Exercise 1

a) The given subset is linearly dependent.

1	-1	0	0	1	$^{-1}$	0	0	1	-1	0	0
1	2	6	0	0	3	6	0	0	3	6	0
3	1	8	0	0	4	8	0	0	0	0	0

b) The given subset is linearly dependent.

1	1	1	0	1	1	1	0	1	1	1	0
t	t-1	t+1	0	0	-1	1	0	0	-1	1	0
t^2	$(t-1)^2$	$(t+1)^2$	0	0	-2t + 1	2t + 1	0	0	0	0	0

Exercise 2

a) First we show that

$$\forall \, \vec{u}, \vec{v} \in U \cap W : \vec{u} + \vec{v} \in U \cap W.$$

Since U is a subspace, for all elements $\vec{u_1}, \vec{u_2} \in U$ we know $\vec{u_1} + \vec{u_2} \in U$. The same holds for the vectors in W. We know that the vectors \vec{u} and \vec{v} are in U and W. Thus

$$\vec{u} + \vec{v} \in U \land \vec{u} + \vec{v} \in W \implies \vec{u} + \vec{v} \in U \cap W.$$

Second we show that

$$\forall \, \vec{v} \in U \cap W : \forall \lambda \in V : \lambda \cdot \vec{v} \in U \cap W$$

We again know for all $\vec{u} \in U$ and $\lambda \in V$ that we have $\lambda \cdot \vec{u} \in U$ and analogously for W. Thus, since \vec{v} is in both U and W the same reasoning as above applies.

b) First we show that

$$\forall \vec{v_1}, \vec{v_2} \in U + W : \vec{v_1} + \vec{v_2} \in U + W.$$

Since

$$\begin{split} \vec{v_1} &= \vec{u_1} + \vec{w_1} \quad (\vec{u_1} \in U, \vec{w_1} \in W) \\ \vec{v_2} &= \vec{u_2} + \vec{w_2} \quad (\vec{u_2} \in U, \vec{w_2} \in W) \end{split}$$

by definition of U + W we can restate the condition to

$$\vec{v_1} + \vec{v_2} \in U + W$$

$$\vec{u_1} + \vec{w_1} + \vec{u_2} + \vec{w_2} \in U + W$$

$$\vec{u_1} + \vec{u_2} + \vec{w_1} + \vec{w_2} \in U + W$$

which is true since $\vec{u_1} + \vec{u_2} \in U$ and $\vec{w_1} + \vec{w_2} \in W$.

Second we show that

$$\forall \, \vec{v} \in U + W : \forall \, \lambda \in V : \lambda \cdot \vec{v} \in U + W$$

Since $\vec{v} = \vec{u} + \vec{w}$ (for some vectors \vec{u} and \vec{w} in U and W respectively) we can restate the above condition to

$$\lambda(\vec{u} + \vec{w}) \in U + W$$
$$\lambda \cdot \vec{u} + \lambda \cdot \vec{w} \in U + W$$

which is true since $\lambda \cdot \vec{u} \in U$ and $\lambda \cdot \vec{w} \in W$. (We can decompose the multiplication with λ because V is a vector space.)

Exercise 3 We show that $W_1 \cup W_2$ is a subspace if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

First we show the "if": Assume $W_1 \subseteq W_2$, then $W_1 \cup W_2 = W_2$ which is a subspace. The reasoning for $W_2 \subseteq W_1$ is very similar.

Second we show the "and only": Let $w_1 \in W_1$ such that $w_1 \notin W_2$ and $w_2 \in W_2$ with $w_2 \notin W_1$. We claim $w_1 + w_2 \notin W_1 \cap W_2$ — thus that $W_1 \cup W_2$ is not a subspace if neither is a subset of the other.

Proof by contradiction: Assume that $w_1 + w_2 \in W_1$. Since $-w_1$ is in W_1 (it is a subspace) we can construct the statement

$$(w_1 + w_2) - w_1 \in W_1$$
$$w_2 \in W_1$$

which is a contradiction. Same goes for the assumption that $w_1 + w_2 \in W_2$.

Exercise 5

There is no way to add the functions together to get f(x) = 0.

Exercise 7 The base is

 $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$

and the dimension of the linear hull is 3.