
Algebra — Exercise Sheet 6 Laurenz Weixlbaumer (11804751)

Exercise 1

a) We first determine a base of U by noting that x = −y − z solves x+ y + z = 0 for arbitrary
y and z leading to x

y
z

 =

−y − z
y
z

 = y

−1
1
0

+ z

−1
0
1


which shows that (−1, 1, 0) and (−1, 0, 1) form a basis for U (since any element of U can be
written as a linear combination of them).

Consider

dim(R3) = dim(U) + dim(R3/U)

3 = 2 + dim(R3/U)

dim(R3/U) = 1

thus we are looking for one more element in R3 such that it forms a basis of R3 alongside our
existing vectors.

b) We first determine a base of U . By solving the linear system x+y+z = 0 and x+2y+3z = 0.

1 1 1 0
1 2 3 0

1 1 1 0
0 1 2 0

Thus

y + 2z = 0 x+ y + z = 0

y = −2z x− 2z + z = 0

x = z

leading to  x
x

−2x

 = x

 1
1
−2


which makes (1, 1,−2) a basis of U .

Exercise 2

a) To show that the given vectors form an orthogonal system it is necessary to show that they
are pairwise orthogonal. (That for any vectors v⃗ and u⃗ we have v⃗ · u⃗ = 0) This is the case
here.

b) To show that the given vectors form a basis we show that they are linearly independent
(skipped, x1, . . . , x4 = 0). Since we have four independent vectors of a four-dimensional vector
space they form a basis.

c) To determine the coordinates of of a⃗ in relation to the given basis we solve
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0 -10 26 9 6
0 -5 47 -12 37
1 6 66 4 78
2 -3 -33 -2 -39

and get λ1 = 0, λ2 = 2, λ3 = 1, λ4 = 0.

Exercise 3

a) (i)

x2
1 + 2x2

2 ≥ 0

x2
1 + 2x2

2 = 0 ⇔ x⃗ = 0⃗

(ii)

x1y1 + 2x2y2 = y1x1 + 2y2x2

(iii)

(λx1 + ϕy1)z1 + 2(λx2 + ϕy2)z2 = λ(x1z1 + 2x2z2) + ϕ(y1z1 + 2y2z2)

λx1z1 + ϕy1z1 + 2(λx2z2 + ϕy2z2) = λ(x1z1 + 2x2z2) + ϕ(y1z1 + 2y2z2)

λx1z1 + ϕy1z1 + 2λx2z2 + 2ϕyzz2 = λ(x1z1 + 2x2z2) + ϕ(y1z1 + 2y2z2)

b) (i) Same as regular scalar product. (No, contradiction.)

(ii)

x1y2 + x2y1 = y1x2 + y2x1

(iii)

(λx1 + ϕy1)z2 + (λx2 + ϕy2)z1 = λ(x1z2 + x2z1) + ϕ(y1z2 + y2z1)

λx1z2 + ϕy1z2 + λx2z1 + ϕy2z1 = λ(x1z2 + x2z1) + ϕ(y1z2 + y2z1)

c) Not a scalar product.

(i) Same as regular scalar product.

(ii)

x1y1 + x2y1 = y1x1 + y2x1

x2y1 = y2x1

Consider x⃗ = (1, 2) and y⃗ = (3, 4), we now have 6 = 4.

d) Not a scalar product.
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(i)

x1 + x2 + x1 + x2 ≥ 0

Consider x⃗ = (−1, 0) we now have −1 + 0− 1 + 0 ≥ 0.

e) Not a scalar product, definition requires V × V → R but R3 ̸= R2.

f) Can be restated to x1

x2

x3

 ,

y1
y2
y3

 7→
(
⟨(x1, x2), (y1, y2)⟩
⟨(x1, x3), (y1, y3)⟩

)

and is thus a scalar product. (No, contradiction.)

Exercise 4

a) To show that a set of vectors form an orthogonal basis we show that they are a basis (they
are linearly independent, done?) and that they are pairwise orthogonal (trivial).

b) Since the system

1 1 1 5
1 -1 0 1
1 1 -1 6
1 -1 0 3

does not have a solution, the given vector is not in U . (Cannot be constructed from linear
combination of vectors in U .)

Exercise 5

i = 1
w1 = u

i = 2

w2 = v − (projw1
(v))

with

projw1
(v) =

v · w1

w1 · w1
· w1 =

2
2
2


thus

w2 =

−1
0
1

 .
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i = 3

w3 = w − (projw1
(w) + projw2

(w))

with

projw1
(w) =

 1
3
1
3
1
3


projw2

(w) =

 1
2
0
− 1

2


thus

w3 =

 1
6

− 1
3

1
6

 .

Exercise 6

(i)

x2
1 + x1x2 + x2x1 + 2x2

2 − x1x3 − x3x1 + 3x2
3 ≥ 0

x2
1 + 2x1x2 + 2x2

2 − 2x1x3 + 3x2
3 ≥ 0

x2
1 + 2x2

2 + 3x2
3 ≥ −2x1x2 + 2x1x3

(ii)

x1y1 + x1y2 + x2y1 + 2x2y2 − x1y3 − x3y1 + 3x3y3 = y1x1 + y1x2 + y2x− 1 + 2y2x2 − y1x3 − y3x1 + 3y3x3

0 = 0

(iii)

(λx1 + ϕy1)z1 + (λx1 + ϕy1)z2 + (λx2 + ϕy2)z1 + 2(λx2 + ϕy2)z2 − (λx1 + ϕy1)z3 − (λx3 + ϕy3)z1 + 3(λx3 + ϕy3)z3

= λ(x1z1 + x1z2 + x2z1 + 2x2z2 − x1z3 − x3z1 + 3x3z3) + ϕ(y1z1 + y1z2 + y2z1 + 2y2z2 − y1z3 − y3z1 + 3y3z3)

Exercise 7 The angle can be calculated with

cos(α) =
⟨u, v⟩

||u|| · ||v||
=

1√(√
2 + 1

)2 − 2
√
2 + 1 · 1

α = 60deg

Exercise 8 Gram-Schmidt auf Standardbasis von R3 anwenden.
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