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Exercise 1. We have

l =

(
1 2 3
2 3 1

)
r =

(
1 2 3
3 1 2

)
s =

(
1 2 3
1 3 2

)
e = s ◦ s =

(
1 2 3
1 2 3

)
t = l ◦ s =

(
1 2 3
2 1 3

)
u = s ◦ l =

(
1 2 3
3 2 1

)
.

a) Cayley table.

◦ e l r s t u

e e l r s t u
l l r e t u s
r r e l u s t
s s u t e r l
t t s u l e r
u u t s r l e

b) Not commutative, the table would have to be symmetrical alongside the main diagonal. For
example l ◦ s ̸= s ◦ l.

There is a neutral element, the identity permutation e.

Each element has an inverse since every row and every column of the table contains e. (Meaning
that for each element, there exists another which

”
turns it“ into e.)

c) Semigroup because function composition is associative. (We have a ◦ (b ◦ c) = (a ◦ b) ◦ c, see
discrete structures notes.)

Monoid because there is a neutral element.

Group because each element has an inverse.

Not an abelian group, ring, etc. because it is not commutative.
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Exercise 2. To show that (P(X),∆) is an abelian group we show that it

a) is associative by showing x∆(y∆ z) = (x∆ y)∆ z.

The expression a ∈ x∆ y tells us that a is either in x or y, but not in both of them. The
expression p = u ⊕ v tells us that p is true if either u or v is true, but not both of them. The
truth value of a ∈ x∆ y is thus equal to a ∈ x ⊕ a ∈ y.

Assume that a ∈ x∆(y∆ z). We can transform this to

a ∈ x∆(y∆ z) ⇐⇒ a ∈ x ⊕ (a ∈ y∆ z)

⇐⇒ a ∈ x ⊕ (a ∈ y ⊕ a ∈ z) ⇐⇒ a ∈ x ⊕ a ∈ y ⊕ a ∈ z.

Assume that a ∈ (x∆ y)∆ z. We can transform this to

a ∈ (x∆ y)∆ z ⇐⇒ (a ∈ x∆ y) ⊕ a ∈ z

⇐⇒ (a ∈ x ⊕ a ∈ y) ⊕ a ∈ z ⇐⇒ a ∈ x ⊕ a ∈ y ⊕ a ∈ z.

The above transformations depends on ⊕ being associative. This is true as shown by the
following table

x y z y ⊕ z x ⊕ y x ⊕ (y ⊕ z) (x ⊕ y) ⊕ z

0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 1 0 1 1 1 1
0 1 1 0 1 0 0
1 0 0 0 1 1 1
1 0 1 1 1 0 0
1 1 0 1 0 0 0
1 1 1 0 0 1 1

We have thus shown that a ∈ x∆(y∆ z) ⇔ a ∈ (x∆ y)∆ z which is equivalent to x∆(y∆ z) =
(x∆ y)∆ z.

b) contains a neutral element by showing that there exists an e ∈ P(X) such that e∆x = x =
x∆ e for arbitrary x ∈ P(X).

Consider that x∆ e = (x\e) ∪ (e\x). Choose e = ∅. We now have

x∆ e = (x\∅) ∪ (∅\x) = x and

e∆x = (∅\x) ∪ (x\∅) = x

since x\∅ = x, ∅\x = ∅ and x ∪ ∅ = ∅ ∪ x = x.

This assertion depends on ∪ being commutative. Consider two setsX and Y and an a ∈ X∪Y .
We know that a ∈ X and/or a ∈ Y . Thus a ∈ Y ∪X. If a ̸∈ X ∪ Y then a is neither in X nor
Y , it is thus also not in Y ∪X.

c) contains an inverse for each element by showing that for each x ∈ P(X) there exists an
x−1 ∈ P(X) such that x∆x−1 = x−1 ∆x = ∅.
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Consider again that x∆ e = (x\e) ∪ (e\x). Choose x−1 = x. We now have

x−1 ∆x = x∆x−1 = (x\x) ∪ (x\x) = ∅

since x\x = ∅.

d) is commutative by showing that x∆ y = y∆x holds for arbitrary x, y ∈ P(X). We have

x∆ y = y∆x

(x\y) ∪ (y\x) = (y\x) ∪ (x\y)

which holds since ∪ is commutative.
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Exercise 3

a) To show x−1−1

= x consider that, by definition, x ◦ x−1 = e and that x−1 ◦ x−1−1

= e. Thus

we have x ◦ x−1 = x−1 ◦ x−1−1

and further x−1−1

= x.

b) To show that (x ◦ y)−1 = y−1 ◦ x−1 consider that x ◦ x−1 = e and y ◦ y−1 = e. We have that

e = x ◦ x−1

e = x ◦ e ◦ x−1

e = x ◦ y ◦ y−1 ◦ x−1

(x ◦ y)−1 = y−1 ◦ x−1.
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Exercise 4 Assuming that (P(X),∪,∩) is a ring, (P(X),∪) has to be an abelian group and
therefore each element x ∈ (P(X) has to have an inverse y such that x ∪ y = e where e is the
neutral element.

The neutral element of (P(X),∪) is ∅ since ∅ ∪ x = x ∪ ∅ = x. Consider that, for arbitrary sets X
and Y , |X| ≤ |X ∪ Y | ≥ |Y |. Since |∅| = 0, the cardinality of x∪ y has to be zero if x∪ y = e. Thus
(P(X),∪) only contains an inverse for every x ∈ P(X) if X = ∅. P(S) It now remains to be shown
that (P(∅),∪,∩) is a ring. We have x, y, z ∈ P(∅), x = y = z = ∅ and will show that,

a) (P(∅),∪) is associative by showing that we have

x ∪ (y ∪ z) = (x ∪ y) ∪ z

∅ ∪ (∅ ∪ ∅) = (∅ ∪ ∅) ∪ ∅

b) (P(∅),∪) contains a neutral element. Already shown for arbitrary X.

c) (P(∅),∪) is commutative by

x ∪ y = y ∪ x

∅ ∪ ∅ = ∅ ∪ ∅.

d) (P(∅),∩) is associative by

x ∩ (y ∩ z) = (x ∩ y) ∩ z

∅ ∩ (∅ ∩ ∅) = (∅ ∩ ∅) ∩ ∅.

e) The distributive law,

x ∩ (y ∪ z) = x ∩ y ∪ x ∩ z

∅ ∩ (∅ ∪ ∅) = ∅ ∩ ∅ ∪ ∅ ∩ ∅

holds.
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Exercise 5 To show that (P(X),∆,∩) is a commutative ring we will show that

a) (P(X),∆) is an abelian group. This was done as part of exercise 2.

b) (P(X),∩) is a monoid. We will assume associativity and thus only show that it contains a
neutral element e such that e ∩ x = x = x ∩ e.

Assume e = x, we now have e ∩ x = x ∩ x = x ∩ e = x.

c) (P(X),∩) is commutative by showing that x ∩ y = y ∩ x.

Consider a ∈ x ∩ y, we know a ∈ x and a ∈ y thus a ∈ y ∩ x.

Consider a ̸∈ x ∩ y, we know a ̸∈ x and a ̸∈ y thus a ̸∈ y ∩ x.

d) the distributive law, x ∩ (y∆ z) = x ∩ y∆x ∩ z, holds.

Consider a ∈ x ∩ (y∆ z). We know that a ∈ x and a in either z or y but not both. Thus
a ∈ x ∩ y or a ∈ x ∩ z, but not both. Thus a ∈ x ∩ y∆x ∩ z.

Consider a ∈ x ∩ y∆x ∩ z. We know that a is either in x and y or in x and z. It is thus
definitely in x and in either y or z but not in both. Thus a ∈ x ∩ (y∆ z).
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Exercise 6

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

We know that (Z4,+, ·) is a ring. For it to be a commutative ring (Z4, ·) has to be commutative.
This is given since the respective table is symmetrical alongside the main diagonal.

According to axiom 1.20 it is not a field since 4 is not prime. (It states that Zp is a field if and only
if p is prime.) Concretely, there doesn’t exist an inverse for every element (0, 2).
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Exercise 7 We have

f =

(
1 2 3 4 5
1 5 4 3 2

)
g =

(
1 2 3 4 5
3 5 1 2 4

)
g−1 =

(
1 2 3 4 5
3 4 1 5 2

)
h =

(
1 2 3 4 5
1 3 2 4 5

)
x =

(
1 2 3 4 5
4 1 3 5 2

)
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Exercise 8

14x+ 68 = 10

14x+ 18 = 10

14x = 15

x = 14−1 · 15

9


