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A HUMAN'S GUIDE TO WORDS

Previously I spoke of mutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual information between X and Y, I(X;Y), which is the
di�erence between the entropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropy of the joint probability distribution, H(X,Y) and the
entropies of the marginal distributions, H(X) + H(Y).

I gave the example of a variable X, having eight states 1..8 which are all equally
probable if we have not yet encountered any evidence; and a variable Y, with states
1..4, which are all equally probable if we have not yet encountered any evidence.  �en
if we calculate the marginal entropies H(X) and H(Y), we will �nd that X has 3 bits of
entropy, and Y has 2 bits.

However, we also know that X and Y are both even or both odd; and this is all we
know about the relation between them.  So for the joint distribution (X,Y) there are
only 16 possible states, all equally probable, for a joint entropy of 4 bits.  �is is a 1-bit
entropy defect, compared to 5 bits of entropy if X and Y were independent.  �is
entropy defect is the mutual information - the information that X tells us about Y, or
vice versa, so that we are not as uncertain about one after having learned the other.

Suppose, however, that there exists a third variable Z.  Z has two states, "even" and
"odd", perfectly correlated to the evenness or oddness of (X,Y).  In fact, we'll suppose
that Z is just the question "Are X and Y even or odd?"

If we have no evidence about X and Y, then Z itself necessarily has 1 bit of entropy on
the information given.  �ere is 1 bit of mutual information between Z and X, and 1
bit of mutual information between Z and Y.  And, as previously noted, 1 bit of mutual
information between X and Y.  So how much entropy for the whole system (X,Y,Z)? 
You might naively expect that

H(X,Y,Z) = H(X) + H(Y) + H(Z) - I(X;Z) - I(Z;Y) - I(X;Y)

but this turns out not to be the case.

�e joint system (X,Y,Z) only has 16 possible states - since Z is just the question "Are
X & Y even or odd?" - so H(X,Y,Z) = 4 bits.
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But if you calculate the formula just given, you get

(3 + 2 + 1 - 1 - 1 - 1)bits = 3 bits = WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!WRONG!

Why?  Because if you have the mutual information between X and Z, and the mutual
information between Z and Y, that may include some of the same mutual information
that we'll calculate exists between X and Y.  In this case, for example, knowing that X
is even tells us that Z is even, and knowing that Z is even tells us that Y is even, but
this is the same information that X would tell us about Y.  We double-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counteddouble-counted some
of our knowledge, and so came up with too little entropy.

�e correct formula is (I believe):

H(X,Y,Z) = H(X) + H(Y) + H(Z) - I(X;Z) - I(Z;Y) - I(X;Y | Z)

Here the last term, I(X;Y | Z), means, "the information that X tells us about Y, given
that we already know Z".  In this case, X doesn't tell us anything about Y, given that we
already know Z, so the term comes out as zero - and the equation gives the correct
answer.  �ere, isn't that nice?

"No," you correctlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectlycorrectly reply, "for you have not told me how to calculate I(X;Y|Z), only
given me a verbal argument that it ought to be zero."

We calculate I(X;Y|Z) just the way you would expect.  I(X;Y) = H(X) + H(Y) - H(X,Y),
so:

I(X;Y|Z) = H(X|Z) + H(Y|Z) - H(X,Y|Z)

And now, I suppose, you want to know how to calculate the conditional entropy? 
Well, the original formula for the entropy is:

H(S) = Sum i: p(Si)*-log2(p(Si))

If we then learned a new fact Z0, our remaining uncertainty about S would be:

H(S|Z0) = Sum i: p(Si|Z0)*-log2(p(Si|Z0))

http://www.youtube.com/watch?v=tRVUOGUmxJI
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http://yudkowsky.net/bayes/technical.html
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So if we're going to learn a new fact Z, but we don't know which Z yet, then, on
average, we expect to be around this uncertain of S afterward:

H(S|Z) = Sum j: (p(Zj) * Sum i: p(Si|Zj)*-log2(p(Si|Zj)))

And that's how one calculates conditional entropies; from which, in turn, we can get
the conditional mutual information.

�ere are all sorts of ancillary theorems here, like:

H(X|Y) = H(X,Y) - H(Y)

and

if  I(X;Z) = 0  and  I(Y;X|Z) = 0  then  I(X;Y) = 0

but I'm not going to go into those.

"But," you ask, "what does this have to do with the nature of words and their hidden
Bayesian structure?"

I am just so unspeakably glad that you asked that question, because I was planning to
tell you whether you liked it or not.  But �rst there are a couple more preliminaries.

You will remember—yes, you will remember—that there is a duality between mutual
information and Bayesian evidence.  Mutual information is positive if and only if the
probability of at least some joint events P(x, y) does not equal the product of the
probabilities of the separate events P(x)*P(y).  �is, in turn, is exactly equivalent to the
condition that Bayesian evidence exists between x and y:

I(X;Y) > 0   => 
P(x,y) != P(x)*P(y) 
P(x,y) / P(y) != P(x) 
P(x|y) != P(x)

If you're conditioning on Z, you just adjust the whole derivation accordingly:
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I(X;Y | Z) > 0   => 
P(x,y|z) != P(x|z)*P(y|z) 
P(x,y|z) / P(y|z) != P(x|z) 
(P(x,y,z) / P(z)) / (P(y, z) / P(z)) != P(x|z) 
P(x,y,z) / P(y,z) != P(x|z) 
P(x|y,z) != P(x|z)

Which last line reads "Even knowing Z, learning Y still changes our beliefs about X."

Conversely, as in our original case of Z being "even" or "odd", Z screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o�screens o� X from Y -
that is, if we know that Z is "even", learning that Y is in state 4 tells us nothing more
about whether X is 2, 4, 6, or 8.  Or if we know that Z is "odd", then learning that X is
5 tells us nothing more about whether Y is 1 or 3.  Learning Z has rendered X and Y
conditionally independent.

Conditional independence is a hugely important concept in probability theory—to
cite just one example, without conditional independence, the universe would have no
structure.

Today, though, I only intend to talk about one particular kind of conditional
independence—the case of a central variable that screens o� other variables
surrounding it, like a central body with tentacles.

Let there be �ve variables U, V, W, X, Y; and moreover, suppose that for every pair of
these variables, one variable is evidence about the other.  If you select U and W, for
example, then learning U=U1 will tell you something you didn't know before about

the probability W=W1.

An unmanageable inferential mess?  Evidence gone wild?  Not necessarily.

Maybe U is "Speaks a language", V is "Two arms and ten digits", W is "Wears clothes",
X is "Poisonable by hemlock", and Y is "Red blood".  Now if you encounter a thing-in-
the-world, that might be an apple and might be a rock, and you learn that this thing
speaks Chinese, you are liable to assess a much higher probability that it wears
clothes; and if you learn that the thing is not poisonable by hemlock, you will assess a
somewhat lower probability that it has red blood.

Now some of these rules are stronger than others.  �ere is the case of Fred, who is
missing a �nger due to a volcano accident, and the case of Barney the Baby who
doesn't speak yet, and the case of Irving the IRCBot who emits sentences but has no
blood.  So if we learn that a certain thing is not wearing clothes, that doesn't screen

https://www.lesswrong.com/lw/lx/argument_screens_off_authority/
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o� everything that its speech capability can tell us about its blood color.  If the thing
doesn't wear clothes but does talk, maybe it's Nude Nellie.

�is makes the case more interesting than, say, �ve integer variables that are all odd
or all even, but otherwise uncorrelated.  In that case, knowing any one of the variables
would screen o� everything that knowing a second variable could tell us about a third
variable.

But here, we have dependencies that don't go away as soon as we learn just one
variable, as the case of Nude Nellie shows.  So is it an unmanageable inferential
inconvenience?

Fear not! for there may be some sixth variable Z, which, if we knew it, really would
screen o� every pair of variables from each other.  �ere may be some variable Z—
even if we have to construct Z rather than observing it directly—such that:

p(u|v,w,x,y,z) = p(u|z) 
p(v|u,w,x,y,z) = p(v|z) 
p(w|u,v,x,y,z) = p(w|z) 
    ...

Perhaps, given that a thing is "human", then the probabilities of it speaking, wearing
clothes, and having the standard number of �ngers, are all independent.  Fred may be
missing a �nger - but he is no more likely to be a nudist than the next person; Nude
Nellie never wears clothes, but knowing this doesn't make it any less likely that she
speaks; and Baby Barney doesn't talk yet, but is not missing any limbs.

�is is called the "Naive Bayes" method, because it usually isn't quite true, but
pretending that it's true can simplify the living daylights out of your calculations.  We
don't keep separate track of the in�uence of clothed-ness on speech capability given
�nger number.  We just use all the information we've observed to keep track of the
probability that this thingy is a human (or alternatively, something else, like a
chimpanzee or robot) and then use our beliefs about the central class to predict
anything we haven't seen yet, like vulnerability to hemlock.

Any observations of U, V, W, X, and Y just act as evidence for the central class
variable Z, and then we use the posterior distribution on Z to make any predictions
that need making about unobserved variables in U, V, W, X, and Y.

Sound familiar?  It should:
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As a matter of fact, if you use the right kind of neural network units, this "neural
network" ends up exactly, mathematically equivalent to Naive Bayes.  �e central unit
just needs a logistic threshold—an S-curve response—and the weights of the inputs
just need to match the logarithms of the likelihood ratios, etcetera.  In fact, it's a good
guess that this is one of the reasons why logistic response often works so well in
neural networks—it lets the algorithm sneak in a little Bayesian reasoning while the
designers aren't looking.

Just because someone is presenting you with an algorithm that they call a "neural
network" with buzzwords like "scru�y" and "emergent" plastered all over it,
disclaiming proudly that they have no idea how the learned network works—well,
don't assume that their little AI algorithm really is Beyond the Realms of Logic.  For
this paradigm of adhockery , if it works, will turn out to have Bayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structureBayesian structure; it
may even be exactly equivalent to an algorithm of the sort called "Bayesian".

Even if it doesn't look Bayesian, on the surface.

And then you just know that the Bayesians are going to start explaining exactly how
the algorithm works, what underlying assumptions it re�ects, which environmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmentalenvironmental
regularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularitiesregularities it exploits, where it works and where it fails, and even attaching
understandable meanings to the learned network weights.

Disappointing, isn't it?
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