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Preface

This guidebook is written for anyone – student, researcher, or practitioner – who
wants to carry out computational experiments on algorithms (and programs) that
yield correct, general, informative, and useful results. (We take the wide view and
use the term “algorithm” to mean “algorithm or program” from here on.)

Whether the goal is to predict algorithm performance or to build faster and
better algorithms, the experiment-driven methodology outlined in these chapters
provides insights into performance that cannot be obtained by purely abstract
means or by simple runtime measurements. The past few decades have seen con-
siderable developments in this approach to algorithm design and analysis, both in
terms of number of participants and in methodological sophistication.

In this book I have tried to present a snapshot of the state-of-the-art in this field
(which is known as experimental algorithmics and empirical algorithmics), at a
level suitable for the newcomer to computational experiments. The book is aimed at
a reader with some undergraduate computer science experience: you should know
how to program, and ideally you have had at least one course in data structures and
algorithm analysis. Otherwise, no previous experience is assumed regarding the
other topics addressed here, which range widely from architectures and operating
systems, to probability theory, to techniques of statistics and data analysis

A note to academics: The book takes a nuts-and-bolts approach that would be
suitable as a main or supplementary text in a seminar-style course on advanced
algorithms, experimental algorithmics, algorithm engineering, or experimental
methods in computer science. Several case studies are presented throughout; a
companion website called AlgLab – Open Laboratory for Experiments on Algo-
rithms makes the files, programs, and tools described in the case studies available
for downloading. Suggestions for experimental problems and projects appear at
the end of each chapter.

ix
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x Preface

This book wouldn’t exist without the “number of participants” alluded to earlier,
members of the research community who have worked to develop this new method-
ology while contributing a huge body of experiment-based research on design and
analysis of algorithms, data structures, heuristics, and models of computation. I am
grateful for all those collegial conversations during break-out sessions, carried out
over countless cups of coffee: thanks to David Bader, Giuseppe Italiano, David S.
Johnson, Richard Ladner, Peter Sanders, Matt Stallmann, and Cliff Stein. A huge
thank you, especially, to Jon Bentley, whose comments, story ideas, and criticisms
of draft versions of this book were immensely valuable. My editor Lauren Cowles
also did a magnificent job of helping me to untangle knots in the draft manuscript.

Possibly more important to the final product than colleagues and readers are the
family and friends who remind me that life is more than an endless bookwriting
process: to Alex and Ian, Ruth and Stephen, Susan Landau, and Maia Ginsburg,
thank you for keeping me sane.

And finally, very special thanks to the guy who fits all of the above categories and
more: colleague, technical adviser, reader, supporter, husband, and friend. Thank
you Lyle.

Catherine C. McGeoch
Amherst, Massachusetts
July 2011
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Introduction

The purpose of computing is insight, not numbers.
Richard Hamming, Numerical

Methods for Scientists and Engineers

Some questions:

• You are a working programmer given a week to reimplement a data structure
that supports client transactions, so that it runs efficiently when scaled up to a
much larger client base. Where do you start?

• You are an algorithm engineer, building a code repository to hold fast implemen-
tations of dynamic multigraphs. You read papers describing asymptotic bounds
for several approaches. Which ones do you implement?

• You are an operations research consultant, hired to solve a highly constrained
facility location problem. You could build the solver from scratch or buy
optimization software and tune it for the application. How do you decide?

• You are a Ph.D. student who just discovered a new approximation algorithm for
graph coloring that will make your career. But you’re stuck on the average-case
analysis. Is the theorem true? If so, how can you prove it?

• You are the adviser to that Ph.D. student, and you are skeptical that the new
algorithm can compete with state-of-the-art graph coloring algorithms. How do
you find out?

One good way to answer all these questions is: run experiments to gain insight.
This book is about experimental algorithmics, which is the study of algorithms

and their performance by experimental means. We interpret the word algorithm
very broadly, to include algorithms and data structures, as well as their implemen-
tations in source code and machine code. The two main challenges in algorithm
studies addressed here are:

1
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2 1 Introduction

• Analysis, which aims to predict performance under given assumptions about
inputs and machines. Performance may be a measure of time, solution quality,
space usage, or some other metric.

• Design, which is concerned with building faster and better algorithms (and
programs) to solve computational problems.

Very often these two activities alternate in an algorithmic research project – a new
design strategy requires analysis, which in turn suggests new design improvements,
and so forth.

A third important area of algorithm studies is models of computation, which
considers how changes in the underlying machine (or machine model) affect design
and analysis. Problems in this area are also considered in a few sections of the text.

The discussion is aimed at the newcomer to experiments who has some famil-
iarity with algorithm design and analysis, at about the level of an undergraduate
course. The presentation draws on knowledge from diverse areas, including the-
oretical algorithmics, code tuning, computer architectures, memory hierarchies,
and topics in statistics and data analysis. Since “everybody is ignorant, only on
different subjects” (Will Rogers), basic concepts and definitions in these areas are
introduced as needed.

1.1 Why Do Experiments?
The foundational work in algorithm design and analysis has been carried out using
a theoretical approach, which is based on abstraction, theorem, and proof. In this
framework, algorithm design means creating an algorithm in pseudocode, and
algorithm analysis means finding an asymptotic bound on the dominant operation
under a worst-case or average-case model.

The main benefit of this abstract approach is universality of results – no matter
how skilled the programmer, or how fast the platform, the asymptotic bound on
performance is guaranteed to hold. Furthermore, the asymptotic bound is the most
important property determining performance at large n, which is exactly when
performance matters most. Here are two stories to illustrate this point.

• Jon Bentley [7] ran a race between two algorithms to solve the maximum-
sum subarray problem. The �(n3) algorithm was implemented in the fastest
environment he could find (tuned C code on a 533MHz Alpha 21164), and the
�(n) algorithm ran in the slowest environment available (interpreted Basic on a
2.03MHz Radio Shack TRS-80 Model II). Despite these extreme platform differ-
ences, the crossover point where the fast asymptotic algorithm started beating the
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1.1 Why Do Experiments? 3

slow algorithm occurred at only n = 5,800, when both programs took two min-
utes to run. At n = 10,000, the highly tuned cubic algorithm required seven days
of computation while the poorly tuned linear algorithm required only 32 minutes.

• Steve Skiena [26] describes a project to test a conjecture about pyramid num-
bers, which are of the form (m3 −m)/6, m ≥ 2. An O(n4/3 logn) algorithm ran
30,000 times faster than an O(n2) algorithm at n = 109, finishing in 20 minutes
instead of just over a year. Even tiny asymptotic differences become important
when n is large enough.

The main drawback of the theoretical approach is lack of specificity – a pencil-
and-paper algorithm is a far cry from a working program, and considerable effort
may be needed to fill in the details to get from one to the other. Furthermore,
asymptotic analyses require greatly simplified models of computation, which can
introduce significant inaccuracies in performance predictions.

Because of these gaps between theory and experience, some prefer to use an
empirical approach to performance analysis: implement the algorithm and mea-
sure its runtime. This approach provides specificity but lacks generality – it is
notoriously difficult to translate runtime measurements taken on one platform and
one set of instances into accurate time predictions for other scenarios.

Experimental algorithmics represents a third approach that treats algorithms
as laboratory subjects, emphasizing control of parameters, isolation of key com-
ponents, model building, and statistical analysis. This is distinct from the purely
empirical approach, which studies performance in “natural settings,” in a manner
akin to field experiments in the natural sciences.

Instead, experimental algorithmics combines the tools of the empiricist – code
and measurement – with the abstraction-based approach of the theoretician.
Insights from laboratory experiments can be more precise and realistic than pure
theory provides, but also more general than field experiments can produce.

This approach complements but does not replace the other two approaches
to understanding algorithm performance. It holds promise for bridging the long-
standing communication gap between theory and practice, by providing a common
ground for theoreticians and practitioners to exchange insights and discoveries
about algorithm and program performance.

Some Examples. Here are some stories illustrating what has been accomplished
by applying the experimental approach to problems in algorithm analysis.

• Theoretical analysis of Dijkstra’s algorithm (on a graph of n vertices and m

edges) concentrates on the cost of the decrease-key operation, which could be
performed m times, giving an O(m logn) or O(m+n logn) worst-case bound,
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4 1 Introduction

depending on data structure. But experimental analysis has shown that the worst-
case bound is overly pessimistic – the number of decrease-key operations is
quite small for many types of graphs that arise in practical applications, such as
network routing and roadmap navigation. In many real-world situations Dijk-
stra’s algorithm exhibits O(n + m) performance. See Cherkassky et al. [8] for
experimental results and theorems.

• The history of average-case analysis of internal path length (IPL) in binary
search trees, under a series of t random insertions and deletions, also illus-
trates how experiments can guide theory. The expected IPL in a random binary
tree is O(n logn). An early theorem showing that IPL does not change with
t was “disproved” by experiments (the theorem was correct but did not apply
to the random model). Those experiments prompted a new conjecture that IPL
decreases asymptotically with t . But later experiments showed that IPL initially
decreases, then increases, then levels off to �(n log2 n). A more recent conjec-
ture of �(n3/2) cost is well supported by experiments, but as yet unproved. See
Panny [22] for details.

• LaMarca and Ladner performed a series of experiments to evaluate the cache
performance of fundamental algorithms and data structures [15] [16]. On the
basis of their results, they developed a new analytical model of computation
that captures the two-tier nature of memory costs in real computers. Reanalysis
of standard algorithms under this model produces much closer predictions of
performance than the standard RAM model of computation used in classic
analysis.

These examples show how experimental analysis can be used to:

1. Fill in the gaps between the simplifying assumptions necessary to theory and
the realities of practical experience.

2. Characterize the differences among worst-case, average-case, and typical-case
performance.

3. Suggest new theorems and guide proof strategies.
4. Extend theoretical analyses to more realistic inputs and models of computation.

Similarly, the experimental approach has made important contributions to prob-
lems in algorithm design and engineering. The term algorithm engineering has
been coined to describe a systematic process for transforming abstract algorithms
into production-quality software, with an emphasis on building fast, robust, and
easy-to-use code. Algorithm design, which focuses on implementation and tuning
strategies for specific algorithms and data structures (see Chapter 4 for details), is
just one part of the larger algorithm engineering process, which is also concerned
with requirements specification, interfaces, scalability, correctness, and so forth.
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1.1 Why Do Experiments? 5

Here are a few examples showing how experiments have played a central role in
both algorithm design and algorithm engineering.

• The 2006 9th DIMACS Implementation Challenge–Shortest Paths workshop
contained presentations of several projects to speed up single-pair shortest-path
(SPSP) algorithms. In one paper from the workshop, Sanders and Shultes [24]
describe experiments to engineer an algorithm to run on roadmap graphs used
in global positioning system (GPS) Routing applications: the Western Europe
and the United States maps contain (n = 18 million, m = 42.5 million) and
(n = 23.9 million, m = 58.3 million) nodes and edges, respectively. They esti-
mate that their tuned implementation of Dijkstra’s algorithm runs more than a
million times faster on an average query than the best known implementation
for general graphs.

• Bader et al. [2] describe efforts to speed up algorithms for computing optimal
phylogenies, a problem in computational biology. The breakpoint phylogeny
heuristic uses an exhaustive search approach to generate and evaluate candidate
solutions. Exact evaluation of each candidate requires a solution to the traveling
salesman problem, so that the worst-case cost is O(2n!!) [sic–double factorial]
to solve a problem with n genomes. Their engineering efforts, which exploited
parallel processing as well as algorithm and code tuning, led to speedups by
factors as large as 1 million on problems containing 10 to 12 genomes.

• Speedups by much smaller factors than a million can of course be critically
important on frequently used code. Yaroslavskiy et al. [27] describe a project
to implement the Arrays.sort() method for JDK 7, to achieve fast performance
when many duplicate array elements are present. (Duplicate array elements
represent a worst-case scenario for many implementations of quicksort.) Their
tests of variations on quicksort yielded performance differences ranging from
20 percent faster than a standard implementation (on arrays with no duplicates),
to more than 15 times faster (on arrays containing identical elements).

• Sometimes the engineering challenge is simply to demonstrate a working imple-
mentation of a complex algorithm. Navarro [21] describes an effort to implement
the LZ-Index, a data structure that supports indexing and fast lookup in com-
pressed data. Navarro shows how experiments were used to guide choices made
in the implementation process and to compare the finished product to compet-
ing strategies. This project is continued in [11], which describes several tuned
implementations assembled in a repository that is available for public use.

These examples illustrate the ways in which experiments have played key roles
in developing new insights about algorithm design and analysis. Many more exam-
ples can be found throughout this text and in references cited in the Chapter Notes.
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6 1 Introduction

1.2 Key Concepts
This section introduces some basic concepts that provide a framework for the
larger discussion throughout the book.

A Scale of Instantiation
We make no qualitative distinction here between “algorithms” and “programs.”
Rather, we consider algorithms and programs to represent two points on a scale of
instantiation, according to how much specificity is in their descriptions. Here are
some more recognizable points on this scale.

• At the most abstract end are metaheuristics and algorithm paradigms, which
describe generic algorithmic structures that are not tied to particular problem
domains. For example, Dijkstra’s algorithm is a member of the greedy paradigm,
and tabu search is a metaheuristic that can be applied to many problems.

• The algorithm is an abstract description of a process for solving an abstract
problem. At this level we might see Dijkstra’s algorithm written in pseudocode.
The pseudocode description may be more or less instantiated according to how
much detail is given about data structure implementation.

• The source program is a version of the algorithm implemented in a particular
high-level language. Specificity is introduced by language and coding style, but
the source code remains platform-independent. Here we might see Dijkstra’s
algorithm implemented in C++ using an STL priority queue.

• The object code is the result of compiling a source program. This version of the
algorithm is written in machine code and specific to a family of architectures.

• The process is a program actively running on a particular machine at a particular
moment in time. Performance at this level may be affected by properties such as
system load, the size and shape of the memory hierarchy, and process scheduler
policy.

Interesting algorithmic experiments can take place at any point on the instanti-
ation scale. We make a conceptual distinction between the experimental subject,
which is instantiated somewhere on the scale, and the test program, which is
implemented to study the performance of the subject.

For example, what does it mean to measure an algorithm’s time performance?
Time performance could be defined as a count of the dominant cost, as identified by
theory: this is an abstract property that is universal across programming languages,
programmers, and platforms. It could be a count of instruction executions, which
is a property of object code. Or it could be a measurement of elapsed time, which
depends on the code as well as on the platform. There is one test program, but the
experimenter can choose to measure any of these properties, according to the level
of instantiation adopted in the experiment.
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1.2 Key Concepts 7

In many cases the test program may be exactly the subject of interest – but it
need not be. By separating the two roles that a program may play, both as test
subject and as testing apparatus, we gain clarity about experimental goals and
procedures. Sometimes this conceptual separation leads to better experiments, in
the sense that a test program can generate better-quality data more efficiently than
a conventional implementation could produce (see Chapter 6 for details).

This observation prompts the first of many guidelines presented throughout the
book. Guidelines are meant to serve as short reminders about best practice in
experimental methodology. A list of guidelines appears in the Chapter Notes at the
end of each chapter.

Guideline 1.1 The “algorithm” and the “program” are just two points on a
scale between abstract and instantiated representations of a given computational
process.

The Algorithm Design Hierarchy
Figure 1.1 shows the algorithm design hierarchy, which comprises six levels that
represent broad strategies for improving algorithm performance. This hierarchi-
cal approach to algorithm design was first articulated by Reddy and Newell [23]
and further developed by Bentley [6], [7]. The list in Figure 1.1 generally follows
Bentley’s development, except two layers–algorithm design and code tuning – are
now split into three – algorithm design, algorithm tuning, and code tuning. The
distinction is explained further in Chapter 4.

The levels in this hierarchy are organized roughly in the order in which decisions
must be made in an algorithm engineering project.You have to design the algorithm
before you implement it, and you cannot tune code before the implementation
exists. On the other hand, algorithm engineering is not really a linear process – a
new insight, or a roadblock, may be discovered at any level that makes it necessary
to start over at a higher level.

Chapter 4 surveys tuning strategies that lie at the middle two levels of this
hierarchy – algorithm tuning and code tuning. Although concerns at the other
levels are outside the scope of this book, do not make the mistake of assuming that
they are not important to performance. The stories in Section 1.1 about Bentley’s
race and Skiena’s pyramid numbers show how important it is to get the asymptotics
right in the first place.

In fact, the greatest feats of algorithm engineering result from combining design
strategies from different levels: a 10-fold speedup from rearranging file structures
at the system level, a 100-fold speedup from algorithm tuning, a 5-fold speedup
from code tuning, and a 2-fold improvement from using an optimizing compiler,
will combine multiplicatively to produce a 10,000-fold improvement in overall
running time. Here are two stories that illustrate this effect.
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8 1 Introduction

• System structure. Decompose the software into modules that inter-
act efficiently. Check whether the target runtime environment pro-
vides sufficient support for the modules. Decide whether the final
product will run on a concurrent or sequential platform.

• Algorithm and data structure design. Specify the exact problem
that is to be solved in each module. Choose appropriate problem
representations. Select or design algorithms and data structures that
are asymptotically efficient.

• Implementation and algorithm tuning. Implement the algorithm,
or perhaps build a family of implementations. Tune the algorithm by
considering high-level structures relating to the algorithm paradigm,
input classes, and cost models.

• Code tuning. Consider low-level code-specific properties such as
loops and procedure calls. Apply a systematic process to transform
the program into a functionally equivalent program that runs faster.

• System software. Tune the runtime environment for best perfor-
mance, for example by turning on compiler optimizers and adjusting
memory allocations.

• Platform and hardware. Shift to a faster CPU and/or add coproces-
sors.

Figure 1.1. The algorithm design hierarchy. The levels in this hierarchy represent broad strategies
for speeding up algorithms and programs.

Cracking RSA-129. Perhaps the most impressive algorithm engineering achieve-
ment on record is Atkins et al.’s [1] implementation of a program to factor a
129-digit number and solve an early RSA Encryption Challenge. Reasonable
estimates at the time of the challenge were that the computation would take 4
quadrillion years. Instead, 17 years after the challenge was announced, the code
was cracked in an eight-month computation: this represents a 6 quadrillion–fold
speedup over the estimated computation time.

The authors’ description of their algorithm design process gives the following
insights about contributions at various levels of the algorithm design hierarchy.

• The task was carried out in three phases: an eight-month distributed computation
(1600 platforms); then a 45-hour parallel computation (16,000 CPUs); then a
few hours of computation on a sequential machine. Assuming optimal speedups
due to concurrency, the first two phases would have required a total of 1149.2

Cambridge Books Online © Cambridge University Press, 2012



1.2 Key Concepts 9

years on a sequential machine. Thus concurrency contributed at most a 1150-fold
speedup.

• Significant system design problems had to be solved before the computation
could take place. For example, the distributed computation required task mod-
ules that could fit into main memory of all platforms offered by volunteers.Also,
data compression was needed to overcome a critical memory shortage late in
the computation.

• According to Moore’s Law (which states that computer speeds typically double
every 18 months), faster hardware alone could have contributed a 2000-fold
speedup during the 17 years between challenge and solution. But in fact the
original estimate took this effect into account. Thus no speedup over the estimate
can be attributed to hardware.

• The authors describe code tuning improvements that contributed a factor of 2
speedup (there may be more that they did not report).

• Divide 6 quadrillion by 2300 = 1150 × 2: the remaining 2.6–trillion-fold
speedup is due to improvements at the algorithm design level.

Finding Phylogenies Faster. In a similar vein, Bader et al. [2], [19] describe their
engineering efforts to speed up the breakpoint phylogeny algorithm described
briefly in Section 1.1.

• Since the generation of independent candidate solutions can easily be paral-
lelized, the authors implemented their code for a 512-processor Alliance Cluster
platform. This decision at the systems level to adopt a parallel solution produced
an optimal 512-fold speedup over a comparable single-processor version.

• Algorithm design and algorithm tuning led to speedups by factors around 100;
redesign of the data structures yielded another factor of 10. The cumulative
speedup is 1000. The authors applied cache-aware tuning techniques to obtain a
smaller memory footprint (from 60MB down to 1.8MB) and to improve cache
locality. They remark that the new implementation runs almost entirely in cache
for their test data sets.

• Using profiling to identify timing bottlenecks in a critical subroutine, they
applied code tuning to obtain 6- to 10-fold speedups. The cumulative speedup
from algorithm and code tuning was between 300 and 50,000, depending on
inputs.

This combination of design improvements resulted in cumulative speedups by
factors up to 1 million on some inputs.

Guideline 1.2 When the code needs to be faster, consider all levels of the algorithm
design hierarchy.
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10 1 Introduction

Plan Execute

Formulate
a question

Run experiment,
gather data

Analyze data

Publish

Design an
experiment

Build
tools

Figure 1.2. The experimental process. Experiments are carried out in cycles within cycles. Plan-
ning experiments alternates with executing them. In the planning stage, formulating questions
alternates with building testing tools and designing experiments. In the execution stage, conduct-
ing experiments alternates with analyzing data. Individual steps may be carried out in different
orders and are sometimes skipped.

The Experimental Process
The major steps in the experimental process are defined in the following list and
illustrated in Figure 1.2. Despite the numerical list structure, the process is not
sequential, but rather loosely cyclical: planning experiments alternates with con-
ducting experiments; the three steps in the planning stage may be carried out in
any order; and steps may be skipped occasionally.

1. Plan the experiment:
a. Formulate a question.
b. Assemble or build the test environment. The test environment comprises the

test program, input instances and instance generators, measurement tools and
packages, and data analysis software. These components might be readily
available or might require considerable development time in their own right.

c. Design an experiment to address the question at hand. Specify, for example,
what properties are to be measured, what input categories are applied, which
input sizes are measured, how many random trials are run, and so forth.

2. Execute the experiment:
a. Run the tests and collect the data.
b. Apply data analysis to glean information and insight. If the question was not

answered, go back to the planning stage and try again.
c. (For academic experimenters.) Publish the results. Ideally, your publication

prompts several new questions, which start the process over again.

A single round of planning and experimenting may be part of a larger process
in a project developed for purposes of design or analysis, or both. The nature
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1.3 What’s in the Book? 11

of the experiments tends to evolve as the project moves forward. For example,
an algorithm engineering project may start with experiments to evaluate several
abstract algorithms in order to select one or two for implementation, but later
experiments may focus on code tuning and robustness tests. Similarly, an analysis
project may start by looking at abstract performance properties and general input
classes and may focus on more instantiated models and realistic inputs later on.

Guideline 1.3 The experimental path is not straight, but cyclical: planning alter-
nates with execution; experimental design alternates with tool building; analysis
alternates with data collection.

1.3 What’s in the Book?
This guidebook aims to assist theoreticians, practitioners, and algorithm engineers
to carry out experiments to study algorithm performance, for purposes of design
and/or analysis. Here are the major themes.

• Chapter 2 considers problems of designing experiments to study algorithmic
questions. The chapter surveys common goals of experimental algorithmics
and shows how to match tactics to goals. These concepts are illustrated with
three algorithms for the graph coloring problem.

• Chapter 3 considers the question of which property to measure. A variety of
time-measurement options are illustrated using the Markov Chain Monte Carlo
algorithm for random text generation. The chapter also considers strategies
for measuring solution quality when evaluating heuristics and approximation
algorithms, illustrated with algorithms for bin packing. Measurement strategies
for space usage and network communication costs are also surveyed.

• Chapter 4 considers the algorithm design problem: how to make it run fast.
The discussion focuses on algorithm tuning and code tuning, which are the two
middle layers of the algorithm design hierarchy. Several algorithms are used
as illustrations in this chapter, including an exhaustive-search algorithm for bin
packing and a greedy algorithm for a problem related to all pairs shortest paths
in graphs.

• Chapter 5 presents practical tips for building the experimental environment,
which comprises test programs, inputs and generators, measurement tools,
and data analysis packages. The chapter ends with a cookbook of algorithms
for generating random numbers, lists, permutations, and other combinatorial
objects.

• Algorithm experimenters have unusual opportunities for building experiments
that produce analysis-friendly data, which yield stronger results from data anal-
ysis. Chapter 6 discusses two strategies: variance reduction techniques (VRTs)
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12 1 Introduction

and simulation speedups. These ideas are illustrated using two algorithms for
the self-organizing sequential search problem.

• Finally, Chapter 7 surveys data analysis and statistical techniques that are rele-
vant to common scenarios arising in algorithmic experiments. Most of the data
sets used as illustrations in this section come from the case study experiments
described in previous chapters.

The case studies mentioned here play a central role in the presentation of con-
cepts strategies, and techniques. All of the solver programs and input generators
described in these case studies are available for downloading from the Algorith-
mics Laboratory (AlgLab), which is a companion Web site to this text. Visit
www.cs.amherst.edu/alglab to learn more.

The reader is invited to download these materials and try out the ideas in this
guidebook, or to extend these examples by developing new experiments. Sugges-
tions for additional experiments appear in the Problems and Projects section at the
end of each chapter.

1.4 Chapter Notes
The Chapter Notes section at the end of each chapter collects guidelines and gives
references to further reading on selected topics. Here are the guidelines from this
chapter.

1.1 The “algorithm” and the “program” are just two points on a scale between
abstract and instantiated representations of a given computational process.

1.2 When the code needs to be faster, consider all levels of the algorithm design
hierarchy.

1.3 The experimental path is not straight, but cyclical: planning alternates
with execution; experimental design alternates with tool building; analysis
alternates with data collection.

Readings in Methodology
Here is a reading list of papers and books that address topics in experimental
methodology for problems in algorithm design and analysis.

Articles
“Designing and reporting on computational experiments with heuristic methods,”

by R. S. Barr et al. Guidelines on experimental design and reporting standards,
emphasizing heuristics and optimization problems [3].

“Ten Commandments for Experiments on Algorithms,” by J. L. Bentley. The title
speaks for itself. [5]
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1.4 Chapter Notes 13

“Algorithm Engineering,” by C. Demetrescu, I. Finocchi, and G. F. Italiano. A
survey of issues and problems in algorithm engineering. [10]

How Not to Do It, by I. P. Gent et al., Pitfalls of algorithmic experiments and how
to avoid them. [12].

“Testing heuristics: We have it all wrong,” by J. Hooker. A critique of experimental
methodology in operations research. [13]

“A theoretician’s guide to the experimental analysis of algorithms,” by D. S. John-
son. Pet peeves and pitfalls of conducting and reporting experimental research
on algorithms, aimed at the theoretician. [14]

“Toward an experimental method in algorithm analysis,” by C. C. McGeoch. Early
discussion of some of the ideas developed in this book. [17]

“How to present a paper on experimental work with algorithms,” by C. McGeoch
and B. M. E. Moret. Guidelines for presenting a research talk, aimed at the
academic. [18]

“Algorithm Engineering – an attempt at a definition using sorting as an exam-
ple,” by Peter Sanders. A description of the field, including issues and open
questions. [25]

Books

1. Experimental Methods for the Analysis of Optimization Algorithms, T. Bartz-
Beielstein, et al., eds. Broad coverage of topics in experimental methodology,
especially statistics and data analysis, emphasizing problems in optimiza-
tion. [4]

2. Programming Pearls, by J. L. Bentley. Written for the practicing programmer,
the book addresses topics at the interface between theory and practice and
contains many tips on how to perform experiments. [7]

3. Empirical Methods for Artificial Intelligence, by P. Cohen.A textbook on statis-
tics and data analysis, with many illustrations from experiments on heuristic
algorithms. [9]

4. Algorithm Engineering: Bridging the Gap between Algorithm Theory and
Practice, M. Müller-Hanneman and S. Schirra, eds. A collection of arti-
cles addressing topics in engineering and experimentation, aimed at graduate
students and research scientists. [20]

A timeline
The discipline of experimental algorithmics has come of age in recent years, due
to the efforts of a growing community of researchers. Members of this group
have worked to organize workshops and publication venues, launch repositories
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and libraries for engineered products, and develop methodologies for this new
approach to algorithm research.

Here is list of meetings and journals that provide publication venues for research
in experimental algorithmics, in chronological order by date of launch. Consult
these resources to find many examples of research contributions to algorithm
design and analysis, as well as discussions of methodological issues.

1989 The ORSA Journal on Computing is launched to publish articles in the
intersection of operations research and computer science. In 1996 the
name of the sponsoring organization changed; the journal is now called
the INFORMS Journal on Computing.

1990 The first ACM-SIAM Symposium on Data Structures and Algorithms
(SODA) is organized by David Johnson. The call for papers explicitly
invites “analytical or experimental” analyses, which may be “theoretical
or based on real datasets.”

1990 The first DIMACS Implementation Challenge is coorganized by David
Johnson and Catherine McGeoch. The DIMACS Challenges are year-long,
multiteam, cooperative research projects in experimental algorithmics.

1995 Inaugural issue of theACM Journal of Experimental Algorithmics, Bernard
Moret, editor in chief.

1997 The first Workshop on Algorithm Engineering (WAE) is organized by
Giuseppe Italiano. In 2002 this workshop joins the European Symposium
on Algorithms (ESA), as the “Engineering and Applications” track.

1999 The annual workshop on Algorithm Engineering and Experiments
(ALENEX) is coorganized in 1999 by Mike Goodrich and Catherine
McGeoch. It was inspired by the Workshop onAlgorithms and Experiments
(ALEX), organized in 1998 by Roberto Battiti.

2000 The first of several Dagstuhl Seminars on Experimental Algorithmics and
Algorithm Engineering is organized by Rudolf Fleischer, Bernard Moret,
and Erik Schmidt.

2001 The First International Workshop on Efficient Algorithms (WEA) is orga-
nized by Klaus Jansen and Evripidis Bampis. In 2003 it becomes the
International Workshop on Experimental and Efficient Algorithms (WEA)
coordinated by José Rolim. In 2009 it becomes the Symposium on
Experimental Algorithms (SEA).

1.5 Problems and Projects
1. Find three experimental analysis papers from the publication venues described

in the Chapter Notes. Where do the experiments fall on the scale of instantiation
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described in Section 1.2. Why do you think the authors choose to focus on those
instantiation points?

2. Read Hooker’s [13] critique of current practice in experimental algorithmics
and compare it to the three papers in the previous question. Is he right?
How would you improve the experimental designs and/or reporting of results?
Read Johnson’s [14] advice on pitfalls of algorithmic experimentation. Did the
authors manage to avoid most of them? What should they have done differently?

3. Find an algorithm engineering paper from one of the publication venues
described in the Chapter Notes. Make a list of the design strategies described in
the paper and assign them to levels of the algorithm design hierarchy described
in Figure 1.1. How much did each level contribute to the speedup?
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A Plan of Attack

Strategy without tactics is the slowest route to victory. Tactics without strategy is
the noise before defeat.

Sun Tzu, The Art of War

W. I. B. Beveridge, in his classic guidebook for young scientists [7], likens scientific
research “to warfare against the unknown”:

The procedure most likely to lead to an advance is to concentrate one’s forces on a very
restricted sector chosen because the enemy is believed to be weakest there. Weak spots
in the defence may be found by preliminary scouting or by tentative attacks.

This chapter is about developing small- and large-scale plans of attack in
algorithmic experiments.

To make the discussion concrete, we consider algorithms for the graph coloring
(GC) problem. The input is a graph G containing n vertices and m edges.Acoloring
of G is an assignment of colors to vertices such that no two adjacent vertices have
the same color. Figure 2.1 shows an example graph with eight vertices and 10
edges, colored with four colors. The problem is to find a coloring that uses a
minimum number of colors – is 4 the minimum in this case?

When restricted to planar graphs, this is the famous map coloring problem,
which is to color the regions of a map so that adjacent regions have different
colors. Only four colors are needed for any map, but in the general graph problem,
as many as n colors may be required.

The general problem has many practical applications. For example, the vertices
may represent cell phone towers in a given region, where an edge connects two
towers within a small radius; the problem is to assign different broadcast frequen-
cies (colors) to the towers so that nearby towers do not interfere with one another.
Or the vertices may represent college courses, and the problem is to assign class-
rooms (colors) to courses so that no two courses meet at the same time in the same

17
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Figure 2.1. The graph coloring problem. The graph contains n = 8 nodes and m = 11 edges. The
vertices are colored using 4 colors: red, yellow, green, blue (R,Y,G,B). No two adjacent vertices
share the same color.

Greedy (G)
for (v=1; v<=n; v++)

for (c=1; c<=n; c++)
if (G.checkColor(c, v)) {

G.assignColor(c, v)
break // skip to next vertex

}
return G.colorCount()

Figure 2.2. Greedy. A sketch of the Greedy graph coloring algorithm.

room. Graph coloring is NP-hard, so we consider polynomial-time algorithms that
do not guarantee to find optimal colorings.

The simple Greedy algorithm, sketched in Figure 2.2, iterates through the ver-
tices and assigns to each the lowest-numbered color that does not conflict with
previously colored neighbors. We assume the graph data structure G supports a
function G.checkColor(c,v) that checks whether assigning c to v causes a
conflict, and another function G.assignColor(c,v) that assigns c to v. The
color count is the number of different colors in a coloring.

The coloring in Figure 2.1 results from applying Greedy to the vertices in order
1 . . .8, using the color order 1 = red, 2 = yellow, 3 = green, 4 = blue. The full
color assignment in Figure 2.1 can be written in a table as follows.

1 2 3 4 5 6 7 8
Red Red Yellow Red Yellow Green Green Blue
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2 A Plan of Attack 19

Random (G, I)
bestCount = Infinity
bestColoring = null
for (i=1; i<=I; i++){

G.unColor() //remove colors
G.randomVertexOrder()
count = Greedy(G)
if (count < bestCount) {

bestCount = count
bestColoring = G.saveColoring()

}
}
report (bestColor, bestCount)

Figure 2.3. The Random algorithm. Random applies Greedy repeatedly, using a random vertex
order each time, and reports the best coloring found.

The color count achieved by Greedy depends on the order in which vertices are
considered. For example, if vertices are colored in reverse order 8 . . .1, the color
count would be 3:

8 7 6 5 4 3 2 1
Red Yellow Yellow Green Red Red Yellow Green

There must exist a vertex order for which Greedy finds an optimal color-
ing, but since there are n! vertex orders, trying them all takes too much time.
The Random algorithm in Figure 2.3 applies Greedy I times, using a ran-
dom vertex permutation each time, and remembers the best coloring it finds.
The G.randomVertexOrder() function creates a random permutation of the
vertices, and G.saveColoring() makes a copy of the current coloring.

Here are some questions we could ask about the performance of Greedy and
Random.

1. How much time do they take on average, as a function of n and m (and I )?
2. Are they competitive with state-of-the-art GC algorithms?
3. On what types of inputs are they most and least effective?
4. How does I affect the trade-off between time and color count in Random?
5. What is the best way to implement G.checkColor(c,v) and G.assign-

Color(c,v)?

Each of these questions can be attacked via experiments – but each is best
answered with a different experiment. For example, question 1 should be studied
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20 2 A Plan of Attack

by measuring time performance on random graphs, with a wide range of n,m values
to evaluate function growth best. Question 2 should be attacked by measuring both
time and solution quality, using a variety of graph classes and some state-of-the
art algorithms for comparison, and problem sizes that are typical in practice.

An experimental design is a plan for an experiment that targets a specific
question. The design specifies what properties to measure, what input classes to
incorporate, what input sizes to use, and so forth. Like battle plans, experimental
designs may be small and tactical, suitable for reconnaissance missions, or large
and strategic, for full-scale invasions.

Experimental designs can be developed according to formal procedures from a
subfield of statistics known as design of experiments (DOE). But the pure DOE
framework is not always suitable for algorithmic questions – sometimes designs
must be based upon problem-specific knowledge and common sense. The next
section describes some basic goals of algorithmic experiments. Section 2.2 intro-
duces concepts of DOE and shows how to apply them, formally and informally,
to meet these goals.

2.1 Experimental Goals
The immediate goal of the experiment is to answer the particular question being
posed. But no matter what the question, some goals are common to all experimental
work:

1. Experiments must be reproducible – that is, anyone who performs the same
experiment should get similar results. For an experiment to be reproducible,
the results must be correct, in the sense that the data generated accurately reflect
the property being studied, and valid, which means that the conclusions drawn
are based on correct interpretations of the data.

2. An efficient experiment produces correct results without wasting time and
resources. One aspect of efficiency is generality, which means that the conclu-
sions drawn from one experiment apply broadly rather than narrowly, saving
the cost of more experiments.

In academic research, a third goal is newsworthiness. A newsworthy experiment
produces outcomes that are interesting and useful to the research community,
and therefore publishable. Two prerequisites for newsworthy experiments are
wise choice of experimental subject (so that interesting results can reasonably
be expected) and familiarity with the current literature (so that new results can be
recognized). David Johnson [16] also points out that newsworthiness depends on
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the “generality, relevance, and credibility of the results obtained and the conclu-
sions drawn from them.” Tips for increasing generality, relevance, and credibility
of experimental results are presented throughout this section.

The rest of the section considers how to create experiments that meet these goals.

The Pilot and the Workhorse
Experiments have two flavors: the less formal pilot or exploratory study, and the
more carefully designed workhorse study. A pilot study is a scouting mission or
skirmish in the war against the unknown. It typically occurs in the information-
gathering stage of a research project, before much is known about the problem at
hand. It may consist of several experiments aimed at various objectives:

1. To check whether basic assumptions are valid and whether the main ideas under
consideration have merit.

2. To provide focus by identifying the most important relationships and properties
and eliminating unpromising avenues of research.

3. To learn what to expect from the test environment. How long does a single trial
take? How many samples are needed to obtain good views of the data? What
is the largest input size that can feasibly be measured?

The pilot study may be motivated by fuzzy questions, like Which data struc-
ture is better? Which input parameters appear to be relevant to performance? The
workhorse study comprises experiments built upon precisely stated problems: Esti-
mate, to within 10 percent, the mean comparison costs for data structures A and
B, on instances drawn randomly from input class C; bound the leading term of the
(unknown) cost function F(n).

Designs for workhorse experiments require some prior understanding of algo-
rithm mechanisms and of the test environment. This understanding may be gleaned
from pilot experiments; furthermore, a great deal of useful intelligence – which
ideas work and do not work, which input classes are hard and easy, and what to
expect from certain algorithms – may be found by consulting the experimental
literature. See the resources listed in Section 1.4.

Guideline 2.1 Leverage the pilot study – and the literature – to create better
workhorse experiments.

How much reconnaissance is needed before the battle can begin? As a good rule
of thumb, David Johnson [16] suggests planning to spend half your experimenta-
tion time in the pilot study and half running workhorse experiments. Of course it
is not always easy to predict how things will turn out. Sometimes the pilot study
is sufficient to answer the questions at hand; sometimes the formal experiments
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raise more questions than they answer. It is not unusual for these two modes of
experimentation to alternate as new areas of inquiry emerge.

The pilot and workhorse studies play complementary roles in achieving the
general goals of reproducibility and efficiency, as shown in the next two sections.

Correct and Valid Results
A spurious result occurs when the experimenter mistakenly attributes some out-
come to the wrong cause. Spurious results might seem unlikely in computational
experiments, since the connection between cause and effect – between input and
output – is about as clear as it gets. But the road to error is wide and well traveled.
Here are some examples.

Ceiling and floor effects occur when a performance measurement is so close to
its maximum (or minimum) value that the experiment cannot distinguish between
effects and noneffects. For example, the following table shows solutions reported
by three research groups (denoted GPR [15], CL [12], and LC [21] ), on 6 of the
32 benchmark graphs presented to participants in the DIMACS Graph Coloring
Challenge [17]. The left column names the file containing the input graph, the next
two columns show input sizes, and the three remaining columns show the color
counts reported by each group on each input.

File Name n m GPR CL LC

R125.1.col 125 209 5 5 5
R125.5.col 125 7501 46 46 46
mulsol.i.1.col 197 3925 49 49 49
DSJ125.5.col 125 7782 20 18 17
DSJ250.5.col 250 31336 35 32 29
DSJ500.5.col 500 125248 65 57 52

Looking at just the top three lines we might conclude that the algorithms perform
equally well. But in fact these color counts are optimal and can be produced by
just about any algorithm. It is spurious to conclude that the three algorithms are
equivalent: instead we should conclude that the experiment leaves no room for one
algorithm to be better than another. This is an example of a floor effect because
color counts are the lowest possible for these instances. The bottom three lines do
not exhibit floor or ceiling effects and are better suited for making comparisons –
for example, that performance is ordered LC < CL < GPR on these inputs.

In general, floor and ceiling effects should be suspected when all the measure-
ments from a set of trials are the same, especially if they are all at the top or
bottom of their range. This is a sign that the experiment is too easy (or too hard)
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to distinguish the algorithmic ideas being compared. A good time to identify and
discard uninteresting inputs and poor designs is during the pilot study.

A second type of spurious reasoning results from experimental artifacts, which
are properties of the test code or platform that affect measurements in some unex-
pected way – the danger is that the outcome will be mistakenly interpreted as a gen-
eral property of the algorithm.Artifacts are ubiquitous: any experienced researcher
can reel out cautionary tales of experiments gone awry. Here are some examples:

• Time measurements can depend on many factors unrelated to algorithm or pro-
gram performance. For example, Van Wyk et al. [24] describe a set of tests to
measure times of individual C instructions. They were surprised to find that the
statement j -= 1; ran 20 percent faster than j––;, especially when further
investigation showed that both instructions generated identical machine code! It
turned out that the 20 percent difference was an artifact of instruction caching:
the timing loop for the first instruction crossed a cache boundary while the
second fit entirely within the cache.

• Bugs in test programs produce wrong answers. This phenomenon is pervasive
but rarely mentioned in print, with the exception of Gent et al.’s [13] entertain-
ing account of experimental mishaps:

We noticed this bug when we observed very different performance running the same
code on two different continents (from this we learnt, Do use different hardware).
All our experiments were flawed and had to be redone.

All three implementations gave different behaviours . . .. Naturally our confidence
went out the window. Enter the “paranoid flag.” We now have two modes of running
our experiments, one with the paranoid flag on. In this mode, we put efficiency aside
and make sure that the algorithms and their heuristics do exactly the same thing, as
far as we can tell.

• Pseudorandom number generators can produce patterns of nonrandomness that
skew results. I once spent a week pursuing the theoretical explanation for an
interesting property of the move-to-front algorithm described in Chapter 6:
the interesting property disappeared when the random number generator was
swapped out in a validation test. Gent et al. [13] also describe experiments that
produced flawed results because “the combination of using a power of 2 and
short streams of random numbers from random() had led to a significant bias
in the way problems were generated.”

• Floating point precision errors can creep into any calculation. My early exper-
iments on bin packing algorithms (described in Section 3.2) were run on a
VAX/750 and checked against a backup implementation on a Radio Shack TRS-
80 Model III. At one point the two programs reported different answers when
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run on identical instances: it turned out that the smaller precision on the TRS-80
was causing some input weights to round to zero.

Tips on avoiding and minimizing these types of artifacts appear in Sections 3.1.2
(timers), 5.1.1 (bugs and precision errors), and 5.2 (random number generators).

Replication is a general technique for avoiding artifactual results and boosting
experimental validity. Replicate tests on different platforms to check for numerical
precision errors; then swap out the random number generator and run the tests
again. As a safeguard against spurious results, before concluding that “A causes
B,” replicate the experiment with A absent to check whether B still occurs – and
if it does, abandon the conclusion.

Ideally the pilot and workhorse programs should be implemented by two dif-
ferent people. The pilot code should represent a straightforward, no-frills version
of the algorithm, while the workhorse may incorporate speedups (Chapter 4) and
experimental tricks (Chapter 6) for fast turnaround. With two implementations
of the algorithm it is possible to check for bugs by replicating key experiments:
compare the codes on identical inputs, using the same random number generators
and seeds, to check that they produce identical outputs.

The best protection against incorrect and invalid results is attitude. Be on the
lookout for surprises and anomalies, and do not neglect to investigate their causes.
These are indicators of great discoveries or nasty bugs: either way they should be
dealt with early rather than late in the experimental process.

Guideline 2.2 Never assume. Create experiments with built-in safeguards against
bugs and artifacts, and be sure you can replicate your own results.

Efficiency and Generality
Efficiency has many meanings in computational experiments. An efficient test
program returns answers quickly, and an efficient test environment supports fast
turnaround by being flexible and easy to use. In design of experiments (DOE), an
efficient design maximizes the information gained per unit of experimental effort.

Exploratory pilot experiments may not be especially efficient – they may yield
just a few nuggets of insight amid tons of uninteresting data, and pilot code is usu-
ally not fast, since simplicity and correctness should be the design priorities. But the
one-two punch of pilot followed by workhorse can lead to more experimental effi-
ciency. For example, one key insight from a pilot experiment might be that the test
code needs to run faster – in which case pilot experiments can be used to locate code
bottlenecks and guide tuning efforts. Also, by highlighting promising directions
for inquiry and exposing bad and irrelevant ideas, pilot studies help the researcher
to avoid wandering the dark alleys of failed and inconclusive experiments.
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The generality of an experiment refers to how broadly the results can be applied.
Like efficiency, generality can be considered from different points of view. First,
as illustrated in Section 1.2, algorithmic experiments take place on a scale between
abstraction and instantiation. Measuring a property of the abstract algorithm yields
general results that hold for any implementation and platform. But if measurements
at the abstract end are too coarse to meet experimental goals, generality must be
traded for precision – move the experiment toward the instantiated end and measure
properties tied to individual platforms and processes, such as CPU times.

Sometimes lost generality can be restored by greater scope, which means more
variety in the experimental design. The drawback is that more scope means more
time needed to carry out the experiments. Ultimately the scope of an experiment
is constrained by available resources, in particular how much time you have to
invest and how many minions (students) are available to implement your ideas.
Section 3.1 illustrates how performance indicators can sometimes be combined to
produce runtime predictions that are both precise and general.

Another component of generality is the level of ambition in data analysis.
Some experiments are developed simply to compare performance across differ-
ent scenarios. Others produce descriptive functions that capture the relationship
between parameters and performance – functions are more general because inter-
polation yields predictions about scenarios that were not explicitly tested. The most
ambitious goal is to develop a general functional model that goes beyond mere
description, to explain and predict performance in situations outside the scope of
the experiments.

Guideline 2.3 Experimental efficiency depends on the speed of the test program,
the usability of the test environment, the quality of data returned, and the generality
of conclusions drawn.

Several aspects of efficiency and generality are discussed elsewhere in the text.
Test program efficiency is considered in Chapter 4. Issues of environment design
are surveyed in Chapter 5. Chapter 3 explains measurement options and their rela-
tion to the instantiation scale. The next section considers experimental efficiency
as a problem in experimental design and surveys ideas for maximizing the quality
of information gained from each experiment.

2.2 Experimental Design Basics
We start with a list of concepts from design of experiments, illustrated with the
graph coloring algorithms sketched earlier. Statisticians will notice that some def-
initions are nonstandard: I chose alternative words to prevent confusion in cases
where the DOE term – such as variable, control variable, or parameter – has quite
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strong connotations for programmers. A translation to standard DOE terminology
appears in the Chapter Notes.

Performance metric: A dimension of algorithm performance that can be mea-
sured, such as time, solution quality (e.g. color count), or space usage.

Performance indicator: A quantity associated with a performance metric that can
be measured in an experiment. For example, the time performance of Random
might be measured as CPU time or as a count of the dominant operation.
Performance indicators are discussed in Chapter 3 and not considered further
here.

Parameter: Any property that affects the value of a performance indicator. Some
parameters are categorical, which means not expressed on a numerical scale.
We can recognize three kinds of parameters in algorithmic experiments:

• Algorithm parameters are associated with the algorithm or the test pro-
gram. For example, Random takes parameter I , which specifies a number
of iterations. Also, the G.checkColor(c,v) and G.assignColor(c,v)

functions could be implemented in different ways: the source code found in
each function is a categorical parameter.

• Instance parameters refer to properties of input instances. For example, input
size is nearly always of interest – in graph coloring, input size is described by
two parameters n and m. Other graph parameters, such as maximum vertex
degree, might also be identified. The (categorical) parameter input class refers
to the source and general properties of a set of instances. For example, one
collection of instances might come from a random generator, and another from
a cell tower frequency assignment application.

• Environment parameters are associated with the compiler, operating system,
and platform on which experiments are run.

Factor: A parameter that is explicitly manipulated in the experiment.

Level: A value assigned to a factor in an experiment. For example, an exper-
iment to study Random might involve four factors set to the following levels:
class = (random,cell tower); n = (100,200,300), m = (sparse,complete), and
I = (102,104,106).

Design point: A particular combination of levels to be tested. If all combinations
of levels in the preceding example are tested, the experiment contains 36 =
2×3×2×3 design points: one of them is (class = random, n = 100, m = 4950,
I = 100).
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Trial or test: One run of the test program at a specific design point, which produces
a measurement of the performance indicator. The design may specify some
number of (possibly random) trials at each design point.

Fixed parameter: A parameter held constant through all trials.
Noise parameter: A parameter with levels that change from trial to trial in some

uncontrolled or semicontrolled way. For example, the input class may contain
random graphs G(n,p), where n is the number of vertices and p is the prob-
ability that any given edge is present; the number of edges m in a particular
instance is a semicontrolled noise parameter that depends on factors n and p.
In a different experiment using instances from a real-world application, both
n and m might be considered noise parameters (varying but not controlled) if,
say, the design specifies that input graphs are to be sampled from an application
within a given time frame.

Computational experiments are unusual from a DOE perspective because, unlike
textbook examples involving crop rotations and medical trials, the experimenter
has near-total control over the test environment. Also, very often the types of
questions asked about algorithm performance do not exactly match the DOE frame-
work. This creates new opportunities for developing high-yield designs, and for
making mistakes. The next two sections survey two aspects of experimental design
in this context. Section 2.2.1 surveys input classes and their properties, and Section
2.2.2 presents tips on choosing factors, levels, and parameters to address common
categories of questions.

2.2.1 Selecting Input Classes
Input instances may be collected from real-world application domains or con-
structed by generation programs. They can be incorporated in algorithmic
experiments to meet a variety of objectives, listed in the following.

• Stress-test inputs are meant to invoke bugs and reveal artifacts by invoking
boundary conditions and presenting easy-to check cases. An input generator for
Greedy, for example, might build an empty graph (no edges), a complete graph
(full edge sets), a variety of graphs with easy-to-check colorings (trees, rings,
grids, etc.), and graphs that exercise the vertex permutation dependencies. Some
generic stress-test resources are also available – for example, Paranoia [18] is a
multilanguage package for testing correctness of floating point arithmetic.

• Worst-case and bad-case instances are hard (or expensive) for particular algo-
rithms to solve. These instances are used to assess algorithm performance
boundaries. For example, Greedy exhibits especially poor performance on
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Figure 2.4. Input classes for graph coloring algorithms. Panel (a) shows a crown graph, which is
known to be hard for Greedy to solve. Panel (b) shows the adjacency matrix for a random graph
of n = 10 vertices, where each edge (labeled 1) is selected with probability p = 0.5. Panel (c)
shows a semi-random grid graph. Panel (d) shows a proximity graph, which mimics a cell-phone
tower application.

crown graphs like the one shown in Figure 2.4 (a). In this graph each even-
numbered vertex is connected to every odd-numbered vertex except the one
directly across from it. Crown graphs can be colored by using just two colors,
but Greedy may use up to n/2 colors.

• Random inputs are typically controlled by a small number of parameters and
use random number generators to fill in the details. For example, Figure 2.4 (b)
shows the upper diagonal of an adjacency matrix for a random graph G(n,p):
here n = 10 and each edge (denoted 1) is present with probability p = 0.5.
Random inputs are useful for measuring average-case performance under some
theoretically tractable model. Also, if every instance is generated with nonzero
probability, experiments using random inputs can reveal the range of all possible
outcomes.
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• Structured random inputs come from generators built for two purposes:
– Algorithm-centered generators are built with parameters that exercise algo-

rithm mechanisms. For example, the performance of Greedy depends partly
on the regularity of the input graph. In a perfectly regular graph all vertices
have the same number of incident edges: an example of a regular graph of
degree 8 is a grid-graph where each vertex has four neighbors at the N, S,
E, W compass points and four neighbors on the NE, NW, SE, SW diagonals.
Figure 2.4 (c) shows a semi-random grid graph – in this instance, each non
boundary vertex is connected to its E, W neighbors with probability 1, and
to each of its SW, S, SE neighbors with probability 1/3. A generator of these
graphs can be used to focus on how Greedy responds to changes in graph
regularity.

– Reality-centered generators capture properties of real-world inputs. For
example, the cell tower application described previously can be modeled
by placing random points in the unit square, with edges connecting points
that are within radius r of one another. This type of graph is called a proximity
graph. A proximity graph with n = 50 and r = 0.25 is shown in Figure 2.4 (d).
These types of generators can often be improved with a little (Web) research
into quantitative properties of reality: how many cell towers are typically
found in different types of regions (urban, rural, mountainous, etc.)? What it
the typical broadcast distance?

• Real instances are collected from real-world applications. A common obstacle
to using these types of instances in algorithmic experiments is that they can be
difficult to find in sufficient quantities for thorough testing.

• Hybrid instances combine real-world structures with generated components.
This approach can be used to expand a small collection of real instances to
create a larger testbed. Three strategies for generating hybrid graphs for graph
coloring are as follows: (1) start with a real-world instance and then perturb it
by randomly adding or subtracting edges and/or vertices; (2) create a suite of
small instances from random sections of a large instance; or (3) build a large
instance by combining (randomly perturbed) copies of small instances.

• Sometimes a public testbed is available for the algorithm being studied. In the
case of graph coloring, testbed inputs are available at the DIMACS Challenge
Web site [17], and Joseph Culberson’s Graph Coloring Resources Page [11],
among other sources. In academic circles, running experiments using testbed
instances maximizes relevance and newsworthiness by producing results that
are directly comparable to results of experiments carried out by others. But it is
not necessary to restrict experiments to testbed instances; any of the categories
in this list may be used to expand and improve on earlier work.

Each category has its merits and drawbacks. Input generators can produce large
numbers of instances; they are more compact to store and share; and they can be
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tuned to provide broad coverage of an input space or to focus on properties that
drive algorithm performance or mimic realistic situations. But they may fail to
answer what may be the main question: how well does the algorithm perform in
practice?

Inputs from real-world applications are ideal for answering that question, but,
on the other hand, they can be hard to find in sufficient quantities for testing.
Also they may contain highly problem-specific hidden structures that produce
hard-to-explain and therefore hard-to-generalize results.

The choice of instance classes to test should reflect general experimental goals
as well as the specific question at hand:

• To meet goals of correctness and validity, use stress-test inputs and check that
random generators really do generate instances with the intended properties. Use
pilot experiments to identify, and remove from consideration, instances that are
too easy or too hard to be useful for distinguishing competing algorithmic ideas.

• For general results, incorporate good variety in the set of input classes tested. But
avoid variety for variety’s sake: consider how each class contributes new insights
about performance. Worst-case instances provide general upper bounds; random
generators that span the input space can reveal the range of possible outcomes.
Real-world instances from application hot spots can highlight properties of
particular interest to certain communities; algorithm-centered inputs reveal how
the algorithm responds to specific input properties; and so forth.

• More ambitious analyses tend to require more general input classes and tight
control of parameters. When the goal is to build a model of algorithm perfor-
mance in terms of input parameters, success is more likely if the inputs obey
simple random models or are produced by algorithm-centered generators that
allow explicit control of relevant properties, so that experimental designs can
focus on the question that prompts the experiment.

Guideline 2.4 Choose input classes to support goals of correctness and generality,
and to target the question at hand.

In addition to the preceding considerations, Dorothea Wagner [23] has proposed
guidelines for developing and maintaining public instance testbeds to support
algorithm research. One common complaint is that testbeds are often assembled
without much of a screening process and may contain several uninteresting and/or
unjustified instances. There is a need for more testbed instances that meet at least
one of the following requirements.

• They have features that are relevant to algorithm performance.
• They have provable properties.
• They permit controlled experiments using parameterization.
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• They are typical of real-world application domains.
• They display algorithm performance on a good variety of both applied and

theoretical scenarios.
• They yield insights into underlying algorithm mechanisms.

Ideally, every instance should be accompanied by text explaining its provenance
and properties and, when appropriate, a certificate showing a correct output (which
can be used to validate new solvers). Generated instances should also be accom-
panied by their generators, so that researchers can extend testbed experiments to
new design points.

The next section considers issues that arise when selecting factors, levels, and
design points for the experiment.

2.2.2 Choosing Factors and Design Points
The motivating question in an algorithmic experiment typically falls into one of
these four broad categories.

1. Assessment. These experiments look at general properties, relationships, and
ranges of outcomes. Is there a performance bottleneck in Greedy? What are
the range and distribution of color counts for a given input class? What input
properties affect performance the most?

2. The horse race. This type of experiment looks for winners and losers in the space
of implementation ideas. Which implementation of G.checkColor(c,v)

and G.assignColor(c,v) is best? For which kinds of inputs is it best?
3. Fitting functions. This type of experiment starts with a functional model that

describes some cost property and aims to fill in the details. For example, if a
cost function is known to be of the form f (n) = an2 +bn+c, experiments can
be run to find the coefficients a,b,c.

4. Modeling. These experiments are concerned with finding the correct function
family to describe a given cost – is it of the form f (n) = an2 + bn + c, or
an2 logn+bn, or something else? Very often the analysis focuses on bounding
the first-order term, which is critical to asymptotic analysis, or it may try to fill
in low-order terms as well.

Assessment experiments are typically performed at the very beginning of an
experimental project and can even be used to identify good questions to ask.

For example, pilot experiments can help you decide which parameters should
become factors. One general principle is that the factors should comprise those
parameters having the greatest effect on performance. A pilot experiment might
report a wide variety of algorithm, input, and environment parameter values
(controlled or not) to identify the ones most strongly correlated with performance.

Cambridge Books Online © Cambridge University Press, 2012



32 2 A Plan of Attack

Decisions about what happens to nonfactors can be just as important as the choice
of factors. Parameters that have no effect on performance (which can sometimes
be identified by the pilot experiment mentioned earlier) can be fixed with no loss
of generality.

For example, if the performance indicator does not depend on environment,
then all the environmental parameters can be fixed by running experiments on one
platform. This property often holds in the case of solution quality – the color count
produced by Greedy is the same no matter what test platform is used – or when
the performance indicator is an abstract cost (such as loop iteration counts).

Fixing a parameter that matters will narrow the scope of the experiment and may
reduce the generality of results. This is especially true of categorical parameters –
if you only measure option (a), you cannot comment on options (b) and (c). If the
parameter is numeric, it may be possible to fix it at an extreme value to obtain
upper or lower bounds on costs or to interpolate a line between measurements at
extreme points.

Fixing a parameter sometimes has the salubrious effect of sharpening the rela-
tionship between factors and performance indicators, by removing a source of
variation. For example, two algorithm properties A and B are easier to compare if
tests are run using exactly the same set of instances on exactly the same platform,
rather than allowing those parameters to vary among tests.

Guideline 2.5 Choose as factors those parameters that are most important to
performance, fix the parameters that are least relevant to performance, and let the
other parameters vary.

The next few sections consider experimental designs to address questions in
each of our four categories.

General Assessment
Often the goal of the first experiment is to identify promising algorithm design
options. Experimental designs for this question are fairly easy to develop – the main
principle is, choose performance indicators and factors to highlight the differences
between the options. For example, if the task is to compare data structures A, B,
and C, choose a performance indicator that is common to all three and that changes
the most when one data structure is substituted for another – this is likely to be
a “narrow” cost associated with particular data structure operations, rather than
a “broad” cost related to overall performance. Algorithm parameters other than
this one should be fixed, or, if they are expected to affect performance of A, B,
and C, choose a small number of parameters set to a small number of levels (low,
medium, high).
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Guideline 2.6 When comparing algorithm (or program) design options, choose
performance indicators and factors to highlight the differences among the options
being compared.

Another early experimental goal is to get a rough idea of the functional relation-
ship between key parameters (especially input size) and algorithm performance.

A good design strategy in this situation is to try a doubling experiment.
Sedgewick [22] points that the growth rates of many common functions in algo-
rithm analysis are easy to deduce if cost is measured as n doubles. For example,
suppose we measure cost C(n) at problem sizes n = 100,200,400,800 . . .. The
results can be interpreted as follows:

1. If measurements do not change with n, C(n) is constant.
2. If costs increment by a constant as n doubles, for example, if C(n) =

33,37,41,45, then C(n) ∈ �(logn).
3. If costs double as n doubles, C(n) is linear.
4. To determine whether C(n) ∈ �(n logn), divide each measurement by n and

check whether the result C(n)/n increments by a constant.
5. If cost quadruples each time n doubles, C(n) ∈ �(n2).

Similar rules can be worked out for other common function classes; see Sedgewick
[22] for details.

Doubling experiments are valuable for checking whether basic assumptions
about performance are correct. For example, Bentley [5] describes a study of
the qsort function implemented in the S statistical package. Although the func-
tion implements Quicksort, which is well known to be O(n logn) on average, his
doubling experiment revealed the following runtimes (in units of seconds):

$ time a.out 2000
real 5.85s
$ time a.out 4000
real 21.65s
$ time a.out 8000
real 85.11s

This clearly quadratic behavior was caused by “organ-pipe” inputs of the form
123 . . .nn. . .321 and was subsequently repaired.

An example of a doubling experiment that incorporates two parameters n and
m appears in Section 3.1.1.

Guideline 2.7 Try a doubling experiment for a quick assessment of function
growth.
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Another question that arises early in some experimental studies is to deter-
mine when the algorithm has converged. In the context of iterative-improvement
heuristics, convergence means, informally, that the probability of finding further
improvements is too small to be worth continuing. Another type of convergence
arises in stochastic algorithms, which step through sequences of states according
to certain probabilities that change over time: here convergence means that the
transition probabilities have reached steady state, so that algorithm performance is
no longer affected by initial conditions. In this context the problem of determining
when steady state has occurred is sometimes called the startup problem.

A stopping rule is a condition that halts the algorithm (i.e., stops the the exper-
iment) when some event has occurred. Experimental designs for incremental and
stochastic algorithms require stopping rules that can terminate trials soon after –
but no sooner than – convergence occurs.

A poorly chosen stopping rule either wastes time by letting the algorithm run
longer than necessary or else stops the algorithm prematurely without giving it a
chance to exhibit its best (or steady-state) performance. The latter type of error
can create censored data, whereby a measurement of the (converged) cost of the
algorithm is replaced by an estimate that depends on the stopping rule. See Section
7.1.1 for more about the problem of data censoring.

Good stopping rules are hard to find: here are some tips on identifying promising
candidates.

• Avoid stopping rules based on strategies that cannot be formally stated, like
“Stop when the cost doesn’t appear to change for a while.” A good stopping rule
is precisely articulated and built into the algorithm, rather than based on hand
tuning.

• To ensure replicability, do not use rules based on platform-specific properties,
such as “Stop after 60 minutes have elapsed.”

• If the total number of states in a stochastic process is small, or if a small number
of states are known to appear frequently, consider implementing a rule based on
state frequencies: for example, stop after every state has appeared at least k times.

• A related idea is to assign a cost to every state and to compute running averages
for batches of b states in sequence – stop the algorithm once the difference in
average cost C(bx ..bx+i ) and C(by ..by+i ) is below some threshold. A graphi-
cal display of batch measurements may show a “knee” in the data where the
transition from initial states to steady state occurs.

• Sometimes it is possible to implement a test of some property that is a precon-
dition for the steady state. For example, it may be known that a given stochastic
graph coloring algorithm does not reach steady state until after every vertex has
changed color at least once.

We next consider designs for fitting and modeling algorithmic cost functions.
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Analyzing Trends and Functions
The central problem of algorithm analysis is to describe the functional relationship
between input parameters and algorithm performance. A doubling experiment can
give a general idea of this relationship but often we expect more precision and
detail from the experiment.

Suppose we want to analyze time performance of two implementations of
Random. This algorithm depends on how functions G.checkColor(c,v) and
G.assignColor(c,v) are implemented. Let k be the maximum color used by
the algorithm in a given trial: checkColor is invoked at most nk times, and
assignColor is invoked n times. Two implementation options are listed below.

Option a. Each vertex v has a color field: check for a valid coloring by iterating
through the neighbors of v. The total number of comparisons in checkColor is
at most mk, once for each edge and each color considered; the cost per call to
assignColor is constant. Therefore, total cost is O(mk +n).

Option b. Each vertex has a color field and a “forbidden color” array that is updated
when a neighbor is assigned a color. Each call to checkColor is constant time,
and each call to assignColor is proportional to the number of neighbors of v.
Total cost is O(nk +m).

The experimental design includes factors Option = (a,b), input sizes n, m, and
iteration count I . The goal is to develop a function to describe the comparison
cost of Random in terms of these four factors. Since Option is categorical, we
use two functions fa(n,m,I ) and fb(n,m,I ). Since the algorithm iterates I times,
we know that f (n,m,I ) is proportional to I ; let ga(n,m) and gb(n,m) equal the
average cost per iteration of each option.

The experimental design problem boils down to how to choose levels for n and
m to give the best views of function growth. One idea is to use a grid approach,
with n = 100,200, . . .max_n, and m = 100,200, . . .maxm, omitting infeasible and
uninteresting combinations: for example, m must be at most n(n− 1)/2, and col-
oring is trivial when m is small. Another idea is to select a few levels of m that are
scaled by n, for example, m1 = n(n − 1)/2 (complete graphs), m2 = m1/2 (half-
full), and …m3 = m1/4 (quarter-full). Scaled design points are more informative
than grid-based designs whenever the scaled functions are expected to have similar
shapes – in this case, similar shapes would arise from a property that is invariant
in the ratio m/n.

Guideline 2.8 The problem of analyzing a multidimensional function can be sim-
plified by focusing on a small number of one-dimensional functions, ideally with
similar shapes.
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Now the question is how to choose levels for n to give best views of one-
dimensional functions like ga,m1(n). Prior knowledge about the general shape of
such a function, whether based on theory or on pilot experiments, can inform the
experimental design.

Some tips are listed in the following. We assume here that the unknown function
f (n) has a random component, so that the problem is to model the average cost
of f (n) using several random trials at each level of n.

• In function-fitting problems, the general form of the function is either known
or selected for descriptive convenience (with no claim of accuracy).

For example, at level m1 the graph is complete and we know k = n. Under
Option a the total cost of checking is described by mk = n3/2 −n2/2, and the
cost of assigning is proportional to m. We may choose to ignore low-order terms
that are also present and to assume that the costs of checking and assigning are
fairly well described by f (n) = an3 + bn2 and g(n) = cn, respectively.

If the function to be fitted is a polynomial, the design problem is easy: the
number of levels of n should be one more than the number of terms in the
function. Take measurements at two endpoints to fit a line ax + b, take three
evenly spaced levels to fit a quadratic function ax2 +bx + c, and so forth. Note
this rule depends on the number of terms in the function, not necessarily its
degree: only two levels of n are needed to fit a function like an3 + bn2.

• Many algorithmic structures (such as heaps) have cost functions with a stepped
or sawtooth behavior that show discontinuities when n is a power of 2. For
example, the height of a heap of n nodes is h(n) = �log2(n + 1)�. As Figure
2.5 illustrates, taking measurements at only the discontinuity points n = 2k and
n = 2k −1 can simplify analysis by revealing the upper and lower envelopes of
the cost function.

• If steady-state or asymptotic performance is dominated by startup costs, treat
low and high levels of n separately. Find a cutoff point n0 where asymptotic
costs dominate startup costs and use this as a break point for analyzing small-n
and large-n performance. If costs at small n are not important to the analysis,
use n0 as the smallest level in the design.

• When the goal is to model the cost function f (n) – especially, to pin down the
asymptotically leading term – start with a doubling experiment that includes the
largest input size nm that can be feasibly tested. This might be called a halving
experiment, with levels set at nm,nm/2,nm/4 . . .. Using large n values reduces
the effects of second-order terms, which can play havoc with data analysis; see
Section 7.3 for details.

If the leading term is hard to identify because of random noise in the data,
refer to Chapter 6 for tips on improving the experiment. Another tactic is to
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Figure 2.5. Choosing levels for discontinuous functions. In panel (a) the cost function is h(n) =
�log2(n − 1)�, which produces a step function with discontinuities at powers of 2. In panel (b)
the cost g(n) = h(n)− log2(n) shows a sawtooth behavior. Designs for these types of functions
should choose levels at the discontinuity points. The lines show results of measuring costs at
n = 2k and n = 2k + 1.

increase the range between the minimum and maximum n values in the design.
That is, halving n twice may be enough to distinguish between �(n) and �(n2),
but greater range may be needed to separate �(n) from �(n logn).

• If very little is known about f (n), try using many levels of n within a large range.
This allows a better view of how f (n) may converge to its asymptotic behavior.
Designs with scores of levels spaced evenly or randomly through their range can
reveal unusual properties such as step functions, phase transitions, and cycles.

• When the smallest and largest values of f (n) measured in the experiment
span at least two orders of magnitude, analysis is likely to be performed on
log-transformed data. In this case, it is better to increment n using a constant
multiplier, so that the transformed design points will evenly spaced in their range.
The choice of multiplier depends on the range and number of levels desired: two
common strategies are doubling n = 20,40,80 . . . and incrementing by powers
of 10 n = 10,100,1000, . . ..

Guideline 2.9 To study trends and functions, choose design points that exploit
what you already know.

Making Comparisons with Factorial Designs
Another common goal of algorithm research is to compare performance across
several algorithm and instance factors, to discover which implementation ideas
work for which inputs. These types of questions arise in horse race experiments
and assessment studies.

For this type of problem a full factorial design, a cornerstone of DOE, is sim-
plest and often the best choice. In the classic 2k factorial design, each of k factors
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is assigned two levels representing “high” and “low” levels – these levels ideally
correspond to expected high and low measurements of the outcome, not necessarily
of the factors themselves. “Full factorial” means the design exercises all combi-
nations of levels. Following DOE conventions we represent levels with + (high)
and − (low) and write out an example design with k = 3 factors and 8 design
points in the table.

Factors Experiments

1 2 3 4 5 6 7 8
F1 - + - + - + - +
F2 - - + + - - + +
F3 - - - - + + + +

A full factorial design is the most efficient way to study main effects and interac-
tion effects among factors. A main effect depends on one factor alone; interaction
effect depends on combinations of factors.

Figure 2.6 illustrates the difference. The costs C1 and C2 are measured in a
hypothetical experiment that incorporates a full factorial design with three factors
F1,F2,F3, each measured at two levels. For example, F1 might represent graph
density d = m/n, measured at two levels d = (10,20).

The eight points in panel (a) represent all measurements of C1 in the full factorial
design, plotted against factor F1 (at levels 10, 20). The four lines are labeled
according to their F2 and F3 levels; for example, the top line corresponds to
F2 = +, F3 = +. From this graph we can observe the following:

• Factor F1 has a positive main effect because every line has positive slope.
• Factor F2 has a positive main effect since both solid lines are above both dotted

lines.
• The main effect of F3 is also positive, since in each pair the line marked (+) is

above the line marked (−).
• Factor F2 has the greatest main effect, since the distance between solid and

dotted lines is greater than the distances that represent the effects of F1 (left vs.
right points) and F3 (as labeled).

Panel (b) shows a different set of outcomes. Here the effect of F1 on C2 may be
positive or negative, depending on whether the F2 and F3 match: the lines marked
++ and −− have negative slope, and lines marked −+ and +− have positive
slope. This is an example of a three-way interaction effect, since F2 and F3 together
modify the effect of F1.
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Figure 2.6. Main effects and interaction effects. Panel (a) shows three main effects from F1, F2

and F3: C1 increases by about the same amount when each factor changes from (-) to (+). Panel
(b) shows an interaction effect: C2 increases or decreases depending on whether F2 matches F3.

Full factorial designs maximize the information gained from an experiment
because smaller designs must omit or combine some observations. The danger
is that omissions lead to incorrect conclusions – for example, an experiment that
fixes F2 = − will only report the dotted lines, giving a misleading view of the
maximum cost. Allowing a factor like F3 to take random values means that the
averages of the solid endpoints (and separately of the dotted endpoints) would
likely be reported. This is not a problem in panel (a), but in panel (b) the average
of each pair is nearly horizontal, producing the misleading conclusion that F1 has
no effect on C2.

Guideline 2.10 Full factorial designs maximize the information gained from one
experiment.

Although full factorial designs ensure that factor effects cannot be lost or
obscured, they are not always the best designs for algorithmic problems:

• They are unnecessary when one factor is known to be independent of another.
For example, in the Greedy algorithm we can be reasonably sure that doubling
the number of iterations I will double the mean number of comparisons during
assignColor. It suffices to measure this cost at one level of I and to calculate
costs for design points with other levels of I .

• The assumptions underlying factorial designs do not always match algorithmic
realities. For example, two levels are assigned to each factor because the out-
come is presumed to have a linear dependency on the factor. This assumption
may be adequate for rough assessments but not for more fine-tuned analyses.
More sophisticated experimental design strategies can be applied when factorial
designs fall short; some references appear in the Chapter Notes.
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• A third problem is that the number of design points is exponential in the number
of factors. Computational experiments are often fast enough to handle unusually
large designs, but there is no escaping the tyranny of exponential growth. This
problem is illustrated in the next section, which surveys strategies for coping
with too-large designs.

Factor-Reduction Strategies
Culberson and Luo [12] describe the Iterated Greedy (IG) graph coloring algorithm,
a simplified version of which appears in Figure 2.7.

Like Random, this algorithm uses iteration to find better Greedy colorings of
G. But instead of starting over with a new coloring at each iteration, IG permutes
both the vertices and the colors and recolors G, respecting the old coloring when
applying the new coloring. The permutations are selected so that the color count
cannot increase at each iteration.

This algorithm was one of several evaluated in the DIMACS Challenge on
Graph Coloring [17]. The original C implementation may be downloaded from
Joseph Culberson’s Web site [11]. C and Java implementations of the simplified
version in Figure 2.7, called SIG, may be downloaded from AlgLab. Here’s how
it works:

SIG starts by reading an input graph G and assigning it an initial coloring,
according to a rule specified by the parameter INITIAL.

At each iteration, SIG groups the vertices by color according to the current
coloring, reorders groups by a vertex rule V , and then reorders colors according
to a color rule C. In Figure 2.8, Panel (a) shows an example coloring of G, with
vertices grouped by colors in the order (1= red, 2= yellow, 3= green, 4= blue). In
panel (b) the vertices are reordered using the reverse vertex rule, which reverses
the color groups to become (1 = blue, 2 = green, 3 = yellow, 4 = red). Next the
colors are reordered according to a color rule C: assume here the random rule is
applied and the new color order is: green, blue, red, yellow. Panel (c) shows the
graph after recoloring, respecting the original colors.

The order by which new colors are assigned to vertices is shown in the following
table.

8 6 7 5 3 1 2 4
Blue Green Green Red Blue Green Green Blue
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SIG () // Simplified Iterated Greedy
G = inputGraph();
current = G.initialColor(INITIAL);
best = G.saveBest();

t = 0; // iteration total count
b = 0; // iterations since new best coloring
r = 0; // iterations since last revert or save

while ((b < MAXITER) && (best.color > TARGET)) {
t++; b++; r++ ;

C = RandomColorRule (CWEIGHTS);
V = RandomVertexRule(VWEIGHTS);
G.applyReorderRules(C, V);

for (v : vertices in vertex order)
for (c : colors in color order)

if (G.checkColor (c,v)) {
G.assignColor (c,v);
break; // skip to next vertex

}
if (G.colorcount < best.colorcount) {

best = G.saveBest();
b = 0; r=0;

}
else if (G.score < best.score) {

best = G.saveBest(); // save if best
b = 0; r = 0;

}
if (r > RLIMIT) {

G.assignColors(best) ;
r = 0;

}
}

Figure 2.7. SIG. A simplified version of Culberson and Luo’s Iterated Greedy algorithm.

In this case the recoloring operation reduces the total number of colors from
four to three. More generally, the reorder – recolor step can never increase the total
number of colors used: repeated application of this operation should tend to shrink
the color count over time.
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Figure 2.8. Greedy recoloring. SIG reorders vertices at each iteration according to a color rule.
Panel (a) shows the original coloring. Panel (b) shows the vertices reordered by the reverse
rule, which reverses the color groups. Panel (c) shows a recoloring with vertices, considered by
color group (blue, green, yellow, red) and colors considered in a new order: green, blue, red,
yellow.

This implementation of SIG employs four vertex rules and six color rules, which
are selected randomly at each iteration according to probabilities specified by
vectors VWEIGHTS and CWEIGHTS.

In addition to the color count, the algorithm keeps track of a “color score” that
incorporates more details about the coloring. If RLIMIT iterations occur with no
improvement in color count or color score, the algorithm reverts to a previous-
best coloring. If MAXITER iterations occur with no improvements, the algorithm
halts. The algorithm also halts if it achieves a TARGET color count specified by
the user.

SIG fairly bristles with algorithm parameters: six are shown capitalized in Figure
2.7: INITIAL specifies the initial coloring assigned to graph G; VWEIGHTS and
CWEIGHTS are probability vectors of size 4 and 6, respectively; MAXITER and
TARGET control total iterations; and RLIMIT controls when to revert to an earlier
solution. This is not unusual for heuristic algorithms – Culberson and Lou’s original
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version has at least 12 parameters, and heuristics with scores of parameters are
fairly common.

The design approach suggested by Guideline 2.5 is to include as factors all
algorithm parameters that are important to performance. Suppose all six parameters
are important and consider creating a full factorial design for SIG.

The first problem is that some factors cannot be limited to just two levels. For
example, CWEIGHTS is a vector of six integers that assigns weights to six rules
(named reverse, random, largest, smallest, increase, and decrease).
A factorial design for this vector alone needs six levels (000001, 000010, 000100,
etc.) to ensure that each rule is used at least once. It needs at least 64 = 26 levels to
ensure that all combinations of rules are considered in the experiment.And it needs
at least 720 = 6! levels to measure the effects of relative weight orders (because
there are 6! permutations of 1 . . .6). A full factorial design for CWEIGHTS alone
is simply impossible to implement.

Suppose we scale down the scope of the experiment and use a pilot study to
find, say, 10 promising levels for each vector (VWEIGHTS and CWEIGHTS),
and 2 levels each for the other four factors. Since solution quality is platform-
independent, we fix all environmental parameters. We use the input testbed of 31
instances from the DIMACS Graph Coloring Challenge [17], and take 10 random
trials per design point per instance.

This design would require 49,600 = 24 × 10 × 10 × 31 design points, totaling
496,000 random trials. Assuming average runtimes around 100 seconds per trial
(as reported by Culberson and Luo [12]) the experiment should finish in 574 days,
or just more than 18 months. This design is still too big.Additional factor-reduction
strategies are needed to get this experiment down to reasonable size.

Here are some general tactics for shrinking experimental designs, illustrated
with SIG. As always, pilot experiments can provide the information needed to
exploit these ideas.

• Merge similar factors: If two factors have a similar effect on performance, treat
them as one, by restricting the experiment to just the design points ++ and
−− (omitting +− and −+). For example, TARGET and MAXITER represent
stopping rules that control the number of main loop iterations. These factors
can be merged into a single factor ITERATIONS that specifies total iteration
count.

• Use trace data to infer effects of omitted factors: After replacing TARGET and
MAXITER with ITERATIONS, modify the test code to report a trace of the color
count at every iteration t where color count decreases. With those trace data is
it is possible to trace which values would have stopped the algorithm had they
been used.
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• Trial overloading: If the program reports t and color count in this way, there
is no need to set ITERATIONS to a low level because it can be inferred from
the trace data what would have happened at low values of this factor – thus one
trial is used to report outcomes for several levels of ITERATIONS. This trick is
discussed further in Section 6.2.

• Convert factors to noise parameters: Instead of explicitly setting levels for
a factor, let the levels vary according to a simple probability distribution and
report their values in random trials. This creates a pool of levels and performance
measurements that can be examined for correlations. For example, instead of
using a design that selects 10 specific vectors for CWEIGHTS, a tool could be
built to generate random weight vectors for each random trial – report both
the vector and the performance indicator in each trial and look for correlations
during data analysis.

• Limit the scope of the experiment by fixing some factors or reducing the number
of levels, because of time constraints. For example, if the pilot study (or pub-
lished work) shows that some testbed instances produce similar performance
profiles, reduce from 31 to, say, 10 instances (five small and five large) that rep-
resent distinct classes. For another example, Culberson and Luo [12] identify
two VWEIGHT vectors (rather than 10) that worked especially well in their pilot
experiments on random graphs.

• The preceeding factor-reduction strategies exploit problem-specific knowledge
about SIG.A fractional factorial design is a problem-generic strategy from DOE
that concentrates on main effects and two-way interactions, fixing some factors
so that higher-degree interactions are omitted from analysis. A 2k−p fractional
design is 2p times smaller than the full design – designs for given k and p can be
looked up in published tables. Reference sources on fractional designs appear
in the Chapter Notes.

• Factor-screening strategies of DOE can also be applied to eliminate factors that
appear to have little effect on performance. See the Chapter Notes.

Suppose we apply these ideas to merge TARGET and MAXITER into
ITERATIONS, which is fixed at one high value. Next, change CWEIGHTS to a
randomly generated noise parameter and use the two levels for VWEIGHTS that
were identified by Culberson and Luo [12]. With four levels representing com-
binations of INITIAL and RLIMIT, this reduces to eight design points per input
instance. Shrink the testbed scope from 31 to 10 instances (five large and five
small from a variety of input classes). Increase the number of random trials to
25, so that more samples of the randomized parameter (CWEIGHTS) and of the
iteration counts t can be reported in each trial. At 100 seconds per trial, this new
design takes a little more than 2.6 days to complete, which may be within the
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realm of feasibility. Further design adjustments may be guided by additional pilot
experiments.

Guideline 2.11 When the experimental design is too big, apply factor-reduction
strategies to reduce the size of the design with least damage to generality of results.

2.3 Chapter Notes
This chapter has considered the planning stage of the experimental process: how
to identify goals and how to develop experimental designs to meet those goals.
Two key components of a well-planned experimental project are the pilot study
and the workhorse study.

As mentioned in Section 2.2.2, the terminology of factors and parameters used
here is not standard in the design of experiments field. Here is a table of standard
statistical terminology.

• A factor is any property that influences or is associated with the outcome of
an experiment, including the outcome itself. In some texts, the term is used
in a narrow sense to refer to properties that are explicitly manipulated in the
experiment.

• A variable is a numerical quantity associated with a factor (in the broad sense) –
for example, the factor “time performance” might be associated with variables
such as CPU time or main-loop iteration counts, or the factor “input size” might
be measured in terms of number of vertices or of byte counts. Independent
variables correspond to factors that are explicitly manipulated, and dependent
variables to outcomes.

A control variable is constant (fixed) in an experiment. An extraneous vari-
able is not independent but has an effect on outcomes. A confounding variable
is an extraneous variable that is correlated with both a dependent variable and an
independent variable. Confounding variables are considered threats to experi-
mental validity, because outcomes may be wrongly attributed to the independent
variable rather than the confounding variable. A random variable is a variable
(usually an outcome) that can be described by a probability function.

• The experiment is described by a model, which is a numerical function that
describes the relationship between independent variables and dependent vari-
ables. The function belongs to a family, such as the quadratic family f (x) =
ax2 + bx + c. Often the model is a probability density function, such as the
uniform distribution ua,b(x) = 1/(b−a) for a ≤ x ≤ b. The unknown constants
a, b, c in these function families are called parameters.

• In DOE it is usually assumed that the goal of the experiment is either to estimate
(find experimentally supported values for) the parameters of the model or else
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to test some hypothesis about the parameters (for example, that the distributions
means μx and μy are different for two levels x and y.

The standard meanings of other terms (level, design point) are as used in this
chapter.

The main goal in this chapter was to avoid use of the word variable because it has
strong connotations for programmers: control variables, for example, are found in
for loops.Also, in programming a parameter is a special type of input variable that
is never considered unknown (in the DOE sense). Adopting substitute definitions
for concepts related to “variables” seemed the best way to prevent confusion.

To learn more about concepts of DOE, see textbooks on simulation and on exper-
imental design, for example, by Baron [1], Bartz-Beielstein et al [2], Bratley, Fox,
and Schrage [8], or Cohen [9]. Design strategies like response surface method-
ology and sequential designs can be used to tackle more complex situations than
simple factorial designs can. Kleijnen [20] describes factor screening strategies
with applications to optimization algorithms; see also [6].

Guidelines in This Chapter. Here is a list of the experimental guidelines developed
in this chapter.

2.1 Leverage the pilot study – and the literature – to create better workhorse
experiments.

2.2 Never assume. Design experiments with built-in safeguards against bugs and
artifacts, and be sure you can replicate your own results.

2.3 Experimental efficiency depends on the speed of the test program, the usabil-
ity of the test environment, the quality of data returned, and the generality of
conclusions drawn.

2.4 Choose input classes to support goals of correctness and generality, and to
target the question at hand.

2.5 Choose as factors those parameters that are most important to performance,
fix the parameters that are least relevant to performance, and let the other
parameters vary.

2.6 When comparing algorithm (or program) design options, choose perfor-
mance indicators and factors to highlight the differences among the options
being compared.

2.7 Try a doubling experiment for a quick assessment of function growth.
2.8 The problem of analyzing a multidimensional function can be simplified by

focusing on a small number of one-dimensional functions, ideally with similar
shapes.

2.9 To study trends and functions, choose design points that exploit what you
already know.
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Question: (Random) How does average color count in
random graphs depend on number of iterations I?

Performance indicators: Color count.
Factors: Random graphs (n,p), algorithm parameter I .
Levels: n=200 . . .800, increment by 100. p = 0.25 . . .1 by

0.25. I = n2.
Trials: 25 per design point.

Design points: Full factorial.
Outputs: All factors, color count every 100 iterations, num-

ber of nodes per color at beginning and end of
each trial, full coloring at end of each trial (for
validation tests).

Figure 2.9. Experimental design template. An example experimental design.

2.10 Full factorial designs maximize the information gained from one experiment.
2.11 When the experimental design is too big, apply factor-reduction strategies

to reduce the size of the design with least damage to generality.

2.4 Problems and Projects
1. A good habit when planning an experiment is to try writing out the design on

paper. Here are four questions about algorithms familiar to most undergraduate
computer science students (see any algorithms textbook, such as [10] or [14],
for definitions). Write out an experimental design to address each question,
following the template in Figure 2.9.
a. Strassen’s matrix multiplication algorithm is asymptotically faster than the

conventional matrix multiplication algorithm. Where is the cutoff, when
you measure scalar arithmetic operations? Where is the cutoff when you
measure CPU time? How much overhead is required to adapt the algorithm
to general matrix sizes?

b. Dijkstra’s shortest paths algorithm can be adapted to solve all pairs shortest
paths (APSP) and is recommended for sparse graphs; Floyd’s algorithm is
recommended for dense graphs. Where is the cutoff? How does the cutoff
depend on n and m?

c. Many schemes have been proposed for maintaining balance in binary search
trees (including red-black trees and splay trees). A certain amount of “nat-
ural” balance occurs in many real-world applications such as counting the
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number of words or characters in English text. Are these schemes neces-
sary in real-world applications? Is the extra cost due to balancing worth the
savings in average path length?

2. Download implementations of Greedy, Random, and SIG from AlgLab and run
pilot experiments to become familiar with their general properties. What is the
largest problem size that each implementation can handle? How much variation
in solution quality is there as a function of algorithm parameters?

3. Write out an experimental design for an experiment to address one of questions
asked about Greedy and Random at the beginning of this chapter.

4. Run experiments to test whether the CPU time of Random scales proportionally
to the iteration count I . Run this test at a range of n and m values.

5. Apply your own factor reduction ideas to the experimental design SIG ,
described in Figure 2.7.
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3

What to Measure

One accurate measurement is worth a thousand expert opinions.
Rear Admiral Grace Murray Hopper, USNR

The performance metric of interest in most algorithm research projects is that old
devil, time – how long must I wait for my output to appear? Running a close
second is solution quality – how close to optimal is the answer produced by my
algorithm? Other important performance metrics include space usage and network
communication cost.

Whatever the metric, the choice of performance indicator, the quantity actually
measured in the experiment, plays a big role in the quality of information gained
about performance. This chapter surveys a variety of performance indicators and
presents guidelines for choosing among them. Section 3.1 considers options for
measuring time performance. Section 3.2 surveys strategies for measuring solution
quality.

3.1 Time Performance
Which is better: accuracy or precision? The following table illustrates the dif-
ference. Each row shows an experimental measurement of the speed of light
in kilometers per second, published by the Nobel physicist Albert Michelson in
different years.

Year Result

1879 299,910 ± 50km/s
1926 299,796 ± 4km/s
1935 299,774 ± 11km/s

The precision of an experimental result corresponds to how much variation is
seen in repeated measurements: Michelson’s results ranged in precision from a

50
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low of ±50km/s to a high of ±4km/s, depending on his instruments. The accuracy
of a result is how close it is to the truth: since none of these results overlap,
at most one can be accurate. (The 1926 result turns out to be compatible with
modern measurements. In 1980 the length of a meter was redefined by international
agreement so that the speed of light is now exactly 299,792.458km/s.)

In algorithm analysis the two most common time performance indicators are
dominant costs and CPU times. A dominant operation, such as a comparison, has
the property that no other operation in the algorithm is performed more frequently.
An asymptotic bound on the dominant cost, like “The algorithm performs O(n2)

comparisons in the worst case,” is perfectly accurate. Furthermore, the bound is
universal, since it holds no matter what input, platform, or implementation is used.
But it lacks precision: will the program take seconds or hours to run?

A CPU time measurement (explained in Section 3.1.2) is precise down to frac-
tions of seconds. But as we shall see, precision guarantees neither accuracy nor
generality. System timing tools can return non-replicable results, and runtimes
measured on one platform and input instance are notoriously difficult to translate
to other scenarios.

To illustrate this point, Figure 3.1 shows results of time measurements carried
out by participants in the 2000 DIMACS TSP Challenge [14]. CPU times of one
TSP program on a suite of nine input instances were recorded on 11 different
platforms – runtimes varied between six seconds and 1.75 hours in these tests.
Each line corresponds to a platform; the nine measurements for each are divided
by times on a common benchmark platform P . Times are ordered by input size
(ranging from 103 to 107 cities) on the x-axis. The dotted top line shows, for
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Figure 3.1. Relative CPU times. CPU times for a single program were recorded on 11 platforms
and 9 inputs. The inputs are ordered by size on the x-axis. Each line shows the ratio of times on
one platform to times on a common benchmark platform. Time ratios vary from 0.91 to 10, and
there is no obvious pattern in these variations.

Cambridge Books Online © Cambridge University Press, 2012



52 3 What to Measure

example, that on this platform the program ran about 4 times slower than on P

with small inputs, and about 10 times slower with large inputs.
In an ideal world, each line would be horizontal, and mapping CPU times from

one platform to another would be a simple matter of finding the right scaling
coefficient. If the lines had the same general shape, we could build an empirical
model that predicts times on the basis of input sizes. Instead there is no common
pattern: it is like weighing an object on Earth and trying to predict its weight on the
Moon, except there is no known function that describes the relationship between
gravitational forces and object weights. Millisecond-scale measurement precision
is useless if predictions based on CPU times can be wrong by seconds or hours.

Fortunately, the experimenter has more choices than just these two performance
indicators. The fundamental trade-off between precision and universality cannot
be eliminated, but it can be controlled to obtain time measurements that are more
precise than asymptotic bounds and more general than CPU times. The following
section introduces a case study problem to illustrate various time performance
indicators and their merits.

Case Study: Random Text Generation
The text generation problem is to generate a random text that looks as if it was
written by a human being. The problem arises in diverse applications including
generating parodies and circumventing spam filters. One well-known approach
is to set a hundred monkeys working at typewriters until a good-looking text
appears. But we can get faster results using a Markov Chain Monte Carlo (MCMC)
approach. The algorithm described here (called MC) has been employed by Bentley
[4] and by Kernighan and Pike [16] to illustrate principles of algorithm design and
of code tuning.

An MCMC algorithm makes a random walk through a state space. At time t , the
algorithm is in state St , and it steps to the next state St+1 according to transition
probabilities that map from states to states. The output of the algorithm corresponds
to a trace of the states it passes through during its random walk. The MC text
generation algorithm creates a state space and transition probabilities based on a
sample of real text and then generates a random text by stepping through the states
according to those probabilities.

MC starts by reading text T containing n words, together with two parameters:
m is the number of words to print, and k determines the size of the state space and
the transition table.

Every sequence of k words is a key, and every key is followed by a one-word
suffix. For example, Figure 3.2 shows all keys and suffixes for k = 2 and T = this
is a test this is only a test this is a test of the emergency broadcasting system.
The algorithm builds a dictionary D containing all k-word keys and their suffixes.
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2-Word Key Suffix 2-Word Key Suffix
this is a this is a

is a test is a test
a test this a test of

test this is test of the
this is only of the emergency

is only a the emergency broadcasting
only a test emergency broadcasting system
a test this broadcasting system this

test this is system this is

Figure 3.2. Keys and suffixes. From the text T = this is a test this is only a test this is a test of
the emergency broadcasting system, with k = 2. Notice the suffixes for the last two keys wrap
around to the beginning.

Once the dictionary is built, the string phrase is initialized to contain the first k
words of T , and those words are printed. The remaining m−k words are generated
by iterating this process:

1. Lookup. Find all keys in D that match phrase. Return a set S of suffixes of
the matching keys.

2. Random Selection. Choose a suffix uniformly at random from S. Print it,
append it to phrase, and drop the first word from the phrase.

For example, suppose phrase contains this is. The lookup step returns three
suffixes: a, only, and a. With probability 2/3, the random selection step picks a
and the new phrase is is a; with probability 1/3, only is selected and the new phrase
is is only.

Not surprisingly, larger values of k yield better-looking results. The two exam-
ples that follow were generated from a text containing the nine comedies by
William Shakespeare. The first sample was generated by MC with k = 1:

ALL’S WELL THAT ENDS WELL ACT II Troy. DON JOHN And he, If I heard of
all the giddiness of the pairs of Beatrice between her song and till they’ve swallowed
me are in sin in jest. I his characters; He’d Lay on’t. Perdita I think you beat thee.
Fie on him: ’Tis false. Soft, swain, Pompey surnamed the PRINCESS, KATHARINE,
ROSALINE, MARIA, KATHARINE, BOYET, ROSALINE, MARIA, and let him keep
not o’erthrown by mis-dread.

The following sample, generated with k = 3, shows much better grammar and
punctuation, although meaning remains elusive.

ALL’S WELL THAT ENDS WELLACT III SCENE III A church. [Enter DON PEDRO,
CLAUDIO, and LEONATO] BENEDICK Will your grace command me any service to
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the world’s end will have bald followers. ANTIPHOLUS OF SYRACUSE Thy sister’s
sister. LUCIANA That’s my sister. ANTIPHOLUS OF SYRACUSE There’s none but
asses will be bridled so.

The next few sections describe experiments using several performance indi-
cators to evaluate the time performance of this algorithm. Note that these small
experiments are developed for demonstration purposes only – a full-scale experi-
mental study of MC would incorporate a much larger range of text files and design
points than are presented here.

The markov.c program described in this section was written by Jon Bentley
[4]. It is available for downloading from AlgLab, together with an alternative
hash-table implementation.

3.1.1 Adding Counters to Source Code
The first option we consider is to insert code counters into the source code, which
are integer variables that increment each time some interesting operation – such
as a dominant operation – is performed. So far our description of the algorithm
is too abstract for the dominant cost to be identified. Therefore, we select an
implementation strategy for the dictionary data structure D.

The markov.c implementation of MC stores the text T in an array of characters.
The dictionary D is implemented using a sorted array called word that contains
indices to all words in T . The indices are sorted according to the k-word keys they
reference.

For example, Figure 3.3 shows an input text with indices, together with a table
sorted by two-word keys, showing their suffixes. The indices in the last column
are stored in word.

Modeling Word Comparisons
The cost of initialization is dominated by the number of key-to-key comparisons
needed to sort word. Comparisons are performed by a function called wordcmp,
which is invoked by the C qsort library function.

The text generation loop is shown in Figure 3.4. The lookup step performs a
binary search in word to find the beginning of the subarray of keys that match the
current phrase. The dominant cost is the number of calls to wordcmp during the
binary search.

The random selection loop iterates over the subarray of matching keys and
selects each with appropriate probability, assigning the corresponding suffix to p

(this reservoir sampling technique is explained in Section 5.2.3.) The dominant
cost is the number of comparisons performed by wordcmp, which equals the
number of keys matching the current phrase.
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Text: this is a test this is only a test
Indices: 0123456789012345678901234567890123

0 1 2 3

Key Suffix Index
a test this 8
a test this 28

is a test 5
is only a 20
only a test 23

test this is 10
test this is 30

this is a 0
this is only 15

Figure 3.3. Words sorted by key. After sorting, the word array contains the indices on the right.

Our goal is to understand how the dominant cost of MC – that is, the number of
calls to wordcmp – depends on parameters n, m, and k.

It is straightforward to insert a counter inside wordcmp to tally the number
of times it is invoked and to run experiments to tease out the shape of this cost
function. This “black box” approach is sometimes necessary, but it is usually more
productive to adopt a “glass box” approach that exploits what is already known
about the algorithm. Here, for example, we know that the three cost components
are independent.

Guideline 3.1 It is easier to measure components separately and analyze their
combined cost than to measure an aggregate cost and try to break it into
components during analysis.

For simplicity we start with the assumption that MC is run using one-word keys,
so k = 1. We insert three counters into the code, as specified in the following; refer
to Figure 3.4.

• To measure initialization cost, put the statement qcount++ inside the key
comparison function called by the C library qsort, which calls wordcmp.
Assuming qsort contains a reasonably efficient implementation of quicksort,
we expect this cost to be proportional to qn log2 n, for some constant q yet to
be determined.

• To measure the cost of binary search, place bcount++ inside the binary search
loop, just above the call to wordcmp. Binary search is performed once per output
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// Text Generation Loop
// phrase = initialize to first k words of T

print (phrase);
for (wordsleft = m-k ; wordsleft > 0; wordsleft--) {

// Lookup with binary search
lo = -1;
hi = nword;
while (lo+1 != hi) {

mid = lo+(hi-lo)/2;
if (wordcmp(word[mid], phrase) < 0) lo=mid;
else hi = mid;

}
// hi = index of leftmost key that matches phrase

// Random Select
for (i = 0; wordcmp(phrase, word[hi+i]) == 0; i++)

if (rand() % (i+1) == 0)
p = skip(word[hi+i],k); // get next suffix

print (p);
phrase = updatePhrase(phrase, p) ;

}

Figure 3.4. Text generation. This is the text generation loop of the MC algorithm. The dictionary
D is implemented with a sorted array called word.

word and requires O(logn) comparisons on average. Therefore, this cost should
be proportional to bm log2 n, for some constant b.

• Random selection is also performed once per output word. The cost of this step
is equal to the number of calls to wordcmp in the header of the for loop. Place
rcount++ in two spots: inside the loop for tests that evaluate to true and once
outside the loop for the test that evaluates to false.

for (i=0; wordcmp(phrase, word[hi+i])==0; i++) {
rcount++; //true
if (rand() % (i+1) == 0) p=skip(word[hi+i],k);

}
rcount++; //false

This cost depends on m and on the average number of duplicate keys in a text
of size n. This number probably increases with n, but it is not clear exactly how.
We start with the tentative cost model rmn for some constant r .
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This rough analysis, which ignores low-order terms and relies on some untested
assumptions, yields the following preliminary cost formula:

W(n,m) = qn log2 n+ bm log2 n+ rmn. (3.1)

To check the validity of this model we use a simple doubling experiment as
described in Section 2.2.2. Since this is a randomized algorithm running on real-
world inputs, we expect a reasonably close correspondence, but not a perfect match
between the model and the data.

Guideline 3.2 Use a doubling experiment to perform a quick validation check of
your cost model.

The validation experiment runs MC on a file called total that contains three
volumes of English text described in the table that follows. All text files mentioned
in this section were downloaded from Project Gutenberg [20].

File Text n

huckleberry Huckleberry Finn, by Mark Twain 112,493
voyage The Voyage of the Beagle, by Charles Darwin 207,423
comedies Nine comedies by William Shakespeare 337,452
total Combined comedies, huckleberry, voyage 697,368

The experiment reads the first n words of total and measures qcount,
bcount, and rcount in one trial each at design points with k = 1, n = (105,
2 × 105, 4 × 105), and m = (105, 2 × 105, 4 × 105).

First we check whether qcount is proportional to n log2 n. Since doubling n

increases log2 n by 1, we expect qcount/n to increment by a constant at each
level. The following table shows the results.

n = 105 2 × 105 4 × 105

qcount/n 12.039 13.043 14.041

The data behave as expected, so we accept qn log2 n to model the cost of
initialization. Next we consider bcount, which should grow as m log2 n.

n = 105 n = 2 × 105 n = 4 × 105

m = 105 133,606 143,452 153,334
m = 2 × 105 267,325 287,154 306,553
m = 4 × 105 534,664 574,104 613,193
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If bcount is proportional to m log2 n, the data should double going down each
column (with fixed n). The data should increment by a constant across each row,
and the constant should be proportional to m. This also looks good: costs in the
first row increase by about 10,000, in the second row by about 20,000, and in the
third row by about 40,000.

Finally we check whether rcount is proportional to nm. Again, the data in the
table match the model reasonably well, since the numbers approximately double
across each row and down each column.

n = 105 n = 2 × 105 n = 4 × 105

m = 105 1,234,334 2,298,021 4,500,283
m = 2 × 105 2,367,523 4,617,355 9,009,292
m = 4 × 105 4,933,294 9,394,869 18,284,907

On the basis of this quick test we adopt formula (3.1) to model the cost of MC as
a function of n and m when k = 1.

The second experiment is designed to find values for the coefficients q (quick-
sort), b (binary search), and r (random selection). Figure 3.5 shows results of tests
using three separate text files, comedies, huckleberry, and voyage, with n

equal to file size in each case. Each line corresponds to one file. Panels (a), (b),
and (c) show measurements of

q = qcount/n log2 n

b = bcount/m log2 n

r = rcount/nm

for our three terms. The ratios are plotted as a function of m, which increases from
1000 to 12,800, doubling each time; note the logarithmic scale on the x-axes. We
expect these ratios to be constant, that is, approximately horizontal, in each panel.

In panel (a) the perfectly horizontal lines confirm that q does not depend on m.
The results for three files differ by less than 0.6 percent, indicating good agreement.
The three lines are ordered by n, which may indicate a lurking second-order term,
but the effect is small and is ignored here. The average over all three files is
q = 0.9286.

The coefficients in panels (b) and (c) are reasonably horizontal, allowing for
some variation due to randomization in the algorithm. These measurements show
less variation as m increases because more numbers are averaged together. In panel
(b) the three costs differ by no more than 0.03 percent at large m; their average at the
top five m values (ignoring the relatively large variation at small m) is b = 1.0045.
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Figure 3.5. Word comparison costs. Panels (a) Quicksort, (b) binarysearch, and (c) random
selection show estimates of coefficients q, b, and r . The x axis corresponds to output size m,
shown on a log scale. The y axis shows ratios obtained by dividing operation counts by the
corresponding terms in formula (3.1). Results are shown for three input files c (Shakespeare’s
comedies), h (Huckleberry Finn), and v (Voyage of the Beagle). Panel (d) shows the ratio of
total measured cost to total predicted cost.

In panel (c) the ratio rcount/nm shows considerable variation among the three
files: the coefficient for voyage is almost twice that for comedies. The average
at the top five m levels is r = 0.0079.

These results yield the following formula, which describes word comparison
cost for the MC algorithm.

W(n,m) = 0.9286n log2 n+ 1.0045m log2 n+ 0.0079nm (3.2)

Panel (d) shows measured comparisons divided by the estimates produced by
formula (3.2). The formula underestimates total cost for voyages by about 25
percent and overestimates cost for comedies by about 40 percent. A little arith-
metic shows that the random selection term dominates total cost at these design
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points, and the large variation in panel (c) is the source of the discrepancies seen
here. When coefficients for individual text files are substituted for r , the formula
is accurate to within 3 percent.

The main benefit of a cost formula like (3.2) is that it can be extended to predict
performance of MC at other design points. To test the accuracy of the formula
on general inputs, the third experiment runs MC using three new text files: (1)
Persuasion and Pride and Prejudice by Jane Austen, (2) ten tragedies by William
Shakespeare, and (3) The Adventures of Tom Sawyer, A Connecticut Yankee in
King Author’s Court, and Following the Equator, by Mark Twain and The Gilded
Age by Twain and Warner.

This experiment sets k = 1 and m = 256,000, which is twice the largest m in the
previous experiment. The following table shows file sizes n, measured total cost
(rounded to the nearest hundred thousand), and ratios of measured costs to those
predicted by formula (3.2).

File n Cost Cost / W(n,m)

austen 204,839 372.0 × 106 0.881
tragedies 251,181 253.8 × 106 0.491
twain 532,895 835.8 × 106 1.057

The largest prediction gap is on the tragedies file, where the estimate is
about twice the measured cost. On the other two files the formula overestimates by
about 12 percent and underestimates by about 6 percent. This cost formula could
be improved by expanding the input file testbed and refining the random selection
term with better model of key duplications in general texts. The reader is invited
to download markov.c from AlgLab and pursue this interesting project.

Now we consider how to modify formula (3.2) to reflect changes in parameter k.
A quick experiment (not shown here) reveals that the quicksort and binary search
terms do not vary much with k. But inspection of the code tells us that coefficient r
should decrease as k grows, since the number of iterations in the random selection
loop depends on the number of key duplicates. We can expect many duplicates of
one-word keys like we, but few duplicates of three-word keys like we catched fish.

The next experiment looks at dependence of the cost of random selection on k,
using our original text files, with m = 800 . . .1200 incrementing by 100, and k =
1 . . .5. Each entry in the table that follows shows rcount/m, which corresponds to
rn in our model. This is the number of key comparisons per output word performed
during random selection. The column means (denoted rn) appear in the bottom
row.
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File n k = 1 k = 2 k = 3 k = 4 k = 5

huckleberry 112,492 1002.4 19.9 2.8 2.1 2.0
voyage 207,423 2063.3 69.1 2.8 2.2 2.0
comedies 377,452 1649.0 19.2 3.5 2.1 2.1

rn 1571.6 36.1 3.0 2.1 2.0

The minimum possible value in this table is 2. This corresponds to one true

and one false evaluation in the for loop header (in the selection step), which
occurs when the current phrase has no duplicates. The rightmost column indicates
that nearly every five-word phrase in these texts is unique; that means that MC
will simply reproduce the original input.

As expected, the number of calls to wordcmp during random selection decreases
with k, quite sharply from k = 1, but then tapering off. We also note that this cost
depends more on k than on n. Although the model rnm worked well in the original
validation experiment, in this experiment with k ≥ 1, we get a better fit to the data
using the model rkm instead of rnm, with mean coefficients rk summarized as
follows.

r1 = 1571.6

r2 = 36.1

rk≥3 = 2.5

The new cost formula is

Wk(n,m) = 0.9286n log2 n+ 1.0045m log2 n+ rkm. (3.3)

Parameter k has different status in this formula because it ranges over a few integers
rather than growing to asymptopia.

Additional experiments show that this formula is accurate within a factor of 2
when applied to the same range of problem sizes. More work is needed to extend
this formula, especially the third term, to problems with much larger or smaller n

values.
The next section considers an alternative cost model that is more closely tied to

computation time.

Counting Character Comparisons
The wordcmp function implemented in markov.c is shown in the following.
This function takes two pointers p and q that reference words in the text; words
are stored sequentially, and each word is terminated by the null character 0. It
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returns a negative integer if key *p is lexicographically less than *q, zero if the
two keys are equal, and a positive integer if *p > *q.

int wordcmp(char *p, char* q) {
int n=k;
chcomps=0;
for (; *p == *q; p++, q++){

chcomps++;
if (*p == 0 && --n == 0) return 0;

}
return *p - *q;

}

The for loop compares keys character-by-character and stops when a non-
matching pair is found. The if statement returns 0 if no differences are found
after k words have been checked – note that the C && operator does not evaluate
the right side of the expression when the left side is false, so n decrements only
when *p is the null character (0). When the keys match, the cost of this loop is
equal to total key length; otherwise it equals the number of matching characters
in the prefixes of the two keys. This cost increases with k, since total key length
grows with k.

We can measure the number of character comparisons performed for each pro-
gram component (initialization, binary search, random selection) by introducing
a global counter chcomps that is initialized to 0 at the beginning of wordcmp

and incremented inside the loop. The resulting value of chcomps is added to a
running total in the respective program components after each function call.

Why might we choose to measure character comparisons instead of word com-
parisons? The merits of these alternative performance indicators are considered in
Section 3.1.4. Briefly, word comparisons are associated with a more abstract view
of the algorithm because they do not depend on how exactly wordcmp is imple-
mented. Character comparisons reflect the dominant cost of this implementation
of MC and are more closely tied to the real time taken by the program.

The following table shows the number of character comparisons per call to
wordcmp, averaged over tests on our original three text files. In this experiment
n equals file size, m = 800 . . .1200, and k = 1 . . .5.

k = 1 k = 2 k = 3 k = 4 k = 5 k ≥ 3

quicksort 3.24 4.02 4.17 4.20 4.20 4.19
binary search 3.26 4.52 5.02 5.35 5.78 5.38
random selection 4.56 9.43 13.75 16.23 19.35 16.44
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Notice that the cost for random selection is much higher than the costs of the
other two program components. Character comparisons are maximized in this
step since the selection loop iterates through equal-valued keys. Binary search has
slightly higher cost than quicksort because a higher proportion of near-equal keys
are compared during the search; therefore matching prefixes are longer.

We can develop a new formula Ck(n,m) for character comparisons, with the
same general shape as formula (3.3) except for new coefficients that depend on k.
Plugging in the data from the preceding experiment we obtain:

C1(n,m) = 3.01n log2 n + 3.27m log2 n+ 7166.5m (3.4)

C2(n,m) = 3.44n log2 n + 3.73m log2 n+ 340.4m

Ck≥3(n,m) = 3.89n log2 n + 5.41m log2 n+ 32.89m

Further experiments (not shown here) indicate that this formula is accurate
to within 20 percent when predicting character comparisons on our three files,
comedies, huckleberry, and voyage. The formula is less successful when
applied to other inputs, because the coefficients depend more on individual
properties of each text.

The next section considers a very different definition of time performance and
surveys tools and techniques for measuring it.

3.1.2 Clocks and Timers
It is easy enough to run the markov program while keeping an eye on the clock.
For example, a test run with comedies, k = 1, and m = 1200 on the computer
in my office takes less than a second. This stopwatch technique is suitable when
measurement precision within a couple of seconds is needed, but internal computer
clocks can achieve much greater precision when necessary.

We start with a tutorial on time measurement techniques in the Unix family
of operating systems (including Linux, Unix, and Mac OS X). These tools are
illustrated with a small experiment to measure markov.c. A discussion of timing
on Windows systems and a list of timing utilities for Windows and Unix systems
appear at the end of Section 3.1.4.

CPU Time and Real Time
Aprocess is an actively running program.Agiven process may contain one or more
threads, which are separate instruction streams that can run concurrently with one
another. To simplify the discussion, for now we refer to both threads and processes
as processes.
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Most modern computers have multicore processors containing a small number
(say, 2 to 16) of independent processing units, called cores. The operating system
can run processes concurrently by scheduling them to execute on different cores.
At any moment, the CPU on each core is running a process, and the other processes
are waiting their turns.

The process scheduler runs multiple processes on a single CPU by interleaving
them in time. When a CPU interrupt occurs, the active process pauses and the
scheduler takes over; after handling the interrupt, the scheduler may decide to let
the paused process resume or to swap it out and start up a new one. Interrupts
can occur for many reasons; in particular, a timer interrupt is emitted at regular
intervals by a timer circuit.

Figure 3.6 shows how a white process and a gray process might alternate use
of one CPU, sharing time with the scheduler shown in black. The active process
may be running in user mode, which means it is executing instructions from the
program, or in system mode, which means executing operating system instructions
on behalf of the program. Time spent in system mode is shown with hash marks.
Seven timer interrupts are marked by arrows at the bottom of the time band, and
four miscellaneous interrupts appear above it.

In this example, instructions execute at a rate of one per nanosecond and timer
interrupts occur every 10 milliseconds. The scheduler takes a few microseconds
(a few thousand instruction cycles) to handle an interrupt and several more to
perform a process swap: these times are depicted by narrow and wide black bands
in the figure.

Apart from all this, the system clock, also called the time-of-day clock, increments
a clock register at regular intervals. The numbers at the top of Figure 3.6 show
the low-order digits of the system clock over this period. The time interval used
by the system clock is called the timestamp resolution. Here the resolution is five

110 111 112

1 2 3 4 5 6 7

113 114 115 116 117 118 119 120 121 122 123

Figure 3.6. CPU time. The white and gray processes alternate in the CPU, together with the
process scheduler shown in black; time spent in system mode is depicted with hashmarks. The
arrows at the top and bottom of the the CPU band denote interrupts. The numbers at the top show
elapsed time according to the system clock.
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milliseconds; in real computers timestamp resolution can vary from nanoseconds
to milliseconds.

There are two basic approaches to measuring process time. The first is to cal-
culate real time, also called wall clock time or elapsed time, by comparing two
timestamps of the clock register taken at the start and end of the process. For
example, a wall clock measurement for the gray process in Figure 3.6 would
report 12 = 123 − 112 + 1 time units.

Cycle counting is a variation on elapsed time measurement. Recent Intel plat-
forms have a Time Stamp Counter Register (TSCR) that increments once per
instruction cycle, and a Read Time Stamp Counter (RDTSC) instruction to access
it. Counting nanosecond-scale instruction cycles instead of millisecond-scale clock
ticks represents a million-fold improvement in clock resolution.

The main problem with elapsed-time measurements, whether done by cycle
counts or by clocks, is that they include a great deal of noise in the form of time
used by competing processes, which have nothing to do with the process being
measured. The system load refers to the number of processes being run in a given
period: higher system loads mean lower timer accuracy because the process being
measured gets a smaller slice of elapsed time.

The second approach is to use interval timing to report what is commonly called
CPU time. Unix systems have a device that checks which process is active in the
CPU during each timer interrupt and assigns one time credit for the interval to that
process. Thus in Figure 3.6 the white process is assigned two units of user time
(intervals 1 and 3), and the gray process is assigned five units of CPU time, three
in user mode (intervals 4 ,5, 7) and two in system mode (intervals 2, 6). (Scheduler
time is always assigned to an adjacent process.) This approach is designed to be
less sensitive to system load, but obviously some amount of sampling error must
occur.

Modern computing platforms add several complications to this basic scenario.
For example, some Intel processors feature hyperthreading, by which two threads
(perhaps from different processes) can be interleaved to run like one thread on
a core. Both processes are considered to be active in the CPU, so the interval
timer allocates 50 percent of the interval to each. This can cause significant timing
discrepancies, since hyperthreading can appear to halve CPU time and double wall
clock time. For best results, turn off the hyperthreading feature when conducting
timing experiments on these systems.

Furthermore, interactions with the memory hierarchy can skew time measure-
ments in significant ways, and time measurements can show huge variations when
a process containing multiple threads is executed on multiple cores. These types
of timing difficulties, together with some coping strategies, are discussed further
in Section 3.1.4.
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So which timing strategy is best? As a general rule, when measuring a single
process, algorithm researchers prefer to use interval timers, because CPU times
ignore time taken by extraneous processes, are more stable from run to run, and
are easier to translate from one platform to another.

As process time increases, CPU timers become more accurate because interval
sampling errors average out, while elapsed times become less accurate as a result
of interrupts, background system activity, and other processes. A good rule of
thumb is to design each experimental trial so that the process runs for least 0.1
second, which is 10 times longer than the standard 10ms timer interval. Bryant
and O’Hallaron [7] report that once total process time exceeds this threshold, CPU
times are typically accurate to within 10 percent.

Guideline 3.3 For best timer accuracy, use an interval timer and design tests so
that the process being measured runs for at least 100 milliseconds; a second or
more is better.

Interval timers are less reliable on shorter-lived processes because the number
of samples is too small. High-resolution wall clocks and cycle counts may be
adequate in these cases, but note that timer latency – the amount of time needed
during a system call to obtain a timestamp value – can be surprisingly large. Bryant
and O’Halloran [7] report, for example, that the Java System.currentTime-

Millis() method may have latency as high as half a millisecond. This means
that the time-in, time-out operations themselves contribute measurement errors as
large as a millisecond.

Cycle counters are recommended for measuring elapsed times shorter than the
timer interrupt interval. Note that if time is stored as a 32-bit number, a nanosecond-
scale counter can only measure intervals up to 1.43 seconds because of overflow;
with 64 bits, intervals up to 194 years can be measured. Also, it is sometimes
difficult to translate cycle counts to time units because cycle times can change
dynamically depending on factors such as battery power and network activity.
Bryant and O’Hallaron [7] (section 9.4) point out that since noise from competing
processes can only increase cycle counts, the smallest cycle counts recorded over
several runs of a process must be the most accurate.

Guideline 3.4 If short-lived processes must be measured, use cycle counts or
elapsed time, but check that the measured time interval is greater than both
timer resolution and timer latency. When using a cycle counter, take several
measurements and record the smallest cycle count observed.

See Bryant and O’Hallaron [7] for more information about clocks and timers.
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Timing markov.c
Let us perform a small experiment to learn how much variation to expect from CPU
and elapsed-time measurements. We run the markov program on the comedies

file, with m = 1,000,000 and k = 1. The random number generator seed was
fixed throughout so that the same instruction sequence is executed in every trial.
Therefore, all time variations reported here are due to environmental factors.

Program runtime is measured using the Unix time command as follows:

time markov 1 1000000 <comedies.txt

The time command reports both wall clock time and CPU time, with user time
and system time reported separately.

The first experiment was performed on an HP ProLiant DL160 G5 server, with
two Intel Xeon E5472 processors each containing four cores (totaling eight cores),
instruction cycle time 3GHz, running Ubuntu Server Linux 8.04, no hyperthread-
ing. The system has 12MB of L2 cache (6MB per processor) and 32GB of RAM
memory) On this platform the interval timer has 10ms resolution.

The results of three tests under different system conditions are shown in the
table that follows. The CPU column shows user time plus system time, and the
Wall column shows elapsed time, as reported by the time command. All times
are in units of seconds.

Platform Test CPU Wall

1 HP Unoptimized, light 43.02 43.02
2 HP Optimized, light 27.96 28.19
3 HP Optimized, heavy 1 36.02 43.63
4 HP Optimized, heavy 9 37.64 43.41

Row 1 shows times for unoptimized code run on a lightly loaded system (with no
other user processes running). Row 2 shows times for optimized code (compiled
with the GNU C compiler using gcc -O3), also run on a lightly loaded system.
The third test increased the system load by running nine copies of the program
simultaneously. Rows 3 and 4 show the processes with the fastest and slowest user
times among these nine. Here are some observations about the data in this table.

1. Comparing rows 1 and 2, we see that the optimized code runs about 35 percent
faster than the unoptimized code.

2. Rows 1 and 2 show that CPU times are quite close to elapsed times on the
lightly loaded system.

3. Running nine processes on eight cores should increase elapsed time for each
process by about 12.5 percent (9/8). We expect no increase in CPU times
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because interval timing is considered to be unaffected by system load. But
comparing rows 2 and 3 we see that elapsed times are at least 50 percent higher
and CPU times are at least 28 percent higher.

4. The process with the fastest CPU time had one of the slowest elapsed times,
and in general there was no relationship between CPU time and elapsed time
for the nine processes.

The following table shows results of running the same tests on an Apple Mac-
Book Pro2.2 laptop containing two cores (an Intel Core 2 Duo processor with
2.16GHz instruction cycle time, running Mac OSX 10.5.8. The platform has a
4MB L2 cache and 1GB of RAM). The interval timer has 10 ms resolution.

Platform Test CPU Wall

1 Mac Unoptimized, light 108.15 115.18
2 Mac Optimized, light 67.33 79.08
3 Mac Optimized, heavy 1 96.97 630.06
4 Mac Optimized, heavy 9 100.38 649.48

Here are some observations.

1. Given their clock speeds we might predict the ratio of times on the two platforms
to be near 1.4 (3GHz/2.16GHz), but in fact the ratios of CPU times in the first
two rows of the tables are 2.5 and 2.4.

2. Moving from unoptimized to optimized code yields about the same speedup on
both platforms.

3. We expect elapsed times in rows 3 and 4 to be about 4.5 times those in row 2
(9/2), but instead elapsed times for the nine processes are eight times slower.
CPU times are 1.44 times higher on the loaded system than on the unloaded
system.

The effect of system load on measured runtimes is much larger than predicted
by conventional wisdom. Elapsed times were much higher than simple process-
per-core arithmetic would indicate, increasing by 55 percent instead of 25 percent
on the HP and slowing down by a factor of 8 instead of 4.5 on the Mac. CPU times,
which are supposed to be oblivious to system loads, increased by more than 28
percent on the 8-core HP and 44 percent on the 2-core Mac.

The lesson is clear: timing experiments should be run on lightly loaded systems
whenever possible. For best results, kill all competing applications and background
processes and avoid generating keystroke interrupts and screen update events on
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personal computers and laptops. Good results can be obtained if the scheduler can
find an empty core to assign to the process.

Guideline 3.5 Whenever possible, measure time on lightly loaded systems; in any
case, find out how much timing variation to expect from your test environment.

The next experiment measures instruction cycle times on lightly loaded sys-
tems. In this experiment the RDTSC (Read Time Stamp Counter) instruction was
invoked from inside markov.c at the beginning and end of the program. Follow-
ing Guideline 3.4, table entries show the smallest cycle counts observed over three
trials for each row.

The first three columns show times reported by the time command. The fourth
column shows instruction counts rounded to the nearest 0.1 billion. The last col-
umn shows the result of multiplying instruction counts by advertised instruction
frequencies, 3GHz for the HP and 2.16GHz for the Mac. (A small validation
experiment showed that actual instruction frequencies were within 2 percent of
advertised rates.) All times are in units of seconds.

System CPU user CPU sys Wall Instr Count Cycle Time

HP Unopt 27.61 0.35 28.19 84.8 × 109 28.27
HP Opt 43.96 0.40 43.35 128.7 × 109 42.93
Mac Unopt 55.53 1.22 59.79 115.9 × 109 53.66
Mac Opt 92.41 1.22 95.55 237.9 × 109 110.16

Cycle times are reasonably consistent with wall clock times on the HP platform.
However, these times are quite difficult to reconcile on the Mac: in row 3, cycle
time is six seconds less than wall clock time and more than a second less than
CPU time, and in row 4, cycle time is about 15 seconds more than wall clock
time. Repeated measurements on this platform give similarly inconsistent results,
showing variations of as much as 30 percent from elapsed times. Caveat timer.

3.1.3 Code Profilers
Sometimes a computational experiment is developed to study a section of code
rather than the whole process. Code counters are ideal for this purpose, since
they can be inserted with surgical precision exactly where needed. An alternative
approach is to surround the section of interest with timein/timeout instructions;
Section 3.1.4 contains a list of suitable timing tools. A third option is to use a
code profiler, which is a software tool that reports counts and runtime statistics for
program components.
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$ gcc -pg markov.c -o markov

$ markov 1 1000000 <comedies.txt

$gprof

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name

64.98 13.31 13.31 1628788583 8.17 8.17 wordcmp

34.38 20.36 7.04 main

1.08 20.58 0.22 frame_dummy

0.20 20.62 0.04 sortcmp

0.00 20.62 0.00 3000000 0.00 0.00 skip

0.00 20.62 0.00 1000000 0.00 0.00 writeword

Figure 3.7. Sample gprof output. See the Unix manual page for gprof to learn about additional
statistics that can be reported beyond the defaults shown here.

A variety of commercial and open source profilers are available; two are illus-
trated here. First is the Unix gprof utility, which is available for many languages
including C, C++, Pascal, and Fortran. The second is Cachegrind, which is part
of the Valgrind [21] suite of program instrumentation tools. Valgrind is also
compatible with many languages including C, C++, Java, Perl, Python, Fortran,
and Ada.

gprof
The gprof profiler reports invocation counts and CPU times for individual
functions (procedures) in a program. Using gprof is a three step process:

1. Compile the source code using the -pg option. This causes profiling instructions
to be inserted into the object code.

2. Run the program. This produces a file of statistics named gmon.out.
3. Run gprof to see a human-readable version of gmon.out.

The command sequence and output for one test of markov are shown in Figure
3.7. The profiler report lists functions in order by CPU times: the wordcmp func-
tion used 13.31 seconds, which was almost 65 percent of total CPU time for the
program. It was invoked almost 1.63 billion times and took 8.17 nanoseconds per
call on average. The second most time-consuming function was main, and the
combined time for wordcmp and main was 20.36 seconds. The remaining func-
tions had negligible impact on total cost, even though two were invoked millions
of times. Invocation counts are not recorded for sortcmp because it is called from
the system qsort function, which could not be annotated.
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The gprof profiler makes a direct connection between function invocation
counts and function CPU times, this can be a valuable analysis tool. This profiler
is also handy for identifying code hot-spots that consume the most computation
time – in this case, any project to speed up markov.c should clearly focus on the
wordcmp function. Profiling and code tuning are discussed further in Chapter 4.

CPU times in gprof are recorded by an interval timer that assigns time units to
individual functions in the program. The remarks in Section 3.1.2 (in CPU Time
and Real Time) about interval timer inaccuracies for short-lived code blocks apply,
although, in this case, the sampling errors are smoothed out by averaging over 1.68
billion invocations.

Compiler-based profilers like gprof that insert profiling instructions into object
code should not be used in combination with compiler optimization, because the
optimizer moves code blocks around in ways that confuse the profiling code and
create reporting errors. For example, compiling with gcc -pg -O3 and running
the same trial produce the following nonsense report shown in its entirety:

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name

100.21 7.72 7.72 main
0.46 7.75 0.04 writeword

Guideline 3.6 Do not use compiler-based code profilers in combination with
compiler optimization.

Cachegrind
The Cachegrind profiler simulates the execution of a program on a specified
platform and records statistics about individual instructions, including execu-
tion counts and memory references. Here is the command sequence to profile
markov.c:

gcc -g markov.c -o markov
valgrind --tool=cachegrind markov 1 100000 <comedies.txt
cg_annotate cachegrind.out.1234 --auto=yes

The gcc -g compiler option causes the compiler to insert trace instruc-
tions into the object code in markov. Then Valgrind runs markov with
the Cachegrind option, to produce a data file tagged with a process number
(cachegrind.out.1234 in this example). The cg_annotate command cre-
ates a human-readable report, and the auto option specifies a format that includes
counts of instruction executions per line of source code.

A small excerpt of the report, showing instruction execution counts for
wordcmp, is presented here. The counts on lines 2 and 9 correspond to instructions
for function calls and returns.
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1 int wordcmp (char *p, char* q)
2 32,668,088 {
3 16,334,044 int n = k;
4 196,291,370 for ( ; *p == *q; p++, q++){
5 91,500,879 if (*p == 0 && --n == 0)
6 6,268,506 return 0;
7 }
8 53,461,943 return *p - *q;
9 16,334,044 }

This type of report is not restricted to function-level statistics (like gprof) and
can be used to study code sections large and small. For example the for loop
header on line 4 contains the dominant instruction in markov.c – the character
comparison – which is executed more times than any other instruction in the
program. Running Cachegrind at several design points reveals that the loop header
performs 7.1 instructions per iteration on average; note that the first iteration costs
less than later iterations because there is no increment step. This observation can
be combined with instruction cycle times to yield an estimate of 2.37 nanoseconds
per iteration on the 3GHz HP platform.

Cachegrind counts do not include instructions inside system functions like
qsort and printf, which cannot be annotated. Like gprof, Cachegrind should
not be used in combination with compiler optimization.

3.1.4 The Right Tool for the Job
Which type of performance indicator is the right choice for your next experimental
project? This section surveys some points to consider. A list of timing tools and
utilities for Unix and Windows platforms appears at the end of this section, in the
subsection Tools and Utilities.

Instantiation
The performance indicators discussed in preceding sections can be matched to
points on the instantiation scale that was described in Section 1.2, as follows:

• Word comparison count is a property of the abstract algorithm, instantiated with
a sorted array data structure. This performance indicator is invariant with respect
to choice of programming language, coding strategy, and runtime environments.
In the case study, analysis of word comparison cost yielded formulas (3.2) and
(3.3), which predicted the cost of MC to within a factor of 2 on general text files.

• The character comparison cost is instantiated with the implementation of the
wordcmp function. A different implementation, strategy, for example, might
be to calculate numerical signatures for each word during initialization and use
the signatures to compare words in constant time. Measurement of character
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comparisons produced formula (3.4), which was able to predict character com-
parisons to within 20 percent on the files used to build the formula. Because
character comparisons are more dependent on individual file properties, formula
(3.4) is less accurate than formula (3.3) when extended to a wider range of texts.

• The gprof profiler returned an exact count of invocations of wordcmp (equal to
word comparisons) and a measurement of 8.17 nanoseconds per call. Function
structures and their counts are instantiated at the source code level. Both charac-
ter comparison counts and function invocation counts are platform independent.

• The instruction execution counts reported by Cachegrind are instantiated with
the object code, which is a product of the source code, the compiler, and the tar-
get platform. Assuming a fixed random number seed, the instruction execution
sequence does not vary from run to run.

• The Unix time command reports real time and CPU time measurements for the
process, and gprof reports CPU times for individual functions. The RDTSC
instruction can be invoked to produce cycle counts for a process or a code
section. Wall clock times and cycle counts depend on the instruction sequence
as well as external factors such as system load and scheduler decisions. CPU
times lie somewhere between Cachegrind-style instruction counts and elapsed
time measurements on this instantiation scale, since they are more robust than
wall clock times with respect to external factors.

As discussed in Section 1.2, interesting experiments may be found at any point on
the instantiation scale. Experiments to study abstract algorithm properties produce
general results that are platform- and implementation-independent; experiments
on source code give more precise measurements that remain platform independent;
and highly instantiated performance indicators can reveal how processes interact
with runtime environments.

The point is that the performance indicator should match the instantiation level
set for the experiment. Do not measure CPU times if you want to understand how
the abstract algorithm works; do not count dominant operations if you want to
evaluate design alternatives on the scale of seconds.

Guideline 3.7 Performance indicators can be aimed at different points on the
scale between abstract algorithms and instantiated code. Match your choice to
the larger goals of the experiment.

One advantage of using abstract performance indicators is that they are easier
to model and show less variation from trial to trial because there are fewer moving
parts. An advantage of instantiated performance indicators like CPU times is that
they give more realistic views of time performance. Sometimes good results accrue
from combining the best of both worlds.
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For example, suppose we want to estimate the CPU time needed for markov.c

to generate m = 100,000 words with k = 1, based on the works of Jane Austen
(n = 204,893), running optimized code on the HP platform described in the first
timing experiment of Section 3.1.2: call this the target experiment. We can reason
as follows:

1. Using formula (3.2) we can predict that the target experiment will perform
around 166,994,970 calls to wordcmp.

2. The gprof profile in Figure 3.7 reports that each function call takes 8.17
nanoseconds, which yields an estimate of 1.36 seconds. The profile also shows
that the function represents about 64.98 percent of total computation time,
which gives an estimate of 2.10 seconds for the whole program.

3. Profiling was performed on unoptimized code, but the time trials in Section 3.1.2
show that the time ratio of optimized to unoptimized code is near 0.65. This
works out to an estimate of 1.36 seconds for the target experiment.

4. Recalling that formula (3.2) is only accurate to a factor of 2, we can predict that
the target experiment might run between 0.68 and 2.72 seconds. Additional
estimation errors might have crept in from generalizing function times and
speedups from optimization to this new scenario, but their impact should be in
the 20 percent range or less.

In fact, the target experiment take 2.50 seconds of CPU (user) time, which is
within range of the prediction. One of the central open problems in experimental
algorithmics is to find the right general procedure for making accurate and precise
predictions of the time required by program A when run on platform B using input
class C. The procedure outlined here shows that good results can be obtained using
a combination of abstract cost models and instantiated time measurements.

Guideline 3.8 Build runtime predictions by combining platform-independent
models of dominant costs with platform-specific measurements of those costs.

Ahuja, Magnanti, and Orlin [2] propose a similar procedure that starts by
identifying representative operation counts tied to code blocks that dominate com-
putation time in practice, rather than in theory. These counts are used to identify
bottleneck operations that use the largest proportion of computation time, and then
profiling is used to attach CPU times to the bottleneck operations. This approach
is also promising. More work is needed to address this important methodological
question.

Narrow and Wide Apertures
A second consideration in selecting a performance indicator is whether to focus
narrowly on a key section (or sections) of code or more widely on the total cost.
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Suppose we want to compare the sorted array implementation of dictionary D in
markov.c to an alternative hash table implementation (a version of markov.c

with a hash table can be downloaded from AlgLab). A narrow performance
indicator would focus only on the differences between the two design alternatives:

1. Initialization. The cost of reading the input text is identical in both implemen-
tations, so ignore it. Compare the cost of building a sorted array of n words to
the cost of building a hash table of n words.

2. Lookup. Compare the cost of finding all matching keys using binary search to
the cost of finding all matching keys using hash table lookups.

3. Random selection. The cost of selecting a suffix at random is identical in both
programs.

A performance indicator that focuses narrowly on cost differences in the initial-
ization and lookup steps sharpens our view of the relative performance of these
two design alternatives.

The performance indicator should also provide a common basis for comparison.
In this case, word-level operations have fundamentally different base costs: in the
sorted array, keys are compared using wordcmp, while in the hash table, the
cost per word involves a hash function calculation and some number of probes
in the table. If these two costs cannot be calibrated, it is necessary to find a more
instantiated performance indicator that does permit direct comparisons. Character-
level operations could work if the per-character costs of comparison, hashing, and
probing are about equal. If not, measurements of machine instructions or clock
ticks may provide common ground.

While narrow performance indicators isolate and highlight these differences, it
is also important to understand differences in context: does switching to a hash
table affect total runtimes by 9 percent or 90 percent?

Guideline 3.9 Choose narrow performance indicators to highlight differences
between design strategies. Choose wide performance indicators to understand
those differences in context.

Relevance
Another consideration for academic researchers is that performance indicators
should be selected to allow direct comparison to work by other researchers. This
means, first, that performance indicators should match those reported in the previ-
ous literature. Second, to ensure wide applicability of your results, always include
platform-independent measurements in your paper (perhaps together with plat-
form-specific measurements). If readers have no way of comparing your findings
to old and new results, all your hard work will be ignored.
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When reporting timing experiments in published work, your goal is to give the
reader the best possible information about what to expect, under the assumption
that your test conditions cannot be exactly replicated. Here are some guidelines:

1. Full disclosure. Report all properties of the test environment that might affect
time measurements. These include the instruction cycle rate, the compiler and
compiler optimization level, cache and main memory sizes, the system load
during measurement, and which timing tool was used.

2. Platform variety. Runtime measurements taken on several platforms are more
informative than measurements on one platform. At least report runtimes on
the fastest and the slowest environments available to you.

3. Tuned environments. Run your tests in an environment tuned for speed: set
compiler optimization switches to maximum levels and test on lightly loaded
systems. This produces less variation in your data and gives lower bounds on
times that are easier for readers to apply to their own circumstances.

While the code counters and timing tools discussed so far in this chapter are
adequate for most types of algorithmic experiments, they do not solve every mea-
surement problem that can arise. Two scenarios are especially problematic. First,
the cost of memory access can skew runtimes in unpredictable ways; and second,
time measurements on multicore, parallel, or distributed systems can be especially
difficult to interpret and generalize. The next two sections discuss these special
hazards and suggest some remedies.

Time and Memory
Algorithms and programs that make heavy use of memory can exhibit significant
timing anomalies, as illustrated in Figure 3.8.

The figure shows CPU (user) and elapsed (real) times for two C programs that
perform matrix addition. Runtimes were measured on the HP platform described
in the timing experiments of Section 3.1.2, using the time command. The two
programs are identical, except the one with times marked “row” performs addition
by traversing the matrices in row-major order as follows:

for (r=0; r<n; r++)
for (c=0; c<n; c++)

C[r][c] = A[r][c] + B[r][c];

and the program times marked “col” traverse the matrices in column-major order
like this:

for (c=0; c<n; c++)
for (r=0; r<n; r++)

C[r][c] = A[r][c] + B[r][c];
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Figure 3.8. Runtimes and memory. These graphs show measurements of CPU and wall clock
times for two matrix addition programs. Panel (a) shows that runtimes are different depending
on whether the matrices are scanned in row-major or column-major order; also, both programs
experience significant jumps in running time when their memory footprints cross a boundary.
Panel (b) shows times normalized by dividing by n2.

The total instruction count, proportional to n2, is identical in both programs.
But panel (a) shows a growing gap between the two, in both CPU (user) times and
elapsed (real) times: the col program is almost 50 percent slower at n = 22000.
Furthermore, both programs experience a big jump in runtimes between n= 16000
and n = 17000. Panel (b) shows normalized CPU times obtained by dividing total
cost by n2, the number of loop iterations. The number of instructions per iteration
is constant throughout this range, but time per iteration clearly is not. The culprit
is the memory hierarchy; here is how it works.

Recall that the CPU on each (core) processor executes a sequence of instructions
(called a thread). A given instruction may use one or two data values, called words,
which are typically four or eight bytes long. The words are located in nearby
registers or else in memory. If the data are in a register, the instruction executes
without delay, but if not, the CPU sends a request to the memory unit, specifying
a virtual address for each word it needs. The instruction cannot proceed until the
data arrive from memory.

As Figure 3.9 illustrates, the virtual address space is supported by a hierarchy
of physical memories arranged by distance from the CPU. The memories closer to
the CPU, called caches, are fast and small, and the memories farther from the CPU
are slow and large. Memories are labeled in the figure with access times in units
of instruction cycles and capacities in units of bytes. For example, an instruction
must wait two to four cycles if the word it needs is in the L1 cache, but it must wait
100 cycles or more if the data must be fetched from main memory. These numbers
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Figure 3.9. The memory hierarchy. In this simplified diagram, physical memories are arranged
in order by distance from the CPU. Access times are shown in units of instruction cycles, and
capacities are shown in units of bytes. Real memory systems may have capacities and response
times that vary considerably from the numbers shown here and may contain additional memories
not shown in the diagram.

should be considered rough approximations only, since memories in real systems
vary considerably in size, speed, and configuration.

The implication for time measurement is that the time needed for any particular
instruction to execute can vary by several orders of magnitude depending on where
its data are located in the memory hierarchy. Time depends on memory access in
several ways.

First, the memory system tries to be proactive in keeping data that will be
needed soon closest to the CPU. This means it tries to predict which words will
be requested next, or, conversely, which words will not be needed and so can be
evicted from fast memories to make room for new requests.

Therefore, instruction times depend on whether virtual address requests are emit-
ted by the CPU in patterns that the memory system expects to see. This accounts for
the time differences recorded for row-major versus column-major matrix addition.
Matrices in C programs are stored in row-major order: in the row-major computa-
tion the CPU emits virtual addresses in strict sequential order, a pattern that enjoys
fast response from the memory system. The column-major computation generates
addresses that step from row to row in increments by row size, a pattern that suffers
slower response from the memory system. Section 4.2.1 contains more discussion
of how memory access patterns affect computation time.

Second, the average time per instruction depends on the total size of the virtual
address space – called the memory footprint – used by a given program. The large
jumps in runtimes between n = 16000 and n = 17000 in Figure 3.8 occur because
the program footprints cross a boundary of main memory space allocated by the
operating system. When n is below the boundary, the matrix data are held entirely
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Figure 3.10. CPU times. The graph shows CPU times reported by participants in the DIMACS
TSP Challenge. The x-axis (logarithmic scale) shows problem size n, and the y-axis (logarithmic
scale) shows user time in seconds. Each curve shows “knees” corresponding to memory limits
on the platform.

in main memory; when n is above the boundary, an increasing proportion of the
data are stored in secondary memory.

Similar jumps may be found when the memory footprint outgrows the capacity
of any of the physical memories in the hierarchy. As a result, rather than growing
smoothly as cn2, runtimes for matrix addition programs are piecewise-quadratic,
with different coefficients at different ranges of n.

This phenomenon also explains the complex arrangement of CPU time ratios
shown in Figure 3.1 at the beginning of this chapter. Figure 3.10 shows the unnor-
malized CPU times reported by DIMACS TSP Challenge participants in that
experiment. The x-axis shows input size n, and the y-axis shows user time in
seconds (both have logarithmic scales). Each curve corresponds to a different test
environment and shows a “knee” where the program footprint crosses a physical
memory capacity or limit.

Finally, in Figure 3.8 we can observe a gap between CPU and elapsed times
that increases with n. Although elapsed time measurements include all time spent
waiting on the memory system, CPU times include some types of memory waits
but not others. Details vary from platform to platform, but very roughly, if the data
are in a nearby cache, the CPU will stall and the wait is recorded as CPU time; if
the data are lower in memory, an interrupt is generated that causes the process to
be swapped out of the CPU, so waiting time is not recorded.

Another memory-based timing anomaly not illustrated here arises in connection
with caches. If the same code segment runs several times in a loop, the address
sequence emitted by the CPU contains repetitions. Later iterations of the loop may
receive faster response than early iterations because the data are still available in
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caches. As a result, the total time required to execute a code segment in k iterations
may be less than k times the cost of a single iteration.Acold start time measurement
empties all caches (or loads them with irrelevant data) before starting a time trial,
while a warm start measurement runs the test segment at least once to “prime”
the caches before timing begins. Either type of measurement may be appropriate,
depending on the purpose of the experiment.

In general, the question of how best to measure and evaluate memory-expensive
programs has not been completely answered.

Some Unix and Windows tools for measuring program footprints and memory
usage appear in the list at the end of this section (Under Tool and Utilities). Many
commercial and open-source tools are available for evaluating the way a process
interacts with a memory system. These tools fall into two categories: a trace
driven simulator runs the program and makes a record of all memory references,
producing a trace file for subsequent analysis (Cachegrind is an example), and
a memory monitor periodically checks the memory state by a method similar to
interval sampling.

One property of the trace-driven approach is that processes are measured in
isolation rather than in competition with other processes: this may be a flaw or a
feature depending on the experiment. One problem with memory monitors is that
their own use of memory interferes with process measurement.

Knuth [17] proposes an interesting approach that uses code counters to tally
mems, which correspond to instructions likely to cause main memory requests. He
argues that mem counts are more portable than runtime measurements, and provide
more accurate predictions of real computation time on programs that make heavy
use of memory.

Coping with Concurrency
New measurement challenges arise when the goal of the experiment is to study
time performance on multicore systems. The CPU time of a multithreaded process
running on several cores is typically reported as the sum of times for all threads
on all cores, while elapsed time is the interval between the start of the first thread
and the end of the last thread. As a result, CPU times can be significantly higher
or lower than elapsed times for a given process, depending on system loads and
scheduler policies.

Elapsed time measurements depend on the whims of the scheduler. Furthermore,
cycle counters and high-resolution clocks introduce timing errors because they are
not perfectly synchronized among cores. A process that starts on one core and
finishes on another can sometimes be observed to run backward in time!

Nevertheless, since CPU times do not reflect speedups due to concurrency, most
researchers prefer to measure elapsed time using the following procedure:
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1. Start the program on a single core and obtain a timestamp using a cycle counter
or time-of-day clock.

2. Run the process concurrently, creating new threads as needed.
3. When all threads have finished, obtain a second timestamp from the “parent”

process on the original core.

Interactions between individual cores and the memory hierarchy create more
measurement problems. Suppose each core has its own set of registers and an L1
cache, but two cores share an L2 cache, and four cores share the main memory.
When two threads on separate cores access (and possibly change) data values at the
same virtual address, the local values in their separate caches may not agree: this
is called the cache coherence problem. If the operating system does not guarantee
cache coherence, the application programmer must write it into the program. Either
way, extra time may be needed to synchronize the caches.

As a result, the time for one thread on one core is affected by how much its address
space overlaps those of other threads. Huge swings in runtimes can occur because
of complex interactions among the scheduler, the memory hierarchy, and cache
synchronization mechanisms. Processor and memory configurations vary widely
on modern systems, making time measurements extremely difficult to translate
from one system to another.

Programs running concurrently on parallel and distributed systems are equally
hard to measure. The main difference is that, unlike threads, programs typically
do not share an address space. But two processes can experience synchroniza-
tion problems when, for example, both need to access the same file or database
or when one sends messages to another. Unpredictable schedulers and a wide
range of platform configurations make time measurements difficult to replicate
and generalize.

The usual goal in a concurrency experiment is to measure not just total time,
but also the parallel speedup, which captures the relationship between time and
the number of processors. Speedup can be defined in several ways; here are some
common metrics and their meanings.

• The absolute speedup Ap is the ratio of elapsed time Ts of the fastest known
sequential algorithm running on a sequential platform to the elapsed time T ′

p of
a given parallel algorithm running on p processors: that is, Ap = Ts/T

′
p. The

sequential and parallel algorithms need not be similar. It is possible to observe
an absolute slowdown with this metric, when Ap ≤ 1.

• If an algorithm is parameterized to run on p processors, the relative speedup
RP is the ratio of time on a one-processor implementation of the algorithm, to
time on a p-processor implementation. That is, relative speedup is Rp = T ′

1/T
′
p

on a specified concurrent platform.
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• The efficiency Ep of a concurrent algorithm is the ratio of the (absolute or
relative) speedup to the number of processors it uses. That is, Ep = Ap/p or
Ep = Rp/p, depending on context. While it seems reasonable to assume that Ep

can never be greater than 1 – doubling p should not make the program more than
twice as fast – such surprising behavior is not unknown to practice. Superlinear
speedups may occur because of cache effects or dependencies between processor
count and input size.

See Bader, Moret, and Sanders [3] for an overview of timing issues for
concurrent systems.

Similar difficulties arise when the goal is to study time performance in algorithms
and programs that are dominated by input/output costs and/or network commu-
nication overhead. From the point of view of a process, these systems work like
(very slow) memory systems that run concurrently, can be accessed explicitly via
I/O or network functions, and move data in units of blocks instead of words. Clock
discrepancies can be much larger, data latency (the time between a request and the
arrival of the first word of data) both larger and more variable, data transfer time
is larger, and synchronization more complicated.

Tools and Utilities
Here is a short list of tools and utilities for measuring time performance on Unix
and Windows platforms.

• On Unix systems the C sysconf() and clock_getres() functions can be
invoked to learn the interrupt timer interval and the clock resolution. Also see
the time(7) manual page.

• The Unix/C profil() function works as gprof does but allows the program-
mer to specify which code blocks (not just functions) should be measured by
the interval timer.

• The C gettimeofday() function returns wall clock time with resolution 0.01
second; times are reported in units of milliseconds. The getrusage() function
reports CPU user and system times and other statistics about time, memory, and
messaging.

• Code to access the time stamp counter via the RDTSC instruction and to call
most of the C functions listed previously from other languages is published
widely on the Internet.

• Timing of Java programs is complicated by garbage collection and the virtual
machine. The JDK application launcher’s -Xprof and -Xrunhprof profilers
work the way gprof does. The -verboseusage flag can be used to separate
out time spent during garbage collection. The java.lang.System package
provides methods for accessing the time of day clock. Version 5 provides the
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java.lang.management package with methods that report CPU times per
thread.

• Different versions of Windows provide different timing tools. The
GetTickCount and GetTickCount64 time-of-day counters are available
on all Windows platforms, with resolutions of 10 to 16 milliseconds. On some
versions timeGetTime or timeGetSystemTime provides higher resolu-
tion and/or lower latency. Windows Multimedia supports time-of-day clocks
at the highest resolution permitted by the hardware. Use the C timeGet-

DevCaps() function to learn the minimum and maximum timer resolutions
available; use timeBeginPeriod and timeEndPeriod to increase the
default timer precision temporarily; and use QueryPerformanceCounter

and QueryPerformanceFrequency for high-resolution measurements.
• Windows NT and some later systems provide GetThreadTimes and Get-

ProcessTimes, which work as interval timers.
• In some situations a measurement of CPU usage – what percentage of the

CPU’s cycle capacity is in use during a given period – can be more important
than elapsed or CPU times. Unusually high percentages are associated with bot-
tleneck processes that can lock up the system; on some processors, a long period
of 100 percent CPU usage will overheat the core and trigger a slowdown of the
instruction cycle rate. Unusually low CPU usage may indicate that the process is
spending too much time waiting, say, for I/O. The Windows Usage tool reports
the CPU time usage in a given time interval. In Unix, similar information can
be obtained from the top and ps commands.

• Use the Unix top, free, and vmstat utilities to look at memory usage by a
process or group of processes. Use iostat in Unix to measure use of the I/O
system.

More information about Unix tools may be found in the manual pages. See
the Intel documentation [24] for more information about processor-specific timing
tools. See Wilson [23] for a survey of Windows timing functions and their merits.

3.2 Solution Quality
The second most commonly studied algorithm performance metric, after time, is
solution quality. This metric is of interest for evaluating algorithms for combi-
natorial optimization problems, which ask for the minimum cost (or sometimes
maximum cost) solution from a set of all feasible solutions for the given input
instance; feasible means the solution must obey certain structural properties.

The graph coloring problem discussed in Chapter 2 is an example of an opti-
mization (minimization) problem: given an input graph G, a feasible solution is
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defined as a coloring of the vertices such that no two adjacent vertices share the
same color, and an optimal solution is a coloring that uses a minimum number of
distinct colors. The related clique problem, which asks for the largest complete
subgraph of G, is an example of a maximization problem.

An algorithm that guarantees to find the optimal solution to a problem is called an
exact or optimal algorithm. Many important optimization problems are NP-hard;
therefore all known exact algorithms run in exponential time. A large number
of heuristic algorithms that run in polynomial time but do not guarantee to find
optimal solutions have been proposed.

Let A(I) denote the cost of the best solution that algorithm A can find when
run on instance I , and let O(I) denote the cost of the optimal solution. If A has
a theoretical guarantee that A(I)/O(I) ≤ r for all instances in a given class, we
call A an approximation algorithm with a performance guarantee (or performance
ratio) of r . In the case of maximization problems, the performance guarantee is
usually defined by O(I)/A(I) ≤ r so that r is always at least 1.

Heuristics and approximation algorithms are also of interest in cases where
polynomial-time exact algorithms are known but are too slow to be run in a given
application or context. Examples include Williamson and Goemans’s study of an
algorithm that computes an almost-minimum weight perfect matching in a graph
[22], and Liu et al.’s algorithm for finding k almost-nearest neighbors of a query
point in Euclidean space [18]. Section 4.1.1 under Iterative Paradigms describes
an example where approximate distance calculations are used to speed up an exact
algorithm for a problem similar to all pairs shortest paths.

Solution quality can also be an important metric for problem areas besides
optimization, including geometric problems involving points, lines, and objects
in a D-dimensional space, and numerical problems involving mathematical anal-
ysis. Algorithms for these problems are evaluated according to a different type
of “solution quality” that refers to the amount of numerical approximation error
that may arise as a result of finite-precision arithmetic. Geometric algorithms are
often vulnerable to degenerate inputs that, because of approximation errors, cre-
ate impossible structures: for example, a line may be tangent to a circle but have
no computable point of intersection with the circle. This section does not address
solution quality in the numerical sense; some techniques described here may be
applicable to the “structural” component of geometric algorithms.

The performance indicator for an experiment to evaluate a solution to an opti-
mization problem is directly suggested by the definition of cost in the problem
statement, and there may be relatively few options to consider. Nevertheless,
solution quality presents particular measurement challenges, outlined in this
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Figure 3.11. Bin packing. A list of 10 weights in the range [0,1]. In (a) the weights are packed
by the first fit algorithm, which uses 6 bins. In (b) the weights are packed optimally in 5 bins.

section. When choices are available, thoughtful selection of performance indi-
cators can boost the quality of information gained from the experiment. This point
is illustrated in the following case study.

Case Study: Bin Packing
To illustrate these ideas, we consider an algorithm for the NP-hard one-dimensional
bin packing problem: given an input list L of n weights in the range [0,1], pack the
weights into bins of capacity 1, so as to minimize the total number of bins used.

Figure 3.11 shows a list of 10 weights packed two different ways. Packing (a)
is the result of the first fit (FF) approximation algorithm, which works through the
weight list from left to right: for each weight, it scans the packing, looking for the
first (leftmost) bin that can contain it, and if there are no such bins, it starts a new
one on the right. Here first fit packs the weights into six bins, while the optimal
packing (b) uses only five bins. First fit has a worst-case performance guarantee of
r = �17/10� and runs in O(n logn) time [11]. A C implementation of first fit, and
an exponential-time exact algorithm described in Section 4.1.1 under Recursion-
Heavy Paradigms can be downloaded from AlgLab. See [8] for a good survey of
the problem and its algorithms.

The average case performance of first fit has been well studied both theoretically
and experimentally. In the standard average-case model, the input L ∈ L(n,�,u)

is a list of n real weights drawn uniformly and independently at random from the
range [l,u], where 0 ≤ � < u ≤ 1. Let F(L) denote the number of bins used by
first fit to pack L, and let O(L) be the optimal number of bins needed to pack L.

Suppose an experiment is developed to study average case performance of an
algorithm like first fit. Let X be a random variate, presumably a performance indi-
cator, generated in one trial. The expectation of X, denoted E[X], is the weighted
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average of all possible values that X can take (weighted by their probabilities). If
X is generated from a probability distribution with mean μ, then it always holds
that μ = E[X].

As a general rule, μ is unknown, and often the point of the experiment is to
estimate its value. One way to estimate μ is to generate t random samples X1 . . .Xt

and to calculate their average X = (1/t)
∑t

i=1 Xi . When variate X is used in this
context it is called an estimator of μ.

In the case of first fit, suppose we are interested in estimating the average per-
formance ratio ρ(n,�,u) equal to the expectation E[F(L)/O(L)], over all random
lists L ∈ L(n,�,u). For convenience we refer to this ratio as ρ when the parameters
are understood.

An experiment to estimate ρ would generate a sample of t random lists L1 . . .Lt

from L(n,�,u) and run first fit on each. The estimate can be calculated by

R = 1

t

t∑
i=1

F(Li)

O(Li)
,

but since bin packing is NP-hard, the value of O(Li) is not available.
The next few sections consider alternative strategies for finding estimates and

bounds on ρ, as well as alternatives to ρ. Although first fit is used for illustration
purposes, these strategies can be considered in any experiment where solution
quality is to be evaluated.

3.2.1 Bounding the Optimal Solution
For some minimization problems it is possible to identify a lower bound on the
cost of the optimal solution that is easy to compute for each input instance. Such a
lower bound provides a convenient and reliable way to estimate an upper bound on
ρ. For maximization problems an upper bound on optimal cost would be needed.

In bin packing, the sum of the weights in list Li is such a lower bound: for
example, if the weights sum to 123.4, the optimal packing must use at least 124
bins. Let S(Li) denote the sum of the weights in list Li and consider the empirical
ratio R1(Li) defined as follows.

R1(Li) = F(Li)

S(Li)

A statistician would call R1 a biased estimator of ρ, since R1(Li) ≥ R(Li) for
any list. This implies that the mean

R1 = 1

t

t∑
i=1

F(Li)

S(Li)
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Figure 3.12. First fit. Measurements of R1(Li) for parameters l = 0, u = 0.5, three random trials
at each design point.

is an upper bound estimate on ρ.
Bias can be a powerful ally whenever the experiment involves estimating some

quantity q: if direct measurement of the estimator is difficult or expensive, consider
measuring quantity q ′ that is a known upper or lower bound on q.

Guideline 3.10 To find a bound on quantity x, look for a biased estimator that is
experimentally more tractable than an unbiased estimator of x.

Figure 3.12 shows measurements of R1(Li) for FF in three random trials at
design points � = 0, u = 0.5, and n = (1×105 . . .2×106). The ratio R1(Li) tends
to decrease toward 1 as n increases; overall the highest ratio observed in these tests
is 1.0065. Since we know that ρ ≥ 1, this provides an upper bound estimate of ρ

that is within .065 percent of its true value.
Experimental measurements of this type are easy to misinterpret if the lower

bound is not very close to the optimal cost or if the gap between the two varies
with problem parameters. For example, an alternative lower bound on O(Li) is
the number of weights in the list that are larger than 0.5 (half a bin), since no two
such weights can share a bin. Let H(Li) denote the number of weights in Li that
occupy more than half a bin.

When weights are drawn uniformly at random from (0, 1), the expected value
of H(Li) is identical to the expected value of the weight sum S(Li). But when
� > 0, it is possible that H(Li) ≥ S(Li).

Figure 3.13 illustrates the difference. Panel (a) shows how S(Li) and H(Li)

vary with � when u is fixed at 1 and n is fixed at 100,000. Panel (b) shows how the
two ratios R1 and R2 (defined analogously to R1 with H(Li) in the denominator)
create different views of first fit. The performance ratio R1, based on weight sums,
can be as large as 1.35 when � = 0.5, but the performance ratio R2 is never more
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Figure 3.13. Lower bounds on packings. Panel (a) compares weight sums S(Li) to the number
of large weights H(Li) in three trials at each design point n = 100000, u = 1.0, and �, as shown
on the x-axis. Panel (b) compares the ratios R1(Li) and R2(Li) from these lower bounds.

than 1.016. The difference is not in how well the first fit algorithm performs, but
rather how our perception of performance is shaped by these two performance
indicators.

Guideline 3.11 When evaluating solution quality, use tight bounds on optimal
solutions to obtain tight bounds on performance ratios. Do not assume that trends
observed experimentally imply similar trends in performance guarantees.

This technique can be applied to any optimization problem where a suitable
bound on optimal cost can be found. For example, the traveling salesman prob-
lem (TSP) is, given a set of n points with distances defined among them, to find
a minimum-length tour through all the points. Several easy-to-compute lower
bounds on optimal tour lengths are known, including the costs of the minimum
spanning tree and of the minimum-weight perfect matching. Johnson et al. [13]
have shown empirically that the Held-Karp lower bound on tour cost is within 0.8
percent of optimal tour length for many categories of random graphs.

Ageneral technique for finding lower (and upper) bounds in this context – which
in fact produced the Held-Karp lower bound – is to cast the problem into linear
programming form. Every minimization problem A expressed as a linear program
has a maximization counterpart B (and vice versa). The weak duality theorem
implies that the cost of any feasible solution to A is a lower bound on the optimal
solution to B. Therefore, any heuristic algorithm for B produces a solution that
can be translated into a lower bound on the optimal solution to A. See [15] or [19]
for more about linear programming problems and their properties.
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3.2.2 Linearity of Expectation
Our second strategy for measuring solution quality looks at sums and differences
in costs rather than ratios like ρ.

In statistics, a property known as linearity of expectation assures that the
following identities hold for any random variates X and Y and constants a and b.

E[X ± a] = E[X]± a

E[X ±Y ] = E[X]±E[Y ]
E[aX ± bY ] = aE[X]± bE[Y ]

It does not matter whether X and Y are independent or correlated with one another.
In contrast, it cannot be assumed in general that E[X/Y ] = E[X]/E[Y ].

Linearity of expectation can be exploited in several ways. For example, suppose
the goal of the experiment is to estimate the expected number of bins used by first
fit. Let f = E[F(Li)] denote this expectation for a given design point (n, �, u).
The straightforward way to estimate f is to calculate the mean of F(Li) measured
over several random trials. However, an alternative strategy might yield better
estimates, as follows.

First, note that the expected value of the sum of n weights drawn uniformly
from [�,u] can be calculated by

E[S(Li)] = n(�+u)

2
.

Define the empty space in a first fit packing as the difference between the number
of bins used and the sum of weight in the packing, and let G(Li) = F(Li)−S(Li)

denote this “gap” between total weight and total capacity. We have

E[F(Li)] = E[G(Li)+S(Li)]
= E[G(Li)]+E[S(Li)]
= E[G(Li)]+ n(�+u)

2
.

Instead of measuring F(Li) directly, we could instead measure G(Li) and use it
as shown in the bottom formula to estimate f .

Figure 3.14 shows results of 15 trials at the design points n = 100000, � = 0,
and u = (0.5 . . .1.0); all measurements are divided by u for easier comparison on
this scale. The circles show (scaled) measurements of F(Li), and the plusses show
G(Li)+n(�+u)/2 in the same trials. Both samples have the same expectation at
each design point, but the much smaller range in the latter set yields tighter esti-
mates of f (n,�,u). This is an example of a variance reduction technique described
more fully in Section 6.1.
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Figure 3.14. Two estimators. The graph shows two ways to estimate the mean f (100000,0,u)

for u = (0.5, . . .1.0). Circles show direct measurements of F(Li) in 15 random trials, scaled by u

for easy comparison. The crosses show measurements of G(Li)+n(�+u)/2, also scaled. Both
data samples have the same expectations, but variance is much smaller in the second set.

Next, linearity of expectation can sometimes be applied to yield better insights
about asymptotic performance. The asymptotic performance ratio of first fit is
defined as ρ(�,u) = limn→∞ ρ(n,�,u). We know that ρ(�,u) ≤ R1 (the estimator
based on weight sums); assuming that R1 approaches its asymptote from above,
we could run tests at very large n to get an upper bound on the asymptotic ratio.
But no test at finite n can be used to evaluate whether that ratio equals 1 (its lower
bound) or is strictly greater than 1. (A result of ρ(�,u) = 1 would imply that first
fit is asymptotically optimal in the average-case model.)

We can approach the question from a different direction, however. Since
F(Li) = G(Li)+S(Li) we know that

ρ(�,u) = lim
n→∞E

[
F(Li)

O(Li)

]

= lim
n→∞E

[
G(Li)+S(Li)

O(Li)

]

= lim
n→∞E

[
G(Li)

O(Li)

]
+E

[
S(Li)

O(Li)

]

≤ lim
n→∞E

[
G(Li)

S(Li)

]
+ 1

The constant 1 can be substituted on the bottom line because weight sum is
a lower bound on the optimal number of bins. If the ratio on the bottom line
is asymptotically 0, we know that ρ(�,u) = 1 and that first fit is asymptotically
optimal. Since E[S(Li)] = n(� + u)/2, this condition is met whenever G(Li) is
sublinear in n.
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From a data analysis point of view, we have converted the problem of trying
to determine whether the ratio E[F(Li)/S(Li)] converges to 1 or to a constant
1 + ε – which is impossible using data at finite n – to the problem of trying to
determine whether E[G(Li)] is a sublinear function of n.

The latter problem turns out to be more amenable to data analysis. Figure 7.14
shows that G(Li) gives strong evidence of growing no faster than n0.69 when
weights are drawn uniformly from [0,1]. Bentley et al. [5] first reported this exper-
imental result; subsequent theoretical analysis has produced an O(n2/3) bound on
empty space, which implies that FF is asymptotically optimal. See [8] for details.

In general, there is no guarantee that one formulation of a question about an
asymptotic property will be easier than another to study experimentally. But since
ratios and differences have distinct convergence rates and variance properties, it
never hurts to check.

Linearity of expectation can also be applied in cases where the expected value
of the optimal solution is known for a class of inputs. In bin packing average
case analysis, the expected optimal number of bins, ω(n,�,u) = E[O(Li)], can
be calculated for specific combinations of � and u. For example, when the list is
symmetric around 0.5 (i.e., when � = 1 − u), the list allows a perfect packing,
which means that the optimal bin count is asymptotically equal to the weight sum.
That is, limn→∞ ω(n,�,u) = n(�+u)/2.

This fact does not help with estimating the asymptotic performance ratio
ρ(n,�,u) = E[F(Li)/O(Li)], since it cannot be assumed that E[F(Li)/O(Li)] =
E[F(Li)]/E[O(Li)]. But it can be used to estimate the expected performance
difference δ(n,�,u)=E[F(Li)−O(Li)], which is equal to E[F(Li)]−ω(n,�,u).

Guideline 3.12 Exploit linearity of expectation to reformulate the experimen-
tal problem, and substitute calculated expectations for empirical averages when
possible.

This idea can be applied more generally whenever optimal expected costs are
known or can be closely estimated. For example:

• In the geometric TSP the asymptotic expected optimal tour cost on n points
drawn uniformly from the unit square is of the form α

√
n. Experiments have

bounded the asymptotic constant α by .7124± .0002. Similar bounds are known
for geometric point sets in higher dimensions, under different distance metrics,
and for random graphs with uniform edge weights. See [13] for details.

• The expected optimal graph coloring cost – called the chromatic number –
is known for some random graph classes. Let G(n,p) be a random graph on n

vertices such that each edge appears with probability p. The expected chromatic
number of G(n,1/2) is asymptotically n/2log2 n; bounds are also known for
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graphs parameterized by G(n,d/n) for given values of d. See Bollobás [6] or
Achlioptas and Naor [1] for more.

• Input to the 3CNF satisfiability problem is a Boolean formula B in a special for-
mat, containing m clauses and n variables. Suppose a random Boolean formula
is constructed of m clauses drawn uniformly from the set of all clauses on n vari-
ables. Let k = m/n. Some exact formulas and experimental bounds are known
on the expected proportion of satisfiable Boolean formulas drawn at random
according to k. (For details see the survey by Dubois [10].) Since satisfiability
is not an optimization problem, our standard definition of performance ratio r

does not apply: to evaluate a satisfiability algorithm, generate pools of random
instances according to k and compare the proportion of instances satisfied by
the algorithm to the expected proportion of satisfiable instances in the pool.

3.2.3 Known Optimal Solutions
Our next strategy for evaluating solution quality is to restrict the experiment
to instances for which optimal solutions are known or can be easily calculated.
This approach may be used in two scenarios: when optimal solutions are known
by construction and when optimal solutions have been reported in the research
literature.

In the first scenario, inputs are built in such a way that the optimal cost (or a
bound on it) can be inferred from the construction method. For example, we could
build a random list of n weights from [0,1] by repeating the following process n/2
times: generate a random uniform x from (0,1) and create a pair of weights x, 1−x.
Since each weight can be matched perfectly with its mate, the optimal packing uses
exactly as many bins as the weight sum n/2. With this class of random instances
O(Li) is known exactly, so it is possible to measure R =E[F(Li)/O(Li)] directly.
More list-generation ideas could be developed along these lines by using random
numbers to “break” up a block of completely filled bins. The weight lists could then
be randomly scrambled to “hide” the optimal packing from the first fit algorithm.

One drawback to this idea is that these generation schemes do not meet our orig-
inal definition of the random input space L(n,�,u) because weights are not drawn
independently at random: instead, the value of one weight depends on the value of
another. Experimental results using these inputs cannot be applied to the original
question about average-case performance. More generally, it may be hard to justify
the relevance of such an input class to standard questions about performance.

Another objection is that the optimal solution may not be very well hidden
from the algorithm: first fit can pack these lists very well, and so can most other
approximation algorithms. Experiments on contrived easy-to-solve instances do
not, as a general rule, shed new light on algorithm performance. A few promising
exceptions to this objection have appeared, for example:
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• A generator of k-colorable graphs that avoids some known pitfalls, is available
at Joseph Culberson’s graph coloring resources, Page [9]. The generator can
produce six different types of graphs with known (but hidden) k-colorings. A
generator of graphs with hidden maximal independent sets, suitable for studying
algorithms for the clique problem, is also available.

• The BHOSLIB site, maintained by Ke Xu [25], contains benchmark instances
for several optimization problems, including clique, independent set, vertex
cover, and vertex coloring. Most graphs are produced by generating hard ran-
dom satisfiability instances and then using standard transformations to create
instances for the target problems, on the theory that hard Satisfiability instances
remain hard under these transformations.

The second scenario involves using testbed and benchmark instances for which
optimal solutions have been reported in the scientific literature. A simple Web
search will reveal many online repositories containing instances for bin packing,
several accompanied by announced optimal solutions.

Two pitfalls arise when using this approach. First, as is often the case with
constructed inputs, testbed instances may not be hard enough to challenge the
algorithm. Long-standing testbeds often contain instances that become obsolete
over time – too small, or too well-understood – because of improvements in algo-
rithms and computing technologies. Such inputs may not be relevant to modern
computational problems. There is always a danger that good results on easy test
sets lead to misplaced optimism: your algorithm may perform brilliantly on those
instances, but so might a much simpler and faster algorithm.

A second pitfall occurs when a “best known solution” becomes confused with
an “optimal solution” for a given instance. Even experienced researchers have
been caught in this trap. Gent [12] mentions one published benchmark set for bin
packing in which all but one of the announced optimal solutions are now known
to be incorrect.

3.2.4 The Right Tool for the Job
A key lesson from this discussion of performance indicators for solution quality
is that it is not necessary to limit the experiment to measuring “solution cost” as
defined by the problem. The fundamental difficulty of computing optimal solutions
to NP-hard problems is an obstacle to experimental analysis, but not an insurmount-
able one. A little maneuvering may turn up alternative performance indicators that
are better suited to experimental analysis.

In particular, since algorithm analysis is often concerned with finding bounds
on theoretical quantities, biased estimators can be more tractable and more useful
than straightforward estimators in many cases.
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As a general rule, the most reliable and useful experimental (upper) bounds
on performance ratios are likely to come from tight (lower) bounds on solution
quality. Unfortunately, suitable bounds are not always known, and if too far from
optimal, they can give misleading and overpessimistic views of performance.

As the examples using linearity of expectation illustrate, it is sometimes possible
to apply arithmetic manipulations to find alternative performance indicators that
are equally informative from an algorithm analysis point of view but have better
properties from a data analysis point of view.

Another good strategy is to replace an experimental measurement of some
quantity with an exact calculation of that quantity, when possible. This princi-
ple can be applied to computing the expected optimal solution cost for random
classes of inputs and, in some cases, computing exact optimal costs for specific
instances.

Finally, in any experiment it is usually a worthwhile exercise to look at the
data set from many angles – ratios, differences, proportions, inverses, et cetera –
to compare convergence rates and variance properties and find the best “view” of
performance. Several more tips and guidelines for choosing performance indicators
to maximize the quality of data analysis may be found in Chapter 6.

3.3 Chapter Notes
This chapter has surveyed a large assortment of performance indicators to be used
in experiments on algorithms. Here are the guidelines presented in this chapter.

3.1 It is easier to measure components separately and analyze their combined
cost than to measure an aggregate cost and try to break it into components
during analysis.

3.2 Use a doubling experiment to perform a quick validation check of your cost
model.

3.3 For best timer accuracy, use an interval timer and design tests so that the
process being measured runs for at least 100 milliseconds; a second or more
is better.

3.4 If short-lived processes must be measured, use cycle counts or elapsed time,
but check that the measured time interval is greater than both timer resolution
and timer latency. When using a cycle counter, take several measurements
and record the smallest cycle count observed.

3.5 Whenever possible, measure time on lightly loaded systems; in any case, find
out how much timing variation to expect from your test environment.

3.6 Do not use compiler-based code profilers in combination with compiler
optimization.
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3.7 Performance indicators can be aimed at different points on the scale between
abstract algorithms and instantiated code. Match your choice to the larger
goals of the experiment.

3.8 Build runtime predictions by combining platform-independent models of
dominant costs with platform-specific measurements of those costs.

3.9 Choose narrow performance indicators to highlight differences between
design strategies. Choose wide performance indicators to understand those
differences in context.

3.10 To find a bound on quantity x, look for a biased estimator that is
experimentally more tractable than an unbiased estimator of x.

3.11 When evaluating solution quality, use tight bounds on optimal solutions
to obtain tight bounds on performance ratios. Do not assume that trends
observed experimentally imply similar trends in performance guarantees.

3.12 Exploit linearity of expectation to reformulate the experimental problem, and
substitute calculated expectations for empirical averages when possible.

3.4 Problems and Projects
The C program markov.c discussed in Section 3.1, as well as an alternative ver-
sion that uses a hash table instead of a sorted array to implement data structure D,
may be downloaded from AlgLab. A C implementation of the first fit algorithm
discussed in Section 3.2, called ff.c, is also available together with implementa-
tions of other bin packing algorithms. Here are some suggestions for experimental
projects using these and other test programs that might be at hand.

1. Modify the word and character cost formulas (3.2) and (3.3), by adding terms
and/or finding better coefficients, to increase their accuracy and range of
applicability. Do different languages (English, German, Spanish) require sub-
stantially different cost models? What about files containing poetry or computer
programs?

2. Suppose character cost is adopted as the performance indicator. Would it be
better to specify the input parameters n,m,k in units of characters rather than
words? Why or why not? How would this change the analysis? How would this
change the experiment?

3. Replicate the timing experiments using markov.c in your home environment,
on different platforms if possible. How much variation in runtimes do you
observe? How much do environmental factors such as system load affect your
measurements? Where are the “knees” due to physical memory boundaries
located?

4. Can you combine abstract cost models and platform-specific time measure-
ments to predict computation time on your own system? What is the maximum
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range (in terms of algorithm parameters n,m,k) for which your predictions are
accurate? How accurate are they?

5. Compare the sorted array and the hash table implementations of markov.c.
What performance indicator is best for this comparison? How do different
performance indicators give different views of comparative performance?

6. Jon Bentley points out that the elapsed time of the random generation step
in markov.c is probably improved because it immediately follows a binary
search, which warms up the caches with the same memory addresses. How large
is this effect? Compare the runtimes of the random selection code using warm
and cold starts for the cache. Read about cache-efficient versions of binary
search and evaluate their effectiveness in this context.

7. Implement an approximation algorithm for your favorite NP-hard problem and
apply the techniques of Section 3.2 to find alternative performance indica-
tors for measuring solution quality. Which ones give the best insights about
performance?

8. Develop an instance generator for which optimal costs are known but hidden
from your approximation algorithm. How well do your algorithm and simpler
algorithms perform on these instances?

9. Visit several input repositories for bin packing on the Web and run ff.c on
their contents. Does your choice of performance indicator change depending
on whether the instances are from generators or real applications?
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Tuning Algorithms, Tuning Code

In almost every computation a great variety of arrangements for the succession of
the processes is possible, and various considerations must influence the selection
amongst them for the purposes of a Calculating Engine. One essential object is
to choose that arrangement which shall tend to reduce to a minimum the time
necessary for completing the calculation.

Ada Byron, Memoir on the Analytic Engine, 1843

This chapter considers an essential question raised by Lady Byron in her famous
memoir: How to make it run faster?

This question can be addressed at all levels of the algorithm design hierarchy
sketched in Figure 1.1 of Chapter 1, including systems, algorithms, code, and hard-
ware. Here we focus on tuning techniques that lie between the algorithm design
and hardware levels. We start with the assumption that the system analysis and
abstract algorithm design work has already taken place, and that a basic implemen-
tation of an algorithm with good asymptotic performance is in hand. The tuning
techniques in this chapter are meant to improve upon the abstract design work, not
replace it.

Tuning exploits the gaps between practical experience and the simplifying
assumptions necessary to theory, by focusing on constant factors instead of asymp-
totics, secondary instead of dominant costs, and performance on “typical” inputs
rather than theoretical classes. Many of the ideas presented here are known in the
folklore under the general rubric of “code tuning.” But in this chapter we distin-
guish between algorithm tuning, which considers higher-level constructs like data
structures and algorithm paradigms, and code tuning, which looks at low-level
structures like loops and procedure calls.

As was pointed out in Section 1.1, best performance is achieved by combining
speedups at all layers of the algorithm design hierarchy. Bentley [4] illustrates
this point with an engineering project to speed up an exact algorithm for TSP.

98
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He implemented eight versions of the algorithm, each incorporating either an
“algorithm tuning” or “code tuning” technique. The table that follows shows the
running times (in seconds) on problem sizes N = 10 . . .30; each version is marked
(a) or (c), denoting an algorithmic or code-tuning speedup, respectively.

N = 10 13 14 20 27 30

V1 69.68
V2 (a) 6.97
V3 (c) 2.81
V4 (c) .57 13.71 74.86
V5 (a) .10 .08 .43 49.52
V6 (a) .02 .07 2.61 92.85
V8 (a) .01 .04 1.09 60.42 137.92

While Version 8 requires just more than two minutes to solve a problem of size
n = 30, Bentley estimates that Version 1 would require about 10 billion times the
age of the universe to run to completion. (He did not perform the experiment.)

Overall, the largest individual speedups were obtained by algorithmic improve-
ments: Version 2 produced a speedup proportional to n, and Versions 5, 6, and
8 contributed individual speedups by factors ranging from 3 to 174, depending
on problem size. Code tuning efforts in Versions 3 and 4 contributed individual
speedups by factors between 2 and 13, again depending on problem size. More
importantly, the combined effect of these individual improvements is multiplica-
tive: when n = 10, Version 5 is 697 times faster than Version 1; when n = 20,
Version 8 is 746 times faster than Version 5.

The chapter is organized around two basic approaches to making code run
faster.

1. Reduce instruction counts. As a general rule, the fewer instructions executed,
the faster the code will run. There are two ways to reduce the instruction count
for a given code block B: either decrease the number of times B is performed
or decrease the number of instructions contained in B. These techniques are
discussed in Section 4.1.

2. Reduce instruction times. On modern systems, individual instructions can take
varying amounts of time, ranging from nanoseconds to milliseconds. The sec-
ond approach to tuning involves identifying the time-expensive instructions
and reducing their counts (or their times). Section 4.2 surveys ideas for exploit-
ing properties of the memory hierarchy and of multicore architectures to reduce
total computation time even though total instruction counts may increase. These
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techniques can be applied at the algorithm level, for example, by reorganizing
a data structure, or at the code level, for example, by rewriting a loop.

Tuning is not always necessary, or even desirable. Tuning can be antithetical
to principles of good software design, because it complexifies code, is harder to
maintain, and often exploits narrow assumptions about applications and platforms.
Section 4.3 lists some issues to consider when deciding whether or not to undertake
a tuning project and proposes a systematic procedure that minimizes errors and
maximizes efficiency when the decision is to go forward.

4.1 Reducing Instruction Counts
Algorithm tuning has received less systematic treatment than code tuning in the
experimental literature; therefore, we start with two case studies to illustrate the
basic approach. Section 4.1.1 extends these examples and presents some general
guidelines for tuning algorithms.

Case Study: Bin Packing by Exhaustive Search
The bin packing problem was introduced in Section 3.2: Given a list L containing
n weights from the real interval [0,1), pack them into unit-capacity bins so as to
minimize the number of bins used.

Figure 4.1 shows an example of 10 weights packed two different ways. Packing
(a) is the result of using the next fit packing algorithm. Next fit works through the
list from left to right, maintaining a single “open” bin as it goes. It packs as many
weights as possible into the open bin and starts a new bin when the next weight
will not fit. Thus (.4, .1) are packed into the first bin, but .6 will not fit, so it starts
a new bin, and so forth. The next fit rule packs this list into seven bins, while the

.4 .1 .6 .9 .2 .2 .7 .5 .1 .8

(a) Next fit

.4

.1

.6 .9 .2

.2

.7 .5

.1

.8

(b) Optimal

.9

.1

.8

.2

.7

.2

.6

.4

.5

.1

Figure 4.1. Bin packing. Two packings of the same list of 10 weights. The next fit packing uses
seven bins, and the optimal packing uses five bins.
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1 global list[0..n-1]; // list to be packed
2 global optcost; // minimum bin count

3 procedure binPack (k) {
4 if (k == n){
5 b = binCount(); // use next fit
6 if (b < optcost) optcost = b;

}
7 else
8 for (i = k; i < n ; i++) {
9 swap (list, k, i); // try it

10 binPack (k+1); // recur
11 swap (list, k, i); // restore it

}
}

Figure 4.2. binPack. An exhaustive search algorithm for bin packing.

optimal packing (b) uses only five bins to pack the same list. Next fit runs in O(n)

time and can never use more than twice as many bins as the optimal packing (since
every bin but the last one is at least half-full).

The bin packing problem is NP-hard; that means that no polynomial-time algo-
rithm is known that guarantees to find an optimal packing of every list. In this
section we consider an exponential-time exact algorithm that does guarantee to
find optimal packings.

The binPack procedure sketched in Figure 4.2 is an example of an algo-
rithm in the exhaustive search paradigm, which solves an optimization problem
by (exhaustively) checking all possible solutions. The procedure constructs all per-
mutations of the list recursively, using k as a parameter. At stage k, the elements
in list[0...k-1] have been fixed in the permutation; the stage considers all
remaining elements for position list[k] and recurses to generate the rest of the
permutation. Once a permutation is complete (when k == n), the algorithm calls
binCount() to build a next fit packing and saves the cost of the best packing
found as optcost.

It is not difficult to see that this algorithm must find an optimal packing because
that packing can be decomposed into the permutation that would produce it under
next fit. The algorithm takes O(n · n!) time to generate all n! permutations and
compute binCount for each. Java implementations of binPack and the several
variations discussed here are available for downloading from AlgLab. The run-
time experiments mentioned in this section were performed on the HP platform
described in the first timing experiment of Section 3.1.2.
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Like most exhaustive search algorithms, binPack is painfully slow: a Java
implementation takes a little more than an hour to run through all permutations
when n = 14. (In contrast, the polynomial-time first fit algorithm in Section 3.2
can pack a list of size n = 100,000 in about 0.01 second.)

Here are some ideas for making the exact algorithm run faster via algorithm
tuning.

Branch-and-bound. The branch-and-bound technique is an important tuning strat-
egy for any exhaustive-search algorithm. The idea is to insert a test to compare the
minimum cost found so far (optcost) to a lower-bound estimate on the final cost
of a partially constructed solution. If the lower bound is greater than optcost, then
this partial solution cannot possibly lead to a new optimum, and further recursion
can be abandoned. We say that this “branch” of the recursion tree can be “pruned.”

Here are three lower bounds that could be checked against optcost at stage k.

• The bin count for a partial list list[0..k] is a lower bound on the bin count
for the whole list. Define function binCount(k) to compute the bin count for
list[0..k].

• The sum of weights in a list (rounded up) is a lower bound on bin count for the list.
For example, if the weights sum to 12.3, at least 13 bins are needed to pack them.
Define function weightSum(k+1) to sum the weights in list[k+1..n-1].
The quantity

Ceiling (weightSum(k+1) - (1-list[k]))

is a lower bound on bin count for the partial list in list[0..k]. The Ceiling

function performs the rounding-up step. The negated second term reflects the
possibility that some weights, totaling at most (1 - list[k]), might be
packed together with the weight in list[k] and not included in the sum.

• The sum of these two lower bounds is even better. If

binCount(k) +
Ceiling( weightSum(k+1) - (1-list[k]) ) >= optcost

then further recursion on the list can be skipped.

Applying this tuneup to the loop in Figure 4.2 we obtain the following code
fragment.

8 for (i = k; i<n ; i++) {
9 swap(list, k, i) // try it
9.1 b = binCount(k);
9.2 w = weightSum(k+1);
9.3 if(b+ Ceiling(w-(1-list[k])) < optcost)
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Figure 4.3. Branch-and-bound. The x-axis marks problem sizes n. The y-axis marks total recur-
sive stages executed, on a logarithmic scale. Crosses show the counts for one test of V 0 at each
problem size. Circles show the results of three random trials of V 1 at each problem size. With
branch-and-bound the algorithm executes between 5×101 and 2.3×109 times fewer recursions.

10 binPack (k+1); // recur if needed
11 swap (list, k, i) // restore it

Branch-and-bound adds code that increases the cost of each recursive stage,
in hopes of reducing the total number of stages executed. There is no guarantee
that the reduction in recursion count will be enough to justify the extra cost of the
binCount and weightSum procedures. Experiments can be used to evaluate the
trade-off.

Figure 4.3 shows results of an experiment to compare total recursive stages
invoked in our original version, called V0, to a branch-and-bound version V1.
Since V0 always recurs the same number of times, only one test was performed
per problem size. V1 was measured in three random trials at each problem size,
using list weights drawn uniformly from [0,1).

Branch-and-bound is clearly very effective at reducing the total number of recur-
sive stages, although the amount of reduction can vary significantly among trials.At
n = 14, V0 executed 236.9 billion recursions while V1 executed between 730,000
and 1.59 billion recursions, which represents improvements by factors between
150 and 2200. Overall in these tests counts of recursive stages improved by factors
as low as 50 and as high as 230 million.

This reduction in recursion counts translates to important runtime improve-
ments, despite increases in the cost per stage. V0 takes 63 minutes of CPU time at
n = 14, while V1 has average runtimes near 20 seconds, which represents about a
217-fold speedup.
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3 binPack (k, bcount, capacity, sumwt) {
4 if (k == n) {
5 if (bcount < optcost)
6 optcost=bcount;

}
7 else {
8 for (i=k; i<n; i++ ) {
9 swap (list, k, i); // try it
9.1 if (capacity + list[k] > 1) { // does it fit?
9.2 b = bcount + 1; // use new bin
9.3 c = 1 - list[k];
9.4 }

else {
9.5 b = bcount; // use old bin
9.6 c = c - list[k];

}
9.7 w = sumwt - list[k]; // update sumwt
9.8 if (b+Ceiling(w-c) < optcost) // check bound
10 binpack(k+1, b, c, w); // recur if necessary
11 swap (list, k, i); // restore it

}
}

}

Figure 4.4. binPack V2. This version applies branch-and-bound and propagation.

Branch-and-bound is a special case of pruning, which is discussed more fully
in Section 4.1.1 under Recursion-Heavy Paradigms.

Propagation. Our next tuning strategy focuses on speeding up binCount and
weightSum, which together contribute O(n) extra work at each recursive stage.
Implementation V2 uses propagation to replace these methods with incremental
calculations that take only constant time per stage.

The new version is shown in Figure 4.4. To compute the weight sum incre-
mentally we introduce a new parameter sumwt, initialized to equal the sum of
the entire list. On line 9.7 the weight in list[k] is subtracted from sumwt and
passed to the next recursive stage. Calculation of binCount(k) is propagated
by introducing two parameters, bcount and capacity, and performing next fit
incrementally during the recursion. Lines 9.1 though 9.6 determine whether the
current weight list[k] fits into the current open bin, or whether a new bin is
needed. Now that the value of capacity is available, it can be used to give a
tighter lower bound on the estimated bin count, so 1-list[k] is replaced with
1-c in the test on line 9.8.
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Tests using the Java -Xprof profiler to compare V1 and V2 on identical inputs
show that propagation cuts the average cost of each recursive stage in half; that
translates to a 50 percent reduction in total running time. The new lower bound test
on line 9.8 yields small improvements: about half the time there is no difference
in recursion counts, and 90 percent of the time the improvement is less than 20
percent.

Guideline 4.1 Propagation: Replace a full computation in each recursive stage
with an incremental computation that passes partial results as parameters.

Preprocessing. Our third tuneup involves using an approximation algorithm to find
a good packing as a preprocessing step, on the theory that a low initial value for
optcost will make the branch-and-bound test more effective during the recursion.
Version V3 incorporates an approximation algorithm known as first fit decreasing
(FFD), which is run before the recursion begins, to find a good initial value for
optcost. FFD sorts the weights in decreasing order and then applies the first fit
algorithm described in Section 3.2.

As before, preprocessing adds extra cost to the algorithm that may or may not
be recovered by reductions in total recursion counts; as before, experiments can
inform the cost-benefit analysis.

Figure 4.5 shows results of an experiment designed to assess this trade-off.
The x-axis shows log recursion counts (log10 v2) for version v2, measured in 30
random trials at n = 14. The y-axis shows the log differences in recursion counts
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Figure 4.5. Recursion counts. The x-axis shows log10(v2), and the y-axis shows log10(v2 −v3),
in 30 random trials at n = 14. Six of the 30 trials produced differences of 0, not shown on this
logarithmic graph. The dotted lines mark trials where the difference in recursion counts was
below 25.
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(log10(v2 −v3)) in tests using identical inputs. The v2 recursion count ranges from
14 to 2.5 × 108, and corresponding differences v2 − v3 in the graph range from 2
to 6.1 × 106. Of the 30 trials, 6 resulted in differences of 0 and are not shown on
the graph.

Most points are below the dotted line, which corresponds to v2 − v3 = 25 and
represents a very small difference compared to the scale of V2. In three trials the
differences were on the order of 103, 104, and 107, giving improvements ranging
from 10 percent faster to 15 times faster. Additional tests not shown here suggest
that V3 can occasionally, but rarely, run up to 500 times faster than V2.

Profiling and runtime measurements for V2 and V3 show that the time for
FFD is microscopically small compared to the recursion code. Considering timing
inaccuracies introduced by the Java VM, V3 is observably faster than V2 only
when the number of recursive stages is at least 20 percent smaller. The conclusion:
preprocessing with FFD adds no significant extra time to binPack and, with rare
exceptions, makes no significant improvements in recursion counts.

Guideline 4.2 Preprocessing: Add work before the algorithm begins, to save work
when the algorithm executes.

Together these three modification – branch-and-bound, propagation, and pre-
processing – have produced an implementation V3 that takes between five minutes
and three hours when n = 16, while the estimated CPU time for V0 is at least two
months. This works out to at least a 730-fold speedup due to algorithm tuning.

The next section presents a second case study using an algorithm with very dif-
ferent structure from binPack, to illustrate more strategies for algorithm tuning.

Case Study: A greedy graph algorithm
Given a graph G = (V ,E) containing n vertices and m edges, with positive costs
c(x,y) on the edges, the distance d(x,y) between x and y is the least-cost way to
travel from x to y by traversing edges in G and summing their costs. This distance
may be less than the cost of edge (x,y) itself: if edge (x,y) is the unique least-cost
path from x to y, we say the edge is essential, and if an alternative path of equal
or lower cost exists, the edge is nonessential. For convenience we assume that
G is undirected, although the assumption is not necessary to most of the results
mentioned here.

The essential subgraph S contains only the essential edges of a given graph
G. Subgraph S has many interesting properties, for example: it is the smallest
subgraph of G for which all distances in G are equal; it is the union of n single-
source shortest path trees of G; and it must contain a minimum spanning tree of
G. Let m′ denote the number of edges in S; it holds that n − 1 ≤ m′ ≤ m. Under
a general random model with an arbitrary distribution on edge weights in G, the
expected number of edges m′ is �(n logn).
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procedure findEssential (G) constructs S
S.initialize(n) // Subgraph initially empty
P.initialize(G) // Priority queue of edges of G

1 while (P.notEmpty() ){
2 <x, y, cost> = P.extractMin();
3 if (S.distance(x,y) > cost) S.insert(x,y,cost);

}

Figure 4.6. ES. Computing the essential subgraph, S, of G.

In this section we consider an algorithm called ES that takes G and constructs
the essential subgraph S. It is not hard to extend the algorithm to solve the all pairs
shortest paths problem – to compute all distances in G – in O(m′n logn) time.

C and Java implementations of the algorithm variations described here can be
downloaded from AlgLab. All experiments in this section were performed using
random complete graphs with edge costs drawn uniformly from (0,1). Time mea-
surements reported here are of the C implementations, run on the HP platform
described in the first timing experiment of Section 3.1.2.

Figure 4.6 shows pseudocode for the main loop of ES. Each iteration of the loop
invokes S.distance to return the distance between x and y in the (unfinished)
subgraph S. If there is no alternative path in S, the edge must be essential, so it is
inserted in S. The correctness of this algorithm is established by noting that edge
e = (x,y) can be correctly identified as essential or nonessential by considering
only paths of essential edges with costs smaller than e.

Our first version V0 implements the priority queue P with an array of edges
sorted in increasing order by cost. Function P.initialize takes O(m logm)

time to sort the edges, P.notEmpty is constant time, and P.extractMin takes
constant time per edge to work through the sorted array.

Subgraph S is implemented with an adjacency list. Figure 4.7 shows the
S.distance function, which uses Dijkstra’s well-known single pair shortest
path algorithm to find the distance from s to d in S.

The priority queue Ps holds vertices w in order by smallest-known distance
from s, denoted w.dist. The status of each vertex goes from unseen, before it
is encountered, to inqueue when it is encountered and inserted into Ps, and done

when it is extracted from Ps. Each iteration of the main loop extracts a vertex w

with minimum distance from Ps. If this is the destination node d, the search ends;
otherwise lines 9 to 11 perform the familiar relax operation on each neighbor z of
w, checking whether a better distance to z via w can be found. If so, z.dist is
updated, and Ps.decreaseKey is invoked to update Ps. If there is no path from
s to d in S, the function returns distance +Infinity.
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procedure S.distance(s, d) returns distance from s to d

1 For all vertices v: v.status = unseen;

2 Ps.init(s,0); // insert s with distance 0

3 s.status = inqueue;

4 while (Ps.notEmpty()) {

5 <w, w.dist> = Ps.extractMin();

6 w.status = done;

7 if (w == d) return w.dist; // found d

8 for (each neighbor z of w) {

9 znewdist = w.dist + cost(w,z); // relax

10 if (z.status == unseen)

11 Ps.insert(z, znewdist);

12 else if (z.status == inqueue)

13 Ps.decreaseKey(z, znewdist);

}//while

14 return +Infinity; // didn’t find d

Figure 4.7. S.distance. Dijkstra’s algorithm finds the distance from s to d in S.

Aquick profiling experiment using the Unix gprof utility shows that 78 percent
of CPU time is spent executing S.distance and the data structure functions it
invokes. Therefore, we focus first on tuning strategies for reducing the cost of
S.distance.

Memoization. Dijkstra’s algorithm is usually conceived of as executing once, but
here it is invoked repeatedly, in alternation with edge insertions to S. Our first
algorithm tuneup exploits this fact by introducing a matrix to record distances as
they are discovered. This is an example of memoization – “making a memo” of a
result to avoid the cost of recalculating later.

The new version incorporates a global distance matrix D that saves the distance
from s to w each time some w is extracted from Ps. Because it is possible for
the distance from s to w to decrease via future S.insert operations, the value
recorded in D is only an upper bound on the true (minimum) distance, which
might be discovered later. But sometimes the upper bound is enough to establish
whether the edge is essential. Let ecost be the cost of edge (s,d) at an invocation
of S.distance: if (D[s,d] <= ecost), the edge is not essential, and the
Dijkstra search can be skipped. If (D[s,d] > ecost), the search takes place.
Here is the modified code:

procedure S.distance(s, d, ecost) returns
distance from s to d, or upper bound D[s,d]
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0.1 if (D[s,d] <= ecost) return D[s,d];
1 For all vertices v: v.status = unseen;
2 Ps.init(s,0) // insert s with distance 0
3 s.status = inqueue;
4 while (Ps.notEmpty()) {
5 <w, w.dist> = Ps.extractMin();
5.1 if (w.dist < D[s,w]) D[s,w] = w.dist;
6 w.status = done;

The S.distance function no longer returns the exact distance from s to d

in S; sometimes it returns an upper bound D[s,d] on that cost, but only when
that bound proves the edge to be nonessential. This is an example of finessing by
replacing the expensive “exact” calculation of the distance from s to d, with the
upper bound found in D[s,t]. Since the result of S.distance is only used to
check whether an edge is essential or nonessential, the bound suffices when it is
less than edge cost.

Guideline 4.3 Finesse a calculation: Replace an expensive exact calculation with
an inexpensive bound or approximation, in such a way that the overall result is
unchanged.

Version V1 implements this tuneup. Memoization adds O(n2) cost to the
algorithm to initialize D but saves the cost of some redundant executions of
S.distance. Does the trade-off work?

Our first experiment compares CPU times for versions V0 and V1. The C code
was compiled with the highest optimization level (gcc -O3); times were mea-
sured with the Unix time command running on the HP platform described in
the timing experiment of Section 3.1.2. The random number generator was fixed
so that both versions were run on identical inputs. The table that follows shows
runtimes in seconds, averaged over 10 random trials at each problem size. Clearly
memoization yields an important speedup: V1 runs 48 to 75 times faster than V0
on these problem sizes.

Runtime n = 800 n = 1000 n = 1200 n = 1400

v0 24.11 49.04 87.57 144.97
v1 .49 .83 1.32 1.91
v0/v1 49.20 48.24 66.34 75.90

It should be pointed out that all experiments described in Section 4.1.1 are
carried out on random uniform graphs with (0,1] edge weights, and the results
would be quite different on other graph models. This point is discussed further in
Section 4.1.1 under Data Structures and Access Patterns.
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Guideline 4.4 Memoization: Save results in a table to avoid having to redo
the work.

Loop abort. The greedy ES algorithm contains two main loops: the “outer” loop
in Figure 4.6 iterates over edges in G and calls S.distance, and the “inner”
loop in Figure 4.7 iterates over vertices and invokes operations on Ps. The loop
abort strategy involves finding a test to stop a loop early rather than letting it run
to completion.

For example, the outer loop iterates m times, considering each edge of G in
increasing order by cost. With a bound on the cost of the largest essential edge we
could modify the main loop in Figure 4.6 to stop early, like this:

bound = (global) bound on max essential edge cost

procedure findEssential (G) constructs S
S.initialize(n) // Subgraph initially empty
P.initialize(G) // Priority queue of edges of G

1 while (P.notEmpty()){
2 <x, y, cost> = P.extractMin();
3 if (S.distance(x,y) < cost ) S.insert(x,y,cost);
4 if (cost > bound) break; // loop abort

}

Guideline 4.5 Loop abort: Add a test to stop a loop early.

Experiments using version V1 indicate that this idea could be very effective if a
suitable bound can be found: on random uniform graphs the subgraph S is finished
after the smallest 2 to 10 percent of edges have been considered; that means that
the remaining 90 to 98 percent of edges are nonessential. (This observation applies
only to random uniform graphs, but theoretical results mentioned in the Chapter
Notes suggest that a similar property holds for general random graphs.) For graphs
with uniform edge costs from (0,1), a bound of x ∈ (0,1) on the largest essential
edge would reduce the number of outer loop iterations from m to xm.

One way to implement the loop abort test is to calculate an upper bound D(S)

on the diameter of S, which is the maximal distance between any pair of vertices
in S. If ecost is greater than the diameter (or its upper bound), the ES algorithm
can stop because all remaining edges must be nonessential.

One way to compute such a bound is to perform a full search of S from vertex s

to every other vertex in the graph. Let f be the farthest-away vertex found in that
search; twice the distance from s to f is an upper bound on D(S). Any type of
search will do: one idea is to rewrite S.distance to perform a full Dijkstra search
from s rather than stopping when d is encountered; another is to run a breadth-first
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search (BFS) from s. The slower Dijkstra search would provide a tighter bound
on the diameter, and the faster BFS search would yield a looser bound.

We employ a small pilot experiment for guidance in choosing a good bounding
strategy, by adding a full BFS search inside S.distance, to run before the (inner)
main loop begins. The full Dijkstra search can be implemented by commenting out
the loop abort test on line 7 of the code in Figure 4.7. Here are some observations
from an exploratory experiment to evaluate these two strategies.

• Early in the computation when S is unconnected, both searches return D(S) =
∞, which is no use in the loop abort test. Later, when S is nearly finished,
the bounds returned by these searches yield significant reductions in main loop
iterations. For example, at n = 1000 the BFS bound is near 0.06 on average;
that means that with the loop abort test the main loop executes about 30,000
iterations instead of the full 499,500 iterations, a reduction of 94 percent.

• A full BFS search of S is much faster than a full Dijkstra search. The slightly
tighter bounds returned by the full Dijkstra search are not enough to counteract
the greater computation time.

• Both BFS and the full Dijkstra search are much more expensive than the par-
tial search (to node d) performed in S.distance. Furthermore, the bounds
returned by these searches do not change much from call to call. It is not
cost-effective to perform a full search at each invocation of S.distance.

On the basis of these observations, version V2 implements the following search
strategy for the loop abort test: (1) Wait until n edges have been added to S to
activate the BFS search (so it is more likely to be connected); (2) once the search
is activated, in each call to S.distance, check whether BFS has been performed
with source vertex s; if not, run the BFS search with s as source. This adds at
most n invocations of BFS to the cost of the algorithm. The new code section is
sketched in Figure 4.8.

Note the result of the BFS search is memoized on line 0.6. In fact, all distances
discovered during BFS search can be memoized (not shown).

Also, if the farthest-away vertex f has distance less than ecost, the edge must
be nonessential and the Dijkstra search need not be performed. This test to abort
the inner main loop appears on line 0.7.

Another loop abort test can be applied to this inner loop, as follows. Since
Dijkstra’s algorithm finds vertices in increasing order by distance, each w.dist

extracted on line 5 is a lower bound on the distance from s to d. If (w.dist >

ecost), then edge (s,d) must be essential: we can abort the Dijkstra search and
return the bound w.dist instead of the true distance.
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bound = (global) bound on max essential edge cost

procedure S.distance(s, d, ecost) returns
distance from s to d, or upper bound D[s,d]

0.1 if (D[s,d] <= ecost) return D[s,d];
0.2 if (S.edgeCount() >= n) {
0.3 if (s.dfs has not been performed) {
0.4 <f,f.dist> = S.dfs(s); // f is farthest from s
0.5 if (d*2 < bound) bound = d*2; // save min bound
0.6 if (D[s,f] > f.dist) D[s,f] = f.dist; // memoize
0.7 if (f.dist <= ecost) return f.dist; // loop abort

}

1 For all vertices v: v.status = unseen;
2 Ps.init(s,0) // insert s with distance 0
3 s.status = inqueue;
4 while (Ps.notEmpty()) {
5 <w, w.dist> = Ps.extractMin();
5.1 if (w.dist < D[s,w]) D[s,w] = w.dist;
6 w.status = done;

Figure 4.8. BFS search. The BFS search returns the distance from s to the farthest-away vertex
f. Twice this distance is an upper bound on the diameter of S.

4 while (Ps.notEmpty()) {
5 <w, w.dist> = Ps.extractMin();
5.1 if (w.dist < D[s,w]) D[s,w] = w.dist;
5.2 if (w.dist > ecost) return w.dist; // loop abort
6 w.status = done;

This reduces the number of iterations of that loop but also might increase total
cost of the algorithm because fewer memoizations would be performed in each
call to S.distance.

These two loop abort strategies will be evaluated together with the next algorithm
tuneup, called filtering.

Filtering. Consider the relax operation on line 9 of Figure 4.7. If (z.dist >

ecost), there is no need to insert z into Ps because it can not affect the decision
about whether edge (s,d) is essential or nonessential. If the (inner) loop abort
tuneup mentioned earlier is implemented, the loop will stop before this value can
be extracted, anyway. This strategy of filtering the data structure saves the cost of
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some insert operations and speeds up other operations by making the priority
queue smaller overall.

Guideline 4.6 Filtering: Avoid inserting an element into a data structure if the
element cannot affect the outcome of the computation.

Besides memoization we have considered three tuning strategies for ES: loop
abort for the outer main loop, loop abort for the inner main loop, and filtering the
Ps data structure. These strategies interact with one another – for example, the
effectiveness of the inner loop abort test depends on whether or not the outer loop
abort test is implemented.

As a general rule, the proper way to evaluate tuneups that interact in this way
is to use a full factorial design as described in Section 2.2.2. This experimental
design permits analysis of the main effects of each tuneup alone, as well as the
interaction effects of various combinations. The difficulty is, the design requires
16 = 24 design points – as well as code versions – to test all combinations of
the four tuneups. Implementing 16 versions of one program is prohibitively time-
consuming in many cases. The design would have to be even bigger to incorporate
tests of alternative strategies for bounding the diameter, a variety of input classes
and sizes, and other runtime environments.

Fortunately we can apply algorithmic reasoning to eliminate most of these
combinations from consideration:

• It is a safe bet that memoization improves computation time in every case,
because the cost of storing a number in a table is tiny compared to the cost of a
redundant search in S. The O(n2) initialization of the distance matrix represents
a very small proportion of other initialization costs. We can cut the design in
half by not testing versions without memoization.

• The effectiveness of the outer loop abort test depends on the number of invoca-
tions to S.distance saved versus the cost of finding the bound on the largest
essential edge. The inner loop abort and filtering strategies modify the cost of
S.distance, which affects the balance between invocation cost and bounding
strategy. This experimental study does not try to optimize that balance, so we
omit design points that omit the outer loop test, on the principle that few invoca-
tions of S.distance are better than many invocations, no matter how fast it is.

• The only design points remaining involve the inner loop abort test and filtering,
totaling four design points. Exploratory experiments on these four versions of
the code suggest that the inner loop abort never improves total computation
time and sometimes slows it down: it is better not to abort this loop so that more
memoization can occur. Experiments also reveal that filtering always provides
a small reduction in total computation time.
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On the basis of these results, our next implementation V2 incorporates mem-
oization (from V1), filtering, and the BFS search to support the outer loop abort
test. Average CPU times (in seconds) for 10 trials at each problem size are shown
in the table.

Runtime n = 800 n = 1000 n = 1200 n = 1400

v0 24.11 49.04 87.57 144.97
v1 .49 .86 1.33 1.93
v2 .24 .40 .62 .91
v0/v2 100.46 122.60 141.24 159.31
v1/v2 2.04 2.15 2.15 2.12

V2 runs twice as fast as V1, mostly because of the loop abort test.Although that test
cuts about 90 percent of calls to S.distance, the extra cost of the BFS searches
means that the speedup is only a factor of 2.

Altogether, these three tuneups have contributed speedups by factors between
100 and 160 over the original implementation of ES.

Customizing The Data Structure. Profiling reveals our next target of opportunity:
In V2, the Ps.extractMin function takes about 36 percent of computation
time, more than any other function. Rather than zooming in on that particular
operation, however, we take a wider look at Ps and find ways to customize the
data structure by matching operation costs to the operation frequencies imposed
by the ES algorithm.

Priority queue Ps supports four operations: initialize, extractMin,
insert, and decreaseKey. Versions V0 through V2 employ a textbook imple-
mentation of Ps using a simple binary heap, together with a location array that
stores, for each vertex, its location in the heap. The location array is used in the
decreaseKey(z, z.dist) operation, to find vertex z in the heap. Here are
some alternative ways to implement Ps.

• Option 1: initialization vs. insertion. The original version initializes the heap
to contain one vertex s and later performs some number I of insert operations.
An alternative is to initialize Ps to contain all n vertices and perform zero inserts
later.

• Option 2: initialization vs. insertion. Yet another alternative is to use BFS to
find all B ≤ n vertices reachable from s. Initialize the heap to contain those B

vertices and perform zero inserts.
• Option 3: memoization. This option memoizes the entire heap, saving it unitll

the end of each invocation of S.distance(s,d), and restoring it the next
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time the function is called with the same source s. This requires replacing Ps

with an array P[s] to hold separate heaps for each s. Since edges may have
been added to S since the last time P[s] was saved, the heap may not correctly
reflect distances S when restored. Therefore, the restore step must apply the
relax operation to every edge that was added in the interim. This restore step
can be implemented without increasing the total asymptotic cost of the algorithm
(see [24]). With this modification, the cost of initializing and inserting during
each call to S.distance drops to zero, but the restore (relax) step must be
performed for some number R of new edges in each call.

• Option 4: decrease-key vs. sifting. The location array finds z in the heap
in constant time, which is clearly better than a linear-cost search for z. On the
other hand, the location array must be updated every time a heap element is
moved by a siftup or siftdown operation. Sifting occurs in the inner loops
of the insert, extractMin, and decreaseKey operations, and updating the
location array as well as the heap likely doubles the cost of sifting. If the number
K of decrease-key operations is small compared to T , the number of elements
sifted, it would be faster to omit the location array. Instead, decreaseKey

could be implemented by placing a new copy of z in the heap. The extractMin

would be modified to skip duplicate keys.

The right choice depends on the values of parameters I , B, R, K , and T and
on the code costs of these various alternatives. Most of these options interact,
suggesting another factorial design. But before writing 16 = 24 copies of the code,
we use exploratory experiments to measure these parameters and identify the most
promising options.

The first experiment modifies V2 to report the outcome (insert, reject) for each
edge in the graph (with the outer loop abort turned off for the moment). From this
experiment we learn that when ES is applied to a random uniform graph, it works
in two phases. In phase 1, S grows rapidly because most edges are accepted as
essential; in phase 2, when S is completed, all edges are rejected as nonessential.

These two phases produce distinct patterns of access to Ps and different conclu-
sions about which implementation options are best. To take a concrete example, in
one trial with n = 100 and m = 4950, phase 1 (building S) occupied the first 492
iterations. When S was completed, it contained 281 edges; that means that about
40 percent of edges were accepted during phase 1. Phase 2 (when all edges were
nonessential) occupied the remaining 4457 iterations.

Here are some observations about the parameters in these two phases; the
notations I1,I2 refer to parameter I in phases 1 and 2, respectively.

1. Options 1 and 2. In phase 1 the original implementation performs one initial-
ization and I1 = 30.9 inserts per call on average. Option 1 would initialize a

Cambridge Books Online © Cambridge University Press, 2012



116 4 Tuning Algorithms, Tuning Code

heap of size n = 100 and perform zero inserts. Option 2 would perform a BFS
search on B1 = 51.2 vertices (on average), then initialize a heap of size B1, and
then perform zero inserts. It is a close call: none of these options is likely to
be significantly faster than another. In phase 2, however, option 1 is the clear
winner: the original version performs I2 = 97.1 inserts on average, which must
be slower than initializing a heap of size 100, and the BFS search in option 2
is superfluous since B = n.

2. Option 3. In phase 1 the original implementation performed I1 = 30.9 inserts
and K1 = 4.8 decrease-keys per call on average, totaling 14,907.6 = 492×30.9
inserts and 2,361.6 = 492×4.8 decrease-keys. By comparison, option 3 would
initialize a heap of size n = 100 and perform 0 inserts and no more than K1

decrease-keys per call: this option is clearly worth exploring. In phase 2, option
3 is the clear winner because the cost of the restore operation drops to zero,
while the original version performs I2 = 97.1 inserts per invocation.

3. Option 4. In phase 1 the average number of decrease-keys per call to
S.distance is K1 = 4.8, compared to T1 = 159.4 sift steps: savings would
likely accrue from implementing option 4. In phase 2, K2 = 40.4 while
T2 = 625.6, so the cost difference is smaller.

With the outer loop abort test, V2 spends about 90 percent of its time in phase 1.
The path is clear: option 3 should be explored next, and option 4 is also promising.
These conclusions should be valid for random uniform graphs at larger values of
n, but initialization might change the balance of some parameters at small n. If the
ES algorithm is to be applied to other input classes, these tests should be rerun to
check whether these basic relations still hold.

Guideline 4.7 Customize the data structure: select a data structure implementa-
tion that best matches its pattern of use.

The reader is invited to download these programs from AlgLab and try the
suggested tuneups, invent more tuneups, and extend these experiments to other
input classes.

4.1.1 Tuning Algorithms
Our two case studies illustrate how algorithm tuning can make code run hundreds
and thousands of times faster than a straightforward implementation. Can we apply
these ideas to other situations? Where does inspiration come from?

As a general rule, good understanding of cost mechanisms at the abstract algo-
rithm level is needed even to imagine that some of these ideas might pay off:
preprocessing works in the bin packing example because analysis shows that FFD
is fast and near-optimal for these inputs; the loop abort trick works in the ES
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• Recursive paradigms.
• Exhaustive enumeration, also known as brute force: solve a

problem by generating all possible combinations of solution com-
ponents. In particular, exhaustive search algorithms use exhaus-
tive enumeration to solve optimization problems by generating all
possible solutions and saving the best one found.

• Divide-and-conquer: divide the problem into subproblems; recur
to solve the subproblems; combine solutions to subproblems.

• Iterative paradigms.
• Greedy: construct a solution to an optimization problem incre-

mentally, selecting the least-cost component to add to the solution
at each iteration.

• Scanning and sweeping algorithms: iterate over a coordinate
space containing geometric components, updating the solution at
each iteration.

• Dynamic programming: use one or more nested loops to fill in
entries of an array or matrix. Values for new entries are computed
from values in previously filled entries.

Figure 4.9. Algorithm paradigms.Algorithm design paradigms represent fundamental categories
of algorithmic structures.

code because average-case analysis shows that S is quite small compared to G.
The algorithm analysis literature is an excellent source of inspiration for finding
algorithm tuneups.

Most tuneups do not change the asymptotic bounds but rather involve balanc-
ing decreased cost in one section of code against increased cost in another. With
some exceptions (such as quicksort), experiments are better suited than abstract
analyses for evaluating these types of constant-factor trade-offs. Experiments for
this purpose can involve simple runtime tests or measurements of key parameters
(I ,K , etc.) that guide the tuning process.

Inspiration can also be found by considering fundamental algorithmic structures.
Some of these structures, better known as algorithm design paradigms, are listed in
Figure 4.9.This list provides a handy organizing scheme for our survey of algorithm
tuning strategies in the following sections. To learn more about algorithm design
paradigms, consult the references listed in the Chapter Notes.

Recursion-Heavy Paradigms
An exhaustive enumeration algorithm solves a problem by recursively enumerating
all possible solutions or solution components. Exhaustive search algorithms – like

Cambridge Books Online © Cambridge University Press, 2012



118 4 Tuning Algorithms, Tuning Code

1 Quicksort (A , lo, hi )
2 if (lo >= hi ) return; // Cutoff test
3 p = A[lo] // Partition element p
4 x = Partition(A, lo, hi, p) // Partition around p
7 Quicksort (A, lo, x-1) // Recur left
8 Quicksort (A, x+1, hi) // Recur right

Figure 4.10. Quicksort. An example of the divide-and-conquer paradigm.

our exact bin packing example – use exhaustive enumeration to solve optimization
problems, by generating all solutions and saving the one with best cost. Usually
these algorithms run in exponential time, so there is a lot of room for improvement
by tuning.

Divide-and-conquer is another predominantly recursive paradigm. A divide--
and-conquer algorithm solves a problem by breaking it into subproblems and using
recursion to solve the subproblems. Quicksort, the most famous algorithm in this
paradigm, is sketched in Figure 4.10 for reference in the following discussion.

What these two paradigms have in common, of course, is a large number of
recursive procedure calls, with subproblems passed as parameters to subsequent
execution stages. These structures yield three basic approaches to tuning: skip some
recursive stages; make recursive computations faster by controlling subproblem
sizes; or shrink the cost of individual recursive stages.

Skip Execution Stages. The first general approach to tuning recursive algorithms
is to implement tests to skip recursive calls when possible. The branch-and-bound
technique illustrated in the bin packing case study of Section 4.1 is an example of
this idea, whereby a lower bound on the cost of a partially built solution is used as
a cutoff to avoid executing some branches of the recursion tree. When exhaustive
search is used to solve a maximization rather than a minimization problem, an
upper-bound test is required instead.

The effectiveness of branch-and-bound can be boosted using preprocessing to
find a good initial solution, which may increase the number of skipped recur-
sions. Another way to improve the effectiveness of the branch-and-bound test is
to change the computation order to find low-cost solutions earlier rather than later
in the recursion. For example, in BinPack the order in which solutions are tested
depends on the order of weights in the input list: the original list order is the very
first permutation tested. Execution time might be improved if the initial weight
list were reordered by pairing big weights with small weights, so that the first
permutation is likely to have very low cost when packed by next fit.

Branch-and-bound and related techniques can be extremely effective in reduc-
ing the high cost of exhaustive search. Moret, Bader, and Warnow [26] use
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branch-and-bound to eliminate more than 99.9 percent of candidate solutions from
evaluation in their algorithm for computing optimal phylogenetic trees, producing
as much as a 250-fold speedup in some inputs. Bentley [4] observed speedups
by factors of 7,500 and more by applying two tuneups – branch-and-bound and
changing computation order – to his exact algorithm for the traveling salesman
problem.

In the more general context of exhaustive enumeration algorithms, backtracking
is analogous to branch-and-bound, whereby a partially built solution is abandoned
if a test reveals that it cannot possibly lead to a feasible solution. Backtracking
can also be enhanced by preprocessing, to eliminate some combinations from
consideration, or by changing the computation order so that feasible solutions are
likely to be found earlier rather than later.

Branch-and-bound and backtracking are special cases of pruning, which
involves any kind of test – not just inspection of a partial solution – to eliminate
recursive stages. For example, the bin packing code could be pruned by installing
tests to check for redundant packings: if two weights list[k], list[k+1] can
be packed into the same bin by next fit, it is not necessary to recur to check the
combination list[k+1], list[k].

Pruning can also be applied to divide-and-conquer algorithms. For example,
quicksort (Figure 4.10) can be modified to solve many related problems such as
selecting the k largest elements from a set, finding all elements greater than x, and
so forth. If a quick check reveals that no part of the answer can be found to the left
of the partition element after partitioning, then the left recursive call can be pruned.

For another example, consider the classic algorithm [12] to find the closest pair
of points in a two-dimensional space, by recursing on points to the left and right
of the median x-coordinate. Each recursive stage returns and reports the minimum
distance d that it found among its subset of points. If a quick scan of the ordered
x-coordinates of points shows that all points in a given subproblem are at least d

apart, the recursion can be skipped.

Guideline 4.8 Pruning: insert simple tests to prune recursive calls. Boost the
strength of these tests by using preprocessing or by changing computation order.

Control Subproblem Size. The next tuning strategy involves adjusting the sizes of
recursive subproblems. One idea is to filter the subproblem by removing elements
from a subproblem before it is passed to the next recursive stage. For example,
the bin packing code could check for weights of size exactly 1.0 or for pairs of
weights in adjacent locations (list[k], list[k+1]) that add up to 1.0. When
these weights are found, they can be packed into single bins and removed from
further consideration. This type of filtering can yield considerable speedups in
situations where common and easy-to-handle subproblems can be identified.
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Quicksort can be modified to filter subproblems by not recurring to sort elements
that are identical to the partition element p. Bentley and McIlroy [9] describe a
“fat partition” procedure that groups elements equal to p together at each level,
so that the algorithm recurs on subarrays containing only elements strictly less
than or greater than p. This variation is much faster than conventional versions
of quicksort on arrays containing many duplicates and is not much slower than
conventional methods on arrays with distinct elements.

A related idea is to balance subproblem sizes in divide-and-conquer algorithms.
This technique involves adding extra work in the divide step to ensure that the two
subproblems are more nearly equal in size. Even though balancing adds extra cost
to each stage, theoretical analysis shows that the total amount of work done may
be smaller on balanced subproblems.

A well-known example of this approach is to use median-of-three partitioning
in quicksort, whereby the partition element is selected as the median of a sample
of three elements from the subarray, rather than as shown on line 3 of Figure 4.10.
One way to implement median-of-three sampling is shown in the following:

2.1 m = (lo+hi)/2;
2.2 if (A[lo]> A[hi]) swap(lo, hi);
2.3 if (A[m] > A[hi]) swap(m, hi);
2.4 if (A[lo]< A[m]) swap(lo, m);
3 p = A[lo];

Even more balance can be achieved by selecting medians of 5-, 7-, and 9-
element samples, but at some point the cost of selecting a median from a large
sample outweighs the benefits due to better balancing. Finding the “sweet spot”
between too much and too little balancing work can be an interesting problem in
many applications.

Guideline 4.9 Control subproblem sizes: remove elements from subproblems
before recurring; add or subtract work to balance subproblems.

Shrink Cost Per Stage. Our third approach to tuning is simply to make each stage
of the recursion faster. The propagation technique illustrated in the bin packing
case study is an example: an O(n) computation repeated at every recursive stage is
replaced with an incremental constant-time computation that passes partial results
as parameters.

Another idea is to hybridize the recursion, by writing recursive code that is tuned
for different problem sizes. Quicksort can be hybridized, for example, by introduc-
ing a policy that selects the partition element from a sample of k = (1,3,5, . . .n)

array elements, where k is calculated as a function of subarray size n. As a general
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rule, large sample sizes are more cost-efficient when n is large, because better bal-
ancing pays off; small samples are best when n is small because median-selection
is a smaller proportion of the cost at each stage. Experimental and theoretical
results in [22] and [25] suggest that choosing k proportional to

√
n minimizes total

comparisons for partitioning and median-selection in the average-case model.
Another common hybridization trick for quicksort is to switch to insertion sort

on small subproblems of size less than some bound b, because insertion sort is
faster on small arrays. Most recursive algorithms can be improved by this trick
because procedure-call overhead makes iteration more efficient than recursion at
the smallest subproblems.

Guideline 4.10 Hybridize a recursive program to make individual stages faster.

Iterative Paradigms
We now consider tuning strategies for algorithms with predominantly iterative
structures.

Dynamic programming algorithms contain one or more nested loops that iterate
to fill in the entries of an array. There may not be much room for tuning these types
of algorithms, since the code is usually fairly sparse in the first place. Speedups may
be found by looking at memory access: Section 4.2 shows how patterns of memory
references can dramatically affect computation times for dynamic programming
and other algorithms that are dominated by memory accesses.

Other iteration-based paradigms include greedy algorithms, such as the essential
subgraph example in Section 4.1, and scanning and sweeping algorithms, which are
often found in computational geometry. A greedy algorithm constructs a solution
to an optimization problem incrementally, selecting a least-cost component from
a priority queue and adding it to the solution if it meets feasibility conditions. A
scanning algorithm uses iteration to process a set of geometric components (points,
lines, polygons, etc.), usually in order by increasing x-coordinate. A setlike data
structure is often used to maintain a collection of “active” elements during the scan
and to build the final solution.

These two paradigms are characterized by a main loop that solves the problem
incrementally, by invoking operations on one or more non-trivial data structures.
Computation time is highly dependent on the efficiency of the data structures,
which are likely to contain the dominant costs in the algorithm. Tuning strategies
for these paradigms focus on two approaches: find ways to avoid calling some data
structure operations, or make those operations more efficient when called.

Skip Expensive Operations. Our first approach to tuning iterative algorithms
involves inserting tests to avoid carrying out expensive operations in the main
loop, which are typically data structure operations.
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The loop abort test in the Essential Subgraph is an example of this approach: the
bound on graph diameter is used to stop the outer loop early rather than carrying
the computation out to its worst-case end, thereby avoiding unnecessary calls to
S.distance.

The ES code also employs memoization inside S.distance to support a sec-
ond loop abort test: if the memoized bound D[s,d] is less than ecost, then the
entire Dijkstra loop can be skipped. This tuneup only works because it is possible
in this context for S.distance sometimes to return an upper bound on distance
rather than an exact distance. This is an example of finessing the distance com-
putation by replacing the expensive exact calculation (Dijkstra’s algorithm) with
an inexpensive bound (D[s,d]), in a way that does not affect the outcome of the
overall computation. Memoization and finessing are general tuning strategies not
limited to iterative algorithms or data structures.

Filtering is another idea that uses a quick test to avoid calling the insert

operation of a given data structure. In the implementation of S.distance, vertex
z was checked before insertion into the Ps priority queue, to see whether it could
possibly be part of the eventual solution returned by S.distance; if not, the
Ps.insert operation was skipped.

More generally, data structure elements can be filtered incrementally inside the
main loop or all at once in a preprocessing step. Filtering saves the cost of the insert
and reduces the costs of other operations because the data structure is smaller.

Many examples of these types of tuneups can be found throughout the algorithm
engineering literature. Osipov et al. [28] describe an interesting combination of
filtering and loop abort to speed up Kruskal’s minimum spanning tree algorithm.
The standard implementation starts by sorting edges of graph G in increasing
order by weight: each time around the main loop, the algorithm pulls an edge
from the array and checks a data structure to decide whether to add the edge to
the solution tree T . The authors observe that in many applications T is likely to
contain only the smallest edges of G. Therefore, their algorithm avoids sorting
the entire list of edges beforehand. Instead it uses a quicksort-style partitioning
step to divide the list into low-cost and high-cost edges. The algorithm recurs to
build T using the low-cost edges: if T is finished when the recursion returns, the
algorithm stops (aborts the main loop/prunes the recursion); if T is not finished,
the algorithm removes all edges that fail a feasibility test (filters the data), before
recurring on the remaining part of the list. This idea could be applied to speed up
the ES algorithm by avoiding the cost of sorting the entire list of edge weights.

Tuning also plays a key role in research efforts to design commercial GPS
routing systems. A point-to-point GPS mapping query (How do I go from A to
B?) is typically answered by a shortest-path search in a graph that represents a
continent-sized roadmap. The data files are huge: in one standard benchmark, the
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U.S. roadmap is represented by a graph of 23.9 million nodes and 59.3 million
edges. Researchers on this problem have applied many strategies, especially pre-
processing and filtering, to tune Dijkstra’s algorithm for this application. Delling
et al. [13] tested several combinations of tuneups and, for example, reduced aver-
age query response time on the U.S. map from 3.803 seconds to 0.73 millisecond,
which represents a factor of 5,216 speedup.

The second approach to tuning greedy and scanning algorithms is to tune
data structure operations from the inside. Of course, data structure efficiency is
important to many algorithms, not just those in iterative paradigms.

Data Structures and Access Patterns
A data structure is defined by the collection of basic operations – such as insert,
delete, and lookup – that it supports. Because these operations must work together,
data structure tuning is like squeezing a balloon: optimizing one operation may
cause the cost of another operation to explode.

The first key to data structure design is to find the right balance of costs among all
operations, according to the frequencies with which they are invoked. The second
key is to exploit the scenario of repeated accesses to the data set by understanding
access patterns such as locality. High locality, for example, means that key accesses
arrive in bunches: a key that is accessed once in an operation is likely to be accessed
again soon.

Customize the Data Structure. Every schoolchild (with a college course in data
structures) knows how to reason about operation frequencies – such as number of
inserts versus deletes versus lookups in a set abstract data type – in order to choose
an implementation with best asymptotic cost. Data structure tuning extends this
abstract analysis to incorporate more detailed information about what to expect in
a given application.

As illustrated in the Essential Subgraph case study, this approach might start
with an experiment to find precise counts of key parameters (in that case, I , P , K ,
etc.). Experiments can also be used to assess locality in access patterns, to learn
typical sizes of data elements, and to find the range and distribution of keys.

Change the Input Presentation. Instead of tuning the data structure to match input
properties, an alternative approach is to tune the input to match the data structure
properties. This involves modifying the presentation of the input instance – perhaps
by reformatting, filtering, or reordering its elements – in a way that does not change
the outcome of the algorithm but that may improve computation time. This is often
done as a preprocessing step.

For example, in the GPS mapping application mentioned earlier, Delling et al.
[13] observe that the time to answer a query depends on two properties: the length of
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the path from source s to destination d, which determines the number of iterations
in the main loop, and the average vertex degree, which determines the size of
the priority queue Ps. They tune the input map in a preprocessing step that adds
shortcut information so that fewer iterations are needed.

Input instances can be reordered in different ways depending on context: some-
times randomizing the input is best, to guarantee average-case performance;
sometimes sorting the inputs is best; and sometimes the best order is specific
to the algorithm, data structure, or application.

For example, in the bin packing case study the first permutation tested is the
original input order; reordering the input by interleaving big weights with small
weights, to provide a good initial next fit packing, makes the branch-and-bound
test more effective. For another example, researchers working on algorithms that
use maps as inputs (such as [2]) have observed that organizing input elements in
proximity order, where points close together on the map are close together in the
input, can yield substantial runtime improvements.

Guideline 4.11 Instead of changing the code to match the input, change the input
presentation to match the code.

Self-Tuning Data Structures. The data structure tuning strategies described so far
depend on having access to the set of inputs that will be used when the algorithm
is run, whether to measure their properties or to modify their presentations.

Unfortunately in many cases the experimenter – who, for example, may be
tuning a data structure to be placed in a code repository – does not have the luxury
of making assumptions about typical inputs or of running experiments to test
their properties. Algorithms and data structures developed for general and public
use must be tuned for reasonable performance on all inputs, not special classes.
Rather than aiming for best performance on known input classes, the goal is to
avoid terrible performance on any input.

All of the algorithm tuneups mentioned in the case studies were evaluated using
quite narrow input classes. In the bin packing example, experiments were run on
lists of random weights drawn uniformly from (0,1): tuneups like branch-and-
bound and preprocessing with FFD might be more or less successful in other
situations. Experiments on the essential subgraph algorithm used random graphs
with uniform edge weights: the loop abort and filtering ideas, especially, are not
necessarily effective on other input classes. These experiments were intended
simply to illustrate how to evaluate tuneups, and the results should by no means
be considered general.

Tuning these codes for a specific application would require new tests using
application-specific input models; tuning code for general use is a much harder
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problem. It is possible to run tests using a wide variety of input classes, but there
is no guarantee that every relevant input property that arises in practice has been
checked.

One strategy for coping with this situation is to implement self-tuning data
structures that respond to input properties observable at runtime. These properties
may be measured explicitly in the code, by sampling the input instance and using
statistics about the sample to configure the data structure. Input sampling can
be performed as a preprocessing step (before the data structure is initialized) or
periodically during the computation for on-the-fly adjustments.

This idea is not limited to data structures but can be applied to algorithms
as well. Yaroslavskiy et al. [32], in their study of implementation strategies for
quicksort, note that the best choice of partitioning code depends on how many
duplicate elements are in the input. Their implementation of a sorting utility for
JDK contains two partitioning functions, one that works best on distinct elements
and one that worst best when duplicates are present. The median-selection code to
choose the partition element also samples the input to decide which partitioning
procedure to invoke.

Alternatively, self-adjusting data structures can be built to respond implicitly
to patterns of access to their elements. For example a self-organizing list gener-
ally works to keep recently accessed elements near the front, to exploit locality of
reference. A hand built cache is a memory structure that saves recently accessed
elements so they can be found quickly by cache lookup instead of by another search
of the data structure. If copying or storing elements in a cache is too expensive, a
hotlink may be used instead: a hotlink is a direct link into a frequently accessed part
of a data structure, which saves the cost of a conventional lookup to the popular
location.

Guideline 4.12 When inputs are not known in advance, consider self-tuning data
structures that respond to input properties observable at runtime.

4.1.2 Tuning Code
Many of the algorithm tuning strategies described in Section 4.1.1 – such as prun-
ing, propagation, preprocessing, and memoization – can be applied with equal
success to lower-level code structures. The main difference is the scale at which
opportunities for tuning are recognized: code tuning looks at loops and procedures
instead of algorithm paradigms, and at memory layouts instead of data structures.
While algorithm tuning often concentrates on reducing the number of times a code
block is executed, code tuning often focuses on making a code block faster by
rewriting source code so that the compiler emits fewer machine instructions in the
block.
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a[0..n-1] contains elements to be sorted

1 for (i = 1; i<n; i++ ) {
// Invariant: a[0..i-1] is sorted
// Invariant: a[i..n-1] not yet sorted

2 for (j=i; j>0 && a[j]>a[j-1] ; j--) {
//Invariant: a[j] > a[j-1]

3 tmp = a[j];
4 a[j] = a[j-1];
5 a[j-1] = tmp;

}
}

Figure 4.11. Insertion sort. The first implementation.

Many code tuning techniques are now routinely applied by optimizing com-
pilers, which are generally accepted as doing a better job than humans can by
hand tuning. Indeed, tuning by hand can be counterproductive nowadays because
it prevents the compiler from recognizing familiar constructs as candidates for
optimization.

Successful code tuning requires a good understanding of how compilers and
machine architectures work. Even so, intuition can fail in light of the complexities
of modern environments. It is important to test every small change made to the
code, to check that it actually speeds up the computation. Run a small experiment
measuring runtimes before and after each modification, perhaps with the test code
in a loop so that time differences are big enough to measure. It also sometimes
helps to inspect the object code to learn which optimizations are automatically
applied by the compiler.

Rather than an extensive review of code tuning techniques, which are well
covered elsewhere (see references in the Chapter Notes), this section surveys a few
popular techniques that are not universally applied by compilers. The discussion
is organized around three constructs that tend to have high overhead costs: loops,
procedure calls, and memory allocations. Some additional aspects of code tuning
are discussed in Section 4.2, which describes costs associated with the memory
hierarchy and multicore computation.

Loops
Figure 4.11 shows a straightforward implementation of the familiar insertion sort
algorithm. The outer loop iterates over elements of array a using index i; the inner
loop uses index j to sift each element into proper position in the array.
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a[0..n-1] contains elements to be sorted

1 for (i = 1; i < n; i++ ) {
2 // Invariant: a[0..i-1] is sorted

// Invariant: a[i..n-1] not yet sorted
3 int tmp = a[i];
4 for (j=i; (j>0 && a[j]>tmp); j--) {

// Invariant: hole is at a[j]
5 a[j] = a[j-1];
6 }
7 a[j] = tmp;

}

Figure 4.12. Insertion sort. This version illustrates code motion out of loop.

A loop in source code can be divided into parts: instructions in the loop body
and instructions in the loop header. A loop header like for (i = 0; i < n;

i++), for example, generates machine instructions for initializing i, incrementing
i, and comparing i to n, which, together with the branching instruction(s) at the
bottom of the loop, are called the loop overhead.

Code Motion Out of Loops. Our first tuneup involves moving code from inside a
loop to outside, to avoid unnecessary repeated executions. Simple cases are easy
for the compiler to take care of: for example, an assignment like x = 3; inside a
loop body would automatically be moved out by most compilers.

But compilers cannot find every opportunity. In the insertion sort code, for
example, we can notice that it is not necessary repeatedly to swap the elements
a[j-1] and a[j] on lines 3 through 5; instead we could remove the element at
a[i] from the array to make a hole, shift array elements to move the hole to the
left, and then insert the element into the hole when the inner loop is finished. The
new version is shown in Figure 4.12. This tuneup saves the cost of two assignments
per inner loop iteration.

Sentinels. One way to move code out of the loop header is to install a dummy
value, called a sentinel, at the end of the array. A sentinel can be used whenever
the loop header contains two termination tests: one for the end of the array and
one for some property of the current element. Placing a sentinel with the property
that stops the loop at the end allows the two tests to be combined. A version of
insertion sort with a sentinel is shown in Figure 4.13.

In this case, the use of a sentinel cuts in half the number of tests performed in
the inner loop header. The array a[] must be expanded by 1 to hold the sentinel
value, and loop indices must change accordingly.
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a[1..n] contains elements to be sorted
a[0] contains the sentinel value -Infinity

1 for (i = 1; i <= n; i++ ) {
2 // Invariant: a[1..i-1] is sorted

// Invariant: a[i..n] not yet sorted
3 int tmp = a[i];
4 for (j = i; a[j]>tmp; j--) { //new test

// Invariant: hole is at a[j]
5 a[j] = a[j-1];
6 }
7 if (j==0) a[j+1] = tmp;
8 else a[j] = tmp;

}

Figure 4.13. Insertion sort. This version uses a sentinel to stop the inner loop.

Sentinels need not be restricted to use in arrays but can be installed to test for
the “ends” of other types of data structures such as the leaves of a binary search
tree or the root of a heap.

So do these tuneups really work? The table following shows mean CPU times
(seconds) for 10 random trials at three problem sizes, using four C implementations
of insertion sort, with/without the code motion and with/without the sentinel. The
code was compiled with gcc -O3 (the highest optimization level) and tested using
the Unix time utility on the HP platform described in the first timing experiments
of Section 3.1.2.

n = 40,000 80,000 160,000

Original 0.65 2.66 10.59
With code motion 0.40 1.61 6.43
With sentinel 0.67 2.72 10.91
With motion + sentinel 0.30 1.22 4.88

Applying the code motion trick to the original implementation makes it faster,
but applying the sentinel to the original makes it slower. Combining both tuneups
creates the fastest implementation of the four. This is an example of an interaction
effect, described in Section 2.2.2, in the discussion of factorial designs: the sentinel
makes performance worse when used alone, but better when used in combination
with code motion. This illustrates the importance of using full factorial designs to
compare all combinations of alternatives when tuning code.
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This table also illustrates a point made at the beginning of this section:

Guideline 4.13 Code tuning intuition fails in modern environments. Test every
change to check that it really does improve speed things up.

More Loop-Tuning Ideas. With that caveat and exhortation, here is a short list of
additional techniques for making loops run faster.

• Loop fusion. Combine two side-by side loops like this:

for (i=0; i<n; i++) a[i] = i;
for (i=0; i<n; i++) b[i] = a[i];

Into one larger loop like this:

for (i=0; i<n; i++){
a[i] = i;
b[i] = a[i];

}

Fusing these two loops saves half the cost of a loop header, which can be very
effective if the loop body code is small compared to the header. On the other
hand, a loop with too many instructions in its body may interact poorly with
the instruction cache and/or the data cache and consequently run more slowly.
(Section 4.2.1 has more about locality and memory costs.) In those situations,
loop fission, which reverses the preceding example, is the more efficient option.

• Loop unrolling. A tight loop like this:

for (i=0; i<n; i++) b[i] = a[i];

Can be unrolled like this:

for (i=0; i < n-4; i++) {
b[i]=a[i];
b[i+1]=a[i+1];
b[i+2]=a[i+2];
b[i+3]=a[i+3];

}
for(; i<n; i++) b[i] = a[i];

Unrolling the loop four times removes three-quarters of the loop overhead cost.
• Unswitching. Move a decision from inside a loop:

for (i=0; i < n; i++) {
if (type == 0) sum += a[i];
else prod *= a[i];

}
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To outside the loops:

if (type==0)
for (i=0; i<n; i++) sum += a[i];

else
for (i=0; i<n; i++) prod *= a[i];

This opportunity for code motion may not be noticed by the compiler.
• Nesting busy loops. When using nested loops, put the busiest loop on the inside,

changing this:

for (i=0; i<100; i++)
for (j=0; j<10; j++)

foo(i,j);

To this:

for (j=0; j<10; j++)
for (i=0; i<100; i++)

foo(i,j);

In the second case, the inner loop header test evaluates to true 1,000 times and
to false 10 times, totaling 1,010 tests. In the first case, the inner loop header
test executes 1,100 times.

• Loop access order. Section 4.2.1 describes a few more ideas for rewriting loops
to achieve efficient patterns of memory access.

Guideline 4.14 Tune your loops.

Procedures
Every procedure call executed in a program corresponds to several machine
instructions. Supposing procedure A calls procedure B, these instructions carry
out the following tasks: allocating space on the call stack (a special area of mem-
ory) to hold local variables for B; initializing those variables; saving all register
values for A; saving A’s return address; and copying parameter values from A’s
local space to B’s local space. A return from a procedure creates code to reverse
this process. This extra code is called procedure call overhead.

The best way to eliminate procedure call overhead, of course, is to avoid call-
ing procedures. This tuning technique can be especially powerful when applied
to recursive algorithms, which contain large numbers of procedure calls. Unfor-
tunately, replacing a recursive structure with loops is a notoriously difficult and
error-prone process in general.
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1 perms (double* a, int k, int n) {
2 int i;
3 if (k == n-1) {
4 printPerm(a, n);
5 return;
6 }
7 for (i=k; i < n; i++) {
8 swap (a, k, i); // try it
9 perms(a, k+1, n); // recur
10 swap (a, k, i); // restore it
11 }
12 }

Figure 4.14. Exhaustive Enumeration. This procedure prints all permutations of
values in array a.

One exception to this general rule arises when the procedure contains only one
recursive call that appears at the end (i.e., no post-recursion code). In this case,
it is usually straightforward to rewrite the recursive procedure with a simple loop
so that the procedure parameters become the loop control variables. This is called
removing tail recursion. Some optimizing compilers can remove tail recursion
automatically: as always, before trying this tuneup, check the emitted code to see
whether it is necessary.

The code in Figure 4.14 uses exhaustive enumeration to generate all permu-
tations of the contents of array a. This generation process is at the heart of the
exhaustive search bin packing algorithm described in the case study of Section
4.1. Two tuning strategies are applied here.

Inlining procedure calls. Eliminate procedure call overhead for nonrecur-
sive procedures by inserting the procedure body at the point of invocation, adjusting
variable names as necessary. In Figure 4.14 the calls to swap on lines 8 and 10
can easily be replaced with three inline assignments:

tmp = a[k];
a[k] = a[i];
a[i] = tmp;

This saves two procedure calls per recursive stage in the computation.

Collapse Procedure Hierarchies. Another way to remove procedure call overhead
in recursive programs is to merge two (or more) stages into one, using a recursion-
unrolling technique similar to loop unrolling.
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1 perms (double* a, int k, int n) {
2 int i, j;
2.1 double tmp;
3 if (k == n-1) {
4 printPerm(a, n);
5 return;
6 }
6.1 if (k == n-2) {
6.2 printPerm(a, n);
6.3 tmp = a[k]; a[k] = a[k+1]; a[k+1] = tmp;
6.4 printPerm(a, n);
6.5 tmp = a[k]; a[k] = a[k+1]; a[k+1] = tmp;
6.6 return;
6.7 }
7 for (i=k; i < n; i++) {
8 tmp = a[k]; a[k] = a[i]; a[i] = tmp; //swap k
8.1 for (j = k+1; j < n; j++) {
8.2 tmp=a[k+1]; a[k+1] = a[j]; a[j]=tmp; //swap k+1
9 perms(a, k+2, n); // recur
9.1 tmp=a[k+1]; a[k+1] = a[j]; a[j]=tmp; //restore k+1
9.2 }
10 tmp=a[k]; a[k]=a[i]; a[i]=tmp; //restore k
11 }
12 }

Figure 4.15. Tuning procedures. The calls to swap are replaced with inline code, saving the
cost of four procedure calls per recursive stage. The single for loop is replaced by a nested
loop, which cuts in half the number of procedure calls.

In Figure 4.14, the single for loop in lines 7 through 11 that iterates to try
all elements in position a[k] can be augmented with a nested loop that tries all
elements in positions a[k] and a[k+1]. This trick cuts the number of procedure
calls in half by replacing every other recursion with a loop iteration. This tuneup
also requires changes to the termination test on line 4 to accommodate even and
odd values of n.

The new version appears in Figure 4.15. A small experiment to test the four C
programs implementing these tuneups produced the CPU times (seconds) shown
in the following table. These tests were performed with printing commented out
to highlight the effects of code changes.
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n = 11 12 13

Original 1.44 17.29 224.73
With inline 1.59 19.06 247.76
With collapse 1.29 9.39 199.52
With collapse + inline 0.95 6.56 148.29

As before, the individual tuneups interact with one another. Writing the swap
code inline was counterproductive when applied to the original code, but the code
combining both tuneups is fastest, improving on the original by about 25 percent
at n = 13.

But the more important story is told in the next table. The programs in the
previous tests were complied without optimization, whereas the programs that
follow were compiled with gcc -O3 using the highest optimization level.

n = 11 12 13

Original 0.43 6.53 65.03
With swap inline 0.44 6.75 65.96
With collapse 0.45 2.54 82.44
With inline + collapse 0.47 2.77 70.94

The optimizer was much more successful than hand tuning at speeding up this
code. Furthermore, the hand-tuned code interfered with the compiler’s ability to
find some tuning opportunities. This created small speedups at n = 12 but larger
slowdowns at n = 13. These results support another piece of advice given at the
beginning of this section:

Guideline 4.15 Optimizing compilers are better than humans at tuning code. Step
back and let them work their magic.

The technique of collapsing procedure hierarchies can be especially effective
when applied to the smallest k problem sizes in the recursion, so that recursive
calls at the lowest levels are replaced by a brute-force iteration.

Parameters and Local Variables. The cost of copying a parameter depends, first,
on whether the value is passed by reference (via copying a pointer to the value)
or by value (via copying the value itself), and, second, on whether the value is
word-sized or a larger structure. Avoid the fatal combination of pass-by-value and
large multielement structures.
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If the parameter list contains only word-sized elements, parameter passing typ-
ically incurs very low overhead because parameters are stored in registers for fast
access. Local variables are also faster to access than global variables because the
compiler can place them in registers. If a global value must be updated frequently
in some procedure, it sometimes pays to localize the global value by copying it to
the local context, performing the updates, and then copying it back.

But there is no free lunch: register spill occurs when there are too many param-
eters and local variables for the available registers, and spillover values must be
stored in main memory. Register spill causes runtimes to spike upward because
main memory accesses are much more expensive than register accesses. When this
happens, the right code tuning strategy is to shrink the footprint of local variables
as much as possible.

Guideline 4.16 Reduce procedure call overhead by removing procedure calls and
paying attention to data locality.

Objects and Memory Structures
High-level languages provide tools for grouping data elements together as units
for easier reference. In Java and C++ this capability is provided by objects; in C
the structured record type struct provides similar but more limited support.

To monitor memory use in Java: Use the verbose:gc setting to look at garbage
collection statistics.

Memory space for objects and structs is allocated and deallocated at runtime.
In Java the new statement is used for object construction, and the garbage collector
performs deallocation automatically; in C++ objects are constructed using new and
deallocated using free, and in C the the malloc and free instructions may be
used.

These allocation and deallocation statements have high instruction overhead.
Constructing an object or struct requires machine instructions to locate the
declaration of the object, contact the operating system to request storage space,
and allocate and initialize the components. Freeing an object carries the expense
of notifying the system. As with procedure calls, the best way to save the overhead
costs of object construction is to reduce the number (and sometimes size) of objects
constructed. Here are some tips.

• Avoid object resizing by allocating a large enough object in the first place. It is
usually a good idea to use one system call to request a large block of memory
and write special-purpose local code to make use of parts of it as needed. This
idea can backfire when only a few elements are needed and cost of initializing
the large structure dominates the cost of a few requests.
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• Embrace mutability. A mutable object can change value after being constructed;
an immutable object stays fixed throughout its lifetime. Immutability means that
every change to the object must take place via construction of a new object. For
example, Java String objects are immutable, and every method acting on
a String object constructs a new one, whereas StringBuffer objects supply
almost the same functionality without new constructions. Immutability supports
code correctness by eliminating side effects, but mutability can be faster. One
way to exploit mutability is to recycle objects by rewriting their contents. For
example, in a linked data structure, consider building a list of free (deleted) link
elements that can be reused by overwriting data fields and links.

• Exploit static bindings by moving initializations, casts and type conversions,
and hierarchy searches for objects, from runtime to compile-time operations: the
fastest code is no code at all. On the other hand, if a field is accessed frequently,
it may be cost-effective to move it from a static to a dynamic context, for better
memory locality.

Guideline 4.17 Eliminate dynamic memory overhead by right-sizing, reusing, and
exploiting static bindings.

4.2 Tuning to Reduce Instruction Costs
The algorithm and code tuning techniques of the previous sections aim at reducing
instruction execution counts, under the basic premise that having fewer instructions
to execute means smaller execution times. However, on modern architectures the
total number of instructions executed can sometimes be less important than the
order in which they are executed.

Two factors come into play. First, the time to execute any given instruction
depends on where its data values are located in the memory hierarchy; the location
of those data elements depends on how and when they were previously accessed.
Similarly, program time can depend dramatically on how and when I/O instructions
are executed. Second, multicore architectures contain a small number of separate
processors that run concurrently. A process may be divided into some number of
threads that can be executed in parallel on multicore processors: the amount of
parallel speedup that can be realized depends on how the threads are organized
and how they communicate.

4.2.1 Memory and I/O
Figure 4.16 shows a schematic diagram of the memory hierarchy and the I/O
system. The salient properties of the memory management system were described
in detail in Section 3.1.4 in the section on time and memory. To recap: when an
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Figure 4.16. Memory and I/O systems. In this simplified diagram, physical memories are
arranged in order by distance from the CPU. Access times are shown in units of instruction
cycles, and capacities are shown in units of bytes. Real memory systems may contain addi-
tional memories not shown in the diagram and have capacities and response times that may vary
considerably from the numbers shown here. The I/O system supports access to files on disk.

instruction uses a data word not available in a register, the CPU issues a read or
write request to the memory system, together with a virtual address specifying
which word is needed. In a similar way, I/O instructions in programs that read
or write from files prompt the CPU to issue requests with virtual addresses that
are handled by the I/O system. I/O access is typically much slower than access to
memory.

When the CPU makes a read request for the word at address A, the memory
management system locates the data word in the hierarchy, copies it into the next-
closer memory and then to the next-closer memory, and so forth, until the data
word reaches the CPU. Thus, memory response time depends on how close A is to
the CPU when requested. In order to make room for A in the faster memories, the
management system may have to choose another word B to evict, that is, move
back to a slower memory. The memory system works proactively to promote data
in addresses that are likely to be needed soon to the faster memories. Promotion
and eviction policies vary from level to level in the hierarchy but are typically
based on two principles:

• Temporal locality: Once an element is accessed, it is likely to be accessed again
soon.

• Spatial locality: If a data element is accessed, data elements stored near it in
the virtual address space are likely to be accessed soon.

For example, a policy found at all stages of the hierarchy is to move a requested
element into faster memory together with a block of adjacent virtual addresses,
on the theory that they will be needed soon (spatial locality). These blocks have
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Figure 4.17. Runtimes and the memory system. Program runtimes plotted against problem size
exhibit a characteristic “knee” shape as the data outgrow successive memories in the hierarchy.
Reducing the data footprint moves the inflection points (crosses) to the right; improving the
pattern of memory access moves the points downward.

different names at different points in the memory hierarchy: cache controllers,
which manage data movement between caches and main memory, move a line
of data at a time, and virtual memory (VM) systems, working between main and
secondary memory move much larger blocks called pages. For another example,
VMs typically timestamp page references so that the least-recently used page can
be evicted, on the theory that it is least likely to be needed again soon (temporal
locality).

The implication of all this for code tuners is that computation time can depend
significantly on the size of the virtual address space and on the patterns of memory
access used in the program. Bentley [8] points out that program runtimes, when
plotted against input size, tend to exhibit a characteristic “knee” shape shown in
Figure 4.17. Each bend, or inflection point in a line, corresponds to a point where
the capacity of some memory in the hierarchy is exceeded. The two main strategies
for writing memory-efficient code are (1) shrinking the footprint of the data, which
moves the inflection points to the right, because larger problem sizes can fit into
fast memory; and (2) improving the pattern of memory access, which decreases
the slope of a given segment.

In contrast to the memory management system, which responds to virtual
addresses contained in instructions, the I/O system responds to explicit instructions
within a program: open, close, read, and write. Thus the programmer can control
when requests are emitted and how many data words are requested at a time.

The next three sections highlight three strategies for tuning code in this context:
shrinking the memory footprint, reorganizing data access patterns, and coding for
I/O efficiency.
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Shrinking the Data Footprint. Shrink the memory footprint of the program by
removing and redesigning memory elements to occupy less space so that a smaller
percentage of program data resides in the slower memories. If a program’s virtual
address space can be made small enough to fit entirely into cache, or into a small
number of pages, the cost of slower memory accesses is eliminated entirely. Here
are some tips.

• Avoid memory leaks.Amemory leak is a type of performance bug – a term coined
by Bentley [7] to refer to program errors that do not alter correctness but do create
excessive resource use. Memory leaks occur when the programmer neglects to
free allocated memory, or, when garbage collection is present, to dereference
unneeded data. The program runs slower and slower as it uses more and more
memory and in the worst-case scenario can halt the memory system. Memory
leaks can can be hard to detect and diagnose. Use meminfo and vmstat to
monitor memory usage in Unix systems or check the Windows Task Manager.
A number of commercial memory debugging tools are also available.

• Downsize the input data footprint by changing the presentation in a preprocess-
ing step, for example, by removing unneeded fields, recasting to smaller data
types, or removing redundant copies.

• Apply standard techniques of data compression: use differential encoding to
replace a sequence of similar multiword values with their (smaller) differences;
large data fields with many duplicates can be entered into a table and replaced
with indices into the table.

• This whole approach is diametrically opposite to the earlier-mentioned strategy
of memoizing (described in the essential subgraph case study in Section 4.1).
Memoization reduces instruction counts at the cost of growing the memory
storage space; shrinking the memory footprint by removing memoization may
increase the instruction count but may reduce overall running time because
instructions execute faster. The goal is to find the balance point between these
two opposing principles. Strategies to shrink memory are likely to be most
effective when the footprint is large in the first place.

Guideline 4.18 Sometimes less is more: trade space for time. Sometimes less is
less: a smaller memory footprint makes code run faster.

Tuning for Cache Efficiency
The second approach to reducing memory cost – which can be applied at either
the algorithm or the code-tuning level – is to organize the program so that access
to memory elements displays as much spatial and temporal locality as possible,
since the memory system is designed for optimum performance on these access
patterns.
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// simple matrix multiplication
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i][j] = c[i][j] + a[i][k] * b[k][i];

// tiled matrix multiplication using 2x2 blocks

for (i = 0; i < n; i += 2)
for (j = 0; j < n; j += 2)

for (k = 0; k < n; k++)
for (x = i; x < min(i+2, n); x ++)

for (y = j; y < min (i+2, n); y++)
c[x][y] = c[x][y] + a[x][k] * b[k][y];

Figure 4.18. Tiling. Replace array accesses in line-by-line order with array accesses in block-
by-block order. Each block should be small enough to fit into a cache line.

We start with some simple rules for writing loops and arrays to achieve good
cache performance.

• Reuse sooner rather than later. When an array item is accessed, use it repeatedly.
For example, use one pass through an array, instead of three passes, to calculate
the mean, min, and max statistics.

• Respect memory layouts. Loops that iterate through two-dimensional arrays run
faster when the scanning order in the loops matches the order in which arrays
are laid out in virtual memory. Most modern languages (except Fortran) use
row-major order, so that elements A[0, 0], A[0, 1], A[0, 2], A[1, 0], A[1, 1] . . .

would appear sequentially in memory. A nested loop that traverses such an array
should put the first (leftmost) index in the outermost loop. This principle can
also be applied to higher-dimensional arrays.

• Stride-right. The stride or step size of an array is the number of memory
addresses between successive elements: an array with stride 1 stores elements
in successive addresses. Loops that increment using i++, to match the stride of
the array, can be faster than loops that use larger increments. Loop increments
that match the cache line size are especially slow.

• Tiling matrices. Sometimes matrix computations require both row-major and
column-major order, making cache efficiency difficult to achieve. A classic
example is matrix multiplication, C =A×B, where matrix A is accessed in row-
major order andB in column-major order. Tiling can help: Break each matrix into
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blocks (each small enough to fit into a cache line) and access the matrices block-
by-block. Figure 4.18 shows code for conventional matrix multiplication and
tiled matrix multiplication, assuming that a 2x2 subarray fits into a cache line.

• Fields and arrays. Is it better to group data fields together in an array of
records or separately in a collection of arrays? The answer is either to match
the record structure to the access pattern or to match the access pattern to the
record structure, keeping in mind cache line sizes. For example, if fields A and
B are accessed together in time and small enough to fit in a cache line, locate
them together in an array of records and use a single loop to access them. But
if A and B are too big to fit together in the cache, put them in separate arrays
and access them with two loops. Contrariwise, if two fields are not processed
together, put them in separate arrays.

The basic idea here is to exploit the “whack-a-mole” principle: you could score
big points in the carnival Whack-a-Mole game if, instead of popping up randomly,
the moles exhibited temporal locality (a mole that pops up now is likely to pop
up again) and spatial locality (nearby moles pop sooner than faraway moles). For
best performance from the memory system, your program should generate array
addresses to optimize whack-a-mole scores.

Guideline 4.19 The whack-a-mole principle: tune memory accesses to obey
spatial and temporal locality.

This principle can also be applied to algorithm and data structure design. Ladner
et al. [20] provide a good illustration in their analysis of cache-efficient binary
search. In the standard implementation the search keys are stored in sorted order
in an array. The first search probe is at the middle (median element) of the array,
the second probe is at one of the two quartiles, and so forth, like this:

Key 10 20 30 40 50 60 70
Probes 3 2 3 1 3 2 3

This access pattern has no locality. A better alternative is to organize the array so
that the first element probed is at the first position in the array, the second probes
are in the next two positions, and so forth, like this:

Key 40 20 60 10 30 50 70
Probes 1 2 2 3 3 3 3

This arrangement has good spatial locality and ensures that the array is accessed
in increasing index order, although some indices are skipped.
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An even better idea is to organize the keys into groups so that each group is
contained in the node of a perfectly balanced binary tree. Such a tree can be laid
out in memory (like a heap) so that the locations of parents and children can
be calculated arithmetically, rather than with explicit pointers. Ladner et al. [20]
describe two tree-based implementations of binary search, as follows.

• A cache-aware implementation exploits platform-specific knowledge of how
many keys can fit into a cache line. In general, an interior node in the tree contains
a key stored together with its children and immediate tree descendants, as many
as the line will hold. For example, the root node may hold the median and the
two quartiles; the children of the root hold the octiles; and so forth. This exploits
temporal locality because when x is accessed, its immediate descendants in the
search tree will be loaded together with it into the cache. Here is an example
layout assuming three keys per cache line.

Keys (40, 20, 60) (10, 30, x) (50, 70, x)
Cache loads 1 2 2

• The cache-oblivious version decomposes the tree to exploit spatial locality,
without making assumptions about cache capacities. Here is how it works: break
the binary tree T into groups according to some level h in the tree (h is a power
of 2). The top of the tree forms subtree T0, which has 2h/4 leaves. The remaining
2h/2 (disconnected) subtrees form trees T1 . . .T + 2h/2. Store the trees T0,T1 . . .

sequentially in memory, so that nodes likely to be accessed sequentially in time
are near one another, and all probes are in increasing order by address.

The authors observe that cache-aware and cache-oblivious variations of this tree
structure can improve overall computation time by factors of 2 to 8 over classic
binary search, even though the number of elements accessed is identical in all
versions.

Tuning for I/O Efficiency
A large body of research has developed around design of I/O-efficient algorithms,
also called external memory or “big data” algorithms. These types of algorithms
are critically important when the data set to be processed is too large to fit within
main memory and must be accessed on disk using file I/O.

I/O efficiency involves a combination of algorithm tuning – so that data elements
are accessed in an order that matches their storage layout – and code tuning – so
that source code instructions with unusually high cost overhead can be minimized.
Here are some sources of high costs in I/O processing, and what to do about them.
References to more resources on I/O efficiency may be found in the Chapter Notes.
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• Minimize open/close operations. Opening and closing files require scores of
machine instructions. To minimize this cost, avoid repeated opening and closing
and instead make one pass through the data file whenever possible. Storing data
in one big file rather than many small files also reduces open/closing costs.

• Reduce latency. Read/write operations create two kinds of time delays: latency
refers to the amount of time needed to contact the disk and get it ready for
data transmission, and transfer time refers to the time actually spent moving
data elements between disk and main memory. Reduce latency by using a few
large data transfer operations – that is, reads or writes with many data elements
specified – instead of several small ones.

• Decouple I/O and instruction execution. When possible, remove reads and
writes from inside the loops so that instructions do not have to wait on I/O
operations. I/O buffering and threading can be used to decouple I/O operations
from instruction executions by running the two tasks in separate computation
threads.

• Exploit locality. Data access in files can be optimized in ways similar to data
access in memory: organize the data on disk to match the computation order
and organize the computation order to make best use of spatial and temporal
locality.

This last strategy can lead to dramatic reductions in computation time for
I/O-bound applications. Here are two of many examples that may be found in
the algorithm engineering literature.

Ajwani, Dementiev, and Meyer [1] describe an external memory breadth-first
search (BFS) algorithm that can traverse enormous sparse graphs too big for main
memory. They show how to decompose these massive graphs into smaller sub-
graphs to be stored in files for fast processing in BFS order. On graphs containing
228 nodes, their I/O-efficient algorithm takes around 40 to 50 hours (depending on
graph type) both to decompose the graphs and to perform the BFS traversal, while
conventional methods take 140 to 166 days to traverse the same graphs.

Arge et al. [2] describe a project to develop I/O-efficient algorithms for problems
on grid-based terrains.Agrid-based terrain is a geospatial data set where each point
in the grid is labeled with spatial coordinates (such as latitude and longitude) and an
elevation. One problem is to compute the flow accumulation points of the terrain –
the low points where water will likely flow. Computing the flow accumulation
requires initially placing one unit of flow at every grid point and then distributing
flow to neighbor points according to their height differences. For a

√
N × √

N

grid this can be done in memory in O(N logN) by sorting grid points by height,
then scanning the sorted points and distributing flows to downhill neighbors. This
algorithm is not I/O efficient, however, because sorting destroys the geospatial
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locality needed to transfer flow from points to their neighbors. In the worst case,
processing each point in sorted order would require a read and write for half its
neighbors, totaling O(N2) I/O operations.

The authors show how to organize the computation so that flow distribution can
be performed in a single I/O pass. They compare the standard internal algorithm
and their I/O-efficient version using five geospatial data sets ranging in size from
12MB to 508MB. On small inputs the internal algorithm runs slightly faster than
the external algorithm, but once a threshold based on main memory size is reached,
the internal algorithm grinds to a halt, spending all its time thrashing among I/O
accesses. On one data set containing 512MB grid points the I/O-efficient algorithm
finished in about four hours; the authors estimate that the internal algorithm (halted
after four days of computation) would have taken several weeks to finish.

Guideline 4.20 Pay attention to the frequency, order, and size of I/O requests in
I/O bound computations.

4.2.2 Concurrency
Nowadays every desktop or laptop is a multicore platform with two to eight sepa-
rate processors (sometimes more) capable of executing code in parallel. The main
tool for speeding up algorithms to run on these new platforms is to apply mul-
tithreading, which splits a given process into two (or more) separate instruction
streams: each stream is called a thread. In a perfect world, a process could be split
into p threads to run on p processors and finish p times faster than on one proces-
sor. Of course, this so-called perfect parallel speedup cannot always be realized,
since some parts of a computation are necessarily sequential. Algorithm and code
tuning strategies can be applied to achieve partial – but still significant – parallel
speedups in many cases.

Finding general strategies for exploiting low-level parallelism is a relatively
new area of experimental algorithmic research, and there are more questions than
answers about how to proceed. One obstacle to progress is the absence of a gen-
eral model of parallel computation that reflects real computation times on a wide
variety of modern architectures. As a result, an implementation tuned for perfor-
mance on one platform may require substantial reworking to achieve similar results
on another. Even within a single platform, performance can depend dramatically
on how the process scheduler maps threads onto processors and on the order in
which separate threads are executed: scheduler decisions are impossible to pre-
dict yet may have more impact on computation time than any particular tuneup.
Finally, inadequate time measurement tools on concurrent system make it difficult
to measure properly the effects of any given tuneup.
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Although our understanding of best practice in this area is nowhere near fully
developed, a handful of general tuning techniques can be identified. The basic
idea is to decompose an algorithm into some number of distinct threads that
work on separate subproblems (with separate memory address spaces) and do
not need to communicate with one another. Threads slow down when informa-
tion must be shared, because communication requires synchronization, which
means that one process is likely to be stuck waiting for another. This is true even
when communication takes place via data reads and writes to the same virtual
address. The cache coherence problem refers to the possibility that processor-
specific caches may hold different values for the same element (at the same virtual
address), without being aware of one another. If the runtime system does not
take steps to ensure cache coherence, the programmer must incorporate synchro-
nization code to the threads: either way synchronization slows down the parallel
computation.

Here is a list of algorithm and code tuning strategies for exploiting threading on
multicore computation.

• Divide-and-conquer algorithms often are natural candidates for paralleliza-
tion, since they work by breaking the problem into independent subproblems.
Therefore, each recursive procedure call can trigger a new thread that works
independently of sibling threads. A small amount of synchronization may be
required if the divide-and-conquer algorithm performs a postorder processing
step.

• Branch-and-bound algorithms can sometimes be structured so that multiple
threads can work independently on solution subsets, except for intermittent
sharing of their currently optimal solutions. The question is how to balance the
synchronization costs of sharing new solutions against the instruction savings
from pruning when better solutions are shared.

• Many array-based computations are natural candidates for parallel decompo-
sition, if the arrays can be separated into independent sections processed in
separate threads.

• Decoupling slow processes, such as those involving user interfaces and I/O,
from the main instruction-heavy computation allows the main thread to avoid
being continually interrupted by synchronization requests.

• Minimize threading overhead. Thread creation and destruction have high over-
head, so a few long-lived threads may run faster than many short-lived threads.
When communication among threads is necessary, a few synchronization
phases with larger blocks of shared data are more efficient than many small
synchronization phases with smaller blocks of shared data.
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4.3 The Tuning Process
We turn now from the question of how to tune algorithms and code to consider
questions of when and why.

Certainly performance considerations should come into play well before imple-
mentation – let alone code tuning – begins. The code to be tuned should have
“good bones,” which can only be obtained by proper decomposition of the system
into well-structured components and by choosing the right algorithm to implement
in the first place. No amount of tuning can rescue a fundamentally flawed design
with poor asymptotic performance from the start.

Furthermore, algorithm and code tuning should not begin until after all the
code is written. The tune-as-you-go strategy is a recipe for failure: the important
performance bottlenecks in a program can only be identified once the code is
complete and can be run on realistic-sized inputs.

Start by building a simple, straightforward implementation of the algorithm and
apply your best verification and validation skills to ensure that that implementation
is correct.

Guideline 4.21 Think about performance while working on system design and
algorithm design and building correct code. But do not think about tuning until
after these steps are completed.

Once a well-validated implementation is in hand, the next question is whether
or not to proceed with the tuning project. Many experts have weighed in on this
question:

• The First Rule of Program Optimization: Don’t do it. The Second Rule
of Program Optimization (for experts only!): Don’t do it yet. – Michael
A. Jackson [17]

• We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. – Donald Knuth (quoting
C. A. R. Hoare) [19]

• More computing sins are committed in the name of efficiency (without necessar-
ily achieving it) than for any other single reason – including blind stupidity. –
William A. Wulf [31]

• The irresistible appeal of efficient coding’s siren song and the the number of pro-
gramming sailors who crash their programming ships on the siren’s rocky shore
calls for a code-tuning safety-awareness program. – Stephen McConnell [23]

Listen to the experts: tuning can be evil, sinful, and a siren’s call. Too many
people waste too much time on misguided tuning efforts that have little effect on
performance. The best code for the application is not always the best-tuned code,
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because tuning adds complexity and exploits special assumptions about application
or platform.

Before starting any tuning project, think carefully about what kind of improve-
ment you can realistically expect. A variation on Amdahl’s law – normally applied
to assessing potential speedups from parallel computation – can be used to estimate
the impact of your tuning effort. Suppose section A of your code can be sped up by
a factor of F , and section A accounts for a proportion P of total computation time.
Then the overall speedup S from tuning is limited to S = (1 − P) + (1/F ) · P .
Section A might run 10 times faster (F = 10), but if A represents only 1/10 of
the total computation (P = 0.1), then total runtime is reduced by only 9 percent
(.91 = (.9+ (.1 · .1)). Is a speedup from 1 minute to 0.91 minute really worth sev-
eral days of coding, debugging, and maintenance time? If the answer is no, stop
now – the code is fast enough.

Guideline 4.22 Tune judiciously. It is a huge waste of valuable human time to
build code that is incrementally faster but much harder to validate, debug, and
maintain.

Sometimes the answer is yes. Tuning pays off when running times can be reduced
from weeks and months to seconds and minutes, moving the computation from
infeasible to feasible. Smaller improvements by factors of 10, or even by 10 percent,
can be critically important on code that is run many times over or in real-time
applications. Here is a procedure to apply when the decision is to go forward with
the tuning project.

1. Call the simple validated implementation Version 0 (V0). Build a collection of
testbed instances that spans the range of algorithm performance: worst case,
best case, random instances, typical instances from applications, and so forth.
Run V0 on those instances, recording both the outputs (solutions) and the com-
putation times. Save these results (and the random number seeds if necessary
for exact replication) and make a backup copy of V0. Identify a target at which
the code will be deemed “fast enough.”

2. Is the current version fast enough for your application?Are the tuning strategies
you can think of likely to produce only marginal improvements? If the answer
to at least one question is yes, stop. If more tuning is needed, use profiling to
inform the decision about what sections of code to focus on.

3. Start by looking for algorithm-scale tuneups. As illustrated in the case studies,
these tuneups often involve balancing increased cost in one code section against
lower cost in another section. When faced with multiple options that interact, it
may be necessary to implement a factorial experiment to evaluate combinations
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of options. Simplify the experimental design using operation counts and code
profiles to find promising ideas to try first.

Implement one or more tuneups and compare the new versions to V0, using
the testbed instances, to check that the code remains correct. Fix the bugs and
compare to V0 to see which version is faster. Make a backup copy of the old
version and go to step 2.

4. When you run out of ideas for algorithmic tuneups, or when the most expensive
code block is part of a data structure, focus on the data structure. Data structure
tuning should take place after algorithm tuning, because algorithm tuneups
change operation frequencies. It is best to consider data structure efficiency
as a whole rather than focusing on individual operations. Apply one or more
tuneups; check the new version against V0 for correctness and fix the bugs.
Then compare the new version to the previous version. If the new code is
faster, make a backup copy of the old version and go to step 2.

5. Once your algorithm and data structure tuning ideas are exhausted, it is time to
apply code tuning to shrink instruction counts within the dominant code blocks.
Follow the previous procedures for ensuring that new versions remain correct
and are more efficient; then go to step 2.

6. Programs with high memory access costs or high I/O overhead are candidates
for memory-efficient and I/O-efficient tuning techniques. Follow the previous
procedures and go to step 2.

It is not clear when the decision about whether to implement threaded or paral-
lel versions of the implementation is best made. On the one hand, switching to a
parallel implementation is best done early in the process, because simple imple-
mentations are easier to parallelize, and tuning should proceed with individual
threads. On the other hand, given the relatively poor measurement tools and the
relatively large (but unpredictable) influence of the scheduler, thread tuning can
be a difficult and error-prone process. Tuning early exacerbates the problem.

4.4 Chapter Notes
This chapter has surveyed a number of techniques for tuning algorithms and tun-
ing code, using illustrations in case studies and from the algorithm engineering
literature. Here are some pointers to further reading on these topics.

See [11] or [24] to learn more about properties of the essential subgraph S and
the ES algorithm. Frieze and Grimmett [14] have derived an upper bound on the
largest essential edge that holds for any graph where edge weights are assigned at
random, independent of vertices. Their bound implies that random uniform graphs
contain only the smallest cn logn of n2 edges.
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For more on algorithm design paradigms, see any algorithms textbook, such as
[12] or [16]. Code tuning, sometimes with algorithm tuning included, has been
covered widely. See works by Bentley [3], [4], [5] Bryant and O’Hallaron [10];
Kernighan and Pike [18]; Leiss [21]; Müller-Hannemann and Schirra [27]; and
Shirazi [29].

A good discussion of how the memory hierarchy and I/O systems work may be
found in Bryant and O’Hallaron [10]. To learn more about tuning techniques for
out-of-memory problems, see Gibson et al [15] and Vitter [30]. Here are the tips
and techniques developed in this chapter.

4.1 Propagation: replace a full computation in each recursive stage with an
incremental computation that passes partial results as parameters.

4.2 Preprocessing: add work before the algorithm begins, to save work when the
algorithm executes.

4.3 Finesse a calculation: replace an expensive exact calculation with an inex-
pensive bound or approximation, in such a way that the overall result is
unchanged.

4.4 Memoization: Save results in a table to avoid having to redo the work.
4.5 Loop abort: add a test to stop a loop early.
4.6 Filtering: avoid inserting an element into a data structure if the element

cannot affect the outcome of the computation.
4.7 Customize the data structure: select a data structure implementation that

best matches its pattern of use.
4.8 Pruning: insert simple tests to skip recursive calls. Boost the strength of these

tests by using preprocessing or by changing computation order.
4.9 Control subproblem sizes: remove elements from subproblems before recur-

ring; add or subtract work to balance subproblems.
4.10 Hybridize a recursive program to make individual stages faster.
4.11 Instead of changing the code to match the input, change the input presentation

to match the code.
4.12 When inputs are not known in advance, consider self-tuning data structures

that respond to input properties observable at runtime.
4.13 Code tuning intuition fails in modern environments. Test every change to

check that it really does speed up the code.
4.14 Tune your loops.
4.15 Optimizing compilers are better than humans at tuning code. Step back and

let them work their magic.
4.16 Reduce procedure call overhead by removing procedure calls and paying

attention to data locality.
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4.17 Eliminate dynamic memory overhead by right-sizing, reusing, and exploiting
static bindings.

4.18 Sometimes less is more: trade space for time. Sometimes less is less: a smaller
memory footprint makes code run faster.

4.19 The whack-a-mole principle: tune memory accesses to exploit spatial and
temporal locality.

4.20 Pay attention to the frequency, order, and size of I/O requests in I/O bound
computations.

4.21 Think about performance while working on system design and algorithm
design and building correct code. But do not think about tuning until after
these steps are completed.

4.22 Tune judiciously. It is a huge waste of valuable human time to build code that
is incrementally faster but much harder to validate, debug, and maintain.

4.5 Problems and Projects
Many of the implementations described in this book may be downloaded from the
companion Web site AlgLab: www.cs.amherst.edu/alglab. Here are a few
suggestions for projects using these programs.

1. Suppose you can improve the running time of a given program by a factor
of 2 in one day’s work, but no more than a factor of 32 (five day’s work)
can be squeezed out of any given program. Your time is worth $100 per hour.
This includes time waiting for a program to finish a computation. Which of
the following scenarios is worth the price of a week of algorithm engineering
effort?
a. The program is executed once a day and takes one hour to run.
b. The program is executed a million times per day, and each run takes one

second.
c. The program is executed once a month and takes one day to run.

2. Download the code for the exact bin packing algorithm from AlgLab and apply
the additional algorithm tuneups described in the case study. What other tuneups
can you think of? Do these tuning strategies work when applied to other types
of inputs?

3. Download the code for the essential subgraph algorithm from AlgLab and apply
more tuneups, especially the heap-memoization idea. How well do the tuneups
work? What happens if the algorithm is run on other types of inputs?

4. Can the MCMC algorithm of Chapter 3 be improved by substituting a different
data structure (such as a hash table) that better fits the patterns of data access?
What operations and costs would you measure to help you answer this question?
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Can improvements be found by shrinking the data footprint and/or reordering
data access patterns?

5. Apply the algorithm and code tuning strategies in this chapter to any of the
programs available in AlgLab. How much improvement can you find?

6. Find out which code tuning strategies your favorite optimizing compiler uses.
Compile C programs with no optimization and with optimization and compare
the assembly language output to look at the differences. How much difference
does compiler optimization make to computation time?

7. Build a suite of simple C programs to evaluate techniques for speeding up loop
and array accesses. Compare running times at a variety of input sizes and try
to locate the performance knees illustrated in Figure 4.17. How much variation
do you observe from platform to platform?
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The Toolbox

Write your workhorse program well; instrument your program; your experimental
results form a database: treat it with respect; keep a kit full of sharp tools.

Jon Louis Bentley, Ten Commandments for Experiments on Algorithms

They say the workman is only as good as his tools; in experimental algorithmics
the workman must often build his tools.

The test environment is the collection of programs and files assembled together
to support computational experiments on algorithms. This collection includes test
programs that implement the algorithms of interest, code to generate input instances
and files containing instances; scripts to control and document tests, tools for
measuring performance, and data analysis software.

This chapter presents tips for assembling and building these components to
create a reliable, efficient, and flexible test environment. We start with a survey of
resources available to the experimenter. Section 5.1 surveys aspects of test program
design, and Section 5.2 presents a cookbook of methods for generating random
numbers and combinatorial objects to use as test inputs or inside randomized
algorithms.

Most algorithm researchers prefer to work in Unix-style operating systems,
which provide excellent tools for conducting experiments, including:

• Utilities such as time and gprof for measuring elapsed and CPU times.
• Shell scripts and makefiles. Shell scripting makes it easy to automate batches of

tests, and makefiles make it easy to mix and match compilation units. Scripts and
make files also create a document trail that records the history of an experimental
project.

• I/O pipes for combining input generators, test programs, and analysis tools.
• Filters such as awk and sed that are used to parse, reformat, and recombine

input and data files.

152
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Resources specific to algorithmic experiments are surveyed in the next section.

Resources for Experimenters
The first tip for building the test environment is to make use of the many resources
that are available to you.

Guideline 5.1 Stand on the shoulders of giants: use the experimental resources
available to you in-house and on the Internet.

Even if you are implementing from scratch, test code from libraries and repos-
itories can be used for backup implementations in validation tests or measured to
compare your new ideas to state-of-the art alternatives. Other resources include
instance generators, input testbeds, and tools for program measurement and data
analysis.

The following is a short list of resources available on the Internet. There are
far too many problem-specific code repositories and testbeds available to be listed
here: to find resources for a particular problem or application, follow links on the
sites listed here, or try a keyword search using the problem name as key.

1. The Stony Brook Algorithm Repository has links to implementations of algo-
rithms for many standard combinatorial problems. The repository can be
searched by language or by problem; each implementation referenced in the
collection is given a quality rating. www.cs.sunysb.edu/∼algorith/.

2. The DIMACS Implementation Challenges site contains solvers, genera-
tors, and input instances contributed by participants in several DIMACS
Implementation Challenges carried out over the past two decades. Each
challenge focuses on a different open problem in algorithm research.
dimacs.rutgers.edu/Challenges/.

3. LEDA is a C++ library of fundamental data types and data structures, as well
as implementations of leading algorithms for several problem areas. Some
of the software is available only by license agreement, but free and low-
cost licenses for academic researchers are available. www.algorithmic-

solutions.com.
4. CGAL, the Computational Geometry Algorithms Library, provides C++ imple-

mentations of data structures and algorithms for problems in two-dimensional
(2D) and three-dimensional (3D) computational geometry. www.cgal.org.

5. The Stanford GraphBase has resources for experiments on combinatorial prob-
lems, especially on graphs. The site contains data structures and source code
for many graph algorithms, random generators, structured instances and a list
of Open Challenge problems. ftp.cs.stanford.edu, directory pub/sgb.

6. The INFORMS OR/MS Resource Collection: Computer Programs contains
links to programs and tools for solving optimization problems of interest in the
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operations research community, with an emphasis on local search and linear pro-
gramming. www2.informs.org/Resources/Computer_Programs.

7. The ACM Journal of Experimental Algorithms publishes software, data,
and input files to accompany published research papers in experimental
algorithmics. www.jea.acm.org.

8. The R Project for Statistical Computing is an open source software environment
for statistics and data analysis, with strong support for exploratory and graphical
methods. All of the graphs and statistical analyses in this text were produced
using the R package. www.r-prog.org.

Another good source of tools and test files may be the guy in the office down
the hall. Experimental research is not performed in a vacuum: find out what others
have done and make use of resources available in your workplace or research
community.

5.1 The Test Program
It is useful to make a conceptual distinction between the application program that
is implemented for use in a real-world scenario and the test program that is built
to support experiments. An application program reads input, solves the problem,
and writes output; the test program does the same but may have additional code
that reads experimental parameters and prints performance statistics. The appli-
cation program interface is designed for compatibility with the larger application
environment; the test program interface is designed to support experiments.

The application and test programs may in fact be identical, but that need not
always be the case. Sometimes the two are developed in parallel; sometimes the
test program is transferred to application code at the end of an experimental project.

What the two programs have in common is the abstract algorithm that they both
implement. The test program becomes a tool for simulating algorithm behavior, and
the algorithm becomes the vehicle for interpreting test results and for translating
insights from experiments to design and analysis tasks aimed at applications.

The test apparatus, sometimes called the “harness” or “scaffolding,” is the extra
“wrapper code” added to an implementation to support experiments. Sometimes
experimental goals dictate that the code be invoked exactly as in the application;
that may require placing all the test apparatus outside the source code.

The amount of time and effort to invest in building the test apparatus depends
on the project. In experiments where precise and accurate runtime statistics are
required, the test program should be bare of apparatus, so that the extra code does
not skew runtime measurements. A bare implementation is fine for quick tests of
basic properties and features. The apparatus for a pilot study may be small and
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simple, consisting of just a few counters and a print statement; if necessary, this
code can be removed at compile time for timing tests. A workhorse study incorpo-
rating multiple experiments and complex designs may need a sturdy apparatus that
supports correct results, fast and flexible experiments, and good documentation.

The next few sections survey tips for building the test program and apparatus.

5.1.1 Correctness
Above all, the test program must faithfully represent the algorithm being stud-
ied. Two key weapons in the war against programmer errors are validation and
verification.

Validation
Validation testing is a process of checking that the output is a correct solution
for the given input. Start by assembling a good variety of input instances for this
purpose: include stress test inputs (see Section 2.2.1) that exercise extreme and
boundary conditions, coverage inputs to exercise different execution paths within
the program, and typical inputs with features that are common in applications.

In order to perform a validation check you need to know what the correct solu-
tion is. In many experimental situations – especially when the inputs are large or
the problem is NP-hard – it may be difficult to tell whether a given solution is
correct. How do you know this coloring really is optimal? How do you know that
this is in fact the minimum spanning tree of a 5000-vertex graph? These funda-
mental difficulties can not always be eliminated, but steps can be taken to increase
confidence in program outputs, as follows.

• Create a suite of contrived inputs for which outputs are easy to compute by
hand. Examples include inputs with only 0’s and 1’s (or all 0’s) as weights and
inputs with optimal solutions known by construction.

• Even with NP-hard problems it is always possible to construct a verifier program
that checks that the output meets feasibility conditions. Mehlhorn et al. [13]
describe a collection of program checkers for validating solutions to geometric
problems.

• Find instances with known solutions in public testbeds.
• Replicate the experiments with a different solver and compare outputs. As men-

tioned in Section 2.1, the pilot program and the workhorse program should be
implemented independently, by separate people working on different platforms.
This creates two versions of the test program so that outputs can be compared;
software repositories and libraries may also serve as sources of backup programs
for replication experiments.
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After the initial validation experiment, replication tests should be performed
every time the test program is modified. Automating the replication process
makes this rule easier to follow; Unix script files and the diff utility for finding
differences in files are ideal for this purpose.

Verification
While validation involves inspecting inputs and outputs, verification is a formal
procedure for checking the code against a set of assertions embedded in the code.
An assertion is a Boolean expression that makes a claim about the state of the
program at a given point during execution.

Although a full discussion of formal verification is outside the scope of this text,
figure 5.1 illustrates the basic idea. The figure shows a procedure that inserts x

into its sorted position in array A. The array is of size n and when the procedure
starts A[0..top] already contains elements in sorted order.

Three types of assertions are shown in comments: preconditions on lines 2 to 5,
loop invariants on lines 9 to 11, and a postcondition on line 17.

The preconditions state the properties that must hold when the procedure is
called for this code to be correct: the array must exist, the value of top must be

1 InsertInArray (A, n, top, x) {
2 // Pre: A[0..n-1] is defined
3 // Pre: 0 <= top < n-1
4 // Pre: A[0 .. top] is sorted in increasing order
5 // Pre: A[top+1 .. n-1] is free
6 j = top;
7 top++;
8 while (j > 0) {
9 // Inv: A[0 .. j] is sorted

10 // Inv: A[j+1] is free
11 // Inv: A[j+2 .. top] is sorted and > x
12 if (A[j] > x) A[j+1] = A[j];
13 else break;
14 j--;
15 }
16 A[j+1] = x;
17 // Post: A[0 .. top] is sorted and contains x
18 return A;
19 }

Figure 5.1. Verification. Preconditions, postcondition, and loop invariants for inserting x into
sorted array A.
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between 0 and n-2 (1 less than the maximum array index, to make room for the
new element), and the elements in A[0..top] must already be in sorted order.
The postcondition describes the condition that is guaranteed to hold upon exiting
the procedure.

The loop invariants described the conditions that must hold each time around
the loop. Checking correctness with respect to loop invariants involves three
questions:

1. Are the invariants true when the loop is entered the first time? In this case, the
invariant on line 9 follows from the precondition on line 4 and the assignment
on line 6: A[0.. top] is sorted, and j is initialized to top. Line 10 follows
from preconditions on lines 3 and 5 and the assignment on line 6. The assertion
on line 11 regarding A[j+2 .. top] is true because j+2 is greater than top

(lines 6 and 7), so no such array elements exist; we say the condition holds
vacuously.

2. Assuming the invariants are true at the top of the loop, do they hold at the
bottom of the loop? Imagine inserting lines 9, 10, 11 just after line 14:

14.1 // A[0..j] is sorted
14.2 // A[j+1] is free
14.3 // A[j+2 .. top] is sorted and > x

Assuming the invariants at the top of the loop hold for the old value of j, we
check that the invariants at the bottom hold for the new value of j. Invariant 14.1
follows from line 9 and the decrement on line 14. Invariant 14.2 holds because
the assignment on line 12 makes A[j] free, and the decrement on line 14 makes
A[j+1] the location of that free element. Finally, invariant 14.3 follows from
line 11, plus the comparison on line 12: if A[j] <= x, the code would not
have reached the bottom of the loop, because of the break statement. This value
is copied into A[j+1], and with the decrement on line 14 the assertion holds
for A[j+2].

3. Do the invariants imply correctness after the loop ends? Assertions 14.1, 14.2,
and 14.3 are true at the loop bottom and therefore are true when the loop ter-
minates. Therefore, the assignment on line 16 is correct, and the postcondition
is true.

The simple act of writing out loop invariants in comments and checking these
three questions against the code can be powerful insurance against common coding
mistakes like off-by-1 errors, omitting initializations, mishandling loop control
variables, running off the ends of arrays, and so forth. It also helps to write a
procedure or macro to check preconditions at runtime, as shown in the following:
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void assert(boolean e, String msg){if (!e) print(msg);}

9 assert((0<=top && top<n-1), "Assertion 9 fails");
10 for(i=1; i<=top; i++)

assert(a[i-1]<=a[i],"Assertion 10 fails");

}

Guideline 5.2 Apply your best validation and verification techniques to build
confidence in test program correctness.

5.1.2 The Interface
Besides correct, the test program and test apparatus should be designed for ease
of use, flexibility, and efficiency. Here are some tips.

Inputs
Test programs run on two types of inputs: the instance to be solved, and specifica-
tions of test parameters such as number of trials and which performance indicators
to report. These inputs and specifications may be embedded in the source code or
presented at runtime. Each approach has its merits.

Input instances from applications are normally in separate files, of course, but
instance generators may be located inside or outside the solver program. Placing
the generator inside the test program saves the overhead costs of reading inputs,
which can be especially important when huge numbers of inputs are tested or when
I/O costs dominate computation costs. If random instances are to be reused in other
tests, it is easier to save the random number seeds than the instances in files. If
experiments are run on both generated and real instances, it may be simplest to
read everything from files so that I/O costs are comparable across test runs.

Placing experimental parameters in the source code is simple and fast, and fine
for small projects. The drawback is that frequent changes to the experimental
design require frequent changes to the source code; these types of changes are
slower to implement, more difficult to automate, harder to document, and more
likely to introduce errors, than changes presented at runtime. With the latter con-
vention, the act of running a new test need not be slowed down to the pace of
human coding and compiling time. It is faster to create new input files: automating
that step is even faster and less error-prone.

Guideline 5.3 Test parameters that change frequently should be specified at
runtime rather than compile time.

One approach is to create a little language of keyword-attribute pairs that specify
test parameters. The front end code to interpret such a language is easy to modify
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by changing the keyword list and adding new operations. Example C and Java
front ends built along these lines may be downloaded from AlgLab.

For example, the sample input file that follows (used in the essential subgraph
case study described in Section 4.1) specifies that 3 random graphs of each size
n = 50 . . .90, incrementing by 20, are to be generated; the random number seed is
also specified.

trials 3
nmin 50
nmax 90
nstep 20
seed 77271179

The source code uses default values when some lines are not present in the input;
for example, if no random number seed is given, the system time is used. This basic
format can be extended to specify, for example, which performance indicators to
report, file formats, and source and destination files.

If several variations of the test program are to be evaluated, each distinct version
of the source code should be saved for future reference. In some cases, it is simpler
to write separate routines, which can be mixed and matched at compile time using
tools such as makefile, or at runtime via a driver program that selects the desired
combination.

Outputs
Output files from experiments contain both solutions and reports of performance
indicator measurements. These may be written to separate files (stderr and
stdout if convenient) or to a single file. If the latter, include line labels so that
solution data can be extracted for validation and performance data can be extracted
for data analysis. The Unix awk filter is handy for this purpose.

The performance data should be in a format that can be sent directly to the data
analysis software package. In the case of the R statistical package that I use, a
numerical data matrix is most convenient. Performance data are written one line
per trial, with each line containing both the experimental parameters (input size,
trial number, code version, etc.) and performance measurements for that trial. This
matrix format is also well suited to analysis as an Excel spreadsheet.

Bentley [3] also points out the value of building a “self-describing” data file that
contains a complete record of the test parameters that produced it. Descriptions of
the input and parameter values not included in the data matrix can be included as
comments.

Cambridge Books Online © Cambridge University Press, 2012



160 5 The Toolbox

Guideline 5.4 Write self-describing output files that require minimal reformatting
before being submitted for data analysis.

For example, in the data file that follows (generated by the input commands
shown earlier), the first comment line gives the meaning of each column of data;
comments at the end, the test parameters. The first two columns record test param-
eters (trial number and number of nodes), and the remaining six columns show
performance data from each trial.

c trial nodes edges total cost rank treelimit
0 50 1225 135 0.208441 245 99 0.535475
1 50 1225 97 0.153967 188 84 0.326501
2 50 1225 135 0.241896 305 125 0.441828
0 70 2415 157 0.180725 440 184 0.350588
1 70 2415 177 0.155560 332 187 0.387239
2 70 2415 181 0.133144 326 112 0.337195
0 90 4005 211 0.099920 400 175 0.261381
1 90 4005 232 0.097191 409 219 0.244378
2 90 4005 243 0.093865 402 178 0.281792

c nmin 50
c nmax 90
c nstep 20
c seed 77271179
c trials 3

Exceptions to this general format may sometimes be necessary; the main idea is
to create output files that need a minimal amount of reformatting by hand before
they can be analyzed.

5.1.3 Documenting the Experiments
Every experiment leaves a trail of files containing input instances, design point
specifications, and test outputs. Without documentation of every experiment, the
project can quickly spiral out control: it becomes impossible to keep track of which
outputs go with which code versions and inputs, or even what the numbers mean.

Keep a notebook (electronic or otherwise) open at all times during experiments
to jot down notes, reminders, and questions.

My approach to documentation is to run each experiment in a Unix shell script,
which creates a record of the input file(s), command line arguments, code versions,
and output file(s) used in the experiment. Each script file is saved and recorded
by name in the notebook file, which also mentions the question prompting the
experiment and describes the file formats. Complex data analyses in R can be
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preserved as source files and recorded in the notebook. The self-describing output
files mentioned earlier are also useful in this regard.

It is equally important to keep track of source code revisions. Especially in
algorithm engineering projects, many versions of the source code may be tested in
many combinations. The test apparatus may go through several revisions as well,
as new designs and measurement strategies are developed.

It helps to incorporate at least a rudimentary system of version control to manage
all these changes to source code. Each recompilation represents a revision, which
should be described (using source code comments and/or a separate notebook file),
given a distinct number or timestamp, and stored in a backup repository for future
reference. Gent et al. [8] suggest using a commercial version control software
system, especially when test code modules are continually evolving and shared
among a group of researchers.

Record-keeping complexity can be reduced, as suggested earlier, with a test
apparatus that accepts specifications at runtime rather than compile time.

Guideline 5.5 Document your experiments! You should be able to return to your
test environment a month later and know exactly how to replicate your own results.

5.2 Generating Random Inputs
Section 2.2.1 surveys the variety of input classes that may be incorporated into
algorithmic experiments. Input classes that are generated rather than collected –
including random, random structured, and hybrid inputs – require generators to
build the instances. This section surveys basic techniques for generating random
numbers, permutations and samples, and combinatorial structures that are common
in algorithmic experiments.

5.2.1 Uniform Random Variates
A random number generator (RNG) is a procedure that can be invoked repeat-
edly to produce a sequence U0,U1, . . . of random variates with certain properties
described later.

Most operating systems and language libraries contain RNGs based on the linear
congruential (LC) method. The method uses a (global static) variable s that is
initialized with a value called the seed. Each time the RNG is called, the procedure
applies an arithmetic formula to s, and the result becomes the new value of s that
is returned by the procedure.

The example LC procedure shown in Figure 5.2 applies an arithmetic function
to s using three constants a, b, and m. (The term linear congruential refers to this
function family.) The % denotes the modulus operator, which returns the integer
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static long s;

void rngInitial(long seed) {s = seed;}

long random() {
long a = 1664525;
long b = 1013904223;
long m = 2ˆ32;
s = (a*s+b) % m;
return s;

}

Figure 5.2. A random number generator. This is an example of a linear congruential generator.

remainder from dividing (a*s + b) by m. The modulus operation ensures that
s is always between 0 and m-1.

The values of a, b, and m must be carefully chosen according to number-theoretic
principles to ensure that good random sequences are generated. The combination
is from Numerical Recipes [16]; others may be found in Knuth [10] and L’Ecuyer
[12].

An integer in the range [0,m−1] can be converted to a real number in the range
[0,1) (the bracket notation means including 0 but not including 1) by dividing by
m. Many software libraries contain generators that use this technique, with m set
to a very large number, to return floats and doubles instead of integers and longs. In
this section we refer to specific generator types with rngInt(m), which returns
a random int or long in [0,m−1], and rngReal(), which returns a random float
or double in [0,1).

Let U0 denote the initial seed value, and let U1,U2 . . . denote the sequence of
uniform random variates returned by successive calls to a given RNG. Generators
of uniform random variates are evaluated according to two properties:

1. Uniformity. Each possible integer in [0,m−1] is equally likely to be generated
as the next Ui .

2. Independence. The probability that Ui takes a particular value u ∈ [0,m − 1]
does not depend on previous variates U0 . . .Ui−1.

All linear congruential methods, and indeed all computer-based random number
generators, fail property 2, because each variate Ui depends exactly on the value
of the previous variate Ui−1. For this reason LC generators are technically called
pseudorandom number generators, although the distinction is often ignored in
common parlance.
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Pseudorandom generators are evaluated according to how well they mimic a
true (theoretical) source of independent uniform variates. A good RNG has a long
period, which means it runs for a long time before repeating a value – a maximum
period of m is ideal but not always realized. The RNG is also expected to pass tests
of uniformity and randomness. A standard collection of statistical tests has been
developed to test property 1 and to detect patterns in the Ui sequence that would be
unusual in a truly independent source of variates. These tests look at, for example,
the lengths of “runs” above and below the mean, the lengths of monotonically
increasing and decreasing sequences, distributions of poker hands that encode the
variates, and so forth. See Knuth [10] for a survey of these tests.

The linear congruential RNGs available nowadays in most systems are consid-
ered adequate for many but not all purposes; see [15] for a survey of common
features and problems. Here are some tips for making best use of them.

• Initialize with a big integer seed value, ideally using as many digits as the
type allows. Small integer seeds create sequences that start out less random
but improve as more variates are generated. If the initial seed value cannot be
controlled (because it is set by a procedure external to the test program, for
example), run the RNG for several iterations to get past initial conditions.

• The low-order bits of integers generated by LC methods are less random than
the high-order bits. To mimic, say, a coin toss with a random sequence of 0’s
and 1’s, do not use a formula based on low-order bits, such as r = rngInt()

% 2. On some systems this could produce a strictly alternating sequence of 0’s
and 1’s, or a sequence of all 1’s. Instead use the high order bits:

if (rngReal() < 0.5) r=0; else r=1;

• Linear congruential generators tend to exhibit patterns of serial correlation (a
type of nonrandomness) within short subsequences. For example, assigning
(Ui ,Ui+1,Ui+2) in sequence to create random points in 3-space can yield sets
of points that line up on hyperplanes. To avoid this problem when generating
random points in D-space, use different RNG streams with separate seeds for
each dimension; apply a combination of scrambling and skipping operations to
break up patterns in short sequences; or use a different category of RNG, such
as a linear feedback shift register (LFSR). See Knuth [10] for an introduction
to LFSR generators.

• A common technique for initializing the seed is to call the (Unix) system time

command, which returns a long integer recording accumulated clock ticks since
some startup date. If two calls to the time command occur in succession, the
clock may not have had a chance to advance.

Cambridge Books Online © Cambridge University Press, 2012



164 5 The Toolbox

• Linear congruential methods should never be used as a source of random num-
bers in cryptographic applications, because the generating function is too easy to
guess. They can also create problems in experiments that require huge numbers
of variates – more than the period allows – and/or a high degree of statisti-
cal precision in the results. For these applications alternative generators (more
random, but slower) are recommended.

All other categories of random variates for computational experiments are
created by algorithms that transform or combine sequences of uniform variates
generated by RNGs. Here are two simple one-line transformations.

• To generate an integer I uniformly in the range [a,b] (inclusive), use
I = a + (int) (rngReal()*(b-a+1));

• To generate a real R in the range [a,b) use the formula R = a + rngReal()

* (b-a);

Even if a given RNG passes all tests of randomness, some small pattern of
nonrandomness could be magnified by such a transformation, in such a way that
the experimental outcomes are artifacts of the RNG and not reflective of “true”
(theoretical) properties. It is always wise to replicate key experimental results by
substituting a different RNG and comparing the outputs.

5.2.2 Random Permutations
A permutation of the integers 1 . . .5 is a particular ordering, such as (5, 1, 3, 2, 4)
or (1, 2, 3, 5, 4). A random permutation of size n is generated such that each of
the n! possible orderings of the first n integers is equally likely to appear.

Random permutations are common in algorithm studies. Algorithms like Ran-
dom in Figure 2.3 and SIG in Figure 2.7 in Chapter 2 generate random permutations
as a processing step; also, average-case inputs for many standard algorithms and
data structures, including quicksort, insertion sort, and binary search trees, are
defined in terms of random permutations. A random tour of a graph corresponds
to a random permutation of the vertices.

The code to generate a random permutation in array perm[1...n] appears
in the following. This loop should be implemented as shown: plausible-looking
variations, for example, choosing a random index in 1 . . .n instead of 1 . . . i at each
iteration, do not yield outputs that are uniformly distributed.

Random Permutation (n) {
for (i = 1; i<=n; i++) perm[i] = i; // initialize
for (i = n; i>=2; i--) {

r = (int) (rngReal() * i) + 1; // random in 1..i
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tmp = perm[i]; // swap
perm[i] = perm[r];
perm[r] = tmp;

}
return perm;

}

This procedure takes O(n) time to generate a random permutation of n integers.

5.2.3 Random Samples
A random sample is a subset of k elements drawn from a collection of n elements,
such that each possible subset is equally likely to be drawn. We assume here that a
sample is drawn from the integers 1 . . .n. The random sample may be drawn with
replacement, which means that duplicates are allowed (that is, we imagine replac-
ing each element after it is drawn from the set), or drawn without replacement,
which means that duplicates are not allowed.

Random sampling can be used to create a small version of a large data set while
preserving its statistical properties or to create a hybrid input instance by sampling
from a space of real-world components. Sampling can also be used to create ran-
dom combinatorial objects with certain types of structures: for example, random
samples of vertices could be designated “source” and “sink” in a flow network.

Sampling with replacement is easy: just call the RNG k times. The loop that
follows samples k integers with replacement from the integer range [1 . . .n] in
O(k) time.

SampleWithReplacement (n, k) {
for (i=0; i<k; i++)

sample[i] = (int) (rngReal()*n)+1;
return sample;

}

To generate a sample without replacement when k is much smaller than n, use
the same loop with a set data structure to reject duplicates, until k distinct integers
are collected:

SampleWithoutReplacement (n, k) {
Set S = empty;
while (S.size() < k) {

r = (int) (rngReal()*n)+1; // sample 1..n
if (!S.contains(r)) S.insert(r);

}
return S;

}
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static int k; // sample size
static int n; // sample range is [1...n]
static int s = 0; // selected
static int c = 0; // considered

int orderedSampleNoReplacement() {
double p;
int nextInt;
boolean done = false;
while (!done) {

p = (double) (k-s)/(n-c);
if (rngReal() < p) { // with probability p

nextInt = c + 1;
s++;
done = true;

}
c++;

}
return nextInt;

}

Figure 5.3. Ordered integer samples. Sampling k integers from 1 . . .n without replacement, in
increasing order. The next integer in the sample is returned at each invocation of this routine.

If k is near n, this loop spends too much time rejecting duplicates toward the end
of the process; in this case, it is more efficient to generate a random permutation
of 1 . . .n and then select the first k elements of the permutation.

Ordered Integer Samples
Sometimes the experiment calls for a random sample of size k from 1 . . .n, gener-
ated without replacement and sorted in increasing order. For example, an ordered
integer sample may be used to select from a pool of n real world elements, such as
URLs from a trace of network activity, or a directory of test input files. The ordered
sample is used in a linear scan through the pool to pull out sampled elements by
index.

A simple approach is to generate the sample without replacement as shown
previously, and then sort the sample. Sorting takes O(k logk) time and O(k) space,
which may be fine in many situations.

Faster methods are known, however. The algorithm sketched in Figure 5.3, due
to Fan et al. [7] and Jones [9], generates a sample of k integers from the range
[1 . . .n], on the fly, returning the next integer in the sample at each invocation.
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static double k; // total in sample
static double i = k; // counter
static double m = 1.0; // current top of range

double orderedSampleReals() {
m = m * exp(ln (rngReal()) / i);
i--;
return m;

}

Figure 5.4. Ordered reals. Generating a sample of k doubles from [0,1) in decreasing order. The
next double in the sample is returned at each invocation of the procedure.

To understand how it works, note that the integer 1 (or any particular integer)
should be a part of the final sample with probability k/n. If 1 is selected, then
2 should be part of the final sample with probability (k − 1)/(n − 1); if 1 is not
selected, 2 should be selected with probability (k)/(n−1). Let c denote the number
of integers that have been considered so far in the selection process, and let s denote
the number that have already been selected for the sample. Then the probability
of selecting the next integer is equal to (k − s)/(n − c). At each invocation the
procedure considers integers in increasing order according to that probability, until
one is selected.

This algorithm requires constant space. The time to generate k of n integers is
proportional to the last integer generated, or O(n−n/k). This may be preferable
to the sample-sort-scan approach when the sample is too large to be stored conve-
niently in an array; it also may be more efficient if the test program can sometimes
stop before the entire sample is generated.

Ordered Reals
A related problem is to generate a sorted sample of k reals uniformly without
replacement from [0,1). Bentley and Saxe [2] describe an algorithm that creates
such a sample on the fly, using constant space and constant time per invocation.
Like the preceding method, this algorithm is preferred if the sample is too big to
store in advance, or if sorting takes too much time. The algorithm generates the
sample variates in decreasing order – for a sample in increasing order, just subtract
each variate from 1.0.

The algorithm is shown in Figure 5.4. The idea is first to generate random variate
M1 according to the distribution of the maximum of a sample of k variates from
[0,1). Once M1 is generated, the next variate represents the maximum M2 of a
sample of k−1 variates from [0,M1), and so forth. The first variate M1 is generated
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ReservoirSample(k, Pool) {
// Pre: Pool contains at least k elements
S.init(empty); // priority queue of pairs with key u

for (i=1; i<=k; i++) { // initial sample
u = rngReal();
p = Pool.take(i); // take element i
S.insert(p,u);

}
int n = k+1;
while (Pool.hasElement(n)) {

u = rngReal();
if (u <= S.minKey()) {

S.extractMin() // delete old
p = Pool.take(n); // take element n
S.insert(p, u); // insert new
n++;

}
return S.data();

}

Figure 5.5. Reservoir sampling. This procedure returns a random sample of size k from a pool
of n elements where the size of the pool is not known in advance.

using the formula M1 = U
(1/k)

1 , which can be coded as shown in the figure; ln

is the natural logarithm function, and exp exponentiates e, the base of natural
logarithm. Subsequent variates Mi+1 are scaled by multiplying by Mi .

Reservoir Sampling
The reservoir sampling problem is to generate a random sample of k elements
from the integers 1 . . .n on the fly, where n is not known in advance.

For example, the experiment may call for k lines to be sampled at random from
an input file without prior knowledge of the file size, or of k packets from a router
trace without knowing in advance how many packets will pass through the router.
An application of reservoir sampling appears in the selection procedure of the
markov.c program shown in Figure 3.4, which samples a random array element
(k = 1) from a subarray a[i · · ·j ], without prior knowledge of the subarray size.

The reservoir sampling algorithm due to Knuth [10] is sketched in Figure 5.5.
Start by selecting the sample (1,2, . . . k), which is the correct choice if k = n. If
it turns out that n = k + 1, a new sample can be constructed from the old one
as follows: with probability 1/n replace a random element in the current sample
with the value n; otherwise with probability 1 − 1/n do not change the sample.
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The algorithm continues this way for each new n in sequence, replacing random
elements in the current sample according to appropriate probabilities.

A convenient way to manage these probabilities is to create a pair (i,u) that
associates pool element i with a real number u chosen uniformly at random from
[0,1). These pairs are stored in a priority queue S using u values as keys. When
the algorithm is finished, the elements tied to the k smallest of n random reals
u ∈ [0,1) form the sample in S.

5.2.4 Nonuniform Random Variates
Variates generated from a nonuniform distribution have the property that some
values appear more frequently than others. Nonuniform data can be used to model
a wide variety of real-world phenomena, from patterns of access at Web sites, to
population densities in maps, to distributions of file sizes, to lengths of words in
text.

Nonuniform distributions are also widely used in robustness tests of algorithms.
Many algorithms and data structures, for example, cell-based geometric algo-
rithms, display best performance when the inputs have a uniform or near-uniform
distribution; experiments are used to learn how performance degrades when inputs
move away from this theoretical ideal.

A discrete probability distribution P = (p1,p2, . . .pn) specifies the probabil-
ity that each integer i ∈ 1 . . .n is likely to appear next in a sequence of random
variates R1,R2, . . .. For example, the distribution P = (.5, .3, .2) specifies that 1 is
generated with probability .5, 2 is generated with probability .3, and 3 is generated
with probability .2. Sometimes probabilities are specified by a probability density
function p(i) instead of a list. For example, the probability density function for the
roll of a random die is p(i) = 1/6 for i ∈ [1 . . .6]. If P is a continuous probability
distribution, the variates Ri take values in some real range that may be bounded or
unbounded. Continuous distributions are usually specified by probability density
functions. No matter how the distribution is specified, the probabilities always sum
to 1.

We say a distribution P models a real-world scenario if the variates generated
according to P tend to have the same statistical properties as naturally occur-
ring events in that scenario. The following is a short list of classic scenarios and
the distributions that have been used to model their properties. Each distribu-
tion corresponds to a family of density functions parameterized by the values in
parentheses.

Code for simple generation tasks is shown in the list, but more complicated
procedures are omitted here because of space constraints. Precise mathematical
definitions of these distributions and generator code may be found in DeVroye’s [5]
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comprehensive and definitive text and in most simulation textbooks, for example,
[4], [11], or [17].

• A Bernoulli trial is a single event with two possible outcomes A and B, which
occur with probabilities p and 1−p. This distribution can be used to model, for
example, a coin toss (p = .5), a random read or write to a memory address, or
a random operation (insert, delete) on a data structure. The Bernoulli (p) distri-
bution generates a sequence of random outcomes in Bernoulli trials as follows:

loop:
if (p > rngReal()) generate(A);
else generate(B);

The binomial(t, p) distribution models the number of failures (B) among t inde-
pendent Bernoulli trials with success (A) probability p. Use this distribution,
for example, to generate counts of how many heads and tails are observed in t

coin flips.
The geometric (p) distribution models the number of initial events B before the
first occurrence of A in a sequence of Bernoulli trials: use this distribution to
generate, for example, a count of how many reads occur before the next write.
The negative binomial (k,p) distribution models the number of initial events B
before the kth event A. Use this to generate a random count of inserts before the
kth delete operation.

• A Poisson process is a system where events occur independently and contin-
uously at a constant average rate, for example, clients arriving at a Web site
or packets arriving at a router. The discrete Poisson(λ) distribution models the
number of events (arrivals) occurring in a fixed time interval, where λ is the
average number of events in the interval.

Use the continuous exponential (λ) distribution to generate random time inter-
vals between successive events in a Poisson process. To generate a random
variate X according to this distribution use the formula X = (− lnU)/λ, where
U is a random uniform real in [0,1) and ln is the natural logarithm.

• The normal (μ,σ ) distribution is used to model quantities that tend to clus-
ter around their mean μ; parameter σ denotes the amount of “spread” away
from the mean. This is the famous bell-shaped curve, used to model situations
in which variation from the mean can be interpreted as a sum of many small
random errors. Classic examples include positions of randomly moving parti-
cles, cumulative rainfalls in a period, scores on standardized tests, and errors in
scientific measurements.

To generate a variate N according to the standard normal distribution with
mean μ = 0 and deviation σ = 1, generate two uniform reals U1 and U2 and
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apply the formula

N =
√

−2lnU1 cos(2πU2).

Alternative formulas that are faster and/or more accurate in some cases may be
found in the references cited earlier.

• The lognormal (μ,σ ) distribution describes variables that can be seen as the
products, rather than sums, of many random errors – that is, the logarithms of
these variates are normally distributed. This distribution is skewed, with a com-
pressed range of low values near the mean and a long tail of high values spread
over a larger range. Classic examples found in nature include size measure-
ments of biological phenomena (height, weight, length of hair, length of beak)
and financial data such as changes in exchange rates and stock market indices.
The lognormal distribution and the related Pareto distribution have been used to
model file sizes in Internet transactions, burst rates in communication networks,
and job sizes in scheduling problems.

• Zipf’s distribution (n) is commonly used to model discrete distributions aris-
ing in the social sciences, such as word and letter frequencies in texts. This
distribution has been proposed [1] to model Internet features such as counts
of links in Web pages and counts of e-mail contacts. Parameter n denotes the
number of distinct elements in the set. Zipf’s law states that the frequency of an
element is inversely proportional to its rank in a table of frequencies: the most
common element occurs with probability c, the second with probability c/2,
the third with probability c/3, and so forth. The probability density function is
Zn(i) = 1/(iHn), where Hn = ∑n

i=1 1/i is called the nth harmonic number.

General Distributions
General methods are also known for generating random variates according to arbi-
trary discrete distributions where the probabilities P = (p1,p2, . . .pn) are specified
in a list rather than by a function, and distributions (such as Zipf’s) where no simple
arithmetic transformation is known. Two techniques called the lookup method and
the alias method are sketched here.

The lookup method starts by constructing an array prob[1 . . .n] containing the
cumulative probabilities:

prob[k] =
k∑

i=1

pi

For example, if P = (.5, .3, .2), the array would contain [.5, .8, 1]. The cumulative
probabilities create a table of breakpoints in the unit interval:
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.5 .3 .2

0 1.5 .8

1 2 3

Once the table is built, each random variate r is generated by the following loop:

double p = rngReal();
for (int r = 1; r < n; r++) if (p < prob[r]) break;
return r;

The lookup method takes O(n) initialization time and O(n) time per element
generated, worst case; the lookup is fastest if the original probabilities are sorted
in decreasing order. Binary search can be applied to improve this to O(logn) time
per element.

The lookup method works well when n is fairly small. The alternative alias
method takes only constant time per element generated, but uses more space.
This method starts by building an alias table table[1...n] that holds an
alias probability and an alias value for each element. We denote these values
table[r].prob and table[r].alias.

The generation code starts with a random real rx, generated uniformly from
the real range [1,n+1). This value is separated into its integer part r (uniform on
1 . . .n) and its real part x (uniform on [0,1)). The integer r becomes the table index,
and the real x is compared to table[r].prob. Depending on the comparison,
the code generates either r or table[r].alias:

double rx = (rngReal()*n)+1; // real on [1..n+1)
int r = (int) rx; // integer part
double x = rx - r; // real part
if (x < table[r].prob) return r;
else return table[r].alias;

The initialization code to build the alias table is shown in Figure 5.6. The main
loop pairs up low-probability elements j with high-probability elements k, so
that k becomes the alias for j. The diagram that follows shows how this works
for distribution P = (.5, .3, .2). The horizontal line marks the average probability
for three elements, equal to 1/3. In the first step some of the excess probability
for element 1 is mapped to form the alias for element 3; in the second step the
remaining excess for element 1 becomes the alias for element 2. The three values in
table[].alias are (x,1,1); the three values in table[].prob are (1, .9, .6),
reflecting the cutoffs scaled to [0,1).
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The initialization process starts by creating a set H of elements with higher-than-
average probabilities and a set L of elements with lower-than-average probabilities.
All probabilities are multiplied by n to simplify the arithmetic, so element i is
inserted into H or L according to whether the scaled probability R[i] is more or
less than 1.

During the main loop an arbitrary element k is selected from H and an arbitrary
element j is selected from L. The table[j] values are assigned, and j is removed
from further consideration. The remaining probability for k is calculated; if the
result is below average, k is moved from H to L. The initialization step takes O(n)

time to build the table; the sets H and L can be implemented with a simple unordered
array partitioned around high and low elements.

5.2.5 Random Structures and Objects
The collection of known methods for generating random geometric objects (points,
lines, etc.) and random combinatorial objects (trees, graphs, networks) is far too
large to be surveyed here in any detail. As a general rule these generation methods
work by combining techniques for generating numbers, permutations, and samples,
as described in the previous section. To illustrate the variety of generation methods
available, a short list of techniques for generating random unweighted graphs
follows.

• Random uniform graph G(n,p). This is an undirected graph on n vertices,
such that each of the n(n−1)/2 possible edges is generated independently with
probability p. Start with an empty graph on n vertices. Consider each edge (i,j)

in sequence, and with probability p insert the edge in the graph. The following
code works for undirected graphs.

for (i=1; i<=n; i++)
for (j=i+1; j<=n; j++)

if (p > rngReal()) G.insert(i,j);
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prob[1...n] = table of probabilities
for (i=i; i<=n; i++) {

R[i] = n*prob[i]; //scale probabilities
if (R[i] >= 1) H.insert(i);
else L.insert(i);

}
while (H.notEmpty()) {

k = H.select(); // any element
j = L.select(); // any element
table[j].alias = k; // j is done
table[j].prob = R[j];
L.delete(j);

R[k]= R[k]+(R[j]-1); // adjust probability
if (R[k] <= 1) {

H.delete(k);
L.insert(k);

}
}

Figure 5.6. Initializing table values for the alias method.

• Random uniform graph G(n,k). To generate a random undirected graph with
exactly k edges, assign each edge to an integer 1 . . .m, where m = n(n− 1)/2.
Draw a sample of size k without replacement from 1 . . .m and insert the
corresponding sampled edges in the graph.

• Nearest-neighbor graph P(n,k). A random (directed) nearest-neighbor graph
contains n vertices. Each vertex is assigned to a random coordinate point (x,y)

in the unit square. For each vertex, insert edges to its k nearest neighbors,
according to some distance metric.

• Random proximity graph P(n,δ). Assign each of n vertices to a random point
in the unit square. Then, for each vertex, add an edge to all neighbors within
distance δ.

• Grid proximity graph G(n,k,d ,e). This graph is built in a grid of of n vertices
arranged in a k by n/k rectangle: each vertex has edges to d random neighbors
within e rows or columns away. Consider vertices row-by-row and column-by-
column: if vertex vrc in row r , column c, has already been assigned f edges,
generate d −f additional edges to random neighbors in higher-numbered rows
and columns.
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• Random acyclic graph G(n,k,d ,e). The preceding grid technique can also be
used to construct a random acyclic graph, by generating d random edges only
in “forward” directions r + 1 through r + e.

• Random rooted binary tree B(n). To generate a random rooted binary tree,
create a permutation of the integers 1 . . .n and insert them into the tree according
to the binary search tree property. These trees are not uniformly distributed
because some shapes are more likely than others to occur.

For ideas on how to generate inputs for a specific algorithmic problem, con-
sult the experimental literature or search the Internet for problem-specific input
testbeds.

5.2.6 Nonindependence
Another category of random generator of interest in algorithm research produces
nonindependent random variates Ri , where the probability that a particular value
r = Ri is generated is supposed to depend on recently generated values, in some
well-defined way.

To take a simple example, suppose data structure D must respond to a random
sequence of (insert, delete) operations using random keys. This application requires
that an item with key k cannot be deleted unless it has been previously inserted.
Thus the probability that delete(k) is generated next in the sequence depends on
whether insert(k) has previously appeared. The problem is to generate a random
sequence of insert(k), delete(k) operations, for k ∈ 1 . . .n such that every delete(k)

operation appears after its corresponding insert(k) operation.
One simple approach is to generate a random permutation of doubled elements

1,1,2,2, . . .n,n. For each integer k in the permutation, check whether this is the
first or second appearance and generate insert(k) or delete(k) accordingly.

Another approach that creates more variety of sequences is to start by generating
random line segments on an interval. First create a collection of n random line
segments within the real interval [0,1) by generating a random pair of endpoints
(xi ,yi) for each segment.Assign a random key k ∈ 1 . . .n to each segment; label the
left endpoint with insert(k) and the right endpoint with delete(k). Sort the labels
by coordinates and generate corresponding insert/delete operations. The method
of generating endpoints can be adjusted to control how much overlap occurs in the
line segments, and therefore the maximum size of the data structure. For example,
to ensure that all inserts precede all deletes, generate left endpoints from [0, .5)

and right endpoints from [.5,1).
Another type of nonindependence of interest in algorithm research is locality of

reference. In many application scenarios a sequence of address references or key
requests will exhibit temporal locality or spatial locality or both. Temporal locality
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means that if key k appears in the sequence it is more likely to appear again soon;
spatial locality means that key values near k are likely to be requested soon.

One simple approach to generating a sequence with locality is to define a prob-
ability distribution D on the differences between successive keys in the sequence.
For example, suppose the problem is to generate a sequence of keys Ki uniformly
from the integer range [1,10]. Let Di denote a sequence of difference variates gen-
erated randomly according to some probability function δ(d). Generate the initial
key K0 uniformly at random and generate subsequent keys Ki+1 according to

Ki+i = ((Ki +Di − 1) % 10)+ 1. (5.1)

The modulus function % is used to wrap key values into the range [0,9], and the
trick with −1/+ 1 keeps the distribution centered at Ki .

An example density function for differences is shown in the following on the
left. This function is defined by δ(d) = 1/5−abs(d)/35 (using the absolute value
function abs) and is peaked at 0. Assuming that Ki = 8, the density function for
Ki+1 using the preceding formula is shown on the right. This probability density
is peaked at 8.

-4 -3 -2 -1 0 1 2 3 4 5

Differences

1 2 3 4 5 6 7 8 9 10

Next key from 8

This difference probability δ(d) can be easily replaced with another function as
appropriate to the model. It can be tricky, however, to find suitable replacement for
function (5.1) that constructs Ki+1 from Ki . It is possible to prove a theorem that
(5.1) preserves the uniform distribution of the original key: that is, the distribution
of every keyKi , when averaged over all possible starting keysK0, remains uniform.

This property does necessarily hold when other functions for generating Ki+1

from Ki are used. The danger is that the distribution of Ki will drift away from
uniform as i increases. For example, the scaled function that follows imposes an
asymptotic distribution on Ki that is heavier in the middle, so that late in the
sequence, 5 is more likely to appear than 1 or 10, no matter how the initial key is
generated.
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1 2 3 4 5 6 7 8 9 10

Next key from 8

This hazard – that an initially uniform distribution will be skewed via a series of
random incremental steps – is not limited to the problem of generating distributions
with locality. Panny [14] describes a long history of failed schemes for preserving
the initial properties of a random binary search trees, over a sequence of random
insertions and deletions. Under the usual definition, a random binary search tree
(BST) of size n is created by one of the following equivalent processes: (1) Select
a permutation of keys 1 . . .n uniformly at random and insert the keys into the tree
in permutation order or (2) generate n uniform reals from (0,1) and insert them
into the tree in generation order.

One common approach to studying insert/delete costs in binary search tree
algorithms is to start by generating an initial random BST of size n by method (2)
and then to apply a sequence of alternating random insertions and deletions, so
that n stays constant. A simple method is to generate an insert key uniformly at
random from [0,1], and then a random delete key uniformly from the set of already
inserted keys. However, this approach fails to preserve the initial distribution of
tree shapes; for example, Eppinger [6] showed experimentally that the average
internal path length first decreases and then increases over time, a property that
was later proved. Because of this phenomenon, the measured performance of a
given BST algorithm may be more an artifact of the key generation scheme than of
the algorithm itself. Many seemingly reasonable generation schemes have similar
flaws; see Panny [14] for tips on avoiding this pitfall.

5.3 Chapter Notes
This chapter has addressed two practical aspects of experimental algorithmics: how
to develop a test environment that supports correct, efficient, and well-documented
experiments; and how to generate random inputs and structures according to a
variety of distributions.

Here are the guidelines presented in this chapter.

5.1 Stand on the shoulders of giants: use the experimental resources available to
you in-house and on the Internet.
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5.2 Apply your best validation and verification techniques to build confidence in
test program correctness.

5.3 Test parameters that change frequently should be specified at run time rather
than compile time.

5.4 Write self-describing output files that require minimal reformatting before
being submitted for data analysis.

5.5 Document your experiments. You should be able to return to your test
environment a month later and know exactly how to replicate your own results.

5.4 Problems and Projects
1. Implement your favorite array-based algorithm, such as quicksort, binary

search, heapsort, or mergesort.As you write, insert comments with loop invari-
ants into every loop and run through the three verification questions for loop
invariants. Can you spot any errors?

2. Design a suite of inputs and input generators to validate the code written for
question 1. Include an assert procedure in the program and run your tests.
Did you find any errors? Swap programs with a friend and run your verification
and validation tests on the friend’s code. Did either of you find errors that were
previously missed?

3. Consider the problem of reformatting the output from a timing utility such
as time or gprof into an input format suitable for your favorite statistical
analysis package. How much work must be done by hand? Can you write a
formatting tool that is faster and less prone to errors?

4. Revisit an experimental project that you carried out at least a month ago. How
much do you remember about the tests? Can you replicate every experiment
that you performed earlier? Can you reconstruct the meaning and purpose of
every data file? What could you have done to document your experiments
better?

5. Implement some of the statistical tests of randomness listed in Knuth [10] or
DeVroye [5] and use them to check the random number generator provided
by your operating system. Does it pass?

6. Apply tests of randomness to evaluate the sequence of low-order bits gener-
ated by the RNG. At what point (what bit size) does the generator start to fail
the tests?

7. How would you generate n points uniformly at random in the unit circle?
How would you generate n points uniformly on the circumference of the cir-
cle? How would you generate n points uniformly inside and on the surface of
the unit sphere?
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8. Use the lookup method and the alias method to implement a generator for
Zipf’s distribution. How do they compare, in terms of time and space usage?
Read about statistical tests of randomness for nonuniform distributions (for
example, in Knuth [10]) and apply those tests to the generators. Do they pass?

9. Many approximation algorithms for NP-hard optimization problems on graphs
have a guaranteed bound on solution quality under the assumption that the edge
weights obey the triangle inequality: that is, for each triangle of edges (x,y),
(x,z), (y,x) the sum of weights on two edges is at least equal to the weight
on the third edge. This ensures that every edge represents the shortest path
between its endpoints. Design and implement an algorithm to generate ran-
dom graphs that obey the triangle inequality. Does it cover the space of all
such graphs? (Note: There exist graphs that obey the triangle inequality that
cannot be embedded into geometric space.) Is each such graph equally likely
to be generated?

10. In GPS applications, a street or road in a roadmap comprises a sequence of
connected line segments that represent its location in a satellite image. Design
and implement a suite of random generators that model different types of
maps: street grids in cities, superhighways, rural roads, and following various
terrains (mountains, rivers, lakes, etc.).

11. Design and implement a random generator for variates that are both nonuni-
form (for example generated by Zipf’s distribution) and nonindependent, dis-
playing temporal but not spatial locality. Use it to generate a “text” of random
words (strings of varying length determined by Zipf’s law) to evaluate your
favorite set data structure implementations. How closely does performance on
your generated inputs match performance on real words in English text?
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Creating Analysis-Friendly Data

For each of us who appear to have had a successful experiment there are many to
whom their own experiments seem barren and negative.

Melvin Calvin, 1961 Nobel Lecture

An experiment is not considered “barren and negative” when it disproves your
conjecture: an experiment fails by being inconclusive.

Successful experiments are partly the product of good experimental designs,
as described in Chapter 2; there is also an element of luck (or savvy) in choos-
ing a well-behaved problem to study. Furthermore, computational research on
algorithms provides unusual opportunities for “tuning” experiments to yield more
successful analyses and stronger conclusions. This chapter surveys techniques for
building better experiments along these lines.

We start with a discussion of what makes a data set good or bad in this context.
The remainder of this section surveys strategies for tweaking experimental designs
to yield more successful outcomes.

If tweaks are not sufficient, stronger measures can be taken; Section 6.1 surveys
variance reduction techniques, which modify test programs to generate better data,
and Section 6.2 describes simulation shortcuts, which produce more data per unit
of computation time.

The key idea is to exploit the fact, pointed out in Section 5.1, that the appli-
cation program that implements an algorithm for practical use is distinct from
the test program that describes algorithm performance. The test program need not
resemble the application program at all; it is only required to reproduce faithfully
the algorithm properties of interest. Most of the techniques described here exploit
the laboratory setting and involve changes to test programs that could not work in
application scenarios.

Figure 6.1 illustrates the difference between successful and unsuccessful out-
comes in this context. Panels (a) and (b) show the results of two experiments

181
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Figure 6.1. Inconclusive versus analysis-friendly data (a) large variance; (b) small variance. The
data points in Panel (b) give a clearer view of the relationship between m and the average cost
D(m) because the variance in data in each column is small compared to the change in mean
between columns.

described later in this chapter, to study the average-case cost of a function
D(m). Each column of data represents 25 independent trials at levels m =
1,101,201, . . .1001. The lines connect the sample means in each column. The
mean is known to change from negative to positive as m increases: the experimental
problem is to find the crossover point mc.

The sample means have the same theoretical average in both experiments, but
the data in panel (a) yield little insight about the location of mc, while the data in
panel (b) give good support for a conclusion that mc is somewhere between 400 and
500. The difference can be seen by comparing the scales on the y−axes. In panel (a)
the points in each data column are spread between −50 and +50, which is a much
larger range than the incremental change in means from column to column. In panel
(b) the points are tightly clustered around their means, so the change is easier to see.

The data in panel (b) are more analysis-friendly because they give a clearer
view of the relationship between m and the mean cost D(m). In fact, the view
is so clear that no sophisticated data analysis is needed – a look at the graph is
sufficient to find the crossover point. As the Nobel scientist Ernest Rutherford put
it [1]: “If your experiment needs statistics, then you ought to have done a better
experiment.”

The change in sample means is called the response of this cost to changes in
m. The amount of spread, or dispersion, of the points away from their means
depends on the variance in the data sample. A data sample is analysis-friendly
when variance is small compared to the response in the mean. The principle is the
same whether the data show a functional relationship or a simple cost difference
with respect to some parameter.

Guideline 6.1 For best views of how average cost depends on parameters, work
to magnify response and minimize variance.
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Designs for Good Views
Section 2.2 shows how experimental designs – which involve selecting perfor-
mance indicators, parameters, factors, and design points – can be developed to
support specific experimental goals, such as comparison of design options or
analysis of functional trends.

Experimental designs can also be developed to improve the data analysis. Of
course, the data analysis tail must not wag the algorithm analysis dog: sometimes
the right experimental design for the problem at hand simply does not produce
easy-to-analyze results. But many designs can be improved for better views of the
relationship between parameters and performance.

Figure 6.2 shows an example. Panels (a) and (b) present results of two experi-
ments to study a cost function C(n). The underlying function is the same in both
panels, but the experimental designs differ in the range, spacing, and number of
levels of n, and in the number of random trials. Suppose the goal is to determine
whether the average cost C(n) is linear in n. The data in panel (a) are inconclu-
sive, but panel (b) shows the ideal experimental outcome: a clear view of the cost
function with strong support for linearity.

Here are some do’s and don’ts for designing better experiments with an eye
toward clear views.

• Do run more trials. Variance in a data sample is inversely proportional to sample
size. Many standard techniques of data analysis become stronger and more
reliable when applied to larger samples: as a rule of thumb, reliability increases
in proportion to the square root of sample size.

• Do expand the range of n values. If the response of C(n) to n is small compared
to variance, try magnifying the response by increasing the range of n levels in
the experimental design.
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Figure 6.2. Designs for data analysis. Both panels show samples of the same cost function C(n).
Which data set would you rather analyze to decide whether C(n) is a linear function of n?
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• Don’t summarize prematurely. The sample mean and sample variance are just
two of many possible statistics that might be used in an analysis; the right choice
depends on distributional properties of the sample. Test programs should aways
report the “raw data” showing results of each trial, so the distribution can be
examined during data analysis. (Section 7.1.1 surveys alternative statistics and
when to use them.)

• Do “right size” the data sample. Avoid experiments that produce too many or
too few data points to be analyzable. For example, when testing an iterative
algorithm it may be impractical to report solution cost S(i) at every iteration,
because the resulting data set would be too large. To shrink a too-big data set
to manageable size, either sample it by reporting S(k) at reasonably spaced
intervals or summarize it by reporting the average of each batch of k values.
(Summarizing within a trial is different from summarizing across random trials.)

• Don’t use “lossy” performance indicators. Suppose the experimental goal is
to study a ratio R = X/Y of two performance indicators X and Y . If the test
program reports X and Y , then R can be directly calculated, as well as other
quantities such as X − Y or (X − Y )/X, which may be useful during data
analysis. If the experiment simply reports R, the values of X and Y cannot
be recovered. The test program should report measurements that maximize the
information content of each trial.

• Do prefer narrow performance indicators. A narrow performance indicator
focuses closely on one component of algorithmic performance, for example,
a count of a single operation. A wide performance indicator, such as a count of
total instructions executed or CPU time, represents an aggregate cost. Narrow
performance indicators represent simple relationships that are generally easier
to model and analyze.

Guideline 6.2 Design your experiments to maximize the information content in
the data: aim for clear views of simple relationships.

These options are not available in every experiment, of course. There is usually
a practical limit on the number of trials and on the largest problem size that can be
measured. If the data will not cooperate despite your best design efforts, consider
the techniques surveyed in the next two sections.

6.1 Variance Reduction Techniques
A variance reduction technique (VRT) modifies the test program in a way that
reduces variance in the measured outcomes, on the theory that less variance yields
better views of average-case costs. These techniques really do reduce variance in
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data: if the goal of the experiment is to understand variance as it occurs naturally,
do not apply VRTs.

To illustrate how these techniques work, Section 6.1.1 presents a case study
to compare two algorithms for a problem in dynamic searching. The first experi-
ment utilizes two straightforward implementations of the algorithms and reports
both mean costs and some statistics to assess variance. Next, three variance
reduction techniques, called common random variates, control variates, and con-
ditional expectation, are applied, and the outcomes are compared to those from
the first experiment. Some tips on applying these VRTs to general algorithms are
also presented. Section 6.1.2 discusses some additional VRTs and their general
application.

6.1.1 Case Study: VRTs for self-organizing sequential search rules
The self-organizing sequential search problem is to maintain a list of n distinct
keys under a series of m requests for keys. The cost of each request is equal to
the position of the key in the list, which is the cost of searching for the key using
a linear search from the front. Figure 6.3 shows an example list containing keys
1 . . .6 in positions 1 through 6: a request for key 3 in this list would have cost 5.

The list is allowed to reorder itself by some rule that tries to keep frequently
requested keys near the front to reduce total search cost, but the rule must work
without any information about future requests. Two popular rules, illustrated in
Figure 6.3, are:

• Move-to-Front (MTF): After key k is requested, move it to the front of the list,
and shift everything between one space back.

• Transpose (TR): After key k is requested, move it one position closer to the
front by transposing with its predecessor.

Nothing happens if k is already at the front of the list. Transpose is more conser-
vative since keys change position incrementally, while MTF is more aggressive in
moving a requested key all the way to the front. Which rule does a better job?

List: 5 2 1 6 3 4

3 5 2 1 6 4

5 2 1 3 6 4

1 2 3 4 5 6

MTF:

TR:

Request = 3,Cost = 5

Figure 6.3. Self-organizing sequential search. The request for key 3 has cost 5 because that key
is in position 5 in the list. The MTF rule moves the requested key to the front of the list; the TR
rule transposes the key with its predecessor.
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Average-Case Experimental Analysis
We develop some notation to analyze these rules. Suppose requests are gener-
ated independently at random according to a probability distribution P(n) =
p1,p2, . . .pn defined on n keys. The request cost for key k in position L[i] in
a given list is equal to its position i. The average list cost for list L depends on the
request costs and request probabilities for each key:

C(L) =
n∑

i=1

i ·pL[i]. (6.1)

The average cost of a rule is the expected cost of the mth request, assuming that
L is initially in random order (each permutation equally likely) and that the rule is
applied to a sequence of random requests Ri , i = 1 . . .m− 1, generated according
to distribution P(n). Let μ(n,m) denote the average cost of MTF and let τ(n,m)

denote the average cost of TR in this model.
The experiments described here measure costs for requests drawn from Zipf’s

distribution, which has been used to model naturally occurring phenomena such as
frequencies of words or letters in texts. This distribution, denoted Z(n), is defined
over the integers 1 . . .n. The probability that key k ∈ 1 . . .n is requested next is
given by

p(k) = 1

kHn

, (6.2)

where Hn is the nth harmonic number, defined by Hn = ∑n
j=1 1/j . (Multiplying

by Hn scales the probabilities so they sum to 1.) A picture of Zipf’s distribution
for n = 9 is shown in the following.

.3535

0
1 2 3 4 5 6 7 8 9

Key 1 is generated with probability p1 = 0.3535. Key 2 appears half as often as
key 1, key 3 appears one-third as often as key 1, and so on.
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SequentialSearchTest (n, m, R, trials) {
for (t=1; t<= trials; t++) {

L = randomPermutation (n);
for (i=1; i<=m; i++) {

k = randomZipf(n);
for (j=1; L[j] != k; j++);
cost = j;
reorder(R, L, j); // R = MTF or TR

}
printCost(R, t, n, m, cost);

}
}

Figure 6.4. Sequential Search test code. This test program prints the cost of the mth request in
each trial, assuming keys are generated according to Z(n) and the list is reordered by either MTF
or TR.

There are no known formulas for calculating μ(n,m) and τ(n,m) under this
distribution, so we develop experiments to study these average costs.Atest program
for this purpose is sketched in Figure 6.4. In each random trial, the code generates
an initial list L that contains a random permutation of the keys. Then it generates
a random sequence of keys according to Zipf’s distribution: for each key, it looks
up the request in the list, records the cost, and reorders the list according to the
rule. At the end the program reports the cost of the mth request.

Code to generate random permutations may be found in Section 5.2.2 of this text,
and two methods for generating random variates according to Zipf’s distribution
are described in Section 5.2.4. C language test programs for both MTF and TR
can be downloaded from AlgLab.

The experiment runs t random trials of this program at each design point (n,m).
The random variate Mi(n,m), which can take any value in 1 . . .n, denotes the cost
of MTF reported in the ith trial at this design point. The sample mean at a design
point, denoted M(n,m), is the average of t outcomes:

M(n,m) = 1

t

t∑
i=1

Mi(n,m). (6.3)

The expectation E[Mi(n,m)] of a random variate such as Mi(n,m) is the
weighted average of all possible outcomes, with each outcome weighted by its
(unknown) probability of occurring. Since we assume these variates are generated
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according to some distribution with mean μ(n,m), it must hold that

E[Mi(n,m)] = μ(n,m). (6.4)

We say that variate Mi(n,m) is an estimator of μ(n,m), because its expectation
equals μ(n,m). The sample mean M(n,m) from an experiment is likely to be close
to μ(n,m), and it is sometimes possible to quantify how close.

We will also be interested in the sample variance, a statistic that describes the
dispersion of points away from their mean, defined by

V ar(M(n,m)) = 1

t

t∑
i=1

(Mi(n,m)−M(m,m))2. (6.5)

Let Ti(n,m), T (n,m), and Var(T (n,m)) denote the analogous quantities for the
Transpose rule.

Although experiments are developed here to study theoretical questions, it is
worth pointing out that self-organizing search rules, especially MTF, are of interest
in many practical contexts. For example, most caching and paging algorithms
keep track of elements in least-recently-used (LRU) order, which is identical to
MTF order. When used in applications that require lookups in linearly organized
data, these algorithms are sometimes more efficient than even binary search, for
example, when the key distribution is skewed toward a small number of frequent
requests, or when the request sequence exhibits temporal locality. Most of the
variance reduction techniques illustrated here apply equally well to theory-driven
or application-driven experiments.

The First Experiment
Rivest [15] showed that for any nonuniform request distribution such as Zipf’s
distribution, Transpose has lower asymptotic cost, but Move-to-Front reaches its
asymptote more quickly. We know that μ(n,1) = τ(n,1) because the initial list
is randomly ordered; furthermore, Rivest’s result implies that there is a crossover
point mc such that

μ(n,m) < τ(n,m) when 1 < m < mc

μ(n,m) > τ(n,m) when mc ≤ m.

Our first experimental goal is to locate the crossover point mc.
Figure 6.5 shows the outcome of the first experiment, measuring Mi(50,m)

and Ti(50,m) in 25 random trials at each design point n = 50 and m =
1,101,201, . . .1001. The lines connect the sample means M(50,m) and T (50,m)

at each m. Unfortunately there is too much variance in the data to locate mc.
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Figure 6.5. The cost of the mth request. Panel (a) shows measurements of request costs Mi(50,m)

for Move-to-Front; panel (b) shows measurements of request costs Ti(50,m) for Transpose. Both
experiments take 25 random trials each at m = 1,101,201 . . .1001, with requests generated by
Zipf’s distribution on n = 50 keys. The lines connect sample means in each column of data.

The sample means and sample variances for the rightmost data columns in
each panel (n = 50,m = 1001) appear in the following table. These statistics are
calculated according to formulas (6.3) and (6.5).

Statistical methods for expressing our confidence in how well the sample means
estimate the distribution means μ(n,m) and τ(n,m) are described in Section
7.1.2. One method is to calculate 95-percent confidence intervals for M(n,m)

and T (n,m), which are also shown in the table. If certain assumptions about the
data sample hold, the confidence intervals will contain the true means, μ(50,1001)

and τ(50,1001), in 95 out of 100 experiments.

Mean Var 95% Conf.

MTF 15.6 159.75 [10.64, 20.56]
TR 11.4 195.83 [5.91, 16.89]

The huge variance in the data creates wide confidence intervals with ranges near
10, which indicate that M(n,m) and T (n,m) might be as far as ±5 from their true
means. Since the confidence intervals overlap, we cannot say with any certainty
whether μ(50,1001) < τ(50,1001) at this point.

It should be pointed out that the “certain assumptions about the data” mentioned
previously and explained in detail in Section 7.1.2 only partially hold in these
experiments. Confidence intervals are reported here for comparison purposes, to
illustrate how variance reduction yields stronger results. Do not place too much
confidence in these confidence intervals for estimation purposes.
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It is always possible to reduce variance by running more random trials at each
design point: that is, increasing t is guaranteed to shrink the ranges of the confidence
intervals. The variance reduction techniques illustrated in the next few sections
take a different approach by reducing variance without increasing sample sizes.

VRT 1: Common Random Numbers
The first experiment measured Move-to-Front and Transpose in independent trials;
that means that the initial random permutations and the random request sequences
were generated separately in each test.

The common random numbers VRT can be applied to any algorithmic
experiment when the following two properties hold:

1. The goal of the experiment is to compare the differences in costs of two (or
more) algorithms.

2. There is reason to believe that the costs of the algorithms are positively cor-
related with respect to some random variate in each trial. Positive correlation
means the cost of one algorithm is likely to be high when the cost of the other
is high, and vice versa.

Under these circumstances, measuring cost differences in paired trials with match-
ing random variates should yield outcomes with less variance than measuring
differences using independent random variates.

We can apply this idea to MTF and TR by noting that search costs are identical
when list orders are identical, and similar when list orders are similar. Since both
rules try to keep frequently requested keys near the front of the list, the costs of the
mth request are positively correlated in the sense that frequently requested keys
are likely to be near the front and infrequently requested keys are likely to be near
the back of both lists. We can induce more correlation by running the two rules on
identical rather than separate request sequences, so that list orders are more likely
to be similar at time m.

The next experiment runs MTF and TR using common random numbers. The
variates Mi(n,m) and Ti(n,m) denote the cost of the mth request in the ith trial as
before, with the understanding that in trial i, the initial list order and the sequence
of m requests are the same for both rules.

To evaluate this approach, let δ(n,m) = μ(n,m)−τ(n,m) denote the difference
between mean rule costs. By Rivest’s result, we know that δ(n,1) = 0 and

δ(n,m) < 0 when 1 < m < mc

δ(n,m) > 0 when mc ≤ m.

Cambridge Books Online © Cambridge University Press, 2012



6.1 Variance Reduction Techniques 191

0 200 600

(a) (b)

1000
m m

0 200 600 1000

D D

40

20

0

–40

–20 –20

40

20

0

–40

Figure 6.6. Common random numbers. Panel (a) shows the cost difference between TR and
MTF on independent request sequences; panel (b) shows the cost difference on common request
sequences. Overall variance in panel (b) is about half that in panel (a); at m = 1 variance is zero.

In this new notation the experimental goal is to find the point mc where δ(n,m)

changes from negative to positive. Let

Di(n,m) = Mi(n,m)−Ti(n,m)

denote the cost difference in trial i, and let D(n,m) denote the average difference
over all trials at design point (n,m).

Panel of Figure 6.6 shows the results of measuring Di(n,m) in independent
trials as in the first experiment, and panel (b) shows the results of paired tests
with matching initial list orders and request sequences. The sample means, sample
variance, and 95-percent confidence intervals for the rightmost data columns in
each panel appear in the following table.

D(50,1,001) Var(50,1,001) 95% Conf.

Independent 4.20 456.42 [-4.17, 12.57]
Com. Ran. Num. -3.00 206.75 [-8.64, 2.63]

The expectation of the mean D(n,m) does not change in the two experiments, but
the variance in the data is visibly smaller. Panel (b) shows that Di(n,1) = 0 since
initial list orders are identical; that means that variance is zero. In the rightmost
column, variance is cut in half and range of 95% confidence intervals reduces from
16.77 to 11.28. Even though D(50,1001) is negative in the second experiment,
this VRT is not quite enough to obtain a definitive answer about mc, since the
interval [−8.64,2.64] contains both negative and positive values. This experiment
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would need fewer additional trials than the first one to shrink the range enough to
answer the question.

Guideline 6.3 Common random numbers: When performance of two test subjects
is positively correlated with respect to some random variate, compare performance
in paired trials with identical values for that variate.

Why It Works. The random variates Mi and Ti and Di = Mi − Ti are generated
according to three unknown probability distributions with respective means μ, τ ,
and δ. It follows from their definitions that the expectation of a difference is equal
to the difference of expectations, that is:

δ = E[Di] = E[Mi −Ti] = E[Mi]−E[Ti] = τ −μ.

By definition (6.2) the sample variance of Mi is the average squared distance
from the mean:

Var(Mi) = 1

t

t∑
i=1

(Mi −M)2

and the variance of Ti is calculated similarly. The variance of the difference Di is
defined as follows:

Var(Di) = Var(Mi −Ti) = Var(Mi)+ Var(Ti)− 2Cov(Mi ,Ti).

The covariance term Cov(Mi ,Ti), defined in Section 7.2, is a measure of the
similarity of Mi and Ti when matched pairwise across trials: if Mi tends to be
high when Ti is high, and low when Ti is low, covariance is positive; if one tends
to be high when the other is low, covariance is negative; and when there is no
relationship (the variates are uncorrelated), covariance is zero.

If experiments are run on MTF and TR using independent request sequences, it
must hold that Cov(Ti ,Mi) = 0. But if experiments are run using identical inputs,
and if Mi and Ti have positive covariance, then the negated covariance term shrinks
the value of V ar(Di). This is the phenomenon illustrated in Figure 6.6. Note that
if the costs of these two rules were negatively correlated, application of common
random numbers would increase the variance in the difference.

In the general context of algorithm experiments, the common random num-
bers VRT may be applied to two or more algorithms tested on identical inputs, as
illustrated here, or to one algorithm tested under different input, design, or envi-
ronmental conditions. The common random variate could be anything that might
be considered a noise parameter (see Section 2.2), which causes measurements to
vary from trial to trial – it need not be random in the sense of “randomly gener-
ated.” This includes properties of the input instance, the initial configuration of a

Cambridge Books Online © Cambridge University Press, 2012



6.1 Variance Reduction Techniques 193

data structure, a random number sequence internal to the algorithm(s), or even the
test environment in which experiments are run.

If there is reason to believe that two cost measurements are likely to be positively
correlated in matched trials respecting that random variate, a comparison of cost
differences in matched trials is likely to give better results than a comparison of
differences in independent trials. Usually there will be no proof available that
covariance is positive (if you understand the algorithms well enough to analyze
their covariance structure, why are you doing experiments?), but a small pilot
experiment to check for correlations can provide guidance.

VRT 2: Control Variates
Instead of exploiting correlation to compare two outcomes, the control variates
VRT exploits positive correlation to adjust an outcome by moving it closer to its
expectation. The technique is illustrated here using the Transpose rule, although
it can also be applied to MTF. Suppose now the experimental goal is to estimate
τ(n,m) using measurements of mean costs T (n,m).

In general, the control variate VRT can be applied to a variate Ti when another
random variate Ri can be identified for which two properties hold:

1. Ri is positively correlated with Ti .
2. The expected value ρ = E[Ri] can be calculated.

When these properties hold, we say that Ri is a control variate for Ti and define a
new variate T ′

i by

T ′
i = Ti − c(Ri −ρ),

with a constant c described later. By definition, E[Ri]−ρ = 0, which implies that
E[Ri −ρ] = 0. Therefore, E[T ′

i ] = E[Ti] = τ , no matter what value c has, so this
new variate is also an estimator of τ . Furthermore, it holds (see [2]) that

Var(T ′
i ) = Var(Ti)+ c2Var(Ri)− 2Cov(Ti ,Ri).

If the sum of the second and third terms is negative – that is, if there is enough
positive correlation between Ri and Ti to dominate the variance in Ri – then the
adjusted cost T ′

i will have smaller variance than Ti . It turns out that variance in T ′
i

is minimized by setting

c = Cov(Ti ,Ri)/V ar(Ri).

Intuitively, this VRT adjusts each Ti to be closer to its expectation by subtracting
out the discrepancy between the control variate Ri and its known expectation
ρ. When Ri is higher than average, the corresponding higher-than-average Ti is
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Figure 6.7. Control variates. Panel (a) shows measurements of Ti(50,m), with no control variate
and panel (b) shows measurements of T ′

i (50,m) using the control variate Ri(50,m). The lines
connect sample means in each column. The data in panel (b) have smaller variance; therefore,
the sample means are better estimators of τ(n,m).

adjusted downward; when Ri is lower than average, Ti is adjusted upward. The
variate T ′

i has smaller variance than Ti when Ti and Ri are positively correlated.
To apply this VRT to our Transpose rule, let Ri(n,m) be the value of the key

requested at time m. We can argue that Ri is likely to be positively correlated with
Ti because Zipf’s distribution assigns probabilities to keys in decreasing order.
Therefore, the optimal list order is [1, 2, 3, . . .n], so the value of key k is equal
to its position in the optimal list. Since Transpose aims to create low-cost lists,
the position of a given key in the list is likely to be correlated with its value.
This correlation is stronger when m is large because the average list cost for TR
improves over time.

The average cost of searching the optimal list under Zipf’s distribution is easily
calculated by

ρ(n) =
n∑

i=1

i

iHn

= n

Hn

.

At n = 50 this works out to ρ(50) = 11.113. A quick experiment shows that c =
0.871 is a good choice of coefficient here; therefore, we define the new estimator
of τ(n,m) as

T ′
i (n,m) = Ti(n,m)− 0.871(Ri(n,m)−ρ(n)).

This variate has (provably) the same expectation as Ti(n,m), but (arguably) smaller
variance.

The next experiment modifies the test program to report both the original Trans-
pose cost Ti(n,m) and the adjusted cost T ′

i (n,m). The results are shown in Figure
6.7. Panel (a) shows Ti(50,m), and panel (b) shows T ′

i (50,m), measured in 25 tri-
als at m = 1,1001, . . .10001. These levels are higher than in previous experiments
to highlight this effect at large m.
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Although the overall range of T ′
i (n,m) in panel (b) is larger because the adjusted

cost T ′
i can be negative, and variance in T ′

i (n,m) is maximized at m = 1 when
the list is in random initial order, the reduction in variance at higher values of m

is dramatic. Statistics for the two rightmost data columns appear in the following
table.

Mean Var 95% Conf.

Ti(50,10001) 17.48 263.68 [11.11, 23.85]
T ′

i (50,10001) 10.36 4.28 [9.55, 11.17]

Variance is 62 times smaller when this VRT is applied, and the range of the
confidence intervals shrinks from 12.74 to just 1.62. This suggests that the estimate
T ′(50,10001) = 10.36 is off by no more than about 16 percent.

Guideline 6.4 Control variates: Adjust variate Ti toward its expectation by sub-
tracting the discrepancy between another variate Ri and its known expectation ρ.

Applications To Other Algorithms. More generally in algorithmic problems, a
control variate like Ri can be anything that is positively correlated with algorithm
cost Ti , such as a property of the input, of an internal state of the algorithm, or of
a simpler algorithm run on the same input. As before, a proof that Ri and Ti are
positively correlated is not likely to be available, but a small experiment can be
used to test that property.

Here are some hints on where to look for control variates in algorithmic
experiments.

• Data structure experiments often start with a random initial data structure D0

that is subjected to a sequence of m random operations. If the average cost
δ0 of the initial configuration can be calculated, and if average cost at time
m is likely to be correlated with initial cost (that is, if the cost of the data
structure changes incrementally over time), then Cost(D0) is a control vari-
ate for Cost(Dm). To estimate the cost at time m, measure the adjusted cost
Cost ′(Dm) = Cost(Dm) − c(Cost(D0) − δ0). For example, the initial cost of
a random binary search tree may serve as a control variate for the cost after m

random insert/delete operations.
• This idea can also be applied to tests of an iterative heuristic that generates a

solution Si at time i by making an incremental change to Si−1. The initial solution
S0 may serve as a control variate for Si if its average cost can be calculated.

• Much is known about expected values of properties of random graphs. For
example, given a complete graph G with random edge costs generated according
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to an arbitrary distribution F with d = F(0) > 0, the expected cost of the
minimum spanning tree (MST) of G approaches a constant near 1.202/d [7].
The cost of the MST of a graph may be used as control variate for the cost of a
TSP tour if the two are positively correlated. Results like this provide a pool of
possible control variates for algorithms on random graphs.

• In the bin packing case study described in Section 3.2, the problem is to pack a
list Ln containing n random weights from the range (0,1) into unit-capacity bins
so as to minimize the B(Ln), the number of bins used. Let S(Ln) denote the sum
of all the weights in the list. The bin count B(Ln) is positively correlated with
S(Ln), and the mean σ = S(Ln) can be calculated whenever Ln is randomly
generated. Thus the weight sum is a control variate for bin count. Instead of
measuring B(Ln), measure the difference B ′(Ln) = B(Ln)−c(S(Ln)−σ) and
enjoy reduced variance in the results.

• In experiments using real-world data, the mean ρ corresponds to an average
over a large pool of real-world instances, which may be impossible to calculate.
Borogovac and Vakili [6] point out that control variates can be effective when
an exact mean ρ is replaced with an empirical estimate, or with an upper or
lower bound. They show how to adjust the calculation of the substitute variate
T ′

i in these circumstances.
• Whether or not ρ is known, it is sometimes useful simply to redefine the cost of

an algorithm by subtracting out a control variate. Bentley et al. [5] describe an
experimental study of bin packing algorithms that adopts empty space E(Ln) =
B(Ln) − S(Ln) as the measure of solution cost instead of bin count B(Ln).
Experimental results for one cost can be arithmetically translated to imply results
about the other, but E(Ln) is friendlier to data analysis because variance is
smaller. This is sometimes called indirect estimation in the VRT literature.

• Johnson, McGeoch, and Rothberg [8] describe a similar use of indirect estima-
tion in a study of the traveling salesman problem: instead of measuring tour
cost T (Gi) on a graph of n vertices, they measure T ′(Gi) = T (Gi)−HK(Gi),
which corresponds to the excess over the Held-Karp lower bound HK(Gi) on
tour cost.

VRT 3: Conditional Expectation
Next we apply the conditional expectation variance reduction technique, some-
times called conditional Monte Carlo, to the Move-to-Front rule. This VRT
conceptually splits an experiment into two phases: first, generate a random state
S, and second, generate a random sample of the cost of that state.

Using this approach, we can think of one trial of the Move-to-Front rule as
consisting of a first phase that generates a sequence of m− 1 requests to obtain a
random list order L (the state of the algorithm after m− 1 requests), followed by
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Figure 6.8. Conditional Expectation with 10 extra samples. Panel (a) shows samples of
Mi(50,m) from the first experiment. Panel (b) shows samples of M10

i (50,m), which reports
the average cost of r = 10 requests on the mth list in each trial.

a second phase that generates the mth random request, looks it up in the list, and
reports its cost. The random variate Mi(n,m) depends both on the particular list
order � and on the particular request k.

Conditional expectation works by concentrating extra effort in the second phase
to reduce variance in the estimation of the cost per state. Two applications of this
VRT are illustrated here.

First, instead of generating one request in the second phase, we can modify the
code to generate r random requests and record their costs without changing the list
order each time. The new variate Mr

i (n,m) reports the average costs of r requests
on the same list, instead of just one. This average cost has the same expectation as
the cost of one request and is guaranteed to have lower variance.

Figure 6.8 presents the result of applying this technique to MTF. Panel (a) shows
Mi(50,m) in 25 independent trials at each level of m, and panel (b) shows measure-
ments of M10

i (50,m) in 25 independent trials, where each data point represents the
average of r = 10 requests on the final list order. Since the first phase dominates
the computation time, increasing the cost of the second phase by a factor of 10 has
negligible effect on total running time. Statistics for the last columns of data are
as follows.

Mean Var. 95% Conf.

Mi(50,1001) 15.60 159.75 [10.65 , 22.55]
M10

i (50,1001) 15.00 17.61 [13.35, 16.65]

Variance is 9.07 times smaller in this table; on average the variance will be 10
times smaller. The range in confidence intervals decreases from 9.91 to 3.3; on
average the range will shrink by a factor of 3.17 = √

10.
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SequentialSearchTest(n, m, R, trials) {
for (t=1; t<=trials; t++) {

L = randomPermutation (n); // Phase 1
for (i=1; i<=m-1; i++) {

k = randomZipf(n);
for (j=1; L[j] != k; j++);
reorder(R, L, j); // R=MTF or TR

cost = 0; // Phase 2
for (i=1; i<=n; i++)

cost += i * prob[L[i]];
}
printCost(R, t, n, m, cost);

}
}

Figure 6.9. Sequential search test code Version 2. This test program implements the conditional
expectation VRT.

Our second example of conditional expectation applied to MTF is even more
effective. The next experiment simply replaces the second phase that generates
random requests for the list with an explicit calculation of the average list cost
under Zipf’s distribution, using the cost formula (6.1) given at the beginning of
this section applied to the list order �:

C(�) =
n∑

i=1

i ·p�[i].

The new test program is sketched in Figure 6.9; this code uses an array
prob[1...n], which contains request probabilities on keys 1...n under Zipf’s
distribution.

The calculation of average list cost takes O(n) time, which is more than the
average cost to perform a search for one request or even 10 requests. The extra
time pays off, however, in the dramatic reduction in variance seen in Figure 6.10.
Panel (a) shows all three costs Mi(n,m), Ti(n,m), and Di(n,m) from the origi-
nal experiment, and panel (b) shows measurements of Mc

i (n,m), T c
i (n,m), and

Dc
i (n,m), the results of applying the second conditional expectation technique

using exact calculation of average list cost. The overall reduction in variance is
reflected in the smaller confidence intervals for the rightmost data columns shown
in the table.
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Figure 6.10. Conditional expectation with exact costs. Panel (a) shows measurements of
Mi(50,m), Ti(50,m), and Di(50,m) from the first experiment. Panel (b) shows measurements
of these costs after application of conditional expectation with exact computation of average list
cost.

M(50,1001) T (50,1001) D(50,1001)

Before VRT 15.6 [10.6, 20.6] 11.4 [5.9, 16.9] 4.2 [-4.2, 12.6]
After VRT 14.6 [14.3, 15.0] 12.2 [12.0, 13.4] 1.5 [1.1, 1.9]

Figure 6.1 from the beginning of the chapter shows the difference data on an
easier-to-read scale. It is now possible actually to see the faster convergence of
MTF predicted by Rivest [15]. We can locate the crossover point m0 somewhere
between m = 401 and m = 501. More experiments focused on that region, together
with the common random numbers VRT, could be applied to get a tighter estimate
of the location of mc.

Guideline 6.5 Conditional expectation: When the computation of an average cost
can be split into two parts – generate a random state, then estimate the cost of the
state – add extra work to reduce or eliminate variance in the second part.

Why Conditional Expectation Works. Let Li be a random variate in the experiment
that takes a value corresponding to a particular list order � after the m−1st request
in trial i.
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The conditional expectation of Mi , given that the list Li is in the order �, is
denoted E[Mi |Li = �]. This is the average cost of searching over all positions j

in a list ordered by �. Let M�
i denote a random variate calculated this way:

M�
i = E[Mi |Li = �] =

n∑
j=1

jp�[j ].

Both Mi(n,m) and M�
i (n,m) are estimators of μ(n,m).

In the second application of conditional expectation to the MFT rule, the sam-
pling step is replaced with a direct calculation of M�

i as in the preceding formula.
It always holds (see [2]) that

V ar(Mi) ≥ V ar(M�
i ).

Therefore, direct computation of the average list cost M�
i (n,m) in each trial is

guaranteed to have smaller variance than a single measurement of Mi(n,m).
In the first application of conditional expectation, the test program generates � in

the first phase and in the second phase generates r random requests to construct a
random sample of request costs for �. This is equivalent to estimating M�

i (n,m) by
random sampling. Such an estimate based on a sample of size r > 1 is guaranteed
to have less variance than an estimate based on a sample of size one, as in the orig-
inal experiment. The second approach is more effective than the first in reducing
variance but cannot always be applied to general computational problems.

Both variations on the conditional expectation VRT should be considered in
general algorithmic experiments whenever the following circumstances arise:

1. The experiment can be split into two phases: generating a random “state” and
then generating a random variate to estimate the average cost of the state.

2. Either (1) it is cost-effective to generate extra random samples in the second
phase, to reduce variance in the estimation of average cost of the state; or (2) the
average cost of the state can be directly calculated by traversing its elements.

This scenario is common in data structure experiments, where the purpose of
the experiment is to measure the average cost of the data structure over a sequence
of m random operations. Instead of reporting the cost of the mth operation, report
the cost of many operations on the same configuration of the data structure. For
example, to evaluate an algorithm for performing insertions and deletions in binary
trees, start by generating m− 1 random insert/delete operations and then traverse
the BST to compute directly the average cost of the next insert or delete.

Another example arises in analysis of heuristic search algorithms, which operate
by stepping through a space of solutions. The solution at time m represents a state:
instead of reporting the cost of a single solution at time m, sample the average cost
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of many solutions reachable from the solution at time m − 1. If sample variance
within a single trial is a large component of variance among separate trials, this
VRT will be effective. As always, there is no a priori guarantee that the technique
will work, but a small pilot experiment can provide guidance.

6.1.2 Additional VRTs
We have seen three variance reduction techniques – common random numbers,
control variates, and conditional expectation – that worked to reduce variance
in the outcomes of the Move-to-Front and Transpose experiments. This section
describes four more techniques that may be useful to computational experiments
in general, but not to tests of sequential search rules.

Antithetic Variates
Suppose algorithm A takes a single input Ui drawn uniformly at random from
the real interval (0,1), and the cost variate Ai is positively correlated with Ui .
Instead of generating t independent samples of Ai , the antithetic variates technique
generates t/2 pairs of samples using Ui and the antithetic input U ∗

i = 1 − Ui to
obtain antithetic costs Ai and A∗

i . The mean of each pair Aa
i = (Ai + A∗

i )/2 is
reported as the trial outcome.

For example, instead of generating 10 random uniform inputs,

[.53, .27, .65, .05, .33, .27, .91, .53, .98, .45],
and computing average cost on the basis of outcomes Ai in 10 trials

A = 1

10

10∑
i=1

Ai ,

this approach would generate five pairs of antithetic inputs (Ui ,U∗i ),

[(.53, .47),(.65, .72),(.05, .95),(.33, .64),(.27,73)]
and compute the average of mean antithetic costs

Aa = 1

5

5∑
i=1

Aa
i .

Since Ui and U ∗
i each obey the uniform distribution, the expectations are the

same in both cases. If Ui and Ai are positively correlated, then the Aa
i variates

have smaller sample variance than the Ai variates, even though there are only half
as many.
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In some cases it may be more appropriate to define antithetic uniforms by Ui

and U ∗
i = (Ui + 1/2)mod1), if the correlation in algorithm A indicates that this

would work better.
At first glance this technique does not apply to our sequential search rules

because they do not take uniform variates as inputs, but rather variates dis-
tributed by Zipf’s rule. On the other hand, the Zipf generator (and any generator
of nonuniform variates) does take uniform variates as input.

It is possible to generate antithetic pairs of requests Ri and Ra
i from antithetic

uniforms Ui ,Ua
i using the lookup method of generation described in Section 5.2.4.

This method creates an array of break points representing cumulative probabili-
ties in a distribution. For example, the probability distribution D = (.5, .3, .2) on
integers 1, 2, 3, would be represented by a table T = (.5, .8,1) of break points, as
shown in the following diagram.

U U∗

� �
.5 .3 .2

0 1.5 .8

1 2 3

Two table lookups with antithetic uniforms Ui = 0.25 and U ∗ = 0.75 would yield
antithetic Zipf variates Zi = 1 and Z∗

i = 2. Using this lookup method to generate
antithetic variates guarantees that Zi and Z∗

i , when considered separately, are each
generated according to the Zipf distribution; this is necessary so as not to skew the
experimental results.

Use of antithetic variates in the MTF and TR experiments should produce a
reduction in variance. However, the test programs originally developed for this
problem use the alternative aliasing method to generate random requests, which
does not lend itself to generation of antithetic request sequences.

Stratification and poststratification
Suppose an input instance I contains n uniform random numbers from the range
[0,1). This range can be divided into, say, 10 “strata,” [0, .1), [.1, .2) . . . [.9,1),
and the expected number of variates in each stratum is known to be n/10. The
stratification VRT would replace a random sample of n numbers from [0,1) with
a semirandom instance that contains exactly n/10 numbers from each stratum.

In our sequential search example, we could generate a random sequence of
m = 137 requests according to Zipf’s distribution with n = 5, by first generating
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the following quantities of each request key so that the proportions are exactly
correct:

Variate 1 2 3 4 5
Count 60 30 20 15 12

Arandom permutation of these numbers could then serve as the request sequence
in each trial. An experiment that measures search costs using lists containing
exactly the expected number of variates in each strataum will have smaller sample
variance than one that generates random requests in the standard way.

The problem with applying this approach to Zipf’s distribution in general is
that for many values of m the expectations of the strata are not integral. Simply
rounding those numbers up or down before generating the sequences creates biased
inputs that will skew the cost measurements.

This problem can be solved using a trick similar to that described for antithetic
variates discussion, by pushing stratification into the random number generator.
To create a stratified list of m = 100 requests according to Zipf’s distribution, first
generate a stratified list of 100 uniforms: 10 from [0, .1), 10 from [.1, .2), and so
forth. Then use a random permutation of the stratified uniform variates to create a
stratified sample of Zipf variates by the lookup method.

A related VRT called poststratification is similar to the control variates tech-
nique, in the sense that a cost variate Ai is adjusted towards its mean according
to the deviation of another variate Si from its mean (assuming that the two vari-
ates are positively correlated). In this case the other variate Si is associated with
the input and represents deviation from expectation within a stratum. Suppose,
for example, algorithm A takes input I containing n random numbers drawn uni-
formly from (0,1), and Ai is correlated with Si , which represents how many
numbers in I are above the mean 0.5. The adjusted cost A∗

i would be calculated
by A∗

i = Ai − c(Si −n/0.5), for a constant c that can be selected empirically.

Importance Sampling
This VRT is applicable when the mean cost is dominated by some very expensive
but rare event. A single experiment may not generate enough random trials for
the rare event to be observed, so the sample mean M consistently underestimates
the true mean μ. Importance sampling adjusts the distribution of generated events
so that the rare event occurs more frequently (thus reducing variance in the esti-
mate) and then reweights the output measurements to correct the adjustment to the
distribution. For details see any textbook on simulation, for example, [2] or [12].
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Guideline 6.6 Consider a variety of variance reduction techniques, including
antithetic variates, stratification, poststratification, and importance sampling.

6.2 Simulation Shortcuts
Simulation shortcuts reduce variance by making the test program run faster. Faster
code means that more data samples can be collected per unit of computation time.
More data means less variance, and less variance is guaranteed to improve many
statistical measures of confidence in estimates of means.

The algorithm and code-tuning techniques of Chapter 4 also make test programs
run faster; however, the techniques described here exploit special circumstances
of the “laboratory” scenario in which test programs are run and as a general rule
cannot be applied to application programs running in real-world situations.

Two categories of shortcuts – called overloading and modeling tricks – are
illustrated here using our sequential search case study. To simplify the discussion
the shortcuts are applied to the first versions of the test programs for MTF and
Transpose, sketched in Figure 6.11. But in most cases the shortcuts apply as well
to later versions that incorporate the variance reduction techniques.

Trial Overloading
The term overloading is used in programming language design to refer to an
operator or function that can have multiple meanings; here the term is coined to

MTF(n,m,trials) { Transpose(n,m,trials) {
for(t=1; t<=trials; t++){ for(t=1; t<=trials; t++){
L = randomPermutation(n); L = randomPermutation(n);
for (i=1; i<=m; i++){ for (i=1; i<=m; i++){

r = randomZipf(n); r = randomZipf(n);
for (j=1; L[j]!=r; j++); for (j=1; L[j]!=r; j++);
c = j; c = j;
tmp = L[j];
while(j>1){ if (j != 1) {

L[j] = L[j-1]; tmp = L[j];
j--; L[j] = L[j-1];

} L[j-1] = tmp;
L[1]=tmp; }

} }
printCost(M,t,n,m,c); printCost(T,t,n,m,c);
} }

} }

(a) MTF (b) Transpose

Figure 6.11. Original test programs for MTF and Transpose.
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refer to a test program that reports measurements for multiple design points in one
trial.

Our original experimental design to evaluate the MTF and Transpose takes
t = 25 random trials at levels n = 50 and m = (1, 101, 201, . . .1001), totaling 11
design points. This design requires running 625 = 25×11 tests of each algorithm.
A faster strategy is to fix the largest design point (n = 50, m = 1001) and to modify
the test code to report the intermediate request costs at md = 1,101, . . . in one trial.
This tactic of overloading each trial to report costs for all levels of m produces the
same 625 data points in 1/11 of the time.

To push this idea further, the two test programs could also be modified to report
costs for multiple levels of n as shown in the following example.

5 2 4 6 3 1
1 2 3 4 5 6

n = 5: Request = 3, Cost = 5
n = 4: Request = 3, Cost = 3
n = 3: Request = 3, Cost = 2

Suppose the last (mth) request is for key 3. In the full list the request cost is 5.
The cost of this request in the sublist of keys (1 . . .4) is 3, because key 3 is third
from the front among sublist keys; similarly the cost of the request among the
sublist of keys (1 . . .3) is 2. More generally, if the mth request is for key r , then for
each k between r and n, the cost of that request within the sublist of keys (1 . . . k)

can be calculated.
Note, however, that the mth request for keys from (1,n) is not the mth request for

keys from (1 . . . k). Instead it is the mth
k request, equal to the number of requests for

keys in (1 . . . k) that have appeared in the request sequence. Each mk is a random
variate that depends on the particular request sequence.

To implement this second overloading scheme, the test program uses an array
rcount[1...n] to hold request counts for every key. After the last request for
key r , the code reports the request count mk and the request cost among sublist
keys, for each k ∈ r . . .n.

The code sketch in Figure 6.12 shows how to modify the MTF program to
incorporate both overloading strategies. The program reports costs for every pth

request, which corresponds to overloading the design points m = 1,p + 1,2p +
1, . . . . Furthermore, assuming the last request is for key r , the program reports,
for each key k = r . . .n, the request costs and request counts for sublists of L

containing keys in the range (1 . . . k).

Guideline 6.7 Overloading: rewrite the test program to output cost measurements
for multiple design points in one trial.
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MTF (n, m, p, trials) {
for(t=1;t<=trials; t++){

rcount[1..n] = 0; // initialize request counts
L = randomPermutation(n);
for (i=1; i<=m; i++){ // generate m requests

r = randomZipf(n);
rcount[r]++; // count request r
for (j=1; L[j]!=r; j++); // search in list
cost = j;
if (i mod p == 1)

printCost(M,t,n,i,cost); // overload m
tmp = L[j]; // move to front
while (j>1) L[j] = L[j-1];
L[1]=tmp;

}
printCost(M,t,n,m,cost); // report mth request

for (i=2; i<=n; i++) // compute sublist costs
rcount[i]=rcount[i]+rcount[i-1];

cost[r..n] = 1;
for (i=1; i<=n; i++) { // for each list item

k = L[i];
if (k >= r) // compute cost

for (j=i-1; j>= 1; j--)
if (L[j]< k)cost[k]++;

}
for (k=r; k<n; k++)

printCost(M,t,k,rcount[k],cost[k]); // overload n
}

}

Figure 6.12. Overloading. The MTF test program is modified to report costs for multiple values
of m and n in one trial.

Possible Drawbacks. The first overloading scheme, which overloads parameter
m, leaves the choice of which design points md to report entirely up to the exper-
imenter; furthermore, there is no additional time associated with this change to
the test program. There appears to be no downside, but overloading is not always
cost-free.

For example, the second scheme, which overloads parameter n, adds O(n2)

extra time to the test program; the extra computation time becomes worthwhile
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only when m >> n. More generally, overloading may be too expensive to be worth
implementing.

Also in the second case, the range of valid costs depends on the final request
r; that means the experimenter has less control over which costs are reported.
Running several trials of this test program will produce relatively more data points
for large lists (k ≥ r) and relatively fewer data points for small lists (k < r).

Uneven sample sizes can change the outcome of some types of data analysis.
For example, a linear regression analysis performed on the overloaded data set
would likely give different results than if the sample contained the same number
of replicates at every level of n. It may be possible to “rebalance” such a sample by
discarding some data points, but that does raise the question of whether overloading
is worth the trouble in the first place.

Another possible drawback of trial overloading in any experiment is the loss of
independence in the sample data. Overloading m and n induces correlation: for
example, if request cost at time md is higher than average, because the list is in
some rare-but-expensive order, the cost of the next request at time md +1 is likely
to be higher than average as well. If all 625 trials are run separately (as in the
original experiment), then data analysis can proceed with the standard assumption
that all data points are independent of one another.

Whether or not correlation makes a difference to the data analysis depends on
what analysis technique is used. Lack of independence is problematic for some
classic methods of inferential statistics – such as hypothesis testing, regression
analysis, and calculations of confidence intervals. For example, a standard hypoth-
esis test applied to assess the difference between cost(n,m) and cost(n,m + 1)

would give different results for independent versus overloaded samples, and the
latter results would be incorrect because assumptions of independence do not hold.

Correlation can be reduced by spacing the overloaded design points further
apart – reporting the cost of every 100th request is better than reporting the cost of
every 10th request – but in general it is difficult to know how much spacing might
be sufficient.

Correlation and imbalance in data samples are less problematic for other cate-
gories of data analysis, especially exploratory and graphical methods, where few
a priori assumptions are made about the data.

General Application. Algorithmic experiments offer many opportunities for using
overloading to increase the amount of data generated per trial; a few examples are
listed in the following. Whether or not overloading is appropriate for a particular
experimental project depends on the goals of the project (do the extra data help
the analysis?) and on the type of data analysis that will be applied (does validity
depend on assumptions of data independence?).
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• Section 2.2.2 describes an experimental design for an iterative-improvement
heuristic called SIG. As a factor-reduction strategy the “number of iterations”
parameter is overloaded: the test program is modified to report both solution
cost and the iteration count every time the solution improves. Instead of running
separate trials at several levels, this factor is set to one high level, and the program
reports trace data so that it is possible to reconstruct what would have been the
outcome had other levels been set. Iterative-improvement heuristics and online
algorithms present similar opportunities for reporting costs at several iterations
in each trial.

• Kershenbaum and Van Slyke [11] describe an experiment to study spanning
trees in random graphs. The goal is to estimate h(p), the probability that a
spanning tree exists in a random graph G(n,p) containing n vertices, such that
each edge appears with probability p. Instead of generating k random graphs
for each design point p = p1,p2, . . .pk and recording the existence of a span-
ning tree in each, the authors generate one complete weighted graph H with
edge weights drawn uniformly at random from (0,1). This graph “encodes”
unweighted graphs as follows: if an edge has weight w such that w ≤ pi , the
edge is considered to be present in graph G(n,pi). Let the random variate W

denote the largest weight in the minimum spanning tree of C. Graph G(n,pi)

contains a spanning tree exactly when W ≤ pi . In this way one random trial is
overloaded to generate data for all probabilities p = p1,p2, . . .pk .

• Many experimental studies of LRU-style caching algorithms (for example,
[4]) employ overloading to report hit/miss ratios for multiple cache sizes
C1,C2,C3 . . .Ck in each trial. The test program constructs a single full-sized
list of elements and runs the caching policy on the full list. If a requested ele-
ment e is within distance D from the front of the list, that access is considered
a “hit” for every cache such that D ≤ Ci , and a “miss” for every cache with
D > Ci .

• The cost of a recursive algorithm on a problem of size N is usually computed
in a postorder fashion by summing costs over all recursive stages. Each stage
corresponds to a smaller problem size n, and the cost of solving the smaller
problem can be reported by the test program. Applying this idea to quicksort,
for example, a single trial could report cost for the main problem size N , as well
as two problems of size about n/2, four problems of size near n/4, and so forth.
A straightforward implementation of this idea would yield a total of 2N cost
measurements, about half of them on problem size n = 1, which is too much:
a cutoff or randomized filter could be applied to omit reports at small problem
sizes.
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MTF (n,m,trials) { Transpose(n,m,trials) {
for (t=1; t<=trials; t++) { for (t=1; t<=trials; t++) {

time = randomPerm(n); L=randomPerm(n);
tstamp = n+1; for (i=1; i<=n; i++)

loc[L[i]] = i;
for (i=1; i<=m-1; i++){ for (i=1; i <= m; i++){

r = randomZipf(n); r = randomZipf(n);
// No Lookup: // Constant Lookup:
time[r] = tstamp++; c = loc[L[r]];

} if (c != 1) {
// Reconstruct List: tmp = L[c];
r = randomZipf(n); L[c] = L[c-1];
rt = time[r]; L[c-1] = tmp;
c = 1; loc[L[c]] = c;
for (i=1; i<=n; i++) loc[L[c-1]] = c-1;

if (time[i] > rt) c++; }
}

printCost(M,t,n,m,c); printCost(T,t,n,m,c);
} }

} }

(a) MTF (b) Transpose

Figure 6.13. Sequential search modeling tricks. These MTF and Transpose test codes use
modeling tricks to record request costs in constant time per request.

Modeling Tricks
A modeling trick exploits special properties of the test environment that may not
be available in real applications, to simulate the cost of the algorithm in less time
than would be required by direct implementation. Two examples of modeling tricks
using our sequential search test codes are illustrated in Figure 6.13.

First, the MTF program can be rewritten to exploit the fact that keys appear
in the MTF list in order by most recent request: the first key in the list was most
recently requested, the second key was second-most recently requested, and so
forth. Instead of searching and re-ordering the MTF list for each request, it is only
necessary to record time stamps for each key and to reconstruct the list order at
the end. The cost of the mth request for key r can be easily computed by counting
how many keys have later time stamps than r . Figure 6.13 panel (a) illustrates this
idea. This modeling trick yields a significant improvement in computation time,
from worst case O(nm) to O(m). Assuming requests are generated by Zipf’s
distribution, the average cost of the original test program is O(m logn) to generate
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each data point, while the shortcut version takes just O(m) time to generate the
same point.

Second, the Transpose test program can be rewritten so that the location of
request key r is found by array lookup rather than a sequential search. The new
version uses a loc array indexed by request keys, to record the location of keys
in L. The transpose operation requires updating two entries in L and in loc.
This modeling trick also reduces the cost of the test program for Transpose from
O(nm) worst case to O(m) worst case, and from O(m logn) average case (Zipf’s
distribution) to O(m).

Guideline 6.8 Modeling tricks: exploit information available in a laboratory
context, to simulate an algorithm more efficiently than can be done by direct
implementation.

Bentley et al. [4] describe a similar modeling trick in experiments to test vari-
ations on an LRU-based software cache for use in a telecommunications product.
Their application involves lists of size n = 10,000 and request sequences of size
m = 107. Their test program stores the keys (which are (client, address) pairs)
in a doubly linked list so that the Move-to-Front operation is constant-time, and
they use a hash table indexed by keys to perform constant-time lookups into the
list. With this implementation they can also apply trial overloading to test different
cache sizes in each trial. They remark that straightforward experiments in their real
application environment would have taken about a day to perform, whereas their
simulation experiments were completed in about 15 minutes. This shortcut and
modeling trick had the additional benefit of being transferable to their application
code, to yield a software cache that is constant time per request.

Another remarkable modeling trick is demonstrated in Bentley’s [3] experiments
to calculate the exact average comparison cost of quicksort, assuming partition
elements are selected at random. First, he points out that the cost of Quicksort can
be simulated without actually sorting, by generating the random partition element
location at each stage, as follows:

qCost (lo, hi) {
if (lo >= hi) return 0;
sum = hi-lo+1;
m = randomInt(lo,hi);
sum += qCost(lo, m-1) + qCost(m+1, hi);
return sum;

}

Even with this modeling trick the computation of the exact average-case cost takes
exponential time because every possible random outcome must be tested:
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exCost(lo, hi) {
if (lo >= hi) return 0;
n = hi-lo+1;
sum = 0;
for (m=lo; m<=hi; m++)

sum += exCost(lo, m-1) + exCost(m+1, hi);
return n-1 + sum / n;

}

Memoization reduces this to a quadratic procedure:

exCost (N) {
ex[0] = 0;
for (n=1; n<=N; n++) {

// n = hi - lo + 1
sum = 0;
for (m=1; m=n; m++)

sum += ex[m-1] + ex[n-m+1];
ex[n] = n-1 + sum/n;

}
}

He reduces this further to a linear-time computation. Finally he notes that the
generation code can be represented by a recurrence formula

C0 = 0

Cn = (n− 1)+ 1

n

n∑
i=1

Ci−1 +Cn−i ,

which has solution Cn = (n + 1)(2Hn+1 − 2) − 2n ∼ 1.386n loge n, where Hn =
1 + 1/2 + 1/3 + . . .1/n denotes the nth harmonic number [10]. This sequence
of modeling tricks shrinks the time to compute the exact average-case cost of
quicksort from exponential to constant time.

6.3 Chapter Notes
Computational experimenters have unusual opportunities for adjusting test pro-
grams to generate data samples that are easier to analyze. The key idea is to find
ways to reduce variance in the output. Two basic approaches were surveyed in this
chapter. The first approach is to apply variance reduction techniques (VRTs) that
have been developed in the field of simulation. The second is to apply simulation
shortcuts, which exploit the experimental scenario to generate more sample points
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per unit of computation: a larger sample sizes automatically reduces variance in
the output.

To learn more about variance reduction techniques, their theoretical justifica-
tions, and applications to simulation experiments, see any textbook on simulation,
such as [2], [9] or [12]. See also the survey article by by L’Ecuyer [13]. The dis-
cussion of variance reduction techniques applied to algorithms for self-organizing
sequential search is an updated version of the survey published previously in [14].

The following guidelines were presented in this chapter.

6.1 For best views of how average cost depends on parameters, work to magnify
response and minimize variance.

6.2 Design your experiments to maximize the information content in the data: aim
for clear views of simple relationships.

6.3 Common random numbers: when performance of two test subjects is positively
correlated with respect to some random variate, compare performance in
paired trials with identical values for that variate.

6.4 Control variates: adjust variate Ti toward its expectation by subtracting the
discrepancy between another variate Ri and its known expectation ρ.

6.5 Conditional expectation: when the computation of an average cost can be
split into two parts – generate a random state, then estimate the cost of the
state – add extra work to reduce or eliminate variance in the second part.

6.6 Consider a variety of variance reduction techniques, including antithetic
variates, stratification, poststratification, and importance sampling.

6.7 Overloading: rewrite the test program to output cost measurements for
multiple design points in one trial.

6.8 Modeling tricks: exploit information available in a laboratory context, to sim-
ulate an algorithm more efficiently than can be done by direct implementation.

6.4 Problems and Projects
C language implementations of the Move-to-Front and Transpose test programs
(implementing the variance reduction techniques described in this chapter) are
available for downloading from AlgLab.

1. What happens if you apply combinations of variance reduction techniques
described in this chapter? Modify the MTF and TR test programs to evaluate
promising combinations – how much variance reduction can you achieve?

2. Does the control variates VRT work as well for MTF as it does for TR? Does
conditional expectation work as well for TR as it does for MTF?
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3. The conditional expectation VRT, when applied to MTF and TR, requires O(n)

time to traverse the list and compute expected list cost. The original implemen-
tation requires only the time needed to search the list. For which combinations of
(n,m) does the reduction in variance outweigh the increased computation cost?

4. Run more experiments to locate the crossover point mc more precisely, for sev-
eral values of n. How confident are you that your analysis is correct to within,
say, ± 2? What would you do to increase your confidence in that result? Can
you find a function to describe how mc depends on n?

5. What properties of the request distribution P(n) would make mc easier and
harder to analyze? Replicate the experiments in this chapter using different
request distributions: how much does the effectiveness of these VRTs depend
on the distribution?

6. Implement the antithetic variates idea described at the beginning of Section
6.1.2 (this requires rewriting the random number generator to use the lookup
method). How much variance reduction do you observe in MTF and TR? Is it
worth the increase in total computation time?

7. Apply stratification and poststratification to MTF and TR. How well do they
work?

8. Which variance reduction techniques can be combined with which simula-
tion speedups? Implement some promising combinations and evaluate their
effectiveness.

9. Download the Iterated Greedy (SIG) code described in Section 2.2.2, from
AlgLab and apply some of the variance reduction techniques and simulation
shortcuts described in this chapter.
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Data Analysis

Really, the slipshod way we deal with data is a disgrace to civilization.
M. J. Moroney, Facts from Figures

Information scientists tell us that data, alone, have no value or meaning [1]. When
organized and interpreted, data become information, which is useful for answer-
ing factual questions: Which is bigger, X or Y ? How many Z’s are there? A
body of information can be further transformed into knowledge, which reflects
understanding of how and why, at a level sufficient to direct choices and make
predictions: which algorithm should I use for this application? How long will it
take to run?

Data analysis is a process of inspecting, summarizing, and interpreting a set of
data to transform it into something useful: information is the immediate result, and
knowledge the ultimate goal.

This chapter surveys some basic techniques of data analysis and illustrates their
application to algorithmic questions. Section 7.1 presents techniques for analyzing
univariate (one-dimensional) data samples. Section 7.2 surveys techniques for
analyzing bivariate data samples, which are expressed as pairs of (X,Y ) points.
No statistical background is required of the reader.

One chapter is not enough to cover all the data analysis techniques that are
useful to algorithmic experiments – something closer to a few bookshelves would
be needed. Here we focus on describing a small collection of techniques that
address the questions most commonly asked about algorithms, and on knowing
which technique to apply in a given scenario. References to additional resources
in statistics and data analysis appear in the Chapter Notes.

Categories of Data Analysis
The premise underlying any report of experimental results is, If you perform the
same experiment, your outcomes will be similar to mine. This premise is based on
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the assumption that my experiment and your experiment both draw a random data
sample X = (x1,x2 . . .xt ) from the same underlying probability distribution. The
distribution is defined by a probability density function f (x) (usually unknown)
that describes the probability that a particular element x will appear in the sample.
The contents of one sample may be different from those of the next, but they have
some features in common because they are from the same source. Data analysis is
applied to describe, quantify, and sometimes explain those common features.

To take a concrete example, the normal distribution with mean μ and standard
deviation σ is defined by the following probability density function:

fμ,σ (x) = 1√
2πσ 2

e
− (x−μ)2

2σ2 . (7.1)

This function has the familiar bell-curve shape shown in Figure 7.1, which extends
infinitely in both directions. Parameter μ describes the mean (center) of the func-
tion, and parameter σ describes how widely the points are spread around their
mean; in this example, μ = 0 and σ = 1.

Here is an example of a claim we could make about any sample X drawn from
this distribution: since 68 percent of the area under the curve is within distance
±σ from μ, we expect that roughly 68 percent of the points in X will be in the
range [−1,1].

Some data analysis techniques focus on understanding and describing the data
sample X, and others on characterizing the underlying density function. There are
four main areas of data analysis:

• Descriptive statistics is concerned with providing concise descriptions of the
essential properties of a data sample.
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Figure 7.1. The normal distribution. This is the probability density function for the Normal
distribution with μ = 0 and σ = 1.
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• Exploratory data analysis focuses on discovering patterns and relationships in
the data.

• Graphical data analysis emphasizes the use of graphs and visualization tech-
niques to understand the sample. Graphs can be used for descriptive or
exploratory purposes.

• Methods of inferential statistics start with formal assumptions about the general
shape of the density function. Inferences are made about properties of the density
function, and the soundness of those inferences is also evaluated. Computer-
intensive inferential methods can sometimes be applied to boost the power of
inferential methods.

The data analysis techniques described in this chapter sample from all of these
areas, to address the questions and scenarios that are most common in algorithm
studies.

Categories of Data
Data analysis starts with an awareness that different categories of data have
different properties, as follows.

• Categorical data are qualitative rather than quantitative. For example, the cat-
egorical outcomes (success, failure) might be reported in tests of an algorithm
for constraint programming. Experimental parameters can also be categorical,
such as (hash table, binary search tree), to describe implementation choices for
a set data structure.

• Ordinal data can be ranked (first, second, third) but have no scale, so arithmetical
transformations have no meaning. An example is relevance rankings for pages
returned by an Internet search algorithm.

• Interval data can be represented on a scale with no natural zero point, so ratios
are not meaningful. An example is a temperature: the statement “Today is twice
as hot as yesterday” has no natural meaning because twice is an artifact of the
scale (Centigrade or Fahrenheit). It is hard to find examples of interval data in
algorithmic problems.

• Ratio data are numerical data with a natural zero point, so ratios and other
arithmetic transformations have meaning. This type of data is most common in
algorithmic experiments.

The category dictates which data analysis techniques can be applied. As a general
rule, ratio data support the widest choice and most powerful analysis techniques.

Often in algorithmic experiments, the experimenter has some control over what
category of outcome is reported by the test program: choose ratio data when
possible, but never by omitting information.
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For example, a test program could be designed to report categorical results
(success, failure) for each instance or to report the percentage of successes in
t trials. The second approach loses information, because the percentage can be
derived from the categorical data, but not vice versa.

Guideline 7.1 Test programs should report outcomes as ratio data whenever
possible, but not at the price of lost information.

Tukey [16] points out that ratio data can be further broken into subcategories:

• Counts and amounts are accumulated totals of discrete and continuous quanti-
ties, respectively. They are always positive and often bounded at the low end
but unbounded at the high end.

• Ratios and proportions result from dividing one number by another.Aproportion
represents part of a total and ranges between 0 and 1, while a ratio can be greater
than 1. Ratios and proportions are always positive. Counted fractions are ratios
with small integer denominators.

• Differences represent the distance between pairs of numbers and can be positive
or negative.

As we shall see, sometimes the subcategory also dictates the choice of analysis
technique.

7.1 Univariate Data
A univariate data sample is a set of scalar numbers that represent outcomes from
an experiment. In this section we consider techniques for analyzing univariate
data. Section 7.1.1 surveys common descriptive statistics and their properties, and
Section 7.1.2 presents some techniques of inferential statistics.

7.1.1 Descriptive Statistics
Descriptive statistics is an area of data analysis concerned with finding concise
summaries of key properties of data samples, in a way that does not distort or omit
important details. These key properties always include, at least:

• A measure of the location, or central tendency of the data.
• A measure of dispersion, or how much spread there is away from the center.

Dispersion is just as important as location when summarizing data, especially
when conveying your results to others. As mentioned earlier, the premise behind
any report of experimental results is “If your experiment is like mine, your results
will be similar.” If you report that the sample mean is 56.78, with no further
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information, the reader has no context for interpreting the meaning of “similar”:
should she expect to see results within ±0.05 or within ±50 of that mean?

Guideline 7.2 Location and dispersion are the yin and yang of data summaries;
do not report one without the other.

If the data are well behaved, simple summary statistics will suffice. Unusual or
complicated data sets are harder to summarize and may require special treatment.

This section reviews the standard summary statistics and their merits; we also
consider how to detect unusual properties in data distributions and how to choose
appropriate descriptive statistics.

Common Summary Statistics
Suppose you have a sample of t numbers representing measurements from t

tests of algorithm X, denoted (x1,x2 . . .xt ). The ranked data, denoted Xr =
(x(1),x(2) . . .x(t)), correspond to the values of X sorted in nondecreasing order.
For example, a sample of size 6 might look like this:

X = (15,31,3,12,29,22)

Xr = (3,12,15,22,29,31)

We say x(r) is the rth-order statistic of X: in this example the first-order statistic
is 3 and the third-order statistic is 15. The order statistics x(1) and x(t) are more
familiarly known as the minimum and maximum of the sample.

Here are five common summary statistics and their definitions. The first two are
statistics of location, and the last three are statistics of dispersion.

• The sample mean is defined by

X = 1

t

t∑
i=1

xi . (7.2)

• The sample median is the middle-order statistic:

Med(X) = x(t+1)/2. (7.3)

If t is even, the definition of median is ambiguous: here we adopt the convention
that a fractional-order statistic is equal to the average of the two numbers with
nearest ranks. Thus the median of X in the preceding example is 18.5 = (x(3) +
x(4))/2. Half the data are above the median and half the data are below it.

• The sample variance is defined by

Var(X) = 1

t

t∑
i=1

(xi −X)2. (7.4)
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Algorithm Mean Median Var St. Dev. IQR
A 104.56 102.36 391.28 19.78 19.61
B 100.52 100.98 1796.01 42.38 67.15
C 144.66 139.29 2675.85 85.81 33.24
D 67.25 28.99 7363.56 51.73 66.88
E 108.74 86.67 2828.39 53.18 92.93

Figure 7.2. Summary statistics. Five statistics for five hypothetical algorithms. Each statistic is
calculated on a sample of t = 50 data points.

• The sample standard deviation is the square root of the variance:

sd(X) = √
Var(X) (7.5)

• The interquartile range (IQR) is the difference

IQR(X) = x(3t/4) − x(t/4). (7.6)

These two order statistics are known as the third quartile and first quartile of
the data set, respectively (using the averaging convention mentioned earlier for
fractional ranks). Half the points in the sample lie within the IQR.

Figure 7.2 summarizes results of a hypothetical experiment to test five imaginary
algorithms named A through E. The statistics were calculated in each case on
samples containing random outputs from t = 50 trials of each algorithm.

Variance is shown in the table for completeness but omitted from the discus-
sion that follows: standard deviation is somewhat easier to interpret here, and
the remarks that follow about standard deviation apply as well to variance. Some
differences between the two are discussed in Section 7.1.2.

This table is hard to understand. Comparison of the means suggests that D is
about 33 percent better than A and B. But comparison of the medians suggests
that D is more than 70 percent better than A or B: Just how good is D, exactly?
Similarly, comparison of standard deviations suggests that C has twice as much
dispersion as B, but comparison of the IQRs suggests the opposite. In row A, the
standard deviation and IQR are quite similar, but in row B the standard deviation
is smaller than the IQR, and in row C the reverse is true. Many more apparent
contradictions can be found in this table: which interpretation is the right one?
More importantly, how can one set of data produce such different interpretations?

The problem is, some of the statistics in this table are not appropriate to the
data sets they describe – instead of providing accurate descriptions of location and
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Figure 7.3. Four algorithms. This jittered scatterplot shows 50 measurements each in random
trials of algorithms A through E.

dispersion, they obscure some features of the data and introduce ambiguities in
interpreting the results. To understand these issues we need to look at the raw data.

Looking at Distributions
Figure 7.3 shows a jittered scatterplot of data samples A through E, plotted side
by side. Jittered means that a small amount of random variation was added to the
x-coordinate of each point: jittering spreads out the plotting symbols and removes
overlap, making some properties easier to see. A few properties that affect our
choice of summary statistics are listed in the following.

• Samples A and B appear to be symmetric, with dispersions evenly balanced
around their means. A has less dispersion than B.

• Sample C is also symmetric, but it has outliers – a few isolated extreme values –
at both the high and low ends.

• Data set D is not symmetric; rather, the points are densely clustered at the low
end and spread out with a long tail at the high end. The data are skewed to the
right; a sample with the tail in the other direction would be “skewed to the left.”
D may also have outliers at the high end; there is no standard definition of what
constitutes an outlier, so this is largely a judgment call.

• Data set E is bimodal, with two distinct centers of location.

These properties affect our choice of summary statistics in the following ways.

Symmetry. Nearly any statistic of location works fine for symmetric data samples
like A and B. Symmetry is why the means and medians in rows A and B are nearly
identical in the table in Figure 7.2. Our choice of statistics of dispersion, however,
depend on additional properties not visible in this scatterplot, which are discussed
later in this section.
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Outliers. Data set C is symmetric except for outliers at the high and low ends.
The choice of which summary statistics to apply to a sample containing outliers
depends on our understanding of what caused them.

In data from one experiment, outliers might be due to measurement error. In
another experiment, outliers might be observed because the data are from a fat-
tailed probability distribution, which described later in this section under Kurtosis.
When data are sampled from such a distribution, there is a good chance that values
far from the center will be in the sample, but these points are rare enough to appear
disconnected from the main body sample. Taking more random trials would “fill
in” the apparent gaps between outliers and the rest of the sample.

If outliers are solely due to measurement error, they should be discarded, since
they do not reflect any property of the algorithm being studied. It is important when
reporting experimental results, however, to mention that some measurements were
discarded, specify how many, and explain why.

If the outliers are a natural reflection of algorithm performance, and likely from
a fat-tailed distribution, they should remain in the sample. But as a general rule,
the mean and standard deviation are not good summary statistics for this type of
data.

A statistic is called robust if it does not change much between different samples
drawn from the same distribution. A statistic that is not robust does a poor job of
summarizing, because it fails to predict what outcomes will be observed by others.
The mean and standard deviation statistics are not robust to outliers, because
outliers tend to fluctuate in number and magnitude and to pull these statistics
along. The median and IQR are robust because they are based on ranks and not
magnitudes.

For example, if just four of the top outliers of sample C are absent from the
next sample, the mean drops from 144.66 to 134.12, a difference of 10, while the
median drops from 139.3 to just 137.9, a difference of less than 2. Similarly the
standard deviation changes from 51.73 to 37.91, a difference of almost 13, while
the IQR moves from 33.24 to 30.71, a difference of less than 3.

Another good alternative statistic for sample C is the trimmed (p) mean, which
discards the top and bottom p percent of the data and computes the mean of what
remains. If p = 
k/t�, the trimmed mean is defined by

X
p =

t−k∑
r=k+1

x(r). (7.7)

To obtain a robust statistic, choose p large enough to discard the maximum number
of outliers likely to appear in repeated experiments.
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Skew The right skew in sample D pulls the sample mean upward toward the tail,
but the median does not tend to move because it is based on ranks. This difference
prompts careful consideration of which meaning of “center” is best suited to the
analysis. Either might be appropriate to a given algorithmic question.

Both the standard deviation and the IQR are intended for use on symmetric
distributions. They can be misleading when applied to skewed data sets, since the
dispersion they describe is too big on one side and too small on the other. Some
alternative descriptive techniques for skewed distributions are discussed later in
this section.

Bimodality. Sample E has two distinct centers of location, an important fact that
is obscured by all five summary statistics. As a general rule, the best strategy for
dealing with bimodal (or higher-modal) data samples is to summarize their groups
separately, together with information about the size of each group.

Size Mean Median St. Dev. IQR

Low E 36 77.36 81.51 15.35 18.81
High E 14 189.47 186.79 16.78 25.49

If there is no clear gap between groups in a given data sample (and if it is not
possible to label the data by group in the test program), it can be very difficult to
decide which points belong to which center. In this case any statistic of location
could be misleading, and it may be safer to eschew summary statistics in favor of
graphical displays.

A jittered scatterplot cannot display all of the distributional properties of interest
here, however. Figure 7.4 shows empirical distribution plots of samples A, B, C,
and D. An empirical distribution plot is constructed by simply plotting the points
in increasing order by rank. Diagonal sight lines connecting the extremal values
are superimposed on each graph.

These graphs reveal more information about the distributions, which is discussed
in the next few sections.

Kurtosis. The data in panel (a) of Figure 7.4 have a spiral shape, which shows
that the data are more densely concentrated near the center and less dense near the
ends. Compare this to the sample in panel (b), which follows a straight line (except
for a few identical points at the top). The spiral shape in panel (a) is characteristic
of data drawn from a normal or near-normal distribution.

The term kurtosis describes the “pointiness” of a density function, that is, how
dense it is near its center compared to its extremes. It is possible to calculate an
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Figure 7.4. Empirical distribution plots. Panel (a), from algorithm A, shows the characteristic
spiral shape of a normal distribution. Panel (b), from algorithm B, conforms to a uniform dis-
tribution, except for several identical points at the top. Panel (c), from algorithm C, shows a
near-normal symmetric distribution with outliers; panel (d), from algorithm D, shows a skewed
distribution with outliers. Diagonal sight lines connect the extremal values.

excess kurtosis statisticκ for a symmetric data sample, which measures how closely
the distribution of the sample resembles a normal distribution in this respect:

κ(X) =
∑t

i=1(xi −X)4

sd(X)4
− 3. (7.8)

(Sometimes this statistic is defined without subtracting the constant 3.) The three
density functions that follow illustrate this property.

κ = –1.2 κ = 0 κ = 3
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The uniform distribution on the left has no bump at all in its center; samples
from uniform distributions have negative kurtosis near κ = −1.2. The normal
distribution is shown in the center: samples from normal distributions have kurtosis
near 0, no matter what values the parameters μ and σ take. Samples from the
double exponential distribution (two back-to-back exponential functions) on the
right have positive kurtosis near κ = 3.

Sample A, which has the spiral shape characteristic of a normal distribution in
panel (a), has κ = 0.31, which is close to 0. Sample B, which resembles a uniform
distribution, has κ = −1.18. A data set with positive kurtosis would display a
more pronounced spiral than panel (a), with a smaller horizontal center and larger
vertical arms.

Kurtosis affects our choice of summary statistics in two ways. First, a distri-
bution with positive kurtosis is said to have fat tails: since the peak around the
mean is more acute than in the normal distribution, a larger proportion of the
density function is pushed into the tails. As mentioned earlier, fat tails in a den-
sity functions are associated with outliers in data samples, which deserve special
consideration.

Second, kurtosis affects our interpretation of the standard deviation statistic.
The empirical rule states that 68 percent of the data in a sample fall within one
standard deviation of the mean (X ± sd(X)), 95 percent fall within two standard
deviations, and 99.7 percent are within three standard deviations of the mean. This
handy rule is a reason for preferring the standard deviation statistic to variance,
since it makes these rough boundaries easy to compute.

The standard deviation and variance statistics are otherwise quite similar in
their properties, and equally suitable for summarizing data. (However, they do
have distinct properties when used for other purposes, as discussed in Section
7.1.2.)

But the rule breaks down if the data are not normally distributed. Inspection
of the data with an empirical density plot or computation of the excess kurtosis
statistic can be used to detect this problem, as illustrated in the following table.

κ Mean St. Dev. 99.7 percent Range

A 0.31 104.56 19.78 [ 45.2, 163.9] [58.0, 160.0]
B -1.18 100.52 42.38 [-26.6, 227.6] [22.6, 160.0]
C 1.92 144.66 51.72 [-10.4, 299.8] [20.9, 308.0]

Applying the empirical rule to sample A (κ near 0), we get an estimate about
the range of 99.7 percent of the data that nicely matches the actual sample range

Cambridge Books Online © Cambridge University Press, 2012



226 7 Data Analysis

(containing 100 percent of the points). On the other hand, applying the rule to
sample B, we obtain an estimated range that is much larger than the actual range.
The outliers in sample C pull κ to a high positive value, and the Empirical Rule
fails again. (The statistic should not be applied to skewed data sets like D.)

Guideline 7.3 The Empirical Rule: in a sample from a normal distribution, 68
percent of the data fall within ±σ of the mean, 95 percent fall within ±2σ of the
mean, and 99.7 percent fall within ±3σ . Check that your data are indeed normally
distributed before applying this rule.

If you use the standard deviation statistic in a report of experimental results, the
default assumption will be that the Empirical Rule applies. If it does not, either
explain how the sample deviates from a normal distribution or choose another
statistic.

Censored Data. The straight-line pattern in panel (b) suggests that sample B
resembles a uniform distribution, except for six points at the top that are all equal
to 160. This sharp break from the general trend raises questions: does algorithm
B have a natural upper bound of 160 in its cost function, or is this evidence of a
ceiling effect?

A ceiling effect is a limitation of the experiment that prevents accurate mea-
surement of costs above some upper limit. Ceiling effects are examples of a more
general problem known as data censoring. Censoring occurs when, instead of an
accurate measurement of every outcome, the experiment returns upper or lower
bounds on some measurements. In algorithmic experiments data censoring may
be caused by some limitation of the test program, the runtime environment, or the
experimental design.

For example, a ceiling effect occurs when a predetermined limit on total com-
putation time is set (“Run until a solution is found or one hour has elapsed”): as a
result, some time measurements are replaced by the time limit, which is a lower
bound on their true values. Another example of censoring occurs when process
times are smaller than the system clock resolution and are reported as 0. Censor-
ing can also occur without ceilings or floors: for example, a test program might
occasionally halt for external reasons, producing left-censored runtimes that are
lower than true runtimes, even though no maximum time limit was reached.

Data analysis is difficult when there is no way to tell which measurements are
censored, if any. Fortunately, algorithmic experiments are so highly controlled that
it is usually possible to identify the culprit data points and to know whether the
reported measurements represent under- or overestimates.

If the six high measurements of 160 in sample B are not due to censoring but
rather are intrinsic to the algorithm, they should be included in the data analysis.

Cambridge Books Online © Cambridge University Press, 2012



7.1 Univariate Data 227

But, on the other hand, this unusual property should be mentioned and not hidden
in summary statistics.

Censored data may or may not be included from sample statistics, depending
on the situation. Here are some tips.

• If the data are randomly censored – that is, there is no correlation between a
value and whether or not the value is censored – then the censored data points
can usually be omitted with little harm.

• If ceiling or floor effects are present, the mean B is a misleading statistic, whether
the censored data are left in or removed: in either case, the mean is more an
artifact of the experiment than of the test subject. In this situation use the median,
or else the trimmed (p) mean defined earlier in this section under Outliers.

• Like the mean, the standard deviation is not suitable for data with ceiling and
floor effects. The IQR is more robust, as long as it does not contain the censored
points. (If censored data points make up more than 25 percent of the sample, it
is time to run a new experiment.)

Skew. The right-skew in sample D appears as convexity in the empirical distribu-
tion plot of panel (d). Left-skewed data would have a concave shape. A sample
skewness statistic can be calculated as follows:

ss(X) =
1
n

∑n
i=1(xi −X)3

sd(X)3/2
. (7.9)

A symmetric distribution has ss(X) ≈ 0, a right-skewed distribution ss(X) > 0,
and a left-skewed distribution ss(X) < 0.

As mentioned earlier, both the standard deviation and the IQR are misleading
statistics of dispersion for skewed data because “dispersion” is normally under-
stood as being the same on both sides of the center. If it is not, a better idea is to
summarize dispersion separately on each side.

One common approach is to report the hinges of the data set, which are the five
order statistics (x(1), x(n/4), x(n/2), x(3n/4), x(n)) corresponding to the minimum and
maximum, the two quartiles, and the median.

Figure 7.5 shows six boxplots (or box-and-whisker plots) for A through E, the
latter split into two groups. Each boxplot is a visual representation of the hinges:
the bar in the middle marks the median, and the box edges mark the first and third
quartiles. Each whisker extends to the outermost data point that is within distance
1.5(IQR) from the box edge (a common rule of thumb for marking outliers), and
the remaining data points are drawn as individuals. The boxplots are shown in
order of increasing medians, so that visual comparisons are easier.

Because they are summaries, boxplots obscure some data features and reveal
others. For example, differences in kurtosis are hidden, as are the six top points in
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Figure 7.5. Boxplot summaries. These boxplots show the hinges of samples A through E (E is
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Figure 7.6. Transformation. An empirical density plot of data set D after logarithmic
transformation.

B. This graph also reveals some new observations: for example, the third quartile
of D is below the first quartiles of A, B, and Ehi, suggesting that D has lowest
cost nearly half the time. On the other hand, D also has the highest costs of all five
algorithms.

Data Transformation
An alternative strategy for coping with skewed data is to transform the sample
by applying a function to each value. For example, Figure 7.6 shows an empir-
ical density plot for our skewed data set D, after application of a logarithmic
transformation using the function d ′

i = loge(di).
Compare this to panel (d), which shows the empirical distribution of the untrans-

formed data. Logarithmic transformation pulls the long tail toward the middle and
makes the resulting sample symmetric. In fact, the transformed data appear to have

Cambridge Books Online © Cambridge University Press, 2012



7.1 Univariate Data 229

a uniform distribution: statistics of location will agree on where the center is, and
statistics of dispersion are adequate to describe both sides of the center.

If the sample mean D′ is calculated on log-transformed data and then mapped
back to the original scale via exponentiation,

D
∗ = exp

(
1

t

t∑
i=1

lndi

)
(7.10)

the result D
∗

is called the geometric mean of D. The geometric mean is an alter-
native statistic to the sample mean defined in formula (7.2), which is technically
called the arithmetic mean. It is more robust to outliers than the arithmetic mean
and is often a good choice for summarizing skewed data. The geometric mean is
considered more appropriate for summarizing data in the form of ratios and pro-
portions and samples from lognormal distributions (i.e., the logarithms of the data
obey a normal distribution). It cannot be used with samples containing negative
or 0 data values.

It can be shown that in any data set the geometric mean is bounded above by the
arithmetic mean: D

∗ ≤ D. For this particular sample D
∗ = 32.31 and D = 67.25.

Logarithmic transformation is one of a class of power transformations, described
by a parameter θ , that may be applied to a data set X to adjust for skew.

xθ
i for θ > 0

loge xi for θ = 0 (7.11)

−xθ
i for θ < 0

If the data are right-skewed, apply transformations with θ ≤ 0. If the data are
left-skewed, use transformations with θ < 0; the negative sign keeps transformed
data in the same relative order as the original sample.

Guideline 7.4 Apply logarithmic transformation, or more generally a power
transformation, to impose symmetry in a skewed data sample.

As we shall see in later sections, not only are transformed data easier to summa-
rize, but transformation simplifies and improves many other types of data analysis
as well. Mosteller and Tukey [13] point out that counts and amounts are nearly
always right-skewed and easier to analyze if first reexpressed by logarithmic
transformation.

The Right Tool For the Job
Let us move away from hypothetical data sets A through E to apply this discussion
of appropriate summary statistics to some a real data. Figure 7.7 shows a jittered
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Figure 7.7. Four data samples. M1 and M1001 describe the cost of the MTF algorithm at times
m = 1 and m = 1001. T1 and T1001 describe the Transpose algorithm at the same times. Each
sample contains t = 100 points.

scatterplot of four measurements of the Move-to-Front and Transpose algorithms
for sequential search, which were the subject of a case study described in Section
6.1.1.

Here are some options to consider when deciding how to summarize these data
sets.

• Statistics of location: arithmetic mean, median, trimmed mean, and geometric
mean.

• Statistics of dispersion: standard deviation, variance, and interquartile range.
• Additional statistics: kurtosis, skew, hinges, and boxplots.
• Other properties to consider: outliers, bimodality, and censored data.
• Strategy: Apply data transformation to remove skew before summarizing.

We start by looking at empirical distribution plots for these four data samples,
in Figure 7.8. Panels (a) and (b) show MFT costs at m = 1 and 1,001, and panels
(c) and (d) show Transpose at m = 1 and 1,001. The two data sets for m = 1 appear
to be uniformly distributed: in fact, it can be proved that the first request obeys a
uniform distribution because the list is initially in random order. The two samples
for m = 1,001 are right-skewed.

Our choice of summary statistics is informed by these properties and by the
goals of the analysis. In particular, if one sample is to be compared to another, we
need summary statistics that are common to both. Here are some applications of
this principle.

1. To compare the data in panels (a) and (b) choose statistics that work for both
uniform and skewed distributions. Any of the statistics of location we have
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Figure 7.8. Empirical distribution plots for MTF and Transpose at sample points m = 1 and
m = 1001. (a) MTF m = 1, (b) MTF m = 1,001, (c) TR m = 1, (d) TR m = 1,001.

considered could be used here. Because of asymmetry in (b), hinges might be
the best choice for comparing dispersion. The same reasoning applies when
comparing panels (c) and (d).

2. Comparisons of the data in panels (b) and (d) could be improved and simplified
by logarithmic transformation, which would impose symmetry on both samples.
If analysis proceeds on the untransformed data, hinges or boxplots could be used
as summaries.

3. To compare any of these data sets to known theoretical results for these algo-
rithms (see Section 6.1.1 for examples), use summary statistics that match the
theory. In this case, the arithmetic mean should be applied, including the skewed
data samples.

Guideline 7.5 Consider these properties when deciding how to summarize a
data sample: symmetry, outliers, skew, bi- or multimodality, kurtosis, and data
censoring.
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7.1.2 Making Inferences
Inferential statistics is a subfield of data analysis that formalizes the notion of
observing similar results in different samples from the same source, by providing
bounds and guarantees on what outcomes are likely to be observed. This methodol-
ogy starts with an assumption about the basic shape of the underlying distribution;
in this context the probability density function is called the experimental model.
For example, we might assume that sample X = x1,x2, . . .xt is drawn from a normal
distribution with unknown parameters μ and σ .

The most common types of data analysis questions addressed by inferential
methods are

• Hypothesis testing, which answers yes-or-no questions about the model: is there
evidence that the distribution that generated sample X has a different mean
than the distribution that generated sample Y ? Inferential techniques also yield
statements of statistical significance, which quantify the likelihood that the result
of a hypothesis test is due to random chance rather than an intrinsic property of
the model.

• Parameter estimation, which aims at finding good estimates of parameters such
as μ and σ , together with confidence intervals that bound the accuracy of those
estimates.

These types of results only hold if assumptions about the basic shape of the model
are true. There is no way of knowing whether the model correctly describes the
underlying distribution, but analysis techniques are available for assessing the
validity of the assumption as well.

The next section illustrates this approach to the problem of estimating the
distribution mean μ.

Estimation and Confidence Intervals
Assume that data set A from the previous section can be modeled by a normal
distribution with (unknown) mean μ and standard deviation σ . Recall that the
empirical distribution plot (Figure 7.4) and the kurtosis statistic (equation (7.8))
both suggest that this assumption is reasonable, since sample A appears to be close
to a normal distribution. Our first goal is to estimate μ and to assess the quality of
that estimate.

The best way to estimate μ from data set A is to compute the sample mean
defined by formula (7.2): here we have A = 104.56. The next step is to assign a
level of “confidence” to this estimate, which describes how close we think A really
is to μ. There are many ways to define confidence, and most depend on how much
dispersion is in the sample.

The standard deviation of the sample defined by formula (7.5) is not, in fact, the
best choice for estimating parameter σ . This statistic is a biased estimator because
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it systematically underestimates σ when calculated on finite-sized samples. Instead
we use the sample standard deviation defined by

ssd(A) =
√√√√ 1

t − 1

t∑
i=1

(ai −A)2. (7.12)

This estimator is also biased, but less so than sd(A). The sample variance ssd(A)2

is an unbiased estimator of true variance σ 2 and is therefore the preferred statistic
when making inferences about variance.

For each sample of size t drawn from the population, we can calculate a sample
mean A. The distribution of sample means, over all possible samples of size t ,
is called the sampling distribution of the mean. The central limit theorem states
that, no matter what distribution the sample X has, the sample means will have a
normal distribution. Furthermore, the standard deviation of this distribution, called
the standard error of the mean, often shortened to standard error, is equal to

σA = σ√
t
. (7.13)

Note that, like parameters σ and μ, the standard error is an unknown property of
the model, not of the sample.

Confidence Intervals. The standard error can be used to define confidence intervals
for μ, which are used to assess how far a sample mean A might be from μ.

In particular, the 95-percent confidence interval for μ is defined by the
boundaries

A± 1.96σA. (7.14)

If we collect many samples A of size t from the population and compute the interval
in (7.14) from each sample, then about 95 percent of the intervals will contain μ.
This describes our confidence in how close A is to μ.

Different coefficients can be substituted for 1.96 in (7.14) formula to obtain
other sizes of confidence intervals:

Confidence 90% 95% 99% 99.99%
Coefficient 1.645 1.96 2.276 3.291

Since the standard error σA is not known, we estimate it with se(A) =
ssd(A)/

√
n. This is a simple approximation and not the best estimator known

for the standard error. However, it works reasonably well if (1) the population
that generates A is symmetric and approximately normal, and (2) sample size t is
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at least 30. If one of these conditions fails, there are better ways to estimate σA,
and better alternatives for calculating confidence intervals; see [2], [7], or most
introductory statistics textbooks, for details.

Increasing sample size t is guaranteed to shrink σA, as well as the width of
the confidence interval. But there is a law of diminishing returns: the difference
between confidence intervals at t = 10 versus t = 20 is much bigger than the
difference at t = 30 and t = 40. Therefore, taking sample sizes much larger than
t = 30 has little effect on the size of the confidence intervals.

Guideline 7.6 Calculate confidence intervals for your sample means.

Resampling
Most classical methods of inference follow the general approach illustrated pre-
viously: start with an assumption that the sample X is drawn from a normal
distribution described by μ and σ and perform a computation on the sample to
estimate a parameter (or to perform a hypothesis test). The accuracy of the estimate
is assessed via confidence intervals or a similar quantity.

Of course, in many experimental situations the underlying distribution is not
normal, and we may be interested in other properties besides μ and σ . As a general
rule there is no known way to apply inferential statistical methods to general
distributions or population parameters, so the basic approach breaks down.

In these cases, resampling techniques such as bootstrapping, jackknifing, and
permutation tests can be used to extend inferential statistical methods to non-
standard problems. They are sometimes called computer-intensive methods of
inference because they often require large amounts of computation time.

Resampling can be applied, for example, to estimate the standard error and
therefore to calculate confidence intervals for just about any property of just about
any distribution. To illustrate this technique, we apply bootstrapping to estimate the
median (defined in formula (7.3)) and find a confidence interval for the distribution
that produced data sample B in Figure 7.4.

Recall that sample B, containing t = 50 points, appears to be uniformly dis-
tributed (Figure 7.4), except for six identical points at the high end. The sample
median is Med(B) = 100.98.

The bootstrap procedure for calculating a 95-confidence interval for the median
of the distribution is as follows.

1. Create K pseudosamples of size t by selecting random elements uniformly
with replacement from B. “With replacement” means that each element is “put
back” into B before the next one is drawn. Therefore, the pseudosample may
contain multiple copies of any element in B. As a rule of thumb, K should be
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Figure 7.9. Empirical density plot for K = 1000 bootstrap medians of sample B with
pseudosample size t = 50.

at least 200, and more is better: take as large a value as computation time will
allow.

2. Compute the statistic of interest (in this case, the median) for each pseudosam-
ple. This creates a pool PK containing K samples of the statistic.

3. Check the distribution of PK with an empirical density plot. If the distribution
looks symmetric and normal, confidence intervals can be calculated directly
from the order statistics of PK . In particular, the boundaries of the 95-percent
confidence interval may be found at ranks p(.025K) and p(.975K) within the pool.

4. If the distribution does not look symmetric and normal, try again with larger K .
If that does not work, confidence intervals may still be calculated using more
advanced techniques such as the bias-corrected accelerated (BCa) bootstrap:
see [9] or [10] for details.

Applying this procedure to sample B with t = 50 and K = 1,000, we obtain the
empirical density plot for the bootstrap medians in Figure 7.9. The data exhibit the
propeller shape typical of a normal distribution. With K = 1000 we find the 25th

and 975th-order statistics, which are [90.24, 119.07].
Thus, we estimate the distribution median with Med(B) = 100.98, and we

have some confidence that the interval [90.25,119.07] is likely to contain the
true median.

Guideline 7.7 Use bootstrapping (and related resampling methods) to generalize
inferential methods to nonnormal distributions and nonstandard statistics.

Bootstrapping can be used for estimating standard errors and confidence inter-
vals for a variety of population parameters and distributions. The procedure is less
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effective for estimating extremal parameters such as the minimum and maximum
of a distribution. Jackknifing, a related technique, can be used to estimate bias and
standard error in sample statistics. Permutation tests are typically used to measure
statistical significance in hypothesis tests on nonstandard distributions. See [7],
[10], or [9] for more about these computer-intensive methods of inference.

7.2 Bivariate Data: Correlation and Comparison
Now we consider data analysis techniques for bivariate data samples, which are
presented as pairs of points (X,Y ). Suppose we have samples X = x1,x2 . . .xn and
Y = y1,y2, . . .yn, such that the paired points (xi ,yi) are known to be related in the
experiment.

In algorithmic experiments the pairs may represent some type of cause-and-
effect relationship; for example, X is input size and Y is algorithm performance.
Or, in tests of an iterative algorithm, X may represent computation time and Y

solution cost. Or, the data may represent two outcomes measuring the costs of
algorithms X and Y when run on common input instances.

The sample (X,Y ) is presumed to have been generated according to some joint
probability distribution. This distribution is defined by a two-dimensional prob-
ability density function of the form f (x,y), which describes the probability that
a given pair (xi ,yi) will be in the sample. Data analysis is used to describe the
relationship between Y and X and to understand properties of the underlying joint
distribution.

This section surveys techniques for describing the relationship between paired
elements (xi ,yi). Section 7.3 presents analysis techniques for understanding Y as
a function of X.

We turn once again to Move-to-Front and Transpose, the two sequential search
algorithms described in Section 6.1.1. When the samples M1, M1001, T1 and
T1101 were compared in Figure 7.7, they were treated as four independent
univarate data sets.

In fact, the experiment that produced these samples measured the costs of MTF
and TR when initialized the same way and run on identical inputs. Because of this
relationship we can treat (M1, T1) as a bivariate data sample at the design point
m = 1, and (M1001, T1001) as a bivariate sample at m = 1001. What can we learn
about the relationship between these two algorithms?

Correlation and Covariance. We say that M and T are positively correlated when
mi and ti move together, in the sense that mi is high when ti is high, and vice
versa. The sample is negatively correlated if high values of mi are matched with
low values of ti , and vice versa. If mi and ti appear to have no such relationship
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Figure 7.10. Correlation. Each panel shows 50 paired measurements of (xi ,yi). The value of
the correlation coefficient r is about the same in each panel, even though the paired relationships
are very different.

– as if they were generated independently of one another – then we say M and T

are not correlated.
Correlation statistics can be defined in different ways; two common statistics

are described here. Recall that M denotes the sample mean (formula (7.2)), and
sd(M) is the sample standard deviation (formula (7.5)). The sample covariance
is defined by

Cov(M ,T ) = 1

t − 1

t∑
i=1

(mi −M)(ti −T ). (7.15)

This statistic is positive when the samples are positively correlated, and vice versa.
The sample correlation coefficient, typically denoted r , is the covariance, scaled

so that it takes values in the range [−1,1].

r = Cor(M ,T ) =
∑t

i=1(mi −M)(ti −T )

(t − 1)sd(M) · sd(T )
. (7.16)
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As is the case with most summary statistics, a mere number may obscure details.
Figure 7.10 shows four scatterplots of hypothetical samples X and Y . The cor-
relation coefficients are similar, ranging between r = .84 and r = .86, but the
relationship between X and Y is quite different from panel to panel. In particular,
panel (a) shows that r can be sensitive to outliers, since r is quite high even though
most of the data are in a ball of uncorrelated points. This statistic can be more
informative if outliers are removed before it is applied.

The sample covariance and correlation coefficients from an experiment to mea-
sure MTF and Transpose in t = 25 paired trials at three design points n = 50 and
m = (1,5001,10001) are shown in the table.

1 5001 10001

Cov 225.79 189.87 107.08
r 1.00 0.72 0.53

The costs of the two rules are in fact identical on the first request, so the corre-
lation coefficient has its maximum possible value 1. Otherwise the paired samples
appear to have positive correlation that decreases with m.

Other Comparisons. Graphical analysis reveals more details about the relationship
between MTF and TR. Figure 7.11 shows four different graphical views of data
samples (M ,T ) for our three design points m = (1,5001,10001). Here are some
things we can learn from these graphs.

• Panel (a) is a scatterplot of paired points (mi , ti). The points are coded so that
symbols (a, b, c) denote design points m = (1,5001,10001), respectively.
The perfect correlation in the first design point is revealed by the straight line of
points marked a. Points b and c have weaker positive correlations and follow
a generally upward trend. Most of these points are below the line y = x; that
means that MTF costs more than TR in most cases. Two outliers, where TR
costs significantly more than MTF, appear in the upper left corner.

• Panel (b) shows a segment pairplot of the same data. In this graph both mi

(plusses) and ti (circles) are plotted on the y-axis, and matched pairs are con-
nected by short line segments. The perfect correlation at m = 1 appears in the
horizontal segments in the first data column. We can also observe that these
points are fairly evenly distributed within their range (0,50).

In the middle column (m = 5001), most segments have negative slope, again
suggesting that MTF costs more than TR in most cases. The pair with the large
positive slope corresponds to the outlier b in panel (a). In the middle and right
columns the two distributions appear to be skewed more for TR.
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Figure 7.11. Four views of correlation. Panel (a) shows a coded scatterplot (M ,T ) coded by
design point: a : m = 1, b : m = 5001, and c : m = 10001. Panel (b) shows a segment pairplot
of the same data (plusses = M , circles = T ). Panel (c) plots ratios M/T for each design point.
Panel (d) shows differences M −T .

• Panel (c) shows a jittered scatterplot of the cost ratios (mi/ti), at each design
point. Again the perfect correlation at m = 1 is obvious. We also observe that
MTF is never more than six times worse than TR and that cost ratios are fairly
evenly spread in their range.

• Finally, panel (d) presents a jittered scatterplot of cost differences (mi − ti).
From this graph we learn that although MTF is more frequently worse than TR,
the two outlier points indicate that TR can sometimes be equally bad.

Panels (c) and (d) give somewhat different impressions about the comparative
costs of the algorithms. In panel (c), the data above the line (mi/ti = 1) occupy
more space in the graph than the data below the line; MTF appears to be a lot worse
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than Transpose in some cases, but Transpose is never that much worse than MTF.
But this impression is an artifact of the display: panel (d) shows that, although
MTF beats Transpose much less frequently, the cost differences can be equally
bad above and below the line.

Guideline 7.8 Different graphs give different views of relationships in data. Look
at many views to learn the full story.

7.3 Understanding Y as a Function of X
The most common question asked in algorithm analysis is, How does algorithm
cost depend on input size? To address this question via experiments, we can run
tests of the algorithm at various input sizes ni and create a bivariate data set (N ,C)

containing measurements of algorithm cost ci at input sizes ni . The goal of the
analysis is to learn something about the unknown cost function c = f (n).

In statistics this is considered a problem in modeling, which involves the
following steps:

1. Gather a data sample (N ,C).
2. Identify a function family (the model) that describes the general shape of

the relationship between paired data samples (N ,C). For example, the model
might be the family of linear functions ci = f (ni) = ani + b, with unknown
coefficients a,b.

3. Apply inferential techniques to fit the model to the data. This involves finding
values for model parameters, in this case, the coefficients a and b, that yield
the best fit between model and data under a given definition of fit quality.

4. Apply inferential and graphical analyses to validate the model by comparing
the fit to the data. Some validation techniques provide insights about how to
improve the model: when appropriate, adjust the model and go to step 1.

When this procedure is applied to questions in algorithm analysis, the result
can be resounding success or abject failure. Modeling is easy when (a) the correct
function family is easy to identify, or (b) the goal is to find a convenient descrip-
tive model for making predictions, with no guarantee of correctness, so the exact
function family is not important.

Often in algorithm research, neither of these properties holds: the whole point
of the experiment may be to understand the true nature of the underlying cost
function. Standard modeling techniques of data analysis do not adapt well to this
problem.

To make matters harder, the input or the algorithm or both are usually random-
ized. Therefore, the model fn(c) defines an unknown probability distribution that
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is parameterized by n, and ci is a sample from the distribution fni
(c). The usual

goal of the analysis is to understand how the distribution mean varies with n:
μ = g(n) of n.

This is not a simple modeling problem. The combination of very little a priori
knowledge about fn(c) and g(n), weak or nonexistent tools of data analysis, and
high expectations about correctness can yield disappointing results.

To illustrate this point, the next two sections present two case studies, one
reasonably successful and one with mixed results. Section 7.3.1 describes a
project to find a reasonable descriptive model to predict cost on typical inputs,
for a fixed range of input sizes. Section 7.3.2 describes a project with the
goal of analyzing the data to support (or refute) a conjecture about asymptotic
growth.

7.3.1 Building a Descriptive Model
The Markov Chain Monte Carlo (MCMC) algorithm for random text generation
is described in the case study of Section 3.1. This algorithm reads an input text T

containing n words, together with parameters m and k. It generates a random text
of m words, based on frequencies of k-word phrases in T . If k = 1, the frequencies
are computed for single words; if k = 2, the frequencies are based on two-word
phrases, and so forth. Here we restrict the analysis to the case k = 1.

The algorithm comprises three steps, two of which are straightforward to model.
The third, the random selection step, is more challenging. In this case study we
develop a function to model the cost of random selection in the MCMC algorithm.

Let rcount denote the total (comparison) cost of this step measured in one trial
at a given design point (T ,n,m,k). The step is performed once per output word; let
rcost = rcount/m denote the average cost per output word in that trial. This
average rcost is a random outcome because the algorithm generates a different
sample of words in each trial.

The goal is to find a function g(n) that describes the expected value of rcost as
a function of n. This function corresponds to the average number of word duplicates
(for example, the may have 123 duplicates, and may have 45 duplicates, and so
forth) in a sample of m words selected at random from the n words in T , such
that words with more duplicates have a higher probability of being selected. We
expect g(n) to increase with n, since large texts are likely to have more duplicates
per word; otherwise little is known about its general shape.

To build g(n), we apply the modeling process outlined at the beginning of this
section.

Step 1: Gather Data. The first step is to gather a data sample (N ,R). Figure 7.12
shows the results of an experiment to measure rcost using eight files described
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Figure 7.12. Modeling rcost. Panel (a) shows a scatterplot of sample (N ,R), with a least-
squares regression line g(n) = .004n + 254 superimposed. Panel (b) shows residuals from the
linear fit, with a horizontal sight-line and a lowess curve superimposed.

in the following table. For each file, two random trials are run using the full file
size n, and two trials are run using the first half of the file (by line count), nh ≈ n/2.
This creates 16 levels of n, and measurements for 2 trials at each level, totaling
t = 32 data points in the sample. Let (ni ,ri) denote the measurement of input size
and rcost, respectively, in the ith trial.

Key Text n nh

a Constitution of the United States 39,960 21,997
b Aesop’s Fables 40,863 19,439
c The Book of Psalms 45,146 23,950
d Twain, Tom Sawyer 72,989 37,003
e Twain, Huckleberry Finn 112,493 58,109
f Darwin, Voyage of the Beagle 207,423 103,596
g Shakespeare tragedies 251,181 123,434
h Shakespeare comedies 377,452 191,281

Panel (a) shows a scatterplot of ni versus ri at each design point. The points are
coded by file as shown in the table. We can make several interesting observations
about this data: N and R are positively correlated, as expected; the joint distribution
is skewed, with points clustered in the bottom-left corner and spread out toward the
top-right corner; in many cases pairs of letters are superimposed, indicating that
two random trials at the same design point returned nearly identical measurements
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of ri ; and there is one outlier file f (Darwin) that contains an unusually high number
of duplicates per word.

Step 2: Choose A Model. The data in panel (a) have a generally linear trend, so
we start with a linear model ri = g(n) = ani + b.

Step 3: Fit the Model to The Data. A least squares regression line is superimposed
on the points in panel (a). The regression line g(n) = 0.004n+ 253 represents the
least squares fit of the linear model to the data, which corresponds to the coefficient
pair (a,b) that minimizes the following sum:

S(a,b) =
t∑

i=1

s2
i where (7.17)

si = yi − (a ·ni + b). (7.18)

The values defined by (7.18) are called the residuals from the fit: si is equal to the
vertical distance between the line g(ni) and the point yi in the sample.

This fit may be perfectly adequate for predicting rcost as a function of n in
many cases: except for the outlier f, the points in panel (a) appear to be fairly close
to the line, and given the amount of file-to-file variation, we could argue that this
fit is likely to be as good as any other. But better models do exist, as illustrated in
the next step.

Step 4: Validate the Model. To validate the linear model we start by plotting ni

versus the residuals si , as shown in panel (b). A horizontal sight line is drawn on
the graph at y = 0.

The solid curve is called a locally weighted scatterplot smooth (lowess) curve.
A lowess curve is built by computing weighted averages in a sliding window of
the data points (ni ,si). This handy tool of graphical analysis “smooths” the data to
show the general trend of the point set. We observe here that the residuals have a
generally concave shape: the extreme points are below the horizon and the middle
points are above it. This indicates that the points are curving downward compared
to the regression line and that a better fit to the data could be obtained with a
sublinear model.

Guideline 7.9 Let the trend in residuals guide the search for a better model for
your data.

We can consider a few different approaches to improving the model on the basis
of the information in panel (b). The goal is to find and fit a model so that the
residuals are generally flat, with no obvious concave or convex trend.

Cambridge Books Online © Cambridge University Press, 2012



244 7 Data Analysis

One simple idea is to remove the outlier points f and try again with linear
regression. Omitting these points would move the least squares fit closer to the
center of the remaining points and flatten out the lowess curve. Here, however, we
make the choice to keep the outliers because they represent events that do occur
in practice.

Another idea is to apply a power transformation as described by formula (7.11).
The transformation “straightens out” the data trend so that a linear model fits
better. Tukey’s [16] ladder of transformations provides a systematic way to look
for power transformations. Here is a portion of the transformation ladder, for a
bivariate sample (X,Y ) modeled by y = f (x) and y > 0. The idea is to apply
a function to y so that the transformed data (X,Y ′) form a straight line on a
scatterplot. The center of the ladder is the identity transformation y ′ = y. Negated
terms are used on the left side so that the transformed data are increasing (or
decreasing) to match the original data, which simplifies analysis.

. . . , −1/y, −1/
√

y, lny,
√

y, y, y2, y3, . . .

Use the ladder as follows:

• if the data trend is convex upward (superlinear), apply a transformation y ′ = t(y)

using a function from the left of center, to bend the curve downward toward a
straight line.

• if the trend is concave (sublinear), apply a transformation from the right of
center to bend the curve upward.

The transformations farther away from center are more extreme. These transfor-
mations can also be applied to x, working in the opposite direction – that is, to
bend a curve downward, apply functions from the right – or to both x and y. See
[7] or [16] for more about this approach to modeling.

The Box-Cox procedure combines this ladder-of-transformation idea with statis-
tical analysis, by identifying a transformation on Y described by parameter λ (e.g.,
λ = 2 corresponds to y2) that best straightens out the sample. The best choice of λ

is defined as the one that minimizes the sum of squared errors, a statistic computed
on the residuals from a linear regression fit to the transformed points (X,Yλ). The
Box-Cox transformation scales the points so that residuals are comparable across
different values of λ. For more information about this approach see [5] or [11].

Yet another approach to finding a better model is to apply a power transforma-
tion, described next.

Power Transformations
Panel (a) of Figure 7.13 shows our cost data after applying a logarithmic transfor-
mation to both N and R: r ′ = ln(r) and n′ = ln(n). This has the effect of replotting
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Figure 7.13. Modeling rcost. Panel (a) shows (N ,R) under log-log transformations n′ = lnn

and r ′ = ln r , together with a linear regression fit r ′ = 0.7n′ −14. Panel (b) shows residuals from
the fit to the log-log data. Panel (c) shows this regression fit translated back to the original scale,
g(n) = 0.22n0.7. The linear regression fit computed earlier is also shown (dotted line). Panel (d)
shows the residuals from this fit on the original scale.

the points on a log-log scale. Logarithmic transformation improves our view of the
data by spreading out the points more evenly in their range and moving the outliers
f closer to the center. A least squares regression line r ′ = 0.7n′ − 1.5 is superim-
posed in panel (a). The residuals in panel (b) show a slightly downward trend, but
the lowess curve is much straighter than before, indicating that the regression line
nicely matches the growth in the data.

Our next step is to apply a reverse transformation to map this regression line
back to the original scale. The power law states that if lny = f ′(x) = k lnx + lna,
then y and x are related by y = f (x) = axk , Therefore, the fit r ′ = 0.7n′ − 1.5
becomes r = .22n0.7 in the original scale (with .22 = e−1.5).
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The solid line in panel (c) shows this fit to the data; the dotted line is the linear
fit obtained previously. The slight downward curve in this model yields a better fit
to the data points at the extreme left and right ends. Panel (d) shows the residuals
and a lowess curve from the new fit, also mapped to the original scale. Compare
these residuals to those in Figure 7.12 panel (b): the points at the extreme left are
better centered on the horizon line, and the points at the extreme right are closer
to the horizon. The differences are subtle, but this curve represents a better overall
match to the data, and that was the goal.

If a better model is required, the next step would be to apply techniques of
nonlinear modeling. Cohen [7] has a good survey.

7.3.2 Experimental Asymptotic Analysis
Recall the first fit (FF) algorithm for bin packing described in the case study of
Section 3.2. The algorithm takes as input a list of n weights in the range (0,u), for
u ≤ 1, and packs the weights into unit-capacity bins by placing each weight in the
first (leftmost) bin that can contain it. The solution cost is defined as the expected
total amount of empty space left in the tops of bins, denoted E(n,u). We know
that if E(n,u) is asymptotically sublinear in n, then FF is asymptotically optimal
in this average case model, and if E(n,u) is asymptotically linear, then FF is not
optimal.

We develop experiments to run FF on lists of n uniform random weights with
0 < u ≤ 1. The goal of data analysis is to determine whether the data support, or
refute, a conjecture of asymptotically linear growth. That is, we want to know, for
given u, whether there is a k < 1 such that E(n,u) ∈ O(nk). For fixed u, let (N ,E)

denote a sample containing pairs of input sizes ni and measurements of empty
space ei .

The Power Law
First we try the power transformation procedure illustrated at the end of Section
7.3.1: apply log-log transformation to the (E,N) data and use linear regression
on the transformed data set. A linear fit y ′ = ax ′ + b on the transformed data
corresponds to a fit to the model bxa in the original scale. What can we learn
about a?

Figure 7.14 shows results of an experiment to measure FF in three random trials
each at design points u = (1,0.8) and n = (10000, 20000, 30000 . . . 200000).

Panel (a) shows a scatterplot (N ′,E′) after log-log transformation, with a least
squares regression line superimposed. The slope of the line is a = 0.69. Panel (b)
shows the residuals from that regression fit, with a lowess curve and a horizontal
sight line. The lowess curve gives slight indications of concavity in the residuals,

Cambridge Books Online © Cambridge University Press, 2012



7.3 Understanding Y as a Function of X 247

11.5 12.0 12.5 13.0 13.5 14.0 14.5

6.5

7.0

7.5

8.0

8.5

7.5

7.0

8.0

8.5

9.0

9.5

E
′(n

,1
)

n ′
(a)

11.5 12.0 12.5 13.0 13.5 14.0 14.5
n ′
(b)

−0.05

0.00

0.05

re
si

du
al

s

11.5 12.0 12.5 13.0 13.5 14.0 14.5

E
′(n

,0
.8

)

n ′
(c)

11.5 12.0 12.5 13.0 13.5 14.0 14.5

−0.015

−0.005

0.005

n

re
si

du
al

s

n ′
(d)

Figure 7.14. Asymptotic analysis of the first fit algorithm on lists of n random weights drawn
uniformly on (0,u). Panel (a) shows measurements of empty space when u = 1. The power rule
is applied and the regression fit has slope a = 0.69. Panel (b) shows the residuals from this fit.
Panel (c) shows the same analysis for u = 0.8; here the line has slope a = 0.9883. Panel (d) shows
residuals from that fit. The slight concavity in the lowess curve suggests the data are growing
faster than the fit.

which suggest that the line is growing slightly faster than the data. This gives strong
support for a conjecture that, in the original scale, the data grow more slowly than
the function e = cn0.69 (for constant c that can be calculated from the fit). This
suggests that E(n,1) ∈ O(n0.69): therefore FF is asymptotically optimal.

This experimental observation was first published in [4] together with a conjec-
ture that E(n,1)∈O(n0.7): an asymptotic bound of O(n2/3 logn) was subsequently
proved [15]. Note that the asymptotic bound O(n2/3 logn) is slightly below the
conjecture of O(n.7). Data analysis suggested an upper bound that was both correct
and low enough to suggest sublinear growth. This is an example of a successful
asymptotic analysis of a finite data set.

Panels (c) and (d) show the same analysis applied to measurements of E(n,0.8).
In this case the observed slope a = 0.9883 is very close to 1, and the residuals
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Figure 7.15. Power law analysis of two quadratic functions f (x), g(x).

curve upward. This time the analysis is inconclusive: E(n,0.8) might be asymp-
totically linear in n, or it might be O(n1−ε) or perhaps something like O(n/ logn).
These functions are too similar for data analysis to distinguish one from another,
even in tests on much higher levels of n. The question of whether E(n,0.8) is
asymptotically linear or sublinear in n remains open.

Why Didn’t It Work? Figure 7.15 illustrates some limitations of the power trans-
formation when used to study growth in the leading term of a function. These two
panels show the results of applying the power transformation to the following two
random functions.

f (x) = 10x2 + x + 25,000 + ε(10,000)

g(x) = x2 − 10x + 20,000 + ε(x2)

The last term ε(s) denotes a random noise variate generated according to a normal
distribution with mean μ = 0 and standard deviation σ = s. The data samples each
contain 25 random points at levels n = 10,20, . . .100. In both cases the leading
term is quadratic.

Panel (a) shows log-log plot of (x,f (x)), and panel (b) shows a log-log plot of
(x,g(x)). The coefficients a from linear regression fits to the transformed points are
a = 0.73 and a = 0.12, implying that f (x)≈ cx0.73 and g(x)≈ cx0.12, respectively.
These results are well off the mark, since we know that both functions are O(x2).
(Inspection of the residuals does at least indicate correctly that these are lower
bounds on the order of the leading term.)

Here the analysis is sabotaged, first, by the presence of large secondary terms in
the functions, and, second, by random noise in the data. In panel (a) the nonlinear
shape in the transformed data is due to the huge constant term in f (x). In this
case, we can get a better estimate of a by fitting a line to the two highest sample
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points. That fit yields a slope of a = 1.4, which is closer to the true bound of 2, but
still a significant underestimate. In panel (b) the negative second term produces an
initial decrease in the data at small x, which, together with growth in the random
term, completely obscures the quadratic term of g(x).

The experimental remedy for an analysis marred by large low-order terms is to
run more trials at higher levels of x, so that the leading term has a better chance
to dominate. The remedy for random noise is to run more trials at the same design
points, to reduce variance. These remedies may or may not be feasible to apply in
a given experimental situation, and there is no guarantee in general that the result
will be sufficient for the analysis problem at hand.

In fact, any data analysis technique that returns an asymptotic bound based on
a finite data sample cannot guarantee to be correct (see [12] for details). The basic
argument is, since the sample contains at most d design points (distinct values
of ni), data analysis cannot distinguish among models of degree d or higher. For
example, two design points (n1,n2) can be used to find a best fit to a linear model,
but not a quadratic model. But the underlying function f (n) could be of arbitrarily
high degree.

Even when there is some confidence that the design has enough levels to capture
the degree of f (n), the standard techniques for fitting a function to data are not
well suited for bounding the leading term of the function. This is considered a type
of extrapolation – extending an analysis beyond the range of the sample – that is
usually only mentioned in the data analysis literature in warnings against trying it:

• It would be a serious error to extrapolate the fitted function very far beyond the
range of the data. [3]

• It is not always convenient to remember that the right [asymptotic] model for a
population can fit a sample of data worse than a wrong model. [17]

On the other hand, given that asymptotic analysis is the main goal of algorithm
research, the payoff for a successful data analysis can be a bona fide advance of
the discipline, as in our first example with E(n,1): sometimes everything works.

Guideline 7.10 Any data analysis technique applied to answer an asymptotic
question about a finite data set must be considered a heuristic that provides no
guarantees. Insight, rather than certainty, must be the goal.

The Ratio Test
The ratio test is an alternative to the power law procedure that can help build
insight about the leading term in a function. Given a covariate sample (X,Y ) that
is assumed to be related by an unknown function y = f (x), this approach involves
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Figure 7.16. Ratio Test. Panels (a) through (e) show ratio tests for five guess functions g(x),
compared to f (x). Panel (f) shows the result of the ratio test applied to the function E(n,0.8).

guessing the first term g(x) of function f (x) and evaluating the results of the
guess.

The procedure is based on the following rationale. If g(n) has the same order as
the first term of f (x) – that is, if g(x) ∈ �(f (x)) – then the ratio r(x) = f (x)/g(x)

approaches a constant cg as x → ∞. If the guess g(x) is too low (that is, if
(f (x))∈O(g(x)), then the ratio r(x) = f (x)/g(x) increases in x; if the guess is
too big, the ratio r(x) = f (x)/g(x) approaches 0. The ratio test uses graphical
analysis to evaluate the trend in a plot of the ratio data Y/g(X) against X.

Figure 7.16 shows the results of applying the ratio test to our example function
f (x) from the previous section. Note that in some panels the y-scale is restricted
so that convergence in x is easier to see, so some data points are not plotted.
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Panel (a) shows a plot of x versus the correct guess g(x) = x2, together with a
lowess curve showing the general trend and a horizontal sight line at y = 10. From
visual inspection it is difficult to tell whether the ratio data approach a constant
near 10 or will continue to decrease toward 0 at higher values of x. But, on the
other hand, there is no suggestion that f (x) grows more slowly than n2, so we
may take the guess g(x) = n2 as a tentative lower bound on the first term of f (x).
Panel (b) supports this conclusion: the guess g(x) = x is clearly too low, since the
ratio data increase.

Panel (c) shows ratio data for the guess g(x) = x3. Again, it is difficult to tell
from visual inspection whether the ratio data decrease toward 0 or simply approach
a constant ε near zero. However, a look at the inverse ratio data in panel (d) settles
the question.

The rationale is that f (x)/g(x) approaches 0 when 1/(f (x)/g(x)) grows with-
out bound, and that f (x)/g(x) approaches a constant c when 1/(f (x)/g(x))

approaches a constant 1/c . Applying this principle to the guess g(x) = x3, panel
(d) shows a plot of X vs 1/(Y/n3). Since the ratio data grow without bound, we
can conclude that the guess g(x) = n3 is too high, and that the data in panel (c)
are indeed converging to 0.

Now apply this principle to the guess g(x)= x2 from panel (a). Panel (e) shows a
plot of X vs. the inverse 1/(Y/n2).As with panel (a) it is difficult to tell whether this
function approaches a constant near 1.0 or continues to increase. But because one
is an inverse of the other, we know that either (1) both data sets approach a constant
and the guess is correct or (2) one set approaches 0 and the other approaches a
(slowly increasing) function of x. This observation narrows our range of guesses.

Like the power law, the ratio test is inconclusive on the question of whether f (x)

is asymptotically �(n2), or perhaps in some nearby class such as �(n2 logn) or
�((n2)/ logn). On the other hand, the ratio test has narrowed down the range of
possibilities with convincing evidence that f (x) is in neither O(x) nor �(x3).

Panel (f) shows the application of the Ratio Test to our difficult data set n vs.
E(n,0.8), from the previous section. Recall that the open question is whether
the function describing E(n,0.8) is linear or sublinear in n. The panel shows the
ratio data E(n,0.8)/n: once again the results are inconclusive. Like the power
law procedure, the ratio test can be very sensitive to low-order terms, and in the
presence of noise one guess cannot be distinguished from another.

See the paper by McGeoch et al. [12] for detailed discussion of the power law,
the ratio test, and other analysis techniques for inferring asymptotic performance
from finite data sets.

Guideline 7.11 Try using the power law or the ratio rule to find the leading term
in the unknown function relating X and Y .
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7.4 Chapter Notes
Plenty of data analysis techniques useful to algorithmic experimenters are omitted
from this chapter. One omission worth noting is a discussion of analysis techniques
for trivariate data samples (X,Y ,Z), as well as data in higher dimensions, which
are common in algorithm studies.

In fact, most of the case study experiments in this text generated multivariate
data samples. Here are just two examples: first, the Move-to-Front and Transpose
experiments described in Sections 6.1 and 7.2 created six-dimensional data sam-
ples of the form (n,m,Rm,Rt ,MT F ,T R): n and m are input parameters, Rm

and Rt are requests generated at time m, M and T denote the algorithm costs.
Higher-dimensional samples were created in the variance reduction experiments
that reported alternative cost measurements. Second, the first fit experiments dis-
cussed in Sections 3.2 and 7.3.2 created four-dimensional data samples of the
form (n,u,S,B), where n and u are input parameters, S denotes the sum of the list
weights, and B denotes the number of bins used by first fit.

Although the discussion of data analysis techniques for these data samples
focused on questions about one- and two-dimensional relationships, the graphical
displays in Figures 7.11 and 7.14 depict three- and four-dimensional relationships.
These figures illustrate basic principles for plotting higher-dimensional point sets
in two-dimensional graphs. First, use the x and y dimensions in the graph to high-
light the relationship between the two data dimensions of main importance. The
third data dimension of interest can be treated by the one of the methods in the
following list; higher-dimensional point sets can be treated with combinations of
these techniques.

• Identify the third dimension by coding data points with different symbols. For
example, Panel (a) in Figure 7.11 plots cost M against cost T and codes the
points according to input size (a, b, c).

• The third dimension can be identified by using a subscale on the x-axis. Panel
(b) of Figure 7.11 shows problem size m on the main scale of the x-axis, but each
m level has a subscale (left, right) corresponding to the M and T costs, which
are coded with plusses and circles. Corresponding points from each sample (a
fourth dimension corresponding to trial index) are joined by line segments.

• Two dimensions can be combined into one using an arithmetical formula. Panels
(c) and (d) in Figure 7.11 show problem size m on the x-axis and functions M/T

and M −T on the y-axis, respectively.
• If the preceding methods do not work because the data set is too complex for one

panel, use coplots, which are panels plotted side by side, for the third dimension.
Grids of panels can be used for four-dimensional data. For example, Figure 7.14
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shows coplots of the u = 1 versus the u = .8 data for FF (reading top to bottom),
and coplots of fits versus residuals for these two samples (reading left to right).

Consult the following sources to learn more about the data analysis techniques
surveyed here.

• Descriptive statistics and inferential methods are discussed in most introductory
data analysis textbooks. Two introductory texts, by Baron [2] and Cohen [7],
are written explicitly for a computer science audience.

• To learn more about exploratory data analysis, consult Tukey’s classic text [16].
See Mosteller and Tukey [13] for an introduction to regression analysis and
model validation.

• Chambers et al. [6] and Cleveland [8] present good introductions to graphical
methods of data analysis. Both texts contain discussions of graphical techniques
for coping with higher-dimensional data samples.

The graphs throughout this text were created using the R statistical package
[14], which is a freeware implementation of the S data analysis language. Visit
www.r-project.org to learn more about R. The R source code for the graphs
in this text can be found in the GraphicsLab section of Alglab.

Here are the guidelines presented in this chapter.

7.1 Test programs should report outcomes as ratio data whenever possible, but
not at the price of lost information.

7.2 Location and dispersion are the yin and yang of data summaries; do not
report one without the other.

7.3 The empirical rule: in a sample from a normal distribution, 68 percent of
the data fall within ±σ of the mean, 95 percent fall within ±2σ of the mean,
and 99.7 percent fall within ±3σ . Check that your data are indeed normally
distributed before applying this rule.

7.4 Apply logarithmic transformation, or more generally a power transforma-
tion, to impose symmetry in a skewed data sample.

7.5 Consider these properties when deciding how to summarize a data sample:
symmetry, outliers, skew, bi- or multimodality, kurtosis, and data censoring.

7.6 Calculate confidence intervals for your sample means.
7.7 Use bootstrapping (and related resampling methods) to generalize inferential

methods to nonnormal distributions and nonstandard statistics.
7.8 Different graphs give different views of relationships in data. Try many views

to learn the full story.
7.9 Let the trend in residuals guide the search for a better model for your data.
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7.10 Any data analysis technique applied to answer an asymptotic question about
a finite data set must be considered a heuristic that provides no guarantees.
Insight, rather than certainty, must be the goal.

7.11 Try using the power law or the ratio rule to find the leading term in the
(unknown) function relating X and Y .

7.4.1 Problems and Projects
1. Go back to an experiment from a previous chapter and reexamine the data

distribution. What properties does it have that are relevant to the choice of
summary statistics?

2. How would you extend the analysis of correlation in the Move-to-Front and
Transpose algorithms to incorporate changes in both n and m?

3. Can you find a better fit to the rcost data? Start by running experiments on
more test files and varying problem sizes to generate a larger pool of data. Try
the two modeling techniques illustrated here: remove outliers and reapply the
linear and O(n0.7) model; and apply Tukey’s transformation ladder to straighten
out the plot.

4. Apply the techniques for finding a descriptive function to the problem of pre-
dicting the crossover point mc (described in Section 6.1 for MTF and TR as a
function of n and m).

5. Find a large table of experimental data from a research paper in experimen-
tal algorithmics. Download this multidimensional data set and use graphical
exploratory analysis to find relationships that are not apparent from the numbers.
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