executed by a proces-
sor. The initial for loop that creates these processes (step 1) can be exe-
cuted by a processor chosen arbitrarily. When all processes have been
created, this processor is freed and can now execute a waiting process.

Analysis
To simplify the analysis of Algorithm 9.1, we assume that

(1) no process is started before step 1 is completed,
(2) memory fetch conflicts are resolved in constant time, and
(3) there is no time penalty for scheduling the processes.

There are n processes to be executed, each containing O(n) operations.
If p(n) = p, where 1 < p < n, then

t(n)=[n/pl x O(n)
and
c(n)=t(n)xp = O(n’),

which is not optimal.

Note that reading the input sequence into the shared memory and
producing the sorted sequence as output can be done by one processor in
O(n) time units. Hence, including the time elapsed during input and
output in the above asymptotic analysis leaves the results essentially
unchanged.
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EXAMPLE 9.1

Let S = (8, 6,6, 9, 7},-and assume that p = 2 (i.e., two processors P,
and P, are available). Step 1 of Algorithm 9.1 is executed by P, (say) and
creates five processes. When this step is completed, all processes are ready
to start. .

Assuming a first-in-first-out scheduling policy, processes 1 and 2 are
executed first by P, and P,, respectively. Process 1 computes the position
in the sorted sequence of element 8 of S. Simultaneously, process 2 does
the same for element 6. The two elements are then placed in their respec-
tive positions of array 7. When processes 1 and 2 terminate, array 7T is as
shown in Fig. 9.2a.

A careful examination of the number of operations involved in pro-
cesses 1 and 2 reveals that process 1 terminates earlier, and hence P,
is freed before P,. To see this, let us assume that a comparison opera-
tion and an assignment operation take roughly the same amount of
time. Counting the number of times the comparisons
X(@)>X(§), X(i)=X(j),and i > and the assignments k « 0, k - k + |,
and T'(k + 1) « X(i) are executed, we find that processes | and 2 require
14 and 17 time units respectively, as shown in Fig. 9.3.

Since P, is now free, it can start executing process 3. Three time units
later, P, is freed and starts executing process 4. These two processes are
responsible for placing elements 6 and 9, respectively, in the final sorted
sequence. When they terminate, array T is as shown in Fig. 9.2b. This
time, process 3 requires 18 time units, whereas process 4 requires 13 time

(a)

(b)

T |6|6|7|8]|°9

(c)
Fig. 9.2 Sorting (8, 6, 6,9, 7) by Algorithm 9.1.
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PROCESS | | PROCESS 3
L | | >
Rk 7 55 » TIME
o PROCESS 2 |PROCESS 4 |PROCESSS5 |y 1ve
2 0 7 30 a5

Fig. 9.3 Process scheduling in Algorithm 9.1.

units. Hence, although process 4 was started 3 time units after process 3,
it terminates 2 time units earlier and P, is freed before P, as shown in
Fig. 9.3.

Since P, is now free, it can start executing process 5. Two time units
later, P, is freed, and since there are not waiting processes, it remains idle.
When process 5 terminates 15 time units later, array T is as shown in Fig.
9.2c. The total time required by the algorithm is 45 time units, as shown
in Fig. 9.3.

94 Asynchronous Quicksort

In this section we describe an asynchronous implementation for a mul-
tiprocessor of procedure Quicksort described in Chapter 8. Recall that,
given a sequence .S of n distinct elements to be sorted, Quicksort starts by
finding the median m of S. Element m is now placed in position [r/2] of
the sorted sequence. Then S is partitioned into two subsequences S, and
S, of elements smaller than and larger than m, respectively. The two
subsequences .S, and S, are now sorted by Quicksort recursively. When-
ever the size of a subsequence to be sorted is less than 3, it is sorted
directly using at most one comparison.

When implemented on a multiprocessor, Quicksort will generate subse-
quences to be sorted, each of which corresponds to a process to be exe-
cuted by a processor. The creation of a process will coincide with the
generation of the associated subsequence. In order to provide an intuitive
description of the algorithm, we assume that » is a power of 2 and model
it using a binary tree, as shown in Fig. 9.4 for n = 32.

Each node of the tree is associated with a subsequence created during
the execution of the algorithm. The number inside each node represents
the length of the subsequence. Thus in the first stage (i.e., level 0 of the
tree), the 16th smallest element of the initial sequence of length 32 is
found, and the sequence partitioned into two subsequences of 15 and 16
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Fig. 9.4 Binary tree modelling Algorithm 9.2.
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elements, respectively. These two subsequences, represented by the two
children of the root, are now partitioned in the same way during the
second stage (i.e., at level 1 of the tree). Since the partitioning process
terminates when a subsequence has length 2 or less, such a tree has n/2
leaves, and hence a total of

log(n/2)
2'=n-1
=0

{

nodes. It follows that the total number of processes created by the asyn-
chronous algorithm will be # — 1. In general (when 7 is not necessarily a
power of 2), the total number of processes never exceeds 2'°¢” — 1, where,
as usual, log n is rounded to the next higher integer.

Let X be an array of length » in shared memory, initially containing
the sequence of distinct integers to be sorted, that is,
X(i)=x, for 1 <i < n. Throughout Algorithm 9.2, Q; denotes, a subar-
ray X. The pair (g, ,s;) is used to represent the address in shared memory
of the first element of Q; and the length of Q;, respectively. Since we
know that there will be at most 2'%¢” — 1 such pairs, they can be stored in
shared memory in an array R of length 2'%” — 1. Algorithm 9.2 is the
asynchronous version of Quicksort.

ALGORITHM 9.2

(1) Let Q, be equal to X.
(2) R(1) ~(q,n).
(3) Create process 1.
(4) process i:
(4.1) Read (q;, s;) from R(i)
(4.2) Ifs; < 2 then sort Q; directly
else
(i) find the median m (i.e., the [ 5;/2]th smallest
element) of Q;
(ii) place m in its final position in X
(1ii) partition Q; into @y and (5, of elements
smaller than and larger than m, respectively
(iv) R(2i) < (g2 ,52)
(V) RQ2i+1)«(gain+S2s1)
(vi) create processes 2i and 2i + 1
end if. &
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Any scheduling policy can be used to assign waiting processes to availa-
ble processors in Algorithm 9.2. In order to simplify the remainder of the
discussion, we make the following three assumptions:

(1) Processor P, is assigned to the task of performing steps 1, 2, and 3
of the algorithm.

(2) Processor P, executes process 1.

(3) If processor P, created Q,;, then P, is always given priority in
executing process 2i (i.e., the further partitioning of Q,;). Upon termina-
tion of process 2i, if Q;,, is still waiting, then it is assigned processor P;.

EXAMPLE 9.2

Let n = 32, that is, 32 elements are to be sorted, and assume that p is
the number of available processors. Figures 9.5 and 9.6 illustrate the
behaviour of Algorithm 9.2 using the binary-tree model for p = 4 and
p = 8, respectively. The processor assigned to Q; is shown either beneath
or to the left of the node associated with Q;. Note that if several nodes at
the same level of the tree are assigned the same processor, then this means
that the subtrees rooted at these nodes were processed sequentially in a
left-to-right fashion by the same processor, in agreement with the schedul-
ing policy assumed earlier.

Analysis
Our analysis of Algorithm 9.2 is based on the following assumptions:

(1) Each processor has access to and can run the sequential procedure
Select which determines the kth smallest element of a sequence of length
r in O(r) steps. It follows that determining the median m of a subse-
quence Q; and partitioning Q; into Oy and Q. require O(s;) time
units.

(2) Two subsequences of roughly the same size take roughly the same
amount of time to be partitioned.

(3) There is no time penalty for scheduling processes.

(4) The number of elements 7 to be sorted and the number of proces-
sors p available are both powers of 2.

Theorem 9.1 The running time of Algorithm 9.2 is
t(n) = O(n(2(1 - (1/p)) + (log n — log p)/p)).
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Fig. 9.5 Sorting 32 elements with four processors by Algorithm 9.2.
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Fig. 9.6 Sorting 32 elements with eight processors by Algorithm 9.2.
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Proof We first observe that a sequence of two elements or fewer is fully
sorted by one processor. Hence, for n elements, no more than n/2 proces-
sors will ever be needed.

Clearly, as long as the number of new subsequences created at any stage
is smaller than or equal to the total number of available processors, then
all of these subsequences can be processed in parallel. Thus each node at
level k of the tree, where p = 2* for some 0 < k < log(n/2), is the root of
a subtree all of whose nodes must be processed sequentially by the same
processor. This situation is illustrated in Fig. 9.7.

The following polynominal expresses the number of operations
required to sort a sequence of length n using p processors. The ith term
of the polynominal gives the number of operations required at level i — |
of the tree (the multiplicative constants being omitted):

n+(n/2)+(n/4) +-- -+ (n/(p/2)) + (n/p) + 2(n/2p) + 4n/4p) +- - -+
((n/2)/p)(n[(n/2)).

The running time of Algorithm 9.2 is therefore

t(n) = O(n(mjé_I zl) + :7 (1 + log(ini)))
_ O(n(Z(l - 11,) + W))- !

The analysis given above does not take into consideration the amount
of time elapsed during input and output. Since one processor can read the
input sequence and print the sorted output in O(n) time units, however,
inclusion of this term in the above expression for ¢(n) leaves it essentially
unchanged.

Since p(n) = p, we have

c(n)=t(n)xp=0(np +nlogn),

which is optimal provided that p < log n.

Finally, we note that the condition imposed on the input to Algorithm
9.2 that all elements be distinct can be easily removed using the same
method suggested in Chapter 8 regarding procedure SHARESORT.

In concluding this chapter we observe that both algorithms described
here display a performance that can be easily achieved with very simple
SIMD machines studied earlier in this book, notably in Chapter 3. It is
therefore clear that for the problem of sorting, the increased flexibility of
multiprocessors does not appear to offer much in terms of performance to
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Fig. 9.7 Illustration for the proof of Theorem 9.1.
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outweigh the substantial difficulty involved in programming such com-
puters. The design of a truly efficient parallel algorithm for sorting on
MIMD machines still remains as an interesting open problem.

9.5 Bibliographical Remarks

Multicomputers are described in Lorin (1972), Enslow (1974, 1978), and
Lampson ez al. (1981). Lower and upper bounds on distributed sorting are
derived by Loui (1984). Distributed sorting algorithms are described in
Wegner (1982) and Rotem et al. (1983), which use p processors to sort a
sequence of n elements by O(pn) and O(p? log p log n) + O(n) messages,
respectively. Examples of other distributed algorithms can be found in
Fishburn (1981), Rodeh (1982), Peterson (1982), Chandy and Misra (1982),
and Gallager et al. (1983). A multicomputer is said to be reconfigurable if
its processors can be interconnected, as desired, by one of several commu-
nication networks. The design, implementation, and testing of a reconfi-
gurable multicomputer are described in Akl (1984) and Bottomley (1984).

The architecture of multiprocessors is discussed in detail in Lorin
(1972), Enslow (1974, 1977), Stone (1980), Baer (1980), and Gottlieb er al.
(1983). A complete description of the design and implementation of the
Cm™* multiprocessor, as well as the results of a number of experiments
conducted on it, are provided in Jones and Gehringer (1980). Various
issues related to the design and analysis of asynchronous algorithms for
multiprocessors are discussed in Kung (1976, 1980), Robinson (1977),
Baudet (1978), Raskin (1978), and Jones and Gehringer (1980). Several
such algorithms are described and reviewed in Kung (1974, 1980), Baudet
(1978), and Oleinick (1982). It is shown in Oleinick (1982) that the time
required to execute a process is difficult to predict exactly, mostly because
of memory conflicts and the overhead involved in process scheduling. An
annotated bibliography on multiprocessing is provided in Satyanarayanan
(1980).

Algorithm 9.1 is from Chabbar (1980). An asynchronous algorithm
based on sorting by merging and a number of references to other parallel
sorting algorithms for multiprocessors are also given in Chabbar (1980).
Algorithm 9.2 is based on ideas from Lorin (1975) and Raskin (1978). A
model of a multiprocessor is described in Lorin (1975). Besides various
asynchronous versions of Quicksort, asynchronous implementations of
sorting by odd—even merging (see Chapter 2), sorting by odd-even trans-
position (see Chapter 3), and sorting by bucketing (see Chapter 8) are also
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discussed in Lorin (1975). An implementation of Quicksort for Cm* and
the results of a number of experiments with the algorithm are reported in
Raskin (1978). A description and analysis of the sequential procedure
Select can be found in Aho et al. (1974).

Robinson gives two asynchronous implementations of Quicksort and
analyzes their expected running time using order statistics and queueing
theory (Robinson, 1977). Similarly, two asynchronous implementations of
sorting by merging are described in Robinson (1977) and Tolub and Wal-
lach (1978) together with their average-case analysis. Another asynchro-
nous version of sorting by bucketing is also developed in Tolub and
Wallach (1978).
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10 Parallel External Sorting

10.1 Introduction

In all the preceding discussion we have assumed that the entire
sequence S to be sorted fits into the primary memory of the parallel
computer, that is, its fast random-access memory. Thus, in Chapters 2-7,
S was distributed among the local memories of the processors. Similarly,
in Chapters 8 and 9, we took it for granted that the shared memory is
capable of accommodating S. Therefore, all parallel algorithms studied so
far are instances of internal sorting. We now turn to the case in which the
size of S exceeds the capacity of the available primary memory. Here, we
are forced to store S in a relatively slow secondary memory. This secon-
dary memory is a mass storage device, such as a magnetic tape or a disk.
For this reason, we refer to the problem of this chapter as external sorting .

As it turns out, external sorting does not require any new sorting con-
cepts that are fundamentally different from the ones studied earlier. In
fact, in order to solve our new problem, we borrow two algorithms
described in Chapters 3 and 6 and adapt them to the new sorting environ-
ment. What distinguishes external sorting from internal sorting, however,
is that we now have to take into consideration the physical peculiarities of
the mass storage device used.

The most important characteristic of mass storage devices is that they
are sequential in nature. Unlike an array in primary memory, any of
whose elements can be accessed at random, an array stored on a mass
storage device is accessed sequentially. For example, if we are reading
from the middle of a tape and we want to access the first element stored
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on the tape, then the tape must be rewound to its beginning. Disks, by
contrast, allow for some randomness in accessing blocks of elements, but
no individual element can be accessed without a sequential search within
a block. Thus, in order to find an element stored on a disk, the block
containing the element is first located and then the disk is rotated until
the element is found or the end of the block is reached.

The algorithms in Sections 10.2 and 10.3 are adaptations of Algorithms
6.2 and 3.3, respectively, to run in an external sorting environment. The
implementation of both algorithms using tapes is also discussed.

10.2 External Sorting on a Tree

The algorithm in this section runs on a binary tree of processors, as
shown in Fig. 10.1. The tree has p leaves, where p is a power of 2, and
hence a total of 2p — 1 processors. The leaf processors can read from and
write into a mass storage device. The root processor can write into the

level O

P, level |

level

p leaves P4 log p

MASS STORAGE DEVICE

Fig. 10.1 Binary tree of processors for Algorithm 10.1.
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mass storage device. All other connections are two-way and allow a proc-
essor at level i to exchange data with its parent processor at level i — 1 for
1 <i<logp.

In the algorithm we assume the following:

(1) The sequence S = {x,, X2,..., x,) of integers to be sorted is ini-
tially stored in the mass storage device. The latter is a collection of either
tapes or disks.

(2) Each processor in the tree is capable of storing only two input
elements in its local memory.

(3) nisapowerof2, and n > 2p.

ALGORITHM 10.1

(1) The input sequence of length n is divided into p subsequences
of length n/p each.
(2) for all leaf processors do in parallel
each leaf processor sorts one of the p subsequences
end for.
(3) fori =1tologp do
for all processors at level (log p) — i do in parallel
merge two sorted subsequences of length 2°'n/p (each of
which is received from one of the child processors at level
(log p)-i+1) into a single sorted subsequence of length
2'n/p
end for
end for. N

10.2.1 Implementation Using Tapes

We now show how each of the steps in Algorithm 10.1 can be imple-
mented using a particular mass storage device, namely, a collection of
tapes. Note that, although stated in terms of tapes, the implementation
given below can be used with any similar mass storage device.

Step 1: The entire input sequence of length n is assumed to be stored
initially on one tape. The sequence is divided among 2p tapes, each tape
holding a sequence of length n/2p.

Step 2: Each of the p leaf processors is assigned four tapes T',, T, T,
and T,. T, and T, are tapes created in step 1 (and hence contain a
subsequence of length n/2p each), whereas T3 and T, are blank tapes.
Thus a total of 4p tapes are required. Each of the p leaf processors
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produces a sorted sequence of length »n/p stored on one tape. This is done
as follows. Let N = n/p. Procedure TAPESORT below is a variation on
the sequential sorting algorithm Mergesort. It receives two tapes 7', and
T, with N/2 elements each and produces a sorted sequence of length N,
using two extra tapes 7’3 and T',.

procedure TAPESORT
for i =1to log N do
(2.1) ifiis odd
thenlet T\, T%, T, and T2, stand for T, T,, T, and
T ., respectively
else let T}, T%, T),, and T2, stand for T, T4, T, and
T,, respectively
end if
(2.2) forj =1to N/2' do
the jth sorted subsequence of length 2! in T} is
merged with the jth sorted subsequence of length 2!
in T2 and the result placed in 72;§™>?
end for
end for. W

The merging of two subsequences of length 2°~' in TAPESORT is done
by a leaf processor as follows. Let j be odd. One element is read from 7T,
and another from T2 . The smaller of the two is written in T.,. The
larger of the two is retained. If the smaller element came from T}, then
the next element of the same subsequence is read from T}, and the
preceding step repeated. Otherwise (the smaller element came from T
the next element of the same subsequence is read from T2 and the
preceding step repeated. Hence, no leaf processor need store more than
two elements. If one subsequence is exhausted before the other one, then
the remaining elements of the second subsequence are copied in T .

Step 3: Since no processor in the tree can store more than two ele-
ments, the merging process in step 3 is pipelined in a manner similar to
that used in Algorithm 6.1. At every stage, a processor routes to its parent
the smaller of the two elements stored by its own children. When a
sequence produced by one child is exhausted, the remaining elements of
the sequence produced by the other child are routed, one at a time, to the
processor’s parent. Finally, the root processor writes the final sorted
sequence into the mass storage device. The following procedure TREE-
MERGE is an implementation of step 3 using this idea.



10.2 EXTERNAL SORTING ON A TREE 197

procedure TREEMERGE
for all processors do in parallel
if the processor is the root and contains an element
then it writes it on the output tape
else if the processor is empty
then if it is a leaf
then it reads the next element from its input tape con-
taining the associated sorted subsequence
else (i) it invokes the contents of its two children
(ii) if both children are empty
then it does nothing
else if one child is empty
then it keeps the integer received from the
nonempty child
else it retains the smaller of the two
received integers and returns the larger
to the child from which it originated
end if
end if
end if
else it does nothing
end if
end if
end for. A

Analysis

Clearly, step 1 can be performed in O(n) time units. Procedure
TAPESORT in step 2 consists of log(n/p) iterations, each of which con-
taining n/p operations. Hence step 2 requires O((n/p) log(n/p)) time
units. In TREEMERGE, the first element reaches the root after
(log p) + 1 time units. Another 1 + 2(n — 1) time units are needed to
produce the entire sorted sequence. Hence step 3 requires O(n) time
units. Therefore,

t(n)=O0(n) + O((n/p) log(n/p)).
Since p(n)y=2p -1,
c(n)=(2p - 1)(O(n) + O((n/p) log(n/p)))
=O(np) + O(n log n),
which is optimal provided that p < log n.
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Fig. 10.2 Sorting {4, 15,7, 11, 14, 1, 13, 8, 5, 10, 3, 12, 6, 16, 9, 2) by Algorithm 10.1.
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EXAMPLE 10.1

The working of Algorithm 10.1 is illustrated in Fig. 10.2 for the case in
which

S={4,15,7,11, 14, 1, 13, 8, 5, 10, 3, 12, 6, 16, 9, 2}

is the sequence to be sorted and p = 4. Figure 10.2a shows the situation
after step 1: the sequence has been distributed among eight tapes. Figure
10.2b shows the four tapes resulting from step 2, each containing a sorted
subsequence of length 4. The first few iterations of step 3 are illustrated in
Figs. 10.2c—j with input tapes omitted and the output tape shown only
when needed.

10.3 External Sorting on a Pipeline

As mentioned in the introduction, the algorithm of this section is an
adaptation of Algorithm 3.3. Recall that the latter assumes that the
sequence to be sorted has length 7, where n = 2, for some positive inte-
ger r, and uses r + 1 processors P,, P,,..., P,,; connected in a pipeline
fashion. P, receives the input sequence to be sorted and P,,, produces the
sorted sequence as output. The remaining processors are connected so
that P;’s output is P,,,’s input for 1 < i < r. During each time unit, P,
reads an integer from the input sequence and produces it as output. For
2 <i=<r+ 1 P, receives two subsequences of length 22 from P;_, and
merges them into one subsequence of length 2! which it produces as
output.

In Algorithm 3.3 the input and output subsequences to and from P;
were implemented as queues in a fast random-access memory. If instead
we use a mass storage device, such as a collection of tapes or disks, then
the setup would be as shown in Fig. 10.3, for r = 3. In the figure M;
denotes the mass storage device containing the output from P; and the
input to P, for 1 <i <r. M, contains the input sequence S =
{x,,x2,..., x,} of integers to be sorted and M, contains the final sorted
sequence. Algorithm 10.2 is given below.

Mo R Fo M [+{Re ey M M3 [o{Pal> Ma

Fig. 10.3 Pipeline for Algorithm 10.2.
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ALGORITHM 10.2

Do steps |, 2, and 3 in parallel

(1) fori=1ton do
P, reads x; from M, and writes it on M,
end for.
(2) for i =2 to r do in parallel

Q2.1) k-1
(2.2) while k < n do

if M,_, contains two subsequences of length 2°~? each

then (i) P; merges them and places the output on

M,
(i) k < k + 2!
end if
end while

end for.

(3) 'if M, contains two subsequences of length 2"
then P,,, merges them and places the output on M,
end if. B

Note that Algorithm 10.2 is different from Algorithm 3.3 in that P,,,
starts to merge two subsequences only when both have been placed in full
in M. This is in contrast to Algorithm 3.3, in which a processor starts the
merge as soon as one subsequence is fully created and the first element of
the second subsequence is available. The reason for the difference is that
M ; is a sequential device. If we allow P; to add elements to a subsequence
S while it is being merged with another subsequence by P,,,, then this
would add a substantial overhead. To see this, note that P; is constantly
trying to gain access to the end of the subsequence while P;,, is trying to
gain access to its beginning. It would therefore be necessary to perform
the time-consuming operation of rewinding the tape (or rotating the disk)
containing S; whenever an access by P; is to be followed by an access by
P i+l -

10.3.1 Implementation Using Tapes

The mass storage device will consist _of 4r + 2 tapes. Thus M; will
consist of four tapes T4, T5, T4, and T for 1 <i < r. Each of M, and
M ., will consist of a single tape. This is shown in Fig. 10.4 for r = 3.
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Fig. 10.4 Pipeline for Algorithm 10.2 using tapes.

We assume that each of the p(n) processors possesses a clock. All clocks
are started simultaneously when execution of the algorithm by the paral-
lel computer begins. Once started, all clocks operate synchronously. For
each processor, clock is a local variable initialized at 0 and incremented
by 1 every time the clock counts one time unit. During one time unit, a
processor is capable of

(i) receiving two integers, each from a different tape, as input
(ii) comparing two integers and
(iii) producing one integer as output on a tape.

Thus x, is read by P, during the first time unit.
A step-by-step implementation of Algorithm 10.2 using tapes is given
below.

Step 1:

fori =1ton do
P, reads x; from the input tape and writes it on
(1.1) T}ifi=1mod 4
(1.2) Tyifi =2 mod 4
(1.3) Tiifi =3 mod 4
(1.4) Tiifi =0 mod 4

end for.
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Step 2:

for i = 2 to r do in parallel
if clock = 2' - 1
then

2.1) k-1
(2.2) while k < n do

(1) Jj < [k/2""] mod 4
(ii) ifj =1 then ‘
P, merges two subsequences of length 2'~? each,
obtained from T%{™" and T5', respectively, into a
single sequence of length 2'~', which it places on
T
else if j = 2 then A
P, merges two subsequences of length 2/~
each, obtained from T4 and T4, respec-
tively, into a single sequence of length 2,
which it places on T%
else if j = 3 then
P; merges two subsequences of length
2i~% each, obtained from 7' and T,
respectively, into a single sequence of
length 27, which it places on T%
else if j = O then
P, merges two subsequences of
length 2'% each, obtained from T4
and T, respectively, into a single
sequence of length 2!, which it
places on T

end if
end if
end if
end if
(i) k <k +2™!
end while

end if
end for.
Step 3:

if clock = 2"*! — 1 then
P,,, merges two subsequences of length 2! each, obtained from T7
and T3, respectively, into a single sequence of length 2’, which it

places on the output tape
end if. B
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Discussion

(1) Note that a tape is fully read before it is rewound for writing on it.
Thus no tape in M; ever stores more than 2! integers.

(2) Let s(i) denote the starting time of P, . Clearly s(1) = 1. For i > 1,
we note that before P; can start, P,_, must first place two sorted subse-
quences of length 2'-2 each on T and T respectively. This requires 2/~
time units. We therefore have the recurrence

s(i)y=s@G - 1)+ 2",

whose initial condition is s(1) = 1. The solution of this recurrence is
s(i)y=2"-1.

Analysis

We have established above that the starting time for P; is 2' — 1 for
1 =i =r + 1. Thus the last processor P,,; starts during the (2"*' - I)th
time unit. Since P,,, merges two subsequences of length 2! each, it
requires 2" — 1 additional time units to complete its job. The entire algo-
rithm therefore requires 2"*' = 1 + 2" — 1 = 3(2") — 2 time units. In other
words, since n = 2,

t(n)= 0O(n).
Given that p(n)=1logn + 1, we get
c(n)=t(n)x p(n)=0(n log n),

which is optimal.

EXAMPLE 10.2
The behaviour of Algorithm 10.2 for the input sequence
$={(6,4,7,8,23,5,1)

is illustrated in Fig. 10.5. The initial condition is shown in Fig. 10.5a. The
contents of the tapes after each of the first 17 time units are displayed in
Figs. 10.5b-1. Note the difference between Fig. 10.5 and Fig. 3.8, which
illustrates the behaviour of Algorithm 3.3. In Fig. 3.8, each processor
always produces as output the larger of the two integers under considera-
tion. By contrast in Fig. 10.5, the smaller of the two elements is produced
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Fig. 10.5 Sorting (6,4, 7, 8, 2, 3, 5, 1} by Algorithm 10.2. (continued)



10 PARALLEL EXTERNAL SORTING

206

CITITTTIT]]

CITTTITT]

(h)

o

J

(1Tela
RN

(i)

(T7e1™
EDDD
HEEE

™
B[7]
B

e ]

EE
(=
a8
(Il

O
g
6l
)

LI ITTTTT]

LITITTTIT]

(i)

Fig. 10.5 (continued)



10.4 BIBLIOGRAPHICAL REMARKS

LIITTTIT1]

LI TTTITT]

[0 oo g

[0oo g

=]
O0oaao

- E
Ooo0oaa O0QO0D

[8]7]e]4]

=
_|BEBHH
#
:

k)

3[2

&
_BEHBH

0 -
mn Tm
P H @ s H oo
mg) mamn
(

m)

-Erzm~ﬂf

[HEEE

LITTTITT]

d
_|EHHBE

n)

HEEE]

iy

OITTTTITT]

_|HHHH

o)

Fig. 10.5 (continued)

207



208 10 PARALLEL EXTERNAL SORTING

7

513

i

7

5

e

7

- \BHHH
i

Fig. 10.5 (continued)

as output. This minor difference is due to the fact that in Algorithm 3.3
we insisted that the final sorted sequence be implemented as a queue that
we wanted sorted left to right. Our purpose was to be consistent with the
fact that all intermediate sorted subsequences were implemented as
queues. This constraint no longer exists in Algorithm 10.2, in which new
conditions prevail, namely,

(i) a tape is not read from until it contains a complete sorted subse-
quence,

(ii) a tape must be rewound to the beginning whenever a new subse-
quence is to be written or a complete sorted subsequence is to be read.
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In conclusion we make the following observations regarding the two
algorithms studied in this chapter.

(1) Algorithm 10.1 is adaptive: it can run on a binary tree with an
arbitrary number p of leaf processors, provided that 2p is smaller than n,
the number of elements to be sorted. Algorithm 10.2, on the other hand, is
not adaptive: it requires a number of processors that is a function of 7,
namely, p(n) = (log n) + 1.

(2) Neither of the two algorithms requires all the elements of the input
sequence to be distinct.

(3) Both algorithms have comparable running times for the same
number of processors, that is, p(n) = (log n) + 1. However, it is difficult to
say exactly which algorithm is faster. This is mainly because, in order to
simplify the theoretical analyses, we adapted our definition of what con-
stitutes a time unit to the algorithm being analyzed.

(4) Both algorithms are cost-optimal.

(5) In Algorithm 10.2, for any n > 1, the starting time of P,,, (ie.,
2™ — 1) exceeds the finishing time of P, (i.e., 2"). Thus we could, if
necessary, reuse P, as P,,, and reduce the number of processors to log 7.
This is not possible, however, if several sequences are queued for sorting:
as soon as P, has finished reading one sequence it immediately starts
reading the next sequence and cannot be reused elsewhere in the pipeline.

10.4 Bibliographical Remarks

The problem of external sorting in a sequential environment is treated
in Flores (1969), Knuth (1973), and Lorin (1975). A description of mass
storage devices can be found in Ralston (1983).

The tape implementation of Algorithm 10.1 is from Even (1974). A
description and analysis of the sequential sorting algorithm Mergesort,
upon which procedure TAPESORT is based, can be found in Horowitz
and Sahni (1978). An implementation of Algorithm 10.1 for disks is pro-
posed in Friedland (1981) along with other parallel external sorting algo-
rithms.

The tape implementation of Algorithm 10.2 is also due to Even (1974).
Other parallel algorithms for external sorting are described in Lee et al.
(1981), Yasuura er al. (1982), Bonuccelli et al. (1984), and Akl and
Schmeck (1984).
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11 Lower Bounds

11.1 Introduction

Twenty different parallel sorting algorithms were studied in Chapters 2-
10 for a variety of parallel architectures. On more than one occasion, it
was shown that an algorithm achieves the best possible running time for
sorting on a particular architecture, to within a constant multiplicative
factor. In order to prove such a property we usually appealed to a lower
bound on the worst-case running time of any parallel sorting algorithm
for that architecture.

The significance of a lower bound on a problem (such as sorting) is that
it tells us that, in the worst case, no algorithm, regardless of how clever it
is, can do fewer operations in solving that problem. By deriving such a
bound for a given model of computation, it is therefore possible to deter-
mine how fast we can hope to solve the problem on that model. A lot of
effort in trying to improve the solution time can thus be saved. For this
reason, lower bounds are of paramount importance to the algorithm
designer.

A number of lower bounds for parallel sorting are discussed in this
chapter. We start in Section 11.2 by reviewing and extending a number of
bounds introduced in previous chapters. In Sections 11.3-11.5 we derive
three lower bounds for models of computation that are variations of
models studied earlier.
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11.2 A Review of Lower Bounds

As usual, let S = {x,, x5, ..., x, ) be the sequence to be sorted. Of the
six lower bounds discussed in this section, the first two apply to any
parallel architecture, whereas the remaining four are architecture depen-
dent.

The first theorem concerns the input and output environment (see
Section 1.5.2).

Theorem 11.1 If input and/or output are done sequentially, then every
parallel sorting algorithm requires Q(n) time units.

Proof There are n elements to be sorted, which are received as input
and/or produced as output at the rate of one per time unit. Thus Q(n)
time units are required by any parallel sorting algorithm, regardless of the
time taken by the actual sorting process itself. H

Our second theorem links the running time to the number of processors
used (see Section 1.5.1).

Theorem 11.2 If N processors are used, where N = 1, then
Q([(n log n)/N) time units are required to sort.

Proof Assume that a parallel algorithm uses N processors and sorts in
f(n) time units. It is possible to simulate this algorithm on a sequential
computer by performing in sequence the steps performed by the N pro-
cessors in parallel. This would require O(N x f(n)) time units. From The-
orem 1.1, Q(n log n) steps are required by any sequential sorting algo-
rithm. Thus f(n) = Q([(n log n)/N1). R

The following special cases of Theorem 11.2 are of interest.

(1) No parallel algorithm can sort using n processors in fewer than a
constant multiple of log n parallel steps in the worst case.

(2) No parallel algorithm can sort using O(log n) processors in less
than linear time. Algorithm 3.3 matches the bound in this case: it uses
1 + log n processors and runs in O(n) time.

(3) No parallel algorithm using 7' processors, 0 < e < 1, can sort in
fewer than a constant multiple of n¢ log n steps. Procedure SHARESORT
of Chapter 8 exhibits such optimal behaviour: it uses 7' processors and
runs in O(n° log n) time.
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The next four theorems apply specifically to the models of Chapters 3,
5, 7, and 4, respectively.

Theorem 11.3 Any parallel algorithm using the linear array with n pro-
cessors requires S (n) time units to sort.

Proof See the proof of Theorem 3.1. 1

Theorem 11.4 Any parallel algorithm using the mesh with n processors
requires Q(n"?) time units to sort.

Proof See Section 5.4. 1

Theorem 11.5 Any parallel algorithm using the cube with N processors,
where N = n, requires Q(log N) time units to sort.

Proof See Section 7.3. 1

Theorem 11.6 Any parallel algorithm using the perfect shuffle with N
processors, where N = 2™ = n, requires Q(log N) time units to sort.

Proof Let the binary representations of two integers i and j be
Omabmoa...biboand bob b2 ...b,, respectively, where b, = 0 or 1, for
m - 1 < k < 0. If the final position of the element of S, initially loaded
in P;, is to be in P;, then this requires m — 1 shuffles. Hence Q(log N)
steps are needed to sort. B

Note that Algorithm 3.1 (of Chapter 3) and procedure MESHSORT (of
Chapter 5) match the bounds in Theorems 11.3 and 11.4, respectively, to
within a constant multiplicative factor. The same applies to procedure
CUBESORT (of Chapter 7), which matches the bound in Theorem 11.5
for N = n?. By contrast, Algorithm 4.1 uses » memory modules and n/2
comparators and has a running time of O(log? n), which is larger than the
bound of Theorem 11.6 by a factor of O(log n).

11.3  Counting Comparisons

In the discussion following Theorem 11.2, we saw that for the special
case where N = n processors are available, any parallel algorithm requires
Q(log n) steps to sort. This was a direct consequence of the (n log n)
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comparisons needed to sort on a sequential model of computation. We
now give a different proof of the same result, which does not appeal to the
sequential lower bound.

Consider a family of parallel algorithms that sort S = {x,, x5, ..., X, )},
where n is a nonnegative power of 2, by performing comparisons among
elements of S. We assume that enough processors are available to perform
all the n/2 possible disjoint comparisons in parallel. For any algorithm in
this family, following n/2 such comparisons (which are performed in one
time unit) S is somehow divided into two subsequences. These two subse-
quences are sorted in parallel using the same algorithm, and the resulting
subsequences are merged. The running time of the algorithm is deter-
mined by the time required to sort the larger of the two subsequences plus
the merging time.

Assume that we have an algorithm that behaves as follows: whenever a
comparison between x; and x; is performed, the smaller of the two ele-
ments is placed in an array 4 and the larger in an array B. Assume
further that the algorithm is so clever that it always chooses the correct
pairs to be compared: after #n/2 comparisons all elements of 4 are smaller
than all elements of B. Hence, these two arrays can now be sorted inde-
pendently and in parallel using the same algorithm and no merging is
needed. Let T(n) be the running time of the algorithm.

Thus
T)=0

and
T(n)=T1n/2)+1 for n> 1,

that is, T(n) = log n. It follows than any such comparison-based parallel
algorithm requires Q(log n) time units to sort.

11.4  Broadcasting

Consider a parallel computer whose processors are placed at points
(iy,i2, ...,i4) of g-dimensional space, where i, is an integer for
1 <k < ¢q. No more than one processor is placed at each such point.
Processor P; at (i, iz, ..., 1,) is connected by a direct two-way link to
processor P; at (j,, j2, ..., J,) if and only if the distance between P; and
P; defined by

q
d(p;, Pj)=k§l abs(ix —ji ),
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(a) (b)

Fig. 11.1 (a) Three-dimensional cube. (b) Three-dimensional lattice.

is equal to 1, where abs(i, — j ) denotes the absolute value of (iy —ji).
Two processors which are connected in this way are called neighbours. We
refer to such a computer as a g-dimensional lattice. Thus the linear array
of Chapter 3 is a one-dimensional lattice, while the mesh of Chapter 5 is a
two-dimensional lattice. The g-dimensional cube of Chapter 7 is a special
q-dimensional lattice restricted to possess 2? processors. For example, a
three-dimensional cube has eight processors, whereas a three-dimensional
lattice can have as many processors as desired. This is illustrated in Fig.
11.1: Fig. 11.1a shows a three-dimensional cube, whereas Fig. 11.1b shows a
three-dimensional lattice with 18 processors.

In this section we derive a lower bound on the time required to sort the
sequence S = {x,, X1, ..., X, } on a g-dimensional lattice that is allowed
to possess an additional mechanism for communication among proces-
sors, called broadcasting. With such a mechanism, a datum can be sent
(or broadcast) by one processor and received by all other processors
simultaneously. We assume the following:

(1) The g-dimensional lattice is an SIMD machine whose operation is
synchronized by a central clock.
(2) At the beginning of every time unit

(a) one processor is allowed to broadcast a datum and
(b) all processors are allowed to send data to their neighbours.
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(3) The latter part of the time unit is spent by each processor receiving
all the data that has been sent to it as well as performing a constant
number of computational steps.

(4) The only data that can be broadcast are the integers x; from the
input sequence S.

We now show that the ability to broadcast does not significantly reduce
the sorting time on a g-dimensional lattice.

For any processor P; of the g-dimensional lattice, we define f(r) to be
the maximum number of processors at distance r or less from P;. Thus
f(r) = 2r + 1 for a one dimensional lattice and f(r) = 2r* + 2r + 1 for a
two-dimensional lattice. In general,

Sir)y=2°(") + 1

for a g-dimensional lattice, that is, f(r) = O(r?) for a fixed q.

In the following theorem, the f function, or more precisely its inverse
S, will allow us to derive a lower bound on the time required for sorting
on a g-dimensional lattice with broadcasting.

Theorem 11.7 Assume that a q-dimensional lattice consisting of n proces-
sors P,,P,,..., P, is used to sort the sequence S ={x,,Xx2,...,X, ).
Processor P; initially contains x;. The purpose of sorting is to permute the
contents of the processors so that, when the algorithm terminates, P;
contains the ith smallest element, for 1 < i < n. Then, with or without
broadcasting, sorting requires Q([n"9)) time units.

Proof Assume, without loss of generality, that the elements x,, x5, ...,
x, of S are a permutation of the first #n positive integers (i.e., 1, 2,...,
n). The idea of the proof is to characterize one such permutation, which
forces any sorting algorithm to require at least Q([»"9]) time units.

The permutation is constructed inductively.

(1) There exists an i such that
d(P\,P;)=f"(n);

let Xy = i.
(2) Assume that x,, x5,..., x; have been defined for | <k <n.
(3) Since the sequence {1, 2,..., n} — {x;, X3,..., xx } has n — k ele-

ments, then there is an i in that sequence such that
d(Piw, Pi)=f"(n - k)

let Xisl = i.
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Since P; must contain the integer i when the algorithm terminates, for
1 <i <n, element x; =i, originally in P;, must be routed to P, . The
number of time units required for this routing is equal to d(P;, P,,), that
is, at least /™' (n — i + 1). There are two cases to be considered.
Case 1: No broadcasting is used.
Moving an element from P, to P,, requires at least /™' (n)
(i.e., Q([n"9])) time units.
Case 2: Broadcasting is used and B broadcasts occur.
If B = n/2 then Q(n) time units are required for the broadcasts.
Otherwise, there is an i < n/2 for which x; is never broadcast, and
hence sorting requires

fT-i+)>f1(n/2)=Q(n"1)
time units. B

Note that Theorem 11.7 extends Theorems 11.3, 11.4, and 11.5 to the
case of a g-dimensional lattice and strengthens them by allow.ng broad-
casting.

11.5 A Lower Bound on Tree Sorting

In Chapter 6 we introduced the concept of a one-dimensional pyramid
machine. Recall that in such a machine the processors are the nodes of a
binary tree and are connected by the branches of the tree. In addition,
two-way links connect the processors at the same level into a linear array
(see Fig. 6.6). The following theorem establishes a lower bound on sorting
using a one-dimensional pyramid.

Theorem 11.8 Suppose that

(1) nelements x,, x,,...,Xx, are to be sorted on an n-leaf one dimen-
sional pyramid (hence n is a positive power of 2);

(2) input takes constant time: all n input elements are received simul-
taneously by the leaves with each leaf receiving a different element;

(3) output takes constant time: all n output elements are produced
simultaneously by the leaves with each leaf producing a different element.

Any algorithm that uses such a machine for sorting requires
Q(n/(log n)) time units.

Proof Consider the n-leaf one-dimensional pyramid of Fig. 11.2, where
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LEVELO

LEVEL |

LEVEL 2

LEVEL 3

Fig. 11.2 Tllustration for the proof of Theorem 11.8.

n = 8. As shown in the figure, a vertical line (drawn slightly to the right of
the root) encounters

(i) log n horizontal links, since the tree has such links at levels
1, 2,...,logn, and
(i1) one link connecting the root to its right child.

Therefore, no more than 1 + log n elements can be transferred simultane-
ously from the right subtree of the root to the left subtree (and vice versa).

By assumption (2) of the theorem, x,, x,, ..., X, are initially stored at
the leaves. If x,, x,,..., x,,» must be exchanged with X211, X(nj20425 - - -5
X, in order to produce the final sorted sequence, then this cannot be
done in fewer than [2(n/2)/(1 + log n)] time units. Thus Q([r/(log n)])
time units are required to sort in the worst case on this model. B

11.6  Bibliographical Remarks

A discussion of and references to Theorem 11.1 are provided in Chap-
ter 1. The special case of Theorem 11.2 when N = n (also discussed in
Chapter 1) is proved in Valiant (1975). An algorithm is described in Ajtai
et al. (1983) which uses O(n log n) processors to sort a sequence of n
elements in O(log n) time. It is shown in Leighton (1984) how this algo-
rithm can be used to sort a sequence of » elements using 7 processors in
O(log n) time, which is optimal. Unfortunately, both the algorithm of
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Ajtai ef al. (1983) and that of Leighton (1984) are interesting only in
theory as the O notation for the running time hides a tremendous con-
stant factor. It is suggested in Leighton (1984) that unless n > 10'® these
algorithms would be inferior in practice to other existing sorting algo-
rithms.

Theorems 11.3, 11.4, and 11.5 are discussed in detail and references to
them given in Chapters 3, 5, and 7, respectively. Similar results are
derived in Gentleman (1978).

The alternative proof of the special case of Theorem 11.2 provided in
Section 11.3 is based on ideas appearing in Aigner (1982). Theorem 11.7 is
from Stout (1983a). A parallel sorting algorithm for the g-dimensional
lattice, which runs in O(n"?) time, is described in Thompson and Kung
(1977). In view of Theorem 11.7, this is the best running time achievable
on such a machine, to within a constant multiplicative factor.

Theorem 11.8 is from Stout (1983b). Another lower bound that uses the
decision tree model (and is discussed in Chapter 6) is provided in
Haggkvist and Hell (1981a, b).

When a parallel algorithm is implemented in hardware using a particu-
lar technology, it is possible to determine its exact performance within the
constraints of that technology. It is equally important to be able to estab-
lish an algorithm-independent lower bound on the complexity of solving a
problem using a particular technology. Upper and lower bounds on the
complexity of sorting using VLSI technology are derived in Thompson
(1980, 1983), Chazelle, and Monier (1981a), Shin et a/. (1983), Bilardi and
Preparata (1983, 1984a, b), Ja’ Ja’ and Owens (1984), and Lang et al.
(1984), based on a variety of models and assumptions. A typical example
that illustrates how various VLSI models differ is the question of wire
delay. Some models assume that the time required by a signal to propa-
gate along a wire of length w is O(log w) (Thompson, 1983), whereas
other models assume the time to be O(w) (Chazelle and Monier, 1981a).
One of the popular lower bounds today for VLSI sorting is expressed as
the product of the area 4 occupied by the sorting circuit and the square of
the time T required to sort. Thus, for an input sequence of size n,

AT? = Q(n? log n).

A number of designs with AT? = O(n? log? n) are described in Thompson
(1983). Similar results for other problems besides sorting can be found in
Thompson (1979, 1980), Chazelle and Monier (1981a, b), Lipton and
Sedgewick (1981), Yao (1981), and Leighton (1981, 1983).
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