
Computational Complexity — Lecture Notes Laurenz Weixlbaumer (11804751)

Exercise 1.2 The minimal number of parameters (pairwise distances) that is required to com-
pletely specify a TSP instance is (n2), the binomial coefficient n over 2. Given a set with n elements
it describes the number of subsets with exactly k (in our case 2) elements. (Subsets, thus the order
is irrelevant, as required.)

Exercise 1.4 The number of possible routes as a function of the number of cities is f(n) = [n1],
the nth stirling number of the first kind with k = 1. There are n! different ways of arranging the n
cities into a route, but many of them are identical from our perspective. See for example all 4! = 24
permutations of {1, 2, 3, 4},

(1, 2, 3, 4) = (2, 3, 4, 1) = (3, 4, 1, 2) = (4, 1, 2, 3)

(2, 1, 3, 4) = (3, 4, 2, 1) = (4, 2, 1, 3) = (1, 3, 4, 2)

(3, 1, 2, 4) = (1, 2, 4, 3) = (2, 4, 3, 1) = (4, 3, 1, 2)

(1, 3, 2, 4) = (4, 1, 3, 2) = (2, 4, 1, 3) = (3, 2, 4, 1)

(2, 3, 1, 4) = (4, 2, 3, 1) = (3, 1, 4, 2) = (1, 4, 2, 3)

(3, 2, 1, 4) = (4, 3, 2, 1) = (1, 4, 3, 2) = (2, 1, 4, 3)

which only admit six different cycles of length four. The expression [n1] reprents the number of
permutations over n elements with one cycle, which is what we are looking for.

Problem 1.9 See Exercises 1.2 and 1.4.

Problem 1.11 We want to show that:
”
Every symbol from a given alphabet can be represented

as a bitstring. This representation is one-to-one and only scales logarithmically in alphabet size.“
Consider an alphabet A with n symbols where each symbol a0, a1, . . . , an−1 can be represented by
an unique integer. Because we can use the index of an element as its integer counterpart, at least
one such representation exists

We can uniquely represent an integer c as a bitstring b through the following algorithm: Zero all
bits in b. Find the largest x such that 2x divides c. Set bx to one and set c to c− 2x. Continue until
c is zero. The length of such a bitstring is determined by the x of the first iteration, so the first x
such that 2x | c. Given only c, the length of the resulting bitstring will thus be ⌊log2(c)⌋.

Exercise 2.1 The relevant state diagram is

oddstart even

0, 2, 4, 6, 8

1, 3, 5, 7, 9

1, 3, 5, 7, 9 0, 2, 4, 6, 8

The runtime of this machine is equal to the length of the decimal encoding, thus ⌊log10(n)⌋ + 1.
This is very similar to the runtime of a binary parity checking machine since both of them have
logarithmic growth, but because logk+1 grows slower than logk our machine is slightly faster.

1

Computational Complexity — Lecture Notes Laurenz Weixlbaumer (11804751)

Exercise 2.2 The relevant state diagram is

oddevenstart

1

1

00

For n = 2 it is equivalent to XNOR. (Choosing the odd state to be the accepting state would make
it equivalent to XOR.)

Exercise 3.3 By definition we call a finite string x = x0 · · ·xn−1 a palindrome if

xn−1xn−2 · · ·x1x0 = x0x1 · · ·xn−2xn−1.

From this we can write down n− 1 constraints:

xn−1 = x0 xn−2 = x1 xn−3 = x2 · · · xn−k = xk−1

for k = 1, . . . , n − 1. But it is clear that some of these constraints are effectively duplicates. Some
consideration reveals that exactly ⌊n/2⌋ of them are unique. This is effectively what Lemma 3.2 is
about. I suspect the concrete equation given in Lemma 3.2 is false, didn’t continue.

Exercise 3.5

a) Consider the binary alphabet and let n ∈ N be an odd number. Each palindrome x of length
n must obey exactly ⌊n/2⌋ constraints, see Exercise 3.3. In particular, only the first ⌊n/2⌋
bits are relevant for determining whether or not x is a palindrome. There are a total of 2⌊n/2⌋

distinct bitstrings of length ⌊n/2⌋.

The number of palindromes of length n is thus 2⌊n/2⌋.

b) The only part of the above that depends on alphabet length is determining the amount of
unique strings of a given length. It can be generalized by letting N be our alphabet size, then
there are a total of N⌊n/2⌋ strings of length ⌊n/2⌋.

Exercise 3.7 For M = 0 we have 0 = 0. Assume that
∑M

j=0 j = M(M + 1)/2 holds. We show

M+1∑
j=1

j =

M∑
j=0

+M + 1 =
M(M + 1)

2
+M + 1 =

M(M + 1) + 2M + 2

2
=

M2 + 3M + 2

2

=
(M + 1)(M + 2)

2

2

