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There are two major performance issues in a real-time system where a processor has a set of devices connected to it at
different priority levels. The first is to prove whether, for a given assignment of devices to priority levels, the system can
handle its peak processing load without losing any inputs Jrom the devices. The second is to determine the response time
JSor each device. There may be several ways of assigning the devices to priority levels so that the peak processing load is
met, but only some (or perhaps none) of these ways will also meet the response-time requirements for the devices. In this
paper, we define a condition that must be met to handle the peak processing load and describe how exact worst-case
response times can then be found. When the condition cannot be met, we show how the addition of buffers for inputs can
be useful. Finally, we discuss the use of multiple processors in systems for real-time applications.
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1. INTRODUCTION

A typical real-time system has a number of devices
connected to a computer system: a real-time program
running on the system reads inputs from devices,
processes these inputs, and then (often) produces outputs
to be sent to the devices. In the simplest cases, the devices
produce inputs at regular intervals and expect outputs to
be sent to them also at regular intervals. Inputs may arrive
either through asynchronous interrupts, or by software
polling at specified intervals. The time between the arrival
of an input from a device and the completion of
processing for that input is usually called the response
time for the device; it may be assumed that outputs are
produced only when processing is complete.

Not all devices operate in quite this fashion; for
example, some devices may have minimum and maximum
times between their inputs, and others may produce
inputs at random times. Also, different devices will have
different response time requirements. A safer characterisa-
tion of such devices is therefore to say that they each have
a minimum time between successive inputs and a
maximum allowable response time. To ensure that these
response-time requirements can be met, the devices are
usually connected to the system at the different priority
levels at which their inputs will be processed.

The computer system can be characterised by its speed,
i.e. the time it takes to process an input. In fact, this time
is usually variable, but within bounds. A safe assumption
is to take the upper bound of the processing time for each
kind of input. Processing of an input will be pre-empted
when another input of higher priority arrives and will
only be resumed when there is no processing remaining
at higher priorities.

Consider such a real-time system, in which a number
of devices are connected to a single processor computer
system at different priority levels. Initially, assume that
an input from a device is saved in a buffer until it is
overwritten by the next input from the same device.

The first problem is to determine whether for a given
assignment of devices to priority levels the system will
meet its peak processing load (i.e. no input from any
device will be lost). A more basic problem than this is to
give a method of finding an assignment of devices to
priorities for which the system will meet its peak

processing load. Some earlier work* gives conditions
under which such an assignment is possible, and a
method® of determining the system load for such an
assignment. Under these conditions, there may be more
than one assignment of devices to priorities that is
feasible. For a priority assignment to be feasible, it is
necessary that, on the average, the processing of each
input be completed in a time shorter than the time
between two successive inputs from the same device. But
it is possible that only some subset of these feasible
priority assignments will also satisfy the response-time
requirements, or that no such assignment can be found.

An available method?® can be used for finding good
upper bounds to the response times, but this does not
provide the least upper bound. A recent investigation’
gives a more rigorous formal analysis of the problem,
showing when it is possible for a feasible priority
assignment to be found, but it does not provide a
computationally efficient way of finding the exact
worst-case value of the response time. It should be noted
that typical statistical analyses and queuing models are
not suitable for this problem because the values they can
predict are bounded by probabilities: while such studies
can be used in the absence of better methods, they cannot
guarantee correct working of a system under worst-case
conditions. And in general real-time systems must be
designed to tolerate worst-case conditions, even if the
probability of the occurrence of such conditions is low.
In safety-critical systems, for example, there are usually
severe response-time constraints, and Currie! has
suggested that it will probably be essential for such
systems to be programmed in languages with restrictions
which make it possible to ensure that timing bounds are
kept. Our problem is to determine whether such bounds
are kept and to find the absolute values of the response
times.

In this paper we shall describe how exact values can be
found for the worst-case response times of a real-time
system. The method, which is proved to be correct, can
easily be extended to handle cases where inputs are
buffered, and to find the number of buffers that will allow
a given assignment of devices to priority levels to be
feasible. We discuss the use of multiple processors for a
real-time system and consider situations in which this can
provide a solution for computationally bound systems.
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2. DEFINITIONS

Let the system have n devices connected, one at each of
n different priority levels. Following conventional
practice, let 1 be the highest and n the lowest priority level.
Let T; be the minimum time between successive inputs
from the device connected at priority level i, and let C,
be the maximum associated processing requirement.

Values of 7; can usually be specified without difficulty
by the system engineers, as they are either characteristics
of the devices or requirements of the real-time system.
Determining C; requires a little more analysis, but is in
practice not difficult. Assume the real-time program is
composed of n processes, one servicing each device. For
simplicity, let these processes be independent and have no
communication with each other. Then, provided the
program code is available, a compiler can make a static
analysis and provide an accurate estimate of the worst-
case execution time of each statement in the program.
However, this will not suffice to calculate the worst-case
execution time for each process, as it is necessary in
addition to know the number of times each statement will
be executed. For this to be possible, the programmer must
specify an upper bound to the number of iterations of
each loop. Given a proof of total correctness for the
program, such an upper bound must exist, and it is not
a great additional imposition for the programmer to give
it a numeric value. If a system must meet critical real-time
constraints, it must be programmed with this in mind, and
putting upper bounds to loop iterations is one of the first
steps in this direction.

Let RL; be the required upper bound on the response
time of device i, and let R7; be the worst-case upper bound
provided by the real-time system. From the definition of
RL;, RT, must be less than RL; under all conditions. And
a common requirement is for R7; to be less than T;. If this
condition cannot be met, buffers can be added to store
successive inputs coming from devices, or additional
processors can be added to the system to reduce the total
processing time.

3. WORST-CASE LOAD

The highest sustained processing load arises when all the
inputs arrive periodically with the minimum interval T;
between them and each such input requires the maximum
processing time C;.

Following Liu and Layland,* we state the following
definition and theorem.

Definition. The critical instant for level i is defined to
be the instant when an input at this level will have the
largest response time.

Theorem 1. A critical instant for level i occurs whenever
an input at this level occurs simultaneously with the
inputs of all higher-priority tasks.

Proof. As in Liu and Layland.* O

It then follows that the critical instant for the system
as a whole is the instant when inputs from all the devices
arrive simultaneously. We shall refer to the load at this
instant as the worst-case load. If the worst-case load
occurs at time ¢ = 0, it will occur again at multiples of
time M; = LCM({T;| 1 <j < i}), where the right-hand
side is the least common multiple of all values from 7; to
T..
If for all i the values of T; are equal, then the largest

response time R7; is simply the sum ¥ C;, 1 <j < i. But

in general this is not the case and there may be no relation
between T; and T, for j # k. If j < k and T; < T;, there
will be more than one input from device j in the time
interval [0, T7;).*

4. AN EXACT ANALYSIS

The fact that inputs from higher levels pre-empt
processing of those from lower levels leads to the
conclusion that for all i > j, RT; > RT;. But to find the
actual value of RT; we need to know exactly how many
inputs come at the higher levels in the interval [0, RT;).
For each such input at some level j, there will be a
computational requirement of C; which must be
completed before the computational requirement of C;
can be completed. Note that it is not sufficient just to find
the number of inputs from each higher level in the whole
of the interval [0, T;) because some of these may come in
the part[RT;, T;) of theinterval and will thus not contribute
to the value of RT,.

The response time R7; is thus the sum of the
computational requirements for all inputs from higher
levels occurring in the interval [0, RT;), and C;, the
computational requirement for one input at level i,

-1
Rn=(z fRI;/Tﬂ*Cj)+Ci- (1)
j=1
Unfortunately, equations of this form do not lend
themselves easily to analytical solution.

There is another means of reasoning that could lead to
a more tractable solution. Computation at level i cannot
begin until the computations for inputs at all the higher
levels have been completed. So a worst-case lower bound
for RT; will be £C;, for 1 <j < i. After it begins, it will
be pre-empted for each higher-level input that comes
before the completion of C;, and each such input may
again be pre-empted by a still higher-level input, and so
on. From this description, one way to solve the problem
would appear to be to define a set of equations that
essentially ‘simulate’ the processing from input to input,
in much the same way that a discrete event simulation
program would be structured. But equations of this form
would be complex, intuitively unclear and, typically, have
as many terms as the number of priority levels; moreover,
the solution obtained would require unnecessarily many
computations (one for each input).

The analysis can be greatly simplified by the
recognition of one important fact: once processing at
level i is pre-empted, the point of its resumption is
independent of the order of arrival of inputs at higher
levels.

Theorem 2. If processing at some level i is pre-empted
at time ¢ by one or more inputs at levels higher than i,
and is resumed at time (', ¢’ > ¢, then ¢ depends on the
number of inputs but not upon their order of arrival in
the interval [z, t').

Proof. Obvious, based on commutativity of integer
addition. O

To make use of this theorem, we define the maximum
number of inputs from device j in the interval [z, ¢’') as

Inputs ([1,7), j) = "¢/ T;' =Tt/ T 2

* We use the conventional notation [¢, ¢') to indicate a closed—open
interval from ¢ up to, but not including, ¢
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Each input at level j requires a computation time of C;.
Thus, in the interval [z, ') the computation required for
inputs at all the levels from 1 to i—1 will be

Comp ([t, 1), i) = El Inputs ([¢, '), ) * C;. 3)
j=1

Since Comp is defined for an interval, it distributes over
interval arithmetic: for 1, <, < 1,

Comp ([tla 12)’ l) + Comp ([t2’ t3’ l) = Comp ([tl’ t3)’ l)

A necessary condition for a priority assignment to be
feasible is that the average processing load is always met.
For M; = LCM(T,), the load condition

5 (M/T)*C; < M, @

guarantees that if the system critical instant occurs at
time = 0, there will be no incomplete processing of inputs
when the critical instant recurs at time = M.

We now define a function Response (z, ¢',i) which can
be used to compute the worst-case response time RT, at
level i.

Response (¢,1,i) =
if Comp([t,¢'),i)=0 then ¢
else Response (¢, ¢+ Comp ([z,1'), i), i) )

At time ¢, ' —t is the computation time pending at level
i. The function Response finds the time when the pending
computation becomes zero (under our worst-case
assumption). Consider the time interval [z,¢’). Inputs
arriving from levels 1 to i—1 in this period require
Comp ([t,¢'),i) processor time. The remaining time
('—1t)— Comp([t,1),i) is available for processing the
input at level i. Thus the pending computation at time ¢
(i.e. just after the interval [z,1')) is

(=)= (¢ —t)—Comp ([¢,?),i)) = Comp ([t, 1), i).

On termination of the recursion, Comp ([¢,¢'),i) = 0; i.e.
there are no pending inputs from the higher priority levels
and the entire interval [£,¢') has been used for com-
putation.

The response time for level i is given in terms of the
function Response by the following equation:

RT; = Response (0,C;, i), (6)

since at time = 0 the entire processing load for level i is
pending.

The function Response terminates if the load relation
(4) is met, because under that condition the interval [z, ¢')
will decrease on each successive recursive call to Re-
sponse.

5. PROOF OF CORRECTNESS

Equation (1) defines the response time at level i. We now
show that the result in (5) satisfies this equation.

Proof (using computational induction®). Let INV be an
invariant over the parameters of each recursive call of the
function Response.

INV: Comp ([0,1),)+C; =1

(1) Theinitial condition Response (0, C;, i) satisfies the
invariant.

(2) By the induction hypothesis, Response (¢,
+ Comp ([¢, t'), i), i) satisfies the invariant.
Therefore,

Comp ([0, 7),i)+C; = £'+Comp ([t,),i)  (7)
We have
Comp ([0, "), i) = Comp ([0, #), )+ Comp ([£, ), i)

where ,
0<I<rt.

Substituting in (7) we get
Comp ([0,0), )+ C; = 1.

This proves the induction step.
(3) On termination we have

INVAComp([t,t'),i)=0 and RT, =7
Substituting for INV we get
Comp ([0,7),))+C; =t ART, =t
Finally, substituting for Comp and simplifying we get (1)

i-1
(Z rt//Y}"*Cj>+Ci=t//\R7}=t’. ®)
=1
Without any further assumptions about the structure of
the program, the necessary and sufficient condition that
no inputs are lost is

Vi1 <i<n RT<T,. )

Equation (8) can be shown to give the average load in the
interval M;. Substituting the LCM M, for ¢’ and using the
constraint (9) we have

-1
jZ (M;/T)* C;+(M,;/T)* C; < M,
=1
1
or ¥ (M,/T)*C; < M,
j=1

6. BUFFERED INPUTS

For some real-time systems, it may be found that the load
equation (4) is satisfied but equation (9) is not. This means
that for these systems the average load is within limits but
the response time for at least one level is larger than its
input repetition time, so that some inputs will get lost. The
priority assignment for such systems can be made feasible
by providing buffers in which inputs are saved (in a
first-come-first-served order).

Theorem 3. If equation (4) is satisfied, a finite number
of buffers will ensure that no input at any level is lost.

Proof. Consider the interval [0, M;) and let the critical
instant for the system occur at time = 0. Equation (4) will
be satisfied iff processing of all inputs arriving in the
interval [0, M;) is completed by time = M,. For all i, the
number of inputs in the interval M, is finite. Hence
the number of buffers required will also be finite. O

We know that the critical instant for the system occurs
when inputs from all the devices appear simultaneously.
Thus at any priority level the maximum buffering will be
required for this worst-case situation. Let R7; be the
worst-case response time at level i (R7; can be computed
using Ref. 6). Then the number of buffers required for this
level is the smallest integer value k such that

RT, < k*T,. (10)
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Under certain specific assumptions, it is occasionally
possible to reduce the number of buffers from 2 to 1. If
the process servicing a device always reads the input at
the start of its execution, thereby preventing its value
from being lost during the processing, it may be possible
for the remaining processing of the input to be completed
after the arrival of the next input from that device. The
load relation (4) must still hold;; but the relation bounding
the response time will now be RT; < 27;. More details of
this special case can be found elsewhere.?

Calculating the number of buffers is a requirement in a
number of real-time systems. For example, in a packet-
switched communication network, providing the correct
number of buffers to meet some performance criterion
will reduce (or eliminate) retransmission of packets due
to buffer overflows. And in small microprocessor-
controlled systems, where for reasons of economy the
amount of additional hardware is kept to a minimum, it
is important to know the amount of buffering required
to be provided in the system. Another example occurs in
distributed processing systems, where information col-
lected or generated at nodes must be propagated to other
nodes in an asynchronous manner: if the processing
speeds of the nodes are not matched, outputs must be
buffered if they are not to be lost.

7. TWO EXAMPLES
Example 1

A real-time system has four devices connected to a
computer. The input repetition times T;, the associated
computation times C;, and the specified limits RL; to the
response times are given in Table 1.

Comp ([20, 26), 3) = Inputs ([20, 26), 1) * 1
+ Inputs ([20, 26), 2) * 2

Comp ([26,29),3) =0
or RT, = 29.

By similar calculation, RT; will be seen to be 40 but 7,
isonly 30. Using equation (10), it can be shown that device
R at priority level 4 needs two buffers if no input is to be
lost. (In fact, if the assumptions of the special case,
mentioned above, hold in this case, the use of the second
buffer can be dispensed with.) Note that the average
response time for device R is around 11, but it would be
very misleading to take this as any indication of what
might be the worst-case response time.

Thus, though the system load does not exceed 56%,
buffering is needed if the response-time requirements are
to be met and no inputs is to be lost.

Example 2

A system similar to that of Example 1 has the
characteristics shown in Table 2.

Table 2

Priority T C
1 100 40
2 140 60
3 500 80
4 1000 10
5 1000 1

Find the response times at each level and the amount

Table 1 of buffering required to make this priority assignment
feasible.
Device T C RL The load equation (4) is satisfied by the system. Using
0 . 0 the function Response, the values shown in Table 3 are
P
Q 12 2 12
R 30 8 40
S 600 20 30 Table 3
Priority RT
o . . 1 40
Substituting these values in (9), it can be seen that the 2 100
load relation is met and the average system load is near 3 560
559, . However, there is no feasible assignment of devices 4 2490
to priorities under which all the response-time limits are 5 6991

also met.

A solution can be found by buffering inputs for device
R. First, assign the devices to priorities in the order P, Q,
S, R. This will ensure that the response limits for the
devices P, Q and S will be met. The response time for S
(which is at priority level 3) will then be

RT; = Response (0, 20, 3) = if Comp ([0, 30), 3)
=0 then 20
else Response
Comp ([0, 20), 3), 3)

Comp ([0, 20), 3) = Inputs ([0, 20), 1) * 1

+ Inputs ([0, 20), 2) * 2
=244=6

derived for the response times at each level. From this,
it can easily be seen that the numbers of buffers needed
is 2 at level 3, 3 at level 4 and 7 at level 5. The relatively
large numbers of buffers are required in this case because
the average system load is very high-over 999 .

8. MULTIPLE PROCESSOR SYSTEMS

When the load relation is met but the feasibility equation
(9) is not, buffers can be used to average out the rate of
arrival of inputs. But when the load relation is not met,
the total computational load of the system exceeds that
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available from the processor, and buffering cannot help.
Two other strategies are commonly used in these
situations: using a processor of higher speed, or using
more than one processor. The first remedy simply has the
effect of reducing the processing times required for each
input, while the second introduces parallelism in
processing which can reduce the response time at each
level. When compared with the previous case, a processor
which is m times faster and a system with m processors
each has a load equation of the form

(11)

and if this is met, the system is capable of meeting its
processing requirements. There is no difficulty with
determining the response time in the case of the faster
processor. But the same analysis does not hold for a
multiple-processor system.

If the system has m processors and n devices, and
m > n, it is no longer necessary for the computation time
for an input to be less than its repetition time.

I (M/T)* Cpjm < M,

Example 3

Consider a system with one device and two processors.
Let T = 100 and C = 150. Equation (11) will be satisfied,
and no input will be lost if alternate inputs go to each
processor.

If, as is more likely, m < n, the analysis is considerably
more complicated. Let RT; and RT/* be the response
times at level i with one and m processors respectively.
The following fairly obvious propositions can be proved
for all such systems.

(1) For1 <i<m, RT" =C,.

(2) For m <i < n, processing at level i cannot start
before time ¢, where t = min {RT/,,,..., RT™,}), and
will end by RT,.

More specific propositions are restricted to particular
cases, and the number of cases that need analysis is so
large that a general method of analysis is very difficult to
formulate. Providing (10) is met, simulation can be used
to find the worst-case values of the response times.

Given the difficulty of the general analysis, it is
comforting to know that good results can be obtained by
partitioning an m processor system into m separate
systemsand makingan appropriate (but static) assignment
of devices to processors. Since each separate system has
one processor, the earlier analysis can be used. The
additional flexibility that is available is that there is now
a choice of priority level and processor for the connection
of each device, and this can be used both to get the
required response times and to average the load on each
processor.

9. CONCLUSIONS

Programming for real-time systems has long been
considered difficult because in addition to the problems
of concurrent programming there is the need to ensure
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