
Architecture

Simplified registers are instruction register (ir),
program counter (pc) and stack pointer (sp).

A simplified Von-Neumann Cycle looks like

1. pc = startValue (initialize program
counter)

2. ir = mem[pc] (fetch instruction from me-
mory)

3. pc = pc + 1 (advance program counter)

4. execute(ir) (execute instruction)

5. handle interrupt

6. go to 2)

and is divided into a fetch stage and an execute
stage. The

”
handle interrupt“ step is

1. is interrupt pending? if no continue nor-
mally, otherwise continue here

2. save pc

3. disable the interrupt

4. pc = isrAddr

where isrAddr is the Interrupt Service Routine
(ISR). This central distribution point is called

”
interrupt handler“.

Bootup sequence

1. Level 1 bootloader (UEFI/BIOS, . . . ) in-
itializes basic hardware

2. Level 2 bootloader (grub, Windows Boot
Manager), reads drives to initiate booting
the OS

3. OS kernel, initializes (almost) all hardware

4. OS usermode (services, applications)

Rings

Usermode subset of instructions, restrictions
on memory access

Kernelmode no restrictions, used by OS kernel

From kernel to usermode: write to register. From
user to kernelmode: Syscall.

SMP (Symmetric Multiprocessing)

Processors of similar capability can share main
memory, I/O components, etc. Used in mulit-
core processors.

1st level cache is per-core, 2nd level cache is
usually shared.

Processes and Threads

A program is a set of instructions and static
data. Processes are instances of running pro-
grams, they have their own state (registers, re-
sources, . . . ). A process is either running, ready
or blocked.

A process contains at least one but usually many
threads, which share address space, file handles,
etc. Threads are thus usually faster to create and
switch between than processes. Threads still ha-
ve their own execution context (registers, priori-
ty, stack, . . . ).

IPC (Interprocess Communication)

Communication between processes (or threads)
requires some shared medium. Threads have sha-
red memory, processes can use

• files (in a shared file system)

• named pipes (pseudo files)

• anonymous pipes (shell connecting stdout

of one process to stdout of another)

• sockets (client/server communication)

Race conditions are a common problem. (When
results depend on order of execution.)

1



Scheduling

Short-Term Scheduling is classified to be either

• non-preemptive (running tasks cannot be
interrupted from outside, except for inter-
rupts)

• preemptive (running tasks can be suspen-
ded in favor of other tasks, doesn’t require
cooperation from the processes)

Some important scheduling algorithms are

• First Come First Served (FCFS)

• Shortest Job first (SJF) and Shortest Re-
maining Time Next (SRTN)

• Priority queuing (optionally with aging)

• Round-Robin (RR)

Shortest Job First does as the name implies.
It minimizes waiting time of a set of processes.
For interative systems this isn’t always a high
priority (they should optimize for minimal time
until the task is started).

Round-Robin A small time interval called
quantum is defined. After one quantum is elap-
sed, switch to the next task in the queue and add
previously running one to the end.

Priority Scheduling Processes are assigned a
priority class. Processes with higher priority are
executed first. Execution within a priority class
is decided by another algorithm (eg. RR).

A problem with naiive priority scheduling is star-
vation, when processes with low priority are ne-
ver executed because new processes with higher
priority are added. One solution is aging, whe-
re priority of a process is increased based on its
waiting time so far.

Memory

The layers of memory in order of usual capacity
are

• Registers

• CPU Caches

• Main Memory (RAM)

• Flash

• Hard disk

Relative and Absolute Addresses

There are two options for address binding

• absolute memory addresses (small micro-
controllers, I/O drivers, . . . )

• relative memory addresses (translated to
absolute addresses at load or run time, sto-
red in the program as if it were loaded at
address zero, then adjusted by the loader
later)

A loader is part of the OS that. . .

1. loads a program to be started from disk,

2. adapts addresses if necessary (see below)

3. and starts the program

If the loader needs to adapt addresses (ergo if re-
lative memory addresses are used) there are two
options:

Relocatable code has a compiler generated
relocation table, containing pointers to all
relative addresses inside the binary. The
loader then changes all those relative ad-
dresses to absolute ones by adding the ba-
se.

Position-independent code (PIE) is compi-
led to run at arbitrary memory locations by
(eg.) only using relative addressing/jumps
or other internal address translation me-
thods. This creates a run time overhead.

2



Logical and Physical Addresses

There are two ways to view a memory address.

Logical addresses are from the point of view
of a program, also called virtual addresses.
The logical/virtual address space is the set
of all possible addresses that are provided
to processes.

Physical address is the real address on system
RAM. The physical address space are all
available physical addresses.

The mapping between them can happen in the
Memory Management Unit (MMU) of the CPU.
This is essentially hardware support for adding
a base to an address given as an offset.

The OS takes care of tracking logical address
spaces (protecting them from each other). The
MMU can take care of the simple logical to phy-
sical mapping. But the OS needs to reconfigure
the MMU at run time with the correct base ad-
dresses.

Paging

Logical address space is split into fixed size
blocks called pages. Physical address space is
split into fixed size blocks called page frames.
(They have the same size.)

Interpret logical address as page number +
offset. (For an address with m bits, first m−n
bits are the page number, following b bits are the
offset).

A page table keeps track of the mapping bet-
ween pages and page frames. It contains pointers
to the actual page frames. The mapping logic is
implemented in hardware inside the MMU.

Every process appears to have its own private
logical address space and has its own page table.
Every memory access operations now needs to go
through the page table (special hardware cache,
translation look-aside buffer).

Page table entries usually have additional bits to
keep track of state. For example valid (currently

assigned?), modified (dirty?), referenced, protec-
tion (read-only, no-exec), . . .

Shared Pages allow assigning one page frame
to multiple processes (thus to multiple pages).
This is useful for sharing code (SO/DLL) and
data (IPC).

Copy-on-Write is a situation in which a process
attempts to write to a shared data page with
the read-only bit set. The OS catches the ac-
cess, creates a copy of the page and then lets the
process write to the new copy. This means that
creating process with shared pages cheap as long
as they don’t diverge.

Virtual Memory is a mechanism for over-
commiting memory. Only a subset of memo-
ry pages are mapped to physical page frames.
Currently inactive pages are stored on mass sto-
rage (swap files).

A page fault occurs when a process tries to access
a page which is not in main memory (shown by
the valid bit in the page table entry). MMU no-
tices this and raises a page fault. OS then swaps
in (fetches) the page from disk and adjusts the
page table entry (set valid bit, set page frame
number). Then the instruction is restarted. If ne-
cessary the OS might also swap out some other
page to make space.

Security Preventing attacks at OS level:

• Data Execution Prevention (no-exec bit on
data sections)

• Address Space Layout Randomization
(ASLR)

Page Replacement Algorithms

OS sometimes has to choose a page to evict.

Optimal Algorithm Evict the page that will
next be referenced at the latest point in the fu-
ture.

3



This algorithm cannot be implemented, future
cannot be predicted accurately enough.

Least Recently Used Evict the page that hos
not been referenced for the longest time period.

Clock Replacemenet Algorithm Make the
page table a circular list, can be imagined to be a

”
clock“, the

”
hand“ points to a given item. When

a page fault occurs: Advance the hand, if the pa-
ge now being pointed to by the hand has use bit
zero, evict and replace that page. Otherwise if
the use bit is one, set it to zero and advance the
hand.

Thrashing is the situation where there are
many processes relative to the available physical
memory, thus processes create many page faults
because each has a small amount of page frames.
OS is then mainly busy with swapping pages in
and out.

File Systems

Mass storage devices have two main operations:
Reading and writing a block of some hardware-
defined block size. File systems are an abstrac-
tion over this, they exist to provide a consistent
API.

The logical unit of organization is the file, which
is a collection of blocks coupled with metadata.

File Metadata will usually include

• Name (depending on charset and loca-
le, human readable, at least

”
8.3“ naming

scheme)

• Type (not always)

• Location (pointer to physical or logical ad-
dress of file, persistent)

• Size

• Permissions (owner, groups; who can do
what)

• Data & Time (created, last change, last ac-
cess)

• Flags (hidden, temporary, . . . )

OS Tasks in regards to files are

• Creating and deleting files

• Structuring files in a hierarchy

• Reading and modifying data in files

• Persisting the files on storage mediums
(support multiple concurrent mediums,
different file systems)

• Controlling access to files (user/process
permissions, context, . . . )

Special File Types might include directories,
character and block device files (eg. UNIX for
device I/O), named pipes, sockets, hard or soft
links.

File systems organize data in blocks, comparable
to pages for memory. Physical block size (sec-
tor) depends on storage medium (HDD 4kb, SSD
1MB). Logical block size represents a fixed num-
ber of sectors (quantum, usually 2n).

Journaling file systems address the issue of
inconsistency on OS crash (file system may be
left inconsistent, caches may not be written and
lost, . . . ). Each action is performed as an ato-
mic transaction, the steps are written to a jour-
nal and removed once performed. If a non-empty
journal is found on bootup, just execute the
steps.

Virtual file systems are an abstraction over
concrete file systems that unify them under a sin-
gle root tree. Different file systems are mounted
at different directories, transparent to the user.

4



Allocation Strategies

Contiguous file allocation is simple and fast, but
files cannot be expanded. Lots of external frag-
mentation (holes between allocated blocks that
won’t be filled). Useful for write-once media (op-
tical CD), otherwise not so much.

Allocation with a linked list is better, every clus-
ter has a link to the next one. Random access is
slow, free clusters have to be tracked in a sepa-
rate list (or something).

Alternative: File Allocation Table (FAT). A lin-
ked list of pointers to clusters is kept at the be-
ginning of a file system. Random access is im-
proved because usually the whole FAT will be in
RAM. Special FAT entry value denotes an empty
cluster, no need for a separate list.

Indexed allocation keeps data about file alloca-
tion combined per file. Eg. the first cluster of a
file will contain pointers to the clusters of that
file (in order). High overhead for small files (each
file needs at least one index block). Free cluster
management is easy, just assign them all to a
special file or keep track in a bitmap (one bit for
every cluster).

A variation on indexed allocation (RUNs) sto-
res (cluster pointer, size) pairs in the in-
dex block. This is useful if many blocks will be
allocated continuously, data in index blocks will
be smaller. Used by NTFS.

Disk Layout

Most mass storage devices are divided into parti-
tions. (Tracked in the MBR for old BIOS imple-
mentations or GUID Partition Table, GPT, for
UEFI.)

A bootup sequence with an MBR disk layout will
look like

1. BIOS loads MBR, which

2. analzes the Partition Table and starts the
Partition Boot Record, which starts

3. OS bootstrap, which loads the OS

Concurrency

Process are executed either sequentially or con-
currently. Concurrent processes are either inde-
pendent (if they use different data regions) or in-
teracting if they use shared data. Coordination
between concurrent processes is called synchro-
nization.

Producer-Consumer Problem Several pro-
ducers and consumers operate on a shared ob-
ject. Particular example: Shared counter that is
increased by producers and decreased by consu-
mers. Concurrent access leads to a race conditi-
on.

This motivates the concept of mutual exclusion:
Define critical regions which only one process
can enter at a time. Requirements are

• mutual exclusion (obviously, only one pro-
cess can be inside a CR at any time)

• no assumptions (order of execution, . . . are
arbitrary)

• progrss (no process not currently in a CR
may block another process from entering
that CR)

• fairness (each process must be able to enter
a CR in finite time)

Test and Set Lock reads a memory word and wri-
tes another value to it in a single atomic CPU
instruction. During this, the memory bus must
be locked.

Spin Lock Test and Set Lock is used in a spin-
lock. Between the spinlock and setting the
bit to false is the CR. Relies on atomic wri-
ting. Inefficient in case the lock takes a whi-
le to acquire.

This section could be expanded significantly.

5



Security

Security is preventing losses due to intentional
actions by malovelent actors. Safety is preven-
ting losses due to unintentional actions, usually
by benevolent actors.

Basic Security Requirements are confiden-
tiality (prevention of unauthorized disclosure),
integrity (prevention of information or system
modification) and availabilty (ensuring access to
and use of information). Also called CIA triad.

When security and usabilty collide, usabilty al-
ways wins.

Computer System Layers are Applications
> Kernel > Hypervisor/UEFI > Firmware >
Hardware.

Threats Attacking running processes with
higher privileges (defended against with eg.
ASLR), accessing memory not assigned to own
process (MMU, paging), accessing files without
permission, . . .

Access Control Policies are

Discretionary Access Control (DAC)
based on the identity of the requestor and
on access rules set by the owner of the
entity. The controls are discretionary in
the sense that a subject can pass it’s per-
missions on to any other subject. Typical
subject classes are: world (all subjects),
group (of subjects) and owner.

Mandatory Access Control (MAC) based
on comparing security labels with security
clearances; mandatory because owner may
not be able to delegate access (as opposed
to DAC).

Role-Based Access Control (RBAC)
based on roles that users/processes have
within a system and rules based on those
roles.

Access control matrices are often stored as an

• Access Control List (ACL), a column of the
access control matrix which contains sub-
jects and their access rights on a given ob-
ject

• Capability Vector, a row of the access con-
trol matrix which contains objects and the
access rights a given subject has on them

Trusted computing base (TCB) is a porti-
on of a system that enforces a particular policy,
must be resistant to tampering and circumven-
tion. Informally, these are the components that
one has to trust, for the system to be trustwor-
thy.

Virtualization

. . . is an abstraction of the resources used by so-
me software which runs in a virtual machine.

• better efficiency in the use of physical sys-
tem resources (supposedly)

• support for multiple distinct OS

• additional security concerns

An additional layer, a hypervisor (virtual ma-
chine manager, VMM ) should guarantee safety,
fidelity and effieciency.

Different possibilities for a VMM implementati-
on

• on top of host OS (type 2, eg. VirtualBox,
VMWare Workstation) vs. bare-metal (ty-
pe 1, eg. Hyper-V, L4)

• full virtualization (unmodified guest OS,
worst performance) vs. paravirtualization
(guest OS aware, special syscalls) vs. com-
partmentalization within a single OS ker-
nel (containers, not real virtualization, eg.
Docker)

• emulation is possible but slow

6



Embedded and Real-Time

The correctnes of a real-time OS depends not on-
ly on logical computation results but also on the
time in which the results are produced.

Important requirements for RTOS are being
deterministic, responsive, reliable and fail-soft
opertaion (fail in a way that minimizes conse-
quences).

Deadlines for some actions need to be kept: eit-
her guarantee to finish a task within a time pe-
riod or guarantee that the system reacts within
a time period. With hard real time it is critical
that deadlines are met at all times, with soft real
time it’s tolerable if some are missed.

Priority inversion example: Process with low
priority holds a resource which a process with
high priority wants to access.

7


