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Exercise 1 Complex Numbers
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• TODO

• TODO

Exercise 2 Fourier Transform

Using Eulers formula to reformulate the cosine in terms of complex exponentials, we get

x(t) = X̂ cos(2π f0t) = X̂
ej2π f0t + e−j2π f0t

2
=

X̂
2

ej2π f0t︸ ︷︷ ︸
x1(t)

+

x2(t)︷ ︸︸ ︷
X̂
2

ej2π(− f0)t

Finally, using the given Fourier transform of a complex exponential (p. 38) and the linearity of FT

X( f )
linearity
= X1( f ) + X2( f )

p. 38
=

X̂
2

δ( f − f0) +
X̂
2

δ( f + f0)

which is what was to be shown. Figure 1 is a diagram of X( f ).
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Figure 1: Spectrum of x(t) = X̂ cos(2π f0t)

Exercise 3 Time Shift and Phase

a) In general, we can formulate ϕi as

2π fit + ϕi = 2π fi(t − τ)

ϕi = 2π fit − 2π fiτ − 2π fit
ϕi = −2π fiτ

And thus for τ = 0.1s we have ϕ1 = −0.2π and ϕ2 = − 1
15 π.

We verify that this corresponds to the “shift theorem” by applying it to Yi and ensuring that
the results are as expected.

X1( f ) = − j
2

δ( f − f1) +
j
2

δ( f + f1)

Y1( f ) =
(
− j

2
δ( f − f1) +

j
2

δ( f + f1)

)
e−j2π f 0.1

= − j
2

e−j0.2π f δ( f − f1) +
j
2

e−j0.2π f δ( f + f1)

Since δ(t) is 0 for all t ̸= 0, only f = f1 and f = − f1 will affect our result. Given f1 = 1Hz
we can reformulate the above to

Y1( f ) =


− j

2 e−j0.2πδ(0), if f = f1
j
2 ej0.2πδ(0), if f = − f1

0, otherwise

where we observe that the exponent matches our calculated ϕ1.

We can do the same for Y2( f ), where we obtain

Y2( f ) = − j
2

e−j2π f 0.1δ( f − f2) +
j
2

e−j2π f 0.1δ( f + f2)

Y2( f ) =


− j

2 e−j 1
15 πδ(0), if f = f2

j
2 ej 1

15 πδ(0), if f = − f2

0, otherwise

and again see that the exponent matches our calculated ϕ2.

b) See Figures 2 and 3.
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Figure 2: Signals for f1 = 1Hz
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Figure 3: Signals for f2 = 3Hz
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Exercise 4 Linearity and Time Invariance

• For arbitrary input signals x1(t) and x2(t) with corresponding output signals y1(t) and y2(t)
let x(t) = αx1(t) + βx2(t) (α, β arbitrary). Then we have

y(t) = (x(t))2 = (αx1(t) + βx2(t))2 = α2x1(t)2 + 2αβx1(t)x2(t) + β2x2(t)2

̸= αy1(t) + βy2(t) = α(x1(t))2 + β(x2(t))2

i.e. the system is not linear.

Let x(t) be an arbitrary input signal with associated output signal y(t). Let x′(t) be a version
of x(t) that is shifted by arbitrary T, x′(t) = x(t− T), with output signal y′(t). Then we have

y′(t) = (x′(t))2 = (x(t − T))2 = y(t − T)

which demonstrates time-invariance.

• For signals and variables as above, we have

y(t) = x(t) sin(Ω0t) = (x1(t) + y1(t)) sin(Ω0t) = x1(t) sin(Ω0t) + y1(t) sin(Ω0t)
= y1(t) + y2(t)

which establishes linearity. Further, we have

y′(t) = x′(t) sin(Ω0t) = x(t − T) sin(Ω0t) ̸= y(t − T) = x(t − T) sin(Ω0(t − T))

i.e. the system is not time-invariant.
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