Übung 3

Laurenz Weixlbaumer, 11804751

November 2018

1 Binärzahlen

(a) Tabelle mit verschiedenen binären Darstellungsarten.

Dezimal	Betrag/Vorzeichen	1er-Komplement	2er-Komplement	$Offset_{16}$
7 ₁₀	001112	001112	001112	101112
-9_{10}	11001 ₂	10110_2	101112	001112
11 ₁₀	010112	01011_2	010112	11011_2
510	001012	001012	001012	101012
-11_{10}	11011 ₂	10100_2	10101 ₂	001012

(b) ...

 -77.625_{10} als nicht vorzeichenbehaftete Binärzahl ist 01001101.101 $_2$.

01001101.101_2	negieren
10110010.010_2	+1
10110010.0112	2er-Komplement

(c) ...

$$\begin{array}{c|cccc} 11781 + (-16223) & \text{Umwandlung zu 10er-Komplement} \\ 11781 + 83777 & \text{Addition} \\ \hline 95558 & \text{R\"uckwandlung} \\ \hline -04442 & \text{Ergebnis in dezimal} \end{array}$$

(d) $1111_2 + 1111_2$ führt zu 10000_2 . Nachdem aber nur 4 Bits pro Zahl zur Verfügung stehen, wird das tatsächliche Ergebnis wahrscheinlich 0000_2 betragen – es kommt zu einer Bereichsüberschreitung.

Ist der Überlauf nicht 0_2 , ist es durch eine Addition zu einer Bereichs- überschreitung gekommen.