
Algebra — Exercise Sheet 3 Laurenz Weixlbaumer (11804751)

Exercise 1 We show that if (G, ◦) is a group and H is a nonempty subset of G which is closed
under ◦ then H is a subgroup of G. We assume associativity as per axiom 1.41 and show that there
exists a neutral element and inverse elements.

Since H is closed under ◦, for arbitrary a, b ∈ H we have a ◦ b ∈ H. It follows that for any h ∈ H
we have that h, h2, h3, . . . ∈ H.

Since H is finite the above sequence must have repeating elements at some point. Thus there must
exist i, k ∈ Z with i > k such that hi = hk. By ◦-ing h−k to both sides we can transform this to
hi−k = e. Since i > k, i− k is positive which means that e is a positive power of h and thus e ∈ H.

We can restate hi−k = e to h ◦ hi−k−1 = e and thus the inverse of h ∈ H is hi−k−1 ∈ H.

Exercise 2 There is no such group. Consider G = H1 ∪H2 with g1 ∈ H1\H2 and g2 ∈ H2\H1.
Assume g1 ◦ g2 ∈ H1, we then have

g1 ◦ g2 ∈ H1

g−1
1 ◦ (g1 ◦ g2) ∈ H1

(g−1
1 ◦ g1) ◦ g2 ∈ H1

e ◦ g2 ∈ H1

g2 ∈ H1,

which is a contradiction. It follows that the same applies for g1 ◦ g2 ∈ H2.

A proper subgroup H of a group G is a subgroup where H ̸= G. We are given a group G and asked
to show if there exist proper subgroups H1 and H2 such that G = H1 ∪H2.

Let us assume that this is the case. We now have H1 ̸⊂ H2 and H2 ̸⊂ H1 because otherwise
H1 ∪H2 = H1 and H1 ∪H2 = H2, respectively, which would mean that H1 and H2 are not proper
subgroups. This means that there exist x ∈ G\H1 and y ∈ G\H2. (Thus x ̸∈ H1 and y ̸∈ H2.)

Because G is a group we have xy ∈ G. Since we assume G = H1 ∪H2 we further have xy ∈ H1 or
xy ∈ H2. We can now derive a contradiction through

xy = xy ∈ H1 xy = xy ∈ H2

x = (xy)y−1 ∈ H1 y = (xy)x−1 ∈ H2

which ultimately shows that G = H1 ∪H2 cannot exist.

Exercise 3 If we take a cycle c to the power of its length l we get id ∈ Sl. If we apply it to the
power of some multiple of its length this obviously still holds. So we are looking for the smallest
common multiple of all cycle lengths, knowing that this will yield id for all respective lengths.

Breaking π down into disjoint cycles gives us (1 3 7)(2)(4 8 5 6), with lengths 3, 1 and 4 respectively.
The least common multiple of these cycle lengths is 12, thus the order of the permutation is 12.

Exercise 4 Following the given hint we obtain gcd(9, 15) = 3 and determine that the set of c ∈ Z
for which 9x + 15y = c has a solution is the set of all c which are a multiple of 3. (Since, for a
diophantic equation to have an integer solution, the greatest common divisor must divide c.)

We can thus describe G as 3 · Z.
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Exercise 5 To show that a group G is abelian we show that for arbitrary a, b ∈ G we have
a ◦ b = b ◦ a. Consider

a ◦ b = b ◦ a and after adding b to both sides,

a = b ◦ a ◦ b,

and, replacing the a on the left hand side and adding b ◦ b = e on the right hand side

a ◦ b = b ◦ a
b ◦ a ◦ b ◦ b = b ◦ a ◦ e
b ◦ a ◦ b ◦ b = b ◦ a ◦ b ◦ b

b ◦ a = b ◦ a.

Exercise 6 We are given a homomorphism ϕ from a group (G, ◦) to a group (H, ∗).

• To show that ker(ϕ) is a subgroup of G we show that the statement

∀ a, b ∈ ker(ϕ) : a ◦ b−1 ∈ ker(ϕ)

holds. Let a, b ∈ ker(ϕ) so we have ϕ(a) = ϕ(b) = eH . Then

ϕ(a ◦ b−1) = ϕ(a) ∗ ϕ(b−1)

= ϕ(a) ∗ ϕ(b)−1

= eH ∗ e−1
H

= eH

and thus a ◦ b−1 ∈ ker(ϕ). (Since ker(ϕ) is defined to contain all g ∈ G such that ϕ(g) = eH .)

• To show that ϕ(G) is a subgroup of H we show that the statement

∀ a, b ∈ ϕ(G) : a ∗ b−1 ∈ ϕ(G)

holds. Choose x, y ∈ G such that ϕ(x) = a and ϕ(y) = b. We now have

ϕ(x ◦ y−1) = ϕ(x) ∗ ϕ(y−1)

ϕ(x ◦ y−1) = a ∗ b−1

since G is a group we have x ◦ y−1 ∈ G and thus ϕ(x ◦ y−1) ∈ ϕ(G). (Meaning that a ∗ b−1 ∈
ϕ(G).)

Exercise 7 As an example, for n = 3 we have

p(x) = b1
(x− a2)(x− a3)

(a1 − a2)(a1 − a3)
+ b2

(x− a1)(x− a3)

(a2 − a1)(a2 − a3)
+ b3

(x− a1)(x− a2)

(a3 − a1)(a3 − a2)

The expression

(x− a1) · · · (x− ai−1)(x− ai+1) · · · (x− an)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
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will always evaluate to zero (0) unless x = ai because the dividend would be zero otherwise. In the
case where x = ai it is clear that it will evaluate to one (1) since there are n matching pairs of
(ai − a1), (ai − a2), · · · in both divisor and dividend.

This means that

p(x) =

n∑
i=1

bi
(x− a1) · · · (x− ai−1)(x− ai+1) · · · (x− an)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
=

n∑
i=1

bi ·

{
0 for x ̸= ai

1 for x = ai

can be restated as p(ai) = bi.

Consider a1 = −1, a2 = 0, a3 = 1 and a4 = 2 and b1 = −1, b2 = 0, b3 = 1 and b4. We now have

p(x) = − (x− 0)(x− 1)(x− 2)

(−1− 0)(−1− 1)(−1− 2)
+

x− (−1)(x− 0)(x− 2)

(1− (−1)(1− 0)(1− 2))
+ 5

(x− (−1)(x− 0))(x− 0)(x− 1)

(2− (−1))(2− 0)(2− 1)

=
x3

2
+

x

2

with p(−1) = −1, p(0) = 0, p(1) = 1 and p(2) = 5.

Exercise 8 Of the given structures,

3

A,
4

B,
5

C,
6

D,
4

E,
4

G and
6

H

are groups. An isomorphism is a bijective function and thus we need only consider sets of equal
length. This leaves (B,E), (B,G) and (D,H) as candidates. (B,G) and (B,E) (exchange 3 and 4)
are isomorphic.
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