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Exercise 1

a) We have

r x y q

135 1 0
54 0 1 2
27 1 -2 2
0 -2 5

and thus gcd(135, 54) = 27. Since 27 | 0, there is a solution.

From the last row we know that 125 · −2 + 54 · 5 = 0, thus (−2, 5) ∈ L. We can now describe
L as L = {(−2k, 5k) | k ∈ Z}.

b) We have (note that x and y are reversed)

r y x q

105 1 0
99 0 1 1
6 1 -1 16
3 -16 17 2
0 33 -35

and thus gcd(105, 99) = 3. Since 3 | 12, there is a solution.

From the second to last row we know

3 = (17 · 99) + (−16 · 105) and, after multiplying by 4

12 = (68 · 99) + (−64 · 105).

Thus we have that (68,−64) ∈ L and further L = {(68− 35k,−64 + 33k) | k ∈ Z}.

c) We have

q x y r

38 1 0
19 0 1 2
0 1 -2

and thus gcd(38, 19) = gcd(19,−38) = 19. Since 19 ∤ 5 this equation does not have a solution.
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Exercise 2 We are looking for solutions to

35x+ 45y = 1000

where x is the number of linear Algebra books and y is the number of Analysis books. We have
(note that x and y are reversed)

r y x q

45 1 0
35 0 1 1
10 1 -1 3
5 -3 4 2
0 7 -9

and thus gcd(45, 35) = 5. Since 5 | 1000, there is a solution.

From the second to last row we know

5 = (4 · 35) + (−3 · 45) and, after multiplying by 200

1000 = (800 · 35) + (−600 · 45)

and thus (800,−600) ∈ L, allowing us to state L = {(800 ·−9k,−600 ·7k) | k ∈ Z}. For 86 ≤ k ≤ 88
neither of the values in the pairs ∈ L are negative. Thus we can either buy

Lineare Algebra Analysis
26 2
17 9
8 16

books.

If the total available money were 1001 then we would have 5 ∤ 1000, thus we would not be able to
spend all of our budget.
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Exercise 3 Idk.
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Exercise 4 Interpreting the polynomials as being in Z5.

x5 x4 x3 x2 x1 x0 x3 x2 x1 x0 x2 x1 x0

3 1 4 1 0 4 : 2 2 1 3 = 4 4 1
3 3 4 2

3 0 4 0 4
3 3 4 2

2 0 3 4
2 2 1 3

3 2 1

Interpreting the polynomials as being in Q.

x5 x4 x3 x2 x1 x0 x3 x2 x1 x0 x2 x1 x0

3 1 4 1 5 9 : 2 7 1 8 = 1.5 -4.75 17.875
3 10.5 1.5 12

-9.5 3.5 -11 5 9
-9.5 -33.25 -4.75 -38

35.75 -6.25 43 9
35.75 125.12 17.975 143

-132.37 25.125 -134
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Exercise 5

a) Consider that a general table for the GCD is

r u v q

P1 1 0
P2 0 1 q1
r1 1 v1 q2
r2 u2 v2 q3
r3 u3 v3 q4

We begin by calculating q1 and r1.

x5 x4 x3 x2 x1 x0 x4 x3 x2 x1 x0 x1 x0

1 6 9 -6 -22 -12 : 1 1 -4 -2 4 = 1 5
1 1 -4 -2 4

5 13 -4 -26 -12
5 5 -20 -10 20

8 16 -16 -32

Thus q1 = x+ 5, r1 = 8x3 + 16x2 − 16x− 32 and v1 = 0− q1 = −x− 5.

We continue by calculating q2 and r2.

x4 x3 x2 x1 x0 x3 x2 x1 x0 x1 x0

1 1 -4 -2 4 : 8 16 -16 -32 = 1
8 − 1

8
1 2 -2 -4

-1 -2 2 4
-1 -2 2 4

0 0 0 0

Thus q2 = 1
8x− 1

8 and r2 = 0. We have gcd(P1, P2) = r1 = 8x3 + 16x2 − 16x− 32.

b) If a
b is a root of gcd(P1, P2) then a must be a divisor of 32 and b must be a divisor of 8. The

candidates are thus

±1 −2 ±4 ±8 ±16 ±32 ±1

2
±1

4
±1

8

where boxed numbers are actual roots. We can thus factor out x+ 2 by division.

x3 x2 x1 x0 x1 x0 x2 x1 x0

8 16 -16 -32 : 1 2 = 8 0 -16
8 16

-16 -32
-16 -32

We can now solve 8x2 − 16 = 0 through

x1, x2 =
−b±

√
b2 − 4ac

2a
= ±

√
−4 · 8 · −16

2 · 8
= ±

√
512

16
= ±16

√
2

16
= ±

√
2.
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The roots are thus −2,−
√
2 and

√
2.
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Exercise 6 We are looking for the rational roots of

P (x) = 18x6 − 51x5 − 7x4 + 106x3 − 62x2 − 8x+ 8

Using the fact that, if a
b is a root of a polynom then a | a0 and b | an, we get

±1 2 ±4 ±8
1

2
−1

3
±1

6
±1

9
± 1

18

2

3
±2

9
± 2

18
±4

3
±4

9
±8

3
±8

9

as potential roots. Boxed numbers are actual roots.

We can thus factor out(
x+

1

3

)(
x− 1

2

)(
x− 2

3

)
(x− 2) = x4 − 17

6
x3 +

29

18
x2 +

2

9
x− 2

9

by division.

x6 x5 x4 x3 x2 x1 x0 x4 x3 x2 x1 x0 x2 x1 x0

18 -51 -7 106 -62 -8 8 : 1 − 17
6

29
18

2
9 − 2

9 = 18 0 -36
18 -51 29 4 -4

-36 102 -58 -8 8
-36 102 -58 -8 8

We can now solve 18x2 − 36 = 0 through

x1, x2 =
−b±

√
b2 − 4ac

2a
= ±

√
−4 · 18 · −36

2 · 18
= ±

√
2592

36
= ±36

√
2

36
= ±

√
2,

yielding no rational roots. The rational roots are thus these obtained previously.
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Exercise 7 We have

p(x) = x7 − 6x6 + 10x5 − 6x4 + 9x3

p′(x) = 7x6 − 36x5 + 50x4 − 24x3 + 27x2

and we are looking for a square-free factorisation of p. Calculating the GCD of p and p′ we first
divide p by p′

x7 x6 x5 x4 x3 x2 x6 x5 x4 x3 x2 x1 x0

1 -6 10 -6 9 0 : 7 -36 50 -24 27 = 1
7 − 6

49
1 − 36

7
50
7 − 24

7
27
7

− 6
7

20
7 − 17

7
36
7 0

− 6
7

216
49 − 300

49
144
49 − 162

49

− 76
49

174
49

108
49

162
49

and get r1 = − 76x5

49 + 174x4

49 + 108x3

49 + 162x2

49 and q1 = x
7 − 6

49 . We can simplify r1 = −38x5 +87x4 +
54x3 + 81x2.

Now we divide p′ by r1

x6 x5 x4 x3 x2 x5 x4 x3 x2 x1 x0

7 -36 50 -24 27 : −38 87 54 81 = − 7
38

759
1444

7 126
19

175
19

84
19 − 189

38

− 810
19

775
19 − 540

19
1215
38

− 810
19

66033
1444

20493
722

61479
1444

20531x4

1444 − 13524x3

361 − 22491x2

1444

and get r2 = 20531x4

1444 − 13524x3

361 − 22491x2

1444 . We then divide r1 by r2 and get r3 = 11696400x2

175561 − 3898800x3

175561 .
We then divide r2 by r3 and get r4 = 0.

Thus r3, which can be simplified to x3 − 3x2, is the GCD we are looking for.

We now divide p by this result which yields x4 − 3x3 + x2 − 3x with no remainder.

8



Algebra — Exercise Sheet 2 Laurenz Weixlbaumer (11804751)

Exercise 8 To show that p | ( p
k ) note that(

p
k

)
=

p!

k!(p− k)!

p! =

(
p
k

)
(k!(p− k)!).

Since the left hand side of the equation is clearly divisible by p, the right hand side must also be
divisible by it. The expression k!(p−k)! is not divisible by p since it is a product of numbers smaller
than p and p is prime. Thus the binomial coefficient must be the part which is divisible by p.

Now consider that, by the binomial theorem

(x+ y)p =

p∑
k=0

(
p
k

)
xp−kyk

(x+ y)p =

(
p
0

)
xpy0 +

(
p
1

)
xp−1y1 + · · ·+

(
p

p− 1

)
x1yp−1 +

(
p
p

)
x0yp

(x+ y)p = xp +

(
p
1

)
xp−1y1 + · · ·+

(
p

p− 1

)
x1yp−1 + yp

(x+ y)p ≡6 xp + yp
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