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text

“Don’t just read it; fight it! Ask your own questions, look for your own

examples, discover your own proofs. Is the hypothesis necessary? Is the

converse true? What happens in the classical special case? What about

the degenerate cases? Where does the proof use the hypothesis?”

- Paul Halmos

“Pure mathematics is, in its way, the poetry of logical ideas.”

- Albert Einstein

“Math is like going to the gym for your brain. It sharpens your mind.”

- Danica McKellar

“One of the endlessly alluring aspects of mathematics is that its

thorniest paradoxes have a way of blooming into beautiful theories.”

- Philip J. Davis

Mathematics is a discipline, which means that you compete against

yourself. If you continue to improve, then you’re a mathematician.
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Chapter 0

About this project

The goal of this textbook is to provide an edition of Euclid’s Elements that is easy

to read, is inexpensive, and has been released under an open culture license.1

The title Euclid’s “Elements” Redux indicates that while this edition states and

proves Euclid’s results, the proofs have been rewritten using modern mathematics.

This is because mathematics has almost completely changed since The Elements

was published c. 300 BC.

In Euclid’s Hellenistic culture, a number was synonymous with a length that could

be measured. This gave Euclid access to all of the positive numbers but neither zero

nor the negatives. But since the development of algebra wouldn’t begin for another

millennium, Euclid could not have known that the result of Book I, Proposition 47

could be summarized as a2 + b2 = c2.

When a modern student encounters the original Elements for the first time, he

or she encounters two problems: the logic of the proof, and Euclid’s now archaic

concept of numbers. This edition updates Euclid’s proofs while retaining his funda-

mental results.

It may be impossible to overstate how fundamental these results are to mathemat-

ics. They are the primary reason why The Elements was the world’s most important

mathematics textbook for about 2,200 years.

Let that number sink in for a moment... one math textbook was used by much of

the literate world for over two thousand years. Why should this be? Lack of com-

petition? At certain times and places, yes, but in schools where Euclid’s Elements

got a foothold, other textbooks soon followed. Therefore, this can’t be the complete

answer.

1Euclid’s “Elements” Redux is released under the Creative Commons Attribution-ShareAlike 4.0 In-

ternational License. This means that you are free to copy and distribute it without penalty. If you wish

to add to its content, your work must also be licensed under an equivalent open license.

The book and its source files are available online at

https://arhive.org/details/eulid-elements-redux_201809

The figures were created in GeoGebra and can be found in the relevant images folder. Files with

extensions .ggb are GeoGebra files, and files with the .eps extension are graphics files.

6
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Elegant proofs? While Euclid’s originals remain a model for how proofs should be

written, they aren’t irreplaceable.

Content? Until the development of algebra and calculus, The Elements covered

everything a novice mathematician needed to know. And even after the advent of

calculus, The Elements still had its place. Isaac Newton’s assistant claimed that

in five years of service, he had heard Newton laugh just once: a student asked

if Euclid was still relevant, and Newton laughed at him. But most students only

studied the first six Books (i.e., the first six of the thirteen scrolls that made up the

original Elements). Therefore, not everyone studied The Elements exclusively for

its content.

So, whatever is valuable about The Elements must be present in its first half; but

each Book begins with a foundation (definitions and axioms) and builds upwards

one proposition at a time.

This, I think, is the key to the question: not only does The Elements help a student

learn geometry, but it also immerses the student in a logical system that is as useful

as it is penetrating. While learning algebra helps a student to perform calculus and

statistics, learning geometric proofs from The Elements helps a student to think

clearly about politics, art, music, design, coding, law... any subject that requires

rational thought can be better understood after Euclid.

The reason The Elements was needed in the past, and why it’s needed to-

day, is that it helps its readers learn to think clearly.

But if The Elements is a good textbook, why was it abandoned at the end of the 19th

century?

Mathematics faced a crisis in the last half of that century – ambiguous definitions

and sloppy logic had led to serious contradictions. Without a complete overhaul of

common definitions and the construction of formal logic, mathematics would have

collapsed.

After several decades of work by many brilliant minds, the overhaul was completed,

leading to a mathematical golden age which is still unfolding. But that overhaul

made Euclid’s weaknesses clear: while his logic remained sound, the presentation

of that logic was outdated. Euclid’s definitions and assumptions were ambiguous

to the point of being unworkable. Most seriously, other geometries had been devel-

oped, proving that Euclid’s work was not unique.

As calculus developed into the foundation of engineering and the sciences, its pre-

requisite, algebra, became the course every student seemed to require. Geometric

proofs became a luxury rather than a necessity. With perfect hindsight, the error

is clear – forcing each and every student to learn algebra has only succeeded in

teaching students to hate “math” (which millions of people associate exclusively

with algebra) while hindering their attempts to think logically.

The way forward is also clear – either to rewrite The Elements or to develop a new,

equivalent work. I have opted to rewrite Euclid in the hope that The Elements will
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again be recognized as a textbook of introductory, axiomatic geometry, a model of

proof-writing, and a case-study in applied logic.2

Like all math textbooks, Euclid’s “Elements” Redux requires its student to work

slowly and carefully through each section. The student should confirm each result

and not take anything on faith. While this process may seem tedious, it is exactly

this attention to detail which separates those who understand mathematics from

those who do not.

This edition also contains homework problems and a partial answer key. However,

no prerequisites are required if the student’s goal is to read and understand the

material. The best way to demonstrate this understanding is to memorize a certain

number of proofs and then recite them on request. This was how Abraham Lincoln

made use of The Elements:

In the course of my law-reading, I constantly came upon the word demon-

strate. I thought at first that I understood its meaning, but soon became

satisfied that I did not. I said to myself, “What do I mean when I demon-

strate more than when I reason or prove? How does demonstration dif-

fer from any other proof?” ... I consulted all the dictionaries and books

of reference I could find, but with no better results. You might as well

have defined blue to a blind man. At last I said, “Lincoln, you can never

make a lawyer if you do not understand what demonstrate means;” and

I left my situation in Springfield, went home to my father’s house, and

stayed there till I could give any proposition in the six books of Euclid

at sight. I then found out what “demonstrate” means, and went back to

my law-studies.3

If the student intends to prove some of the problems, then proportions, algebra,

trigonometry, and possibly linear algebra will be helpful. Students with no knowl-

edge of proof writing should consult Richard Hammack’s “Book of Proof”, 3rd ed.4

It is vitally important to understand that, in the mind of mathematicians, math

is a collection of statements about relationships between quantities which can be

proven. Without proofs, there is no such discipline as mathematics.

This document was composed over the years using a number of tools:

Debian http://www.debian.org/

GeoGebra http://www.geogebra.org/

Kubuntu https://kubuntu.org

Linux Mint http://www.linuxmint.om/

LYX http://www.lyx.org/

Windows 7 http://windows.mirosoft.om/

Xubuntu https://xubuntu.org

2Victor Aguilar has opted to develop a new introduction to axiomatic geometry. See section [0.4] for
details.

3Carpenter, F.B. “The Inner Life of Abraham Lincoln: Six Months at the White House” Hurd &

Houghton, New York, NY (1874).
4
https://www.people.vu.edu/~rhammak/BookOfProof/

http://www.debian.org/
http://www.geogebra.org/
https://kubuntu.org
http://www.linuxmint.com/
http://www.lyx.org/
http://windows.microsoft.com/
https://xubuntu.org
https://www.people.vcu.edu/~rhammack/BookOfProof/
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http://www.math.wihita.edu/~axmann/

6
http://karlelder.om

7
https://maths.larku.edu/~djoye/java/elements/elements.html

8
http://www.math.wihita.edu/~jeffres/

9
http://www.math.wihita.edu/people/lanaster.html

10
http://www.math.wihita.edu/~pparker/
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http://gregorybsadler.om/

http://www.math.wichita.edu/~axmann/
http://karlelder.com
https://mathcs.clarku.edu/~djoyce/java/elements/elements.html
http://www.math.wichita.edu/~jeffres/
http://www.math.wichita.edu/people/lancaster.html
http://www.math.wichita.edu/~pparker/
http://gregorybsadler.com/
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0.3 Who needs a new edition of Euclid’s Elements?

Consider an analogous question: who needs training wheels on a bike?

A young person who doesn’t know how to ride a bicycle.

Experienced mathematicians may no longer need Euclid, but Euclid’s construction

of complex ideas from simple axioms remains a model for how mathematics should

be approached. Students who attempt to master Euclid’s Elements will find 21st

century mathematics less confusing despite Euclid’s less-than-rigorous definitions.

0.4 Why rewrite Euclid’s Elements?

The concept that Euclid could use a little tweaking goes back a long way. Book

I, Proposition 40 has been identified as an interpolation, along with many of The

Elements’ lemmas and corollaries. Some editions include the apocryphal Books XIV

and XV which add results on the topic of solid geometry.

It’s important to realize that no math textbook is perfect; flaws will inevitably come

to light after centuries of close study by intelligent minds.

But it’s also important to realize that more than one correct geometry exists; Eu-

clid’s geometry is one of many (but perhaps the easiest to learn). Similarly, for any

true and logical result, either more than one proof exists or the potential for more

than one proof exists. Euclid’s proofs need not be treated as special because they

are “the originals”.12

There at least two reasons for this. First, a student of mathematics should always

ask if there is another way to prove an interesting theorem. Doing so may provide

insight, if not help generate a new result.

Second, it’s doubtful that Euclid (if indeed he was a single individual) is the sole

author of these proofs. It’s more likely that he (or the scholars of his school) com-

piled and rewrote these proofs from difference sources. Rewriting and editing is

part of a mathematician’s work.

This is not to denigrate the achievement of “The Elements” – the original thirteen

books may have been the first to demonstrate how to construct hundreds of complex

structures beginning with first principles. Nearly all well-written math, physics,

and engineering textbooks follow a similar format (and all of the bad ones do not).

But is still the case that Euclid’s original proofs are obsolete – they refer to a con-

ception of mathematics that is no longer viable because it cannot be extended to

produce real analysis, complex analysis, etc. To help see this, consider Euclid’s

original proof of [1.3]:

12Some of the proofs in this text are not based on Euclid’s originals. The originals can be found in

several printed editions, online at David E. Joyce’s Euclid’s Elements:

http://aleph0.larku.edu/~djoye/java/elements/elements.html

and in Richard Fitzpatrick’s “Euclid’s Elements of Geometry”:

https://farside.ph.utexas.edu/Books/Eulid/Elements.pdf

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
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Book I, Proposition 3: For two given unequal straight-lines, to cut off the greater a

straight-line equal to the lesser.

Proof. Let AB and C be the two given unequal straight-lines, of which let the

greater be AB. So it is required to cut off a straight-line equal to the lesser C from

the greater AB.

Let the line AD, equal to the straight-line C, have been placed at point A. And let

the circle have been drawn with center A and radius AD.

Figure 0.4.1: Book I, Proposition 3 (original on the left, rewrite on the right)

And since point A is the center of circle DEF, AE is equal to AD. But, C is also equal

to AD. Thus, AE and C are each equal to AD. So AE is also equal to C.

Thus, for two given unequal straight-lines, AB and C, the (straight-line) AE, equal

to the lesser C, has been cut off from the greater AB. (Which is) the very thing it

was required to do.13

Compare the original to the rewritten proof below:

Given two arbitrary segments which are unequal in length, it is possible to subdivide

the larger segment such that one of its two sub-segments is equal in length to the

smaller segment.

Proof. Construct segments AB and CG such that CG < AB. We claim that AB

may be subdivided into segments AE and EB where AE = CG.

From point A, construct the segment AD such that AD = CG [1.2]. With A as the

center and AD as radius, construct the circle #A [Postulate 1.3] which intersects

AB at E.

Because A is the center of #A, AE = AD [Def. 1.32]. Since AD = CG by construc-

tion, by Axiom 9 from section 1.3.1 (using equalities), we find that AE = CG, which

proves our claim.

13From Richard Fitzpatrick’s “Euclid’s Elements of Geometry”.
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0.5 Recommended Reading

Book of Proof, 3rd edition, Richard Hammack.

This open textbook provides an introduction to the standard methods of proving

mathematical theorems. It can be considered a companion volume to any edition

of Euclid, especially for those who are learning how to read and write mathemat-

ical proofs for the first time. It has been approved by the American Institute of

Mathematics’ Open Textbook Initiative and has a number of good reviews at the

Mathematical Association of America Math DL and on Amazon.

http://www.people.vu.edu/~rhammak/BookOfProof/index.html

Euclid’s Elements Online, coded and maintained by David E. Joyce

http://aleph0.larku.edu/~djoye/java/elements/elements.html

Geometry Without Multiplication, Victor Aguilar

This geometry textbook will be the first in a series (the second being Geometry With

Multiplication). It will not only be suitable for high school students but will also

maintain the rigor required in college level textbooks. The most recent draft can be

found at:

https://www.researhgate.net/publiation/291333791_Volume_One_Geometry_without_

Multipliation

Guidelines for Good Mathematical Writing, Francis Edward Su

https://www.math.hm.edu/~su/math131/good-math-writing.pdf

How to Solve it, George Polya

“A perennial bestseller by eminent mathematician G. Polya, How to Solve It will

show anyone in any field how to think straight. In lucid and appealing prose, Polya

reveals how the mathematical method of demonstrating a proof or finding an un-

known can be of help in attacking any problem that can be ‘reasoned’ out – from

building a bridge to winning a game of anagrams. Generations of readers have rel-

ished Polya’s deft – indeed, brilliant – instructions on stripping away irrelevancies

and going straight to the heart of the problem.”14

http://www.amazon.om/How-Solve-Mathematial-Prineton-Siene/dp/069116407X/

Khan Academy https://www.khanaademy.org/

The King of Infinite Space: Euclid and His Elements, David Berlinski

Not an edition of Euclid’s Elements but an explication of the Elements itself and

what makes the work revolutionary.

14This description (c)1985 by Princeton University Press.

http://www.people.vcu.edu/~rhammack/BookOfProof/index.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
https://www.math.hmc.edu/~su/math131/good-math-writing.pdf
http://www.amazon.com/How-Solve-Mathematical-Princeton-Science/dp/069116407X/
https://www.khanacademy.org/
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https://www.amazon.om/King-Infinite-Spae-Eulid-Elements-ebook/dp/B00HTQ320S

Math Open Reference

http://www.mathopenref.om/

http://www.mathopenref.om/triangleenters.html

https://www.amazon.com/King-Infinite-Space-Euclid-Elements-ebook/dp/B00HTQ320S
http://www.mathopenref.com/
http://www.mathopenref.com/trianglecenters.html


Chapter 1

Angles, Parallel Lines,

Parallelograms

Students should construct figures and/or work through the proofs step-by-step.

This is an essential component to the learning process that cannot be avoided. The

old saying, “There is no royal road to geometry”, means: “No one learns math for

free.”

1.1 Symbols, Logic, and Definitions

The propositions of Euclid will be referred to in brackets; for example, we1 write

[3.32] instead of writing Proposition 3.32. Axioms, Definitions, etc., will also be

referred to in this way; for example, Definition 12 in chapter 1 will be written as

[Def. 1.12]. Exercises to problems will be written as [3.5, #1] instead of exercise 1

of Proposition 3.5.

Numbered equations will be written as (10.2.2) instead of the second equation in

chapter 10, section 2.

A note on the exercises: do some of them but don’t feel pressured to do all of them.

Generally, an exercise is expected to be solved using the propositions, corollaries,

and exercises that preceded it. For example, exercise [1.32, #3] should first be at-

tempted using propositions [1.1]-[1.32] as well as all previous exercises. Should

this prove too difficult or too frustrating, he or she should consider whether propo-

sitions [1.33] or later (and their exercises) might help solve the exercise. It is also

permissible to use trigonometry, linear algebra, or other contemporary mathemat-

ical techniques on challenging problems.2

1Mathematicians often write “we” when writing about math in the same way that coaches tell players

“here’s what we’re going to do” – we are engaged in a team effort to overcome our difficulties.
2And remember that math makes everyone feel stupid at times. Never give up.

14
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1.1.1 Symbols

The following symbols will be used to denote standard geometric shapes or rela-

tionships:

• Circles are denoted by: #. When the center of a circle is known (for example,

point A), the circle will be identified as #A. Otherwise, the circle will be

identified with points on its circumference, such as #ABC.

• Triangles by: △

• Parallelograms by: ⊡

• Parallel lines by: ‖

• Perpendicular lines by: ⊥

In addition to these, we shall employ the usual symbols of algebra: +, −, =, <, >,

≤, ≥, 6=, as well as a few additional symbols:

• Composition: ⊕ For example, suppose we have the segments AB and BC

which intersect at the point B. The statement AB + BC refers to the sum of

their lengths, but AB ⊕BC refers to their composition as one object. See Fig.

1.1.1.

Figure 1.1.1: Composition: the geometrical object AB ⊕ BC is a single object com-

posed of two segments, AB and BC.

The composition of angles, however, can be written using either + or ⊕, and

in this textbook their composition will be written with +.

• Similar: ∼ Two figures or objects are similar if they have the same shape

but not necessarily the same size. If two similar objects have the same size,

they are also congruent.

• Congruence: ∼= Two figures or objects are congruent if they have the same

shape and size, or if one has the same shape and size as the mirror image of

the other. This means that an object can be re-positioned and reflected so as

to coincide precisely with the other object without resizing.3

3
http://en.wikipedia.org/wiki/Congruene_(geometry)

http://en.wikipedia.org/wiki/Congruence_(geometry)
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1.1.2 Logic

Propositions are mathematical statements that are either completely true or com-

pletely false, but never both.4 Some examples and counterexamples:

• “A triangle has two sides” is a false proposition.

• “A triangle has three sides” is a true proposition.

• “A triangle has three sides?” is not a proposition; it is a question, not a state-

ment.

• “Draw a triangle” is not a proposition; it is a command.

Propositions which are true may be divided into axioms and theorems. An axiom

needs no proof, and a theorem requires at least one proof; both axioms and theo-

rems are considered true. A proposition which cannot be proven true is neither an

axiom nor a theorem and is considered false. (Minor spoiler: all propositions in this

book will be shown to be true, i.e., they are theorems.)

An axiom is a proposition that is assumed to be true without proof 5. They are

considered so fundamental that they cannot be inferred from any proposition which

is more elementary. “Any two sides of a triangle are greater in length than the third

side” may be self-evident; however, it is not an axiom since it can be inferred by

demonstration from other propositions. The statement “two objects which are equal

in length to a third object are also equal in length to each other” is self-evident, and

so it is considered an axiom.6

A theorem is a proposition that may be proven from known propositions (either

theorems or axioms). Theorems may also be described as formal statements of

mathematical or logical properties.

A proof is a rigorous mathematical argument which unequivocally demonstrates

the truth of a given proposition7. A proof consists of three parts: the hypothesis,

that which is assumed, the claim, that which the author intends to prove, and

the bulk of the proof which demonstrates how the claim must be true once the

hypothesis is assumed to be true.

A corollary is an inference or deduction based on a theorem which usually states

a small but important result that follows immediately from the proof itself or from

4Propositions are also never partly true. If your dog has brown fur except for one white paw, the

proposition “Your dog is brown” is false.
5Source: Weisstein, Eric W. "Axiom." From MathWorld Wolfram Web Resource.

http://mathworld.wolfram.om/Axiom.html

6Whether a given statement is considered an axiom or a theorem depends on which textbook you are

reading. Graduate textbook authors may require students to prove statements which were considered

axiomatic at the undergraduate level.
7Source: Weisstein, Eric W. “Proof." From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.om/Proof.html

http://mathworld.wolfram.com/Axiom.html
http://mathworld.wolfram.com/Proof.html
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the result of the theorem. For example, if a theorem states that all prime num-

bers have irrational square roots, then one corollary to this theorem is that
√
2 is

irrational.8

A lemma is a theorem which is used as a stepping stone to a larger result rather

than as a statement of interest by itself.9 While technically all lemmas are theo-

rems, lemmas are not called theorems in order to communicate the idea that the

result is of minor importance and exists to help prove something more profound.10

1.1.2.1 Examples

Proposition. (1) If x is a rational number, then x has a decimal expansion.

The hypothesis is that “x is a rational number”, and the claim is that “x has a

decimal expansion” (i.e., it can be written in decimal form). In order to prove this

proposition is a theorem, we begin by assuming that x is a rational number (i.e., a

fraction). From this, we must show logically that x has a decimal expansion. If we

can do this, we have written a proof, turning this proposition into a theorem.11

Converse statements: if we rewrite the above proposition by swapping the hypothe-

sis and the claim, we obtain its converse statement:

Proposition. (2) If x has a decimal expansion, then x is a rational number.

Since this proposition is false, it has no proof and therefore is not a theorem.

There is no guarantee that the converse of a given proposition will be true.

From propositions (1) and (2), we may infer two others: their contrapositive propo-

sitions (informally called contrapositives). The contrapositive forms of proposition

(1):

Proposition. (3) If x does not have a decimal expansion, then x is not a rational

number.

The contrapositive forms of proposition (2):

Proposition. (4) If x is not a rational number, then x does not have a decimal

expansion.

Unlike converse propositions, a contrapositive proposition is true if and only if the

original proposition is true. Since (1) is true, (3) is true; since (3) is true, (1) is true.

Similarly, a contrapositive proposition is false if and only if the original proposition

is false: since (2) is false, (4) is false; since (4) is false, (2) is false.

8This important result will not be proven here. Interested readers should consult Dummit & Foote’s

“Abstract Algebra”, 3rd edition.
9Source: https://en.wikipedia.org/wiki/Lemma_(mathematis)

10The difference between a lemma and a theorem is often determined by the author. For example, it

could be considered that propositions 1-46 in Chapter 1 are lemmas leading toward propositions 47-48,

which are the most profound statements in the chapter.
11While this is indeed a theorem, we will not prove it here.

https://en.wikipedia.org/wiki/Lemma_(mathematics)
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1.1.3 Definitions

We need a common language in order to discuss similar experiences or ideas. For

mathematics, this is true to an almost ridiculous degree. A mathematician’s work

can be rendered useless if the definitions he or she employs turn out to be vague or

sloppy.12

Students reading this section for the first time may wish to read definitions 1-6 and

9-11 and then skip ahead to [1.4], returning to the remaining definitions as well as

[1.2] and [1.3] as needed.

The Point

1. A point is a zero dimensional object.13 A geometrical object which has three

dimensions (length, height, and width) is a solid. A geometrical object which has

two dimensions (length and height) is a surface, and a geometrical object which has

one dimension is a line or line segment. Since a point has none of these, it has zero

dimensions.

The Line

2. A line is a one dimensional object: it has only length. If it had any height or

width, no matter how small, it would have two dimensions. Hence14, a line has

neither height nor width.

A line with points A and B is written as
←→
AB.

(This definition conforms to Euclid’s original definition in which a line need not be

straight. However, in all modern geometry texts, it is understood that a “line” has

no curves. See also [Def 1.4].)

3. The intersections of lines are points. However, a point may exist without being

the intersection of lines.

4. A line without a curve is called a straight line. It is understood throughout this

textbook that a line refers exclusively to a straight line. A curved line (such as the

circumference of a circle) will never be referred to merely as a line in order to avoid

confusion. Lines have no endpoints since they are infinite in length.

A line segment (or more simply a segment) is similar to a line except that it is finite

in length and has two endpoints at its extremities. A line segment with endpoints

12Euclid’s original definitions are almost useless to modern mathematicians. One example: Euclid

defines a line as either straight or curved and either finite or infinite in length. This type of vagueness,

common until the early 19th century, was one reason why mathematics had to be rewritten into its

modern form.
13Warren Buck, Chi Woo, Giangiacomo Gerla, J. Pahikkala. "point" (version 13). PlanetMath.org.

Freely available at http://planetmath.org/point
14“Hence”, along with “thus” and “therefore”, are three words that mathematicians use to mean “con-

sequently” or “for this reason”. Generally, “hence” is used for minor results, “thus” for major results, and

“therefore” for results in between. However, YMMV.

http://planetmath.org/point
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A and B is written as AB. (If the length of a segment appears in a fraction, we will

omit the overline. For example, 1 = AB
AB for any segment AB.)

A ray is like a line in that it is infinite in length; however, it has one endpoint. A

ray with endpoint A and point B is written as
−−→
AB (where A is the endpoint).

Figure 1.1.2: [Def. 1.2, 1.3, 1.4]
←→
AB is a line, CD is a segment (sometimes called a

line segment), and
−−→
EF is a ray

The Plane

5. A surface has two dimensions: length and height. It has no width; if it had, it

would be a space of three dimensions.

6. A plane is a surface that extends infinitely far and is assumed to be completely

flat. A plane is the two-dimensional analogue of a point (zero dimensions), a line

(one dimension) and three-dimensional space. Planes act as the setting for most

of Euclidean geometry; that is, “the plane” refers to the whole space in which two-

dimensional geometry is performed.

Planes are defined by three points. For any three points not on the same line, there

exists one and only one plane which contains all three points.

7. Any combination of points, lines, line segments, or curves on a plane is called

a plane figure. A plane figure that is bounded by a finite number of straight line

segments closed in a loop to form a closed chain or circuit is called a polygon15.

All bounded plane figures have a measure called area. Area16 is the quantity that

expresses the extent of a two-dimensional figure or shape on a plane. Area can

be understood as the amount of material with a given thickness that would be

necessary to fashion a model of the shape, or the amount of paint necessary to

cover the surface with a single coat.

Area is the two-dimensional analog of the length of a curve (a one-dimensional

concept) or the volume of a solid (a three-dimensional concept). Surface area is its

analog on the two-dimensional surface of a three-dimensional object.17

8. Points which lie on the same straight line, ray, or segment are called collinear

points.

15
http://en.wikipedia.org/wiki/Polygon

16Taken from the article: https://en.wikipedia.org/wiki/Area.
17See the List of Formulas in: https://en.wikipedia.org/wiki/Area

http://en.wikipedia.org/wiki/Polygon
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Area
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Figure 1.1.3: [Def 1.11] Notice that both angles could be referred to as ∠BAC,

∠CAB, or the angle at point A where A is a vertex.

The Angle

9. The angle made by two straight lines, segments, or rays extending outward from

a common point but in different directions is called a rectilinear angle (or simply

an angle).

10. The one point of intersection between straight lines, rays, or segments is called

the vertex of the angle.

11. A particular angle in a figure will be written as the symbol ∠ and three letters,

such as BAC, of which the middle letter, A, is at the vertex. Hence, such an angle

may be referred to either as ∠BAC or ∠CAB. Occasionally, this notation will be

shortened to “the angle at point A” instead of naming the angle as above.

12. The angle formed by composing two or more angles is called their sum. Thus in

Fig. 1.1.4, we find that ∠ABC ⊕∠PQR = ∠ABR where the segment QP is applied

to the segment BC. We generally write ∠ABC + ∠PQR = ∠ABR to express this

concept.

Figure 1.1.4: [Def. 1.12]

Figure 1.1.5: [Def. 1.13]

13. Suppose two segments BA, AD are composed such that BA⊕AD = BD where

BD is a segment (see Fig. 1.1.5). If a point C which is not on the segment BD

is connected to point A, then the angles ∠BAC and ∠CAD are called supplements
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of each other. This definition holds when we replace segments by straight lines or

rays, mutatis mutandis18.

14. When one segment, AE, stands on another segment, BD, such that the adjacent

angles on either side of AE are equal (that is, ∠EAD = ∠EAB), each of the angles

is called a right angle, and the segment which stands on the other is described as

perpendicular to the other (or sometimes the perpendicular to the other). (See Fig.

1.1.5.)

We may write that AE is perpendicular to DB or more simply that AE ⊥ DB. It

follows that the supplementary angle of a right angle is another right angle.

Multiple perpendicular lines on a many-sided object may be referred to as the ob-

ject’s perpendiculars.

The above definition holds for straight lines and rays, mutatis mutandis.

A line segment within a triangle that runs from a vertex to an opposite side and is

perpendicular to that side is usually referred to an altitude of the triangle, although

it could be referred to in a general sense as a perpendicular of the triangle.

15. An acute angle is one which is less than a right angle. ∠DAB in Fig. 1.1.6 is an

acute angle.

16. An obtuse angle is one which is greater than a right angle. ∠EAB in Fig. 1.1.6

is an obtuse angle. The supplement of an acute angle is obtuse, and conversely, the

supplement of an obtuse angle is acute.

17. When the sum of two angles is a right angle, each is called the complement of

the other. See Fig. 1.1.6.

Figure 1.1.6: [Def. 1.17] The angle ∠BAC is a right angle. Since ∠BAC = ∠CAD+
∠DAB, it follows that the angles ∠BAD and ∠DAC are each complements of the

other.

Concurrent Lines

18. Three or more straight lines intersecting the same point are called concurrent

lines. This definition holds for rays and segments, mutatis mutandis.

19. The common point through which the rays pass is called the vertex.

18Mutatis mutandis is a Latin phrase meaning "changing [only] those things which need to be

changed" or more simply "[only] the necessary changes having been made". Source: http://en.

wikipedia.org/wiki/Mutatis_mutandis

http://en.wikipedia.org/wiki/Mutatis_mutandis
http://en.wikipedia.org/wiki/Mutatis_mutandis
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The Triangle

20. A triangle is a polygon formed by three segments joined at their endpoints.

These three segments are called the sides of the triangle. One side in particular

may be referred to as the base of the triangle for explanatory reasons, but there is

no fundamental difference between the properties of a base and the properties of

either of the two remaining sides of a triangle. An exception to this is the isosceles

triangle where two sides are equal in length: the third side is sometimes referred

to as the base.

The formula for the area of a triangle is defined as

A =
1

2
bh

where b =the length of a particular side, and h =the length of a perpendicular

segment from the base to a vertex.

The area of a triangle is zero if and only if its vertices are collinear.

21. A triangle whose three sides are unequal in length is called scalene (the left-

hand triangle in Fig. 1.1.7). A triangle with two equal sides is called isosceles

(the middle triangle in Fig. 1.1.7). When all sides are equal, a triangle is called

equilateral, (the right-hand triangle in Fig. 1.1.7). When all angles are equal, a

triangle is called equiangular.

Figure 1.1.7: [Def 1.21] The three types of triangles: scalene, isosceles, equilateral.

22. A right triangle is a triangle in which one of its angles is a right angle, such as

the middle triangle in Fig. 1.1.7. The side which stands opposite the right angle is

called the hypotenuse of the triangle. (In the middle triangle in Fig. 1.1.7, ∠EDF

is a right angle, so side EF is the hypotenuse of the triangle.)

Notice that side EF of a triangle is not written as EF despite the fact that EF is

also a line segment; since EF is a side of a triangle, we may omit the overline.



CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 23

Figure 1.1.8: [Def. 1.23]

23. An obtuse triangle is a triangle such that one of its angles is obtuse (such as

∠CAB in △CAB, Fig. 1.1.8).

24. An acute triangle is a triangle such that each of its angles are acute, such as

the left and right triangles in Fig. 1.1.7.

25. An exterior angle of a triangle is one which is formed by extending the side of a

triangle. In Fig. 1.1.8, △CAB has had side BA extended to the segment BD which

creates the exterior angle ∠DAC.

Every triangle has six exterior angles. Also, each exterior angle is the supplement

of the adjacent interior angle. In Fig. 1.1.8, the exterior angle ∠DAC is the supple-

ment of the adjacent interior angle ∠CAB.

The Polygon

26. A rectilinear figure bounded by three or more line segments can also be referred

to as a polygon (see definition 7). For example, a circle is a plane figure but not a

polygon, but the triangles in Fig. 1.1.8 are both plane figures and polygons.

27. A polygon is said to be convex when it does not have an interior angle greater

than 180◦.

28. A polygon of four sides is called a quadrilateral.

29. A lozenge19 is an equilateral parallelogram whose acute angles are 45 degrees.

Sometimes, the restriction to 45 degrees is dropped, and it is required only that two

opposite angles are acute and the other two obtuse. The term rhombus is commonly

used for an equilateral parallelogram20; see Fig. 1.1.9.

19Source: Weisstein, Eric W. "Lozenge." From MathWorld–A Wolfram Web Resource. http://

mathworld.wolfram.om/Lozenge.html

20Source: Weisstein, Eric W. "Rhombus." From MathWorld--A Wolfram Web Resource. http://

mathworld.wolfram.om/Rhombus.html

http://mathworld.wolfram.com/Lozenge.html 
http://mathworld.wolfram.com/Lozenge.html 
http://mathworld.wolfram.com/Rhombus.html
http://mathworld.wolfram.com/Rhombus.html
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Figure 1.1.9: [Def. 1.29] Two rhombi.

30. A rhombus which has a right angle is called a square.

31. A polygon which has five sides is called a pentagon; one which has six sides, a

hexagon, etc.21

The Circle

32. A circle is a plane figure constructed by connecting all points which are equally

distant from a center point. This center point is the center of the circle, and the

connected points become the circumference of the circle.

Figure 1.1.10: [Def. 1.32] #C is constructed with center C and radius CD. Notice

that CA = CB = CD. Also notice that AB is a diameter.

33. A radius of a circle is any segment constructed from its center to its circumfer-

ence, such as CA, CB, or CD in Fig. 1.1.10. Notice that CA = CB = CD.

34. A diameter of a circle is a segment constructed through the center and termi-

nated at both ends by the circumference, such as AB in Fig. 1.1.10.

Other

35. A segment, line, or ray in any figure which divides the area of a regular or

symmetrical geometric object into two equal halves is called an Axis of Symmetry

of the figure (such as AC in the polygon ABCD, Fig. 1.1.11).

21See also https://en.wikipedia.org/wiki/Polygon

https://en.wikipedia.org/wiki/Polygon


CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 25

Figure 1.1.11: [Def. 1.35]

Alternatively, if an object is bisected by a segment (or line or ray) such that if for

each point on one side of the segment (or line or ray) there exists one point on the

other side of the segment (or line or ray) where the distance from each of these

points to the segment (or line or ray) is equal, then the segment (or line or ray) is

an Axis of Symmetry.

36. A segment constructed from any angle of a triangle to the midpoint of the

opposite side is called a median of the triangle. Each triangle has three medians

which are concurrent. The point of intersection of the three medians is called the

centroid of the triangle.

Figure 1.1.12: [Def. 1.36] CD is a median of △ABC. The triangle has two other

medians not shown, and their intersection is the centroid of △ABC.

37. A locus (plural: loci) is a set of points whose location satisfies or is determined

by one or more specified conditions, i.e., 1) every point satisfies a given condition,

and 2) every point satisfying it is in that particular locus.22 For example, a circle is

the locus of a point whose distance from the center is equal to its radius.

38. The circumcenter23 of a triangle is the point where the three perpendicular

bisectors of a triangle intersect.

39. The bisectors of the three internal angles of a triangle are concurrent, and their

point of intersection is called the incenter of the triangle.

Additional definitions will be introduced in [1.5] and subsequent chapters.

22
http://en.wikipedia.org/wiki/Lous_(mathematis)

23See also: http://www.mathopenref.om/triangleirumenter.html

http://en.wikipedia.org/wiki/Locus_(mathematics)
http://www.mathopenref.com/trianglecircumcenter.html
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1.2 Postulates

We assume the following:

1. A straight line, ray, or segment may be constructed from any one point to

any other point. Lines, rays, and segments may be subdivided by points into

segments or subsegments which are finite in length.

2. A segment may be extended from any length to a longer segment, a ray, or a

straight line.

3. A circle may be constructed from any point (its center) and from any finite

length measured from the center (its radius).

1.3 Axioms

1.3.1 Algebraic Axioms

Let a, b, c, etc., be real numbers. These axioms require four operations: addition,

subtraction, multiplication, and division.

Addition24 (often signified by the plus symbol "+") is one of the four basic opera-

tions of arithmetic, with the others being subtraction, multiplication and division.

The addition of two numbers which represent quantities gives us the sum, or to-

tal amount of those quantities combined. For example, if ∠A = 3
4π radians and

∠B = 1
4π radians, then

∠A+ ∠B =
3

4
π +

1

4
π =

(

3

4
+

1

4

)

π =
4

4
π = π

radians.

Addition for quantities is defined when the quantities under consideration have the

same units. For example, a segment with a length of 3 units that is extended by

an additional 7 units now has side-length of 10 units; or 3 + 7 = 10 where each

number represents the number of units. However, if a segment with a length of 3 is

added to ∠A = 3
4π radians, the sum is not defined. (In some cases, if the units are

removed and the now unit-less numbers are added together, their sum is defined,

but the sum may have no bearing on the context of the problem.)

Subtraction represents the operation of removing quantities from a collection of

quantities. It is signified by the minus sign (−). For example, if ∠A = 3
4π radians

and ∠B = 1
4π radians, then

∠A− ∠B =
3

4
π − 1

4
π =

(

3

4
− 1

4

)

π =
2

4
π =

1

2
π

24Some of this and the following originates from Wikipedia.
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radians.

Subtraction is a special case of addition where

a+ (−b) = a− b = c

The caveat above concerning units applies to subtraction.

Multiplication (often denoted by the cross symbol "×", by a point "·" or by the

absence of symbol): when thinking of multiplication as repeated addition, multi-

plication is equivalent to adding as many copies of one of them (multiplicand) as

the value of the other one (multiplier). Normally the multiplier is written first

and multiplicand second, though this can vary and sometimes the distinction is not

meaningful. As one example,

a× b = a+ a+ . . .+ a

where the product a× b equals a added to itself a total of b times.

Multiplication is a special case of addition, and so the caveat above concerning

units applies to multiplication. The area of a certain geometric objects on the plane

(triangles, rectangles, parallelograms, etc.) can be defined by the product of two

lengths (base and height, two adjacent side-lengths, etc.). The volume of a certain

solid geometric objects (spheres, cubes, etc.) can also be defined by the product of

three lengths.

Division: in elementary arithmetic, division (denoted ÷ or / or by a
b where b 6= 0)

is an arithmetic operation. Specifically, if b times c equals a, written:

a = b× c

where b is not zero, then a divided by b equals c, written:

a÷ b = c a/b = c
a

b
= c

Division is a special case of multiplication where

a · 1
b
= a÷ b =

a

b

Hence, the caveat above concerning units applies to division.

Also, b divides a whenever a = t · b for some integer t; or, a
b = tb

b = t where t is an

integer. Note that if b divides a, then we also have that;

1. b is a divisor of a

2. a is a multiple of b
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3. a is divisible by b

We use the following as algebraic axioms:25

1. The Addition Property: If a = b and c = d, then a+ c = b + d.

2. The Subtraction Property: If a = b and c = d, then a− c = b− d.

3. Multiplication Property: If a = b, then ca = cb.

4. Division Property: If a = b and c 6= 0, then a
c = b

c .

5. Substitution Property: If a = b, then either a or b may be substituted for the

other in any equation or inequality.

6. Reflexive Property: a = a.

7. Symmetric Property: If a = b, then b = a.

8. Converse Properties of Inequalities:

(a) If a ≤ b, then b ≥ a.

(b) If a ≥ b, then b ≤ a.

9. Transitive Properties of Inequalities:

(a) If a ≥ b and b ≥ c, then a ≥ c.

(b) If a ≤ b and b ≤ c, then a ≤ c.

(c) If a ≥ b and b > c, then a > c.

(d) If a = b and b > c, then a > c.

10. Inequality Properties of Addition and Subtraction:

(a) If a ≤ b, then a+ c ≤ b+ c and a− c ≤ b− c.

(b) If a ≥ b, then a+ c ≥ b+ c and a− c ≥ b− c.

11. Inequality Properties of Multiplication and Division:

(a) If a ≥ b and c > 0, then ac ≥ bc and a
c ≥ b

c .

(b) If a ≤ b and c > 0, then ac ≤ bc and a
c ≤ b

c .

(c) If a ≥ b and c < 0, then ac ≤ bc and a
c ≤ b

c .

(d) If a ≤ b and c < 0, then ac ≥ bc and a
c ≥ b

c .

12. Inequality Property of the Additive Inverse:

(a) If a ≤ b, then −a ≥ −b.
25Sources for these axioms include:

(A) Jurgensen, Brown, Jurgensen. “Geometry.” Houghton Mifflin Company, Boston, 1985. ISBN:

0-395-35218-5

(B) Relevant articles in Wikipedia.
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(b) If a ≥ b, then −a ≤ −b.

13. Inequality Property of the Multiplication Inverse (where a and b are either

both positive or both negative):

(a) If a ≤ b, then 1
a ≥ 1

b .

(b) If a ≥ b, then 1
a ≤ 1

b .

14. Inequality Property of the Multiplication Inverse:

(a) If a ≥ b, then 1
a ≥ 1

b .

1.3.2 Congruence Axioms

In geometry, two figures or objects are congruent if they have the same shape and

size, or if one has the same shape and size as the mirror image of the other.26 More

formally, two objects are called congruent if and only if one can be transformed into

the other using only translations, rotations, or reflections. This means that either

object can be re-positioned and reflected (but not resized) so as to coincide precisely

with the other object. Therefore two distinct plane figures on a piece of paper are

congruent if we can cut them out and then match them up completely. Turning the

paper over is permitted.

Examples include:

• Two line segments are congruent if they have the same length.

• Two angles are congruent if they have the same measure.

• Two circles are congruent if they have the same diameter or radius.

If a and b are congruent, we may write a ∼= b. Three congruence properties with

examples:

1. Reflexive Property: DE ∼= DE and ∠ABC ∼= ∠ABC.

2. Symmetric Property: If DE ∼= FG, then FG ∼= DE. Also, if ∠ABC ∼= ∠DEF ,

then ∠DEF ∼= ∠ABC.

3. Transitive Property: If AB ∼= CD and CD ∼= EF , then AB ∼= EF . Also, if

∠ABC ∼= ∠DEF and ∠DEF ∼= ∠GHI, then ∠ABC ∼= ∠GHI.

The Algebraic and Congruence Axioms give us the Distributive Property:

a(b+ c) = ab+ ac

26Taken from https://en.wikipedia.org/wiki/Congruene_(geometry)

https://en.wikipedia.org/wiki/Congruence_(geometry)
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1.3.3 Geometric Axioms

1. Any two objects which can be made to coincide are equal in measure.

The placing of one geometrical object on another, such as a line on a line, a triangle

on a triangle, or a circle on a circle, etc., is called superposition. The superposi-

tion employed in geometry is only mental; that is, we conceive of one object being

placed on the other. And then, if we can prove that the objects coincide, we infer

by the present axiom that they are equal in all respects, including magnitude. Su-

perposition involves the following principle which, without being explicitly stated,

Euclid uses frequently: “Any figure may be transferred from one position to another

without change in size or form.”

2. Two straight lines on a plane cannot enclose a finite area.

3. All right angles are equal to each other.

4. If two lines (
←→
AB,

←→
CD) intersect a third line (

←→
AC) such that the sum of the two

interior angles (∠BAC +∠ACD) on the same side is less than the sum of two right

angles, then these lines meet at some finite distance. See Fig. 1.3.1.

Figure 1.3.1:
←→
AB and

←→
CD must eventually meet (intersect) at some finite distance.

The above holds for rays and segments, mutatis mutandis.

Playfair’s axiom27 can also be substituted for the above axiom, which states: “In

a plane, given a line and a point not on it, at most one line parallel to the given

line can be drawn through the point.” This axiom was named after the Scottish

mathematician John Playfair. His "at most" clause is all that is needed since it can

be proven through Euclid’s propositions that at least one parallel line exists. This

axiom is often written with the phrase, "there is one and only one parallel line".

Axioms which are equivalent to axiom 4 include:

• The sum of the angles in every triangle is 180° (triangle postulate).

• Every triangle can be circumscribed.

• There exists a quadrilateral in which all angles are right angles (that is, a

rectangle).

• There exists a pair of straight lines that are at constant distance from each

other.

27
https://en.wikipedia.org/wiki/Playfair's_axiom

https://en.wikipedia.org/wiki/Playfair's_axiom
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• Two lines that are parallel to the same line are also parallel to each other.

• There is no upper limit to the area of a triangle. (Wallis axiom)28.

• There exist a pair of lines which stand a constant distance from each other.

28
https://en.wikipedia.org/wiki/Parallel_postulate

https://en.wikipedia.org/wiki/Parallel_postulate
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1.4 Book I, Propositions 1-26

Proposition 1.1. CONSTRUCTING AN EQUILATERAL TRIANGLE.

Given an arbitrary segment, it is possible to construct an equilateral triangle on

that segment.

Proof. Suppose we are given segment AB; we claim that an equilateral triangle

can be constructed on AB.

With A as the center of a circle and AB as its radius, we construct the circle #A

[Postulate 3 from section 1.2]. With B as center and AB as radius, we construct the

circle #B, intersecting #A at point C.

Construct segments CA, CB [Postulate 1 from section 1.2]. We claim that △ABC

is the required equilateral triangle.

Figure 1.4.1: [1.1]

Because A is the center of the circle #A, AC = AB [Def. 1.33]. Since B is the center

of the circle #B, AB = BC. By Axiom 9 from section 1.3.1 (using equalities), we

have AC = AB = BC.

Since these line segments are the sides of △ABC,△ABC is an equilateral triangle

[Def. 1.21]. Since △ABC is constructed on segment AB, we have proven our claim.

Remark. [1.1]-[1.3] are lemmas to [1.4].

Remark. This proposition may seem strange to readers who are familiar with mod-

ern mathematical proofs. Proofs from the 21st century usually show that some non-

tangible, mathematical object either does or does not exist, while [1.1] describes

how to construct an object and then proves that this object is what we intended to

construct.

The mathematics of Euclid’s day was akin to engineering and construction. If you

could prove something existed but not use that knowledge to help construct an

object in the real world, you were on track to becoming a full-time ptochos29.

29
https://en.wikipedia.org/wiki/Begging

https://en.wikipedia.org/wiki/Begging 
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Modern students should draw or construct whatever objects are described in these

propositions.

Exam questions.

1. What do we assume in this proposition?

2. What is our claim?

3. What is a finite straight line segment?

4. What is the opposite of finite?

5. What postulates are cited and where are they cited?

6. What axioms are cited and where are they cited?

7. What use is made of the definition of a circle? What is a circle?

8. What is an equilateral triangle?

Exercises.

Exercises #2-5 should be attempted after the student has completed Chapter 1.

1. If the segments AF and BF are constructed, prove that the figure ⊡ACBF is a

rhombus. [See the final chapter for a solution.]

2. If CF is constructed and AB is extended to the circumferences of the circles (at

points D and E), prove that the triangles △CDF and △CEF are equilateral. [See

the final chapter for a solution.]

3. If CA and CB are extended to intersect the circumferences at points G and

H , prove that the points G, F , H are collinear and that the triangle △GCH is

equilateral.

4. Construct CF and prove that
(

CF
)2

= 3 ·
(

AB
)2

.

5. Construct a circle in the space ACB bounded by the segment AB and the partial

circumferences of the two circles.



CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 34

Proposition 1.2. CONSTRUCTING A LINE SEGMENT EQUAL IN LENGTH

TO AN ARBITRARY LINE SEGMENT.

Given an arbitrary point and an arbitrary segment, it is possible to construct a

segment with:

(1) one endpoint being the previously given point

(2) a length equal to that of the arbitrary segment.

Proof. Let A be an arbitrary point on the plane, and let BC be an arbitrary seg-

ment. Our claim is stated above.

Figure 1.4.2: [1.2] at the beginning of the proof (left), and then partially constructed

(right)

Construct AB, and on AB construct the equilateral triangle △ABD [1.1].

With B as the center and BC as the radius, construct #B. Extend DB to intersect

the circle #B at E [Postulate 2 from section 1.2]. With D as the center and DE as

radius, construct #D. Extend DA to meet #B at F .

Figure 1.4.3: [1.2] fully constructed

Proof. Clearly, AF has A as one of its endpoints (claim 1). If we can show that

AF = BC, we will have proven our claim.
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Since DE and DF are radii of #D, DF = DE [Def. 1.32]. Because △DAB is an

equilateral triangle, DA = DB [Def. 1.21]. By [Axiom 2 from section 1.3.1], we find

that

DF −DA = DE −DB

But DF −DA = AF and DE −DB = BE. By [Axiom 5 from section 1.3.1], we find

that AF = BE.

Since BC and BE are radii at #B, BE = BC. By Axiom 9 from section 1.3.1 (using

equalities), we have AF = BC (claim 2), which completes the proof.

Exercises.

1. Prove [1.2] when A is a point on BC. [See the final chapter for a solution.]
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Proposition 1.3. SUBDIVIDING A LINE SEGMENT.

Given two arbitrary, unequal segments, it is possible to subdivide the larger seg-

ment such that one of its two sub-segments is equal in length to the smaller seg-

ment.

Proof. Construct segments AB and CG such that CG < AB. We claim that AB

may be subdivided into segments AE and EB where AE = CG.

From A, construct AD such that AD = CG [1.2]. With A as the center and AD as

radius, construct #A [Postulate 1.3] which intersects AB at E.

Figure 1.4.4: [1.3]

Because A is the center of #A, AE = AD [Def. 1.32]. Since AD = CG by construc-

tion, by Axiom 9 from section 1.3.1 (using equalities), AE = CG, which proves our

claim.

Corollary. 1.3.1. Given arbitrary segments and a ray, it is possible to cut the ray

such that the resulting segment is equal in length to the arbitrary segment.

Exam questions.

1. What previous problem is employed in the solution of this?

2. What axiom is employed in the demonstration?

3. Demonstrate how to extend the shorter of the two given segments until the whole

extended segment is equal in length to the longer segment.

Exercises.

1. Prove [Cor. 1.3.1].
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Proposition 1.4. THE “SIDE-ANGLE-SIDE” THEOREM FOR THE CONGRU-

ENCE OF TRIANGLES.

If two pairs of sides in two triangles is respectively equal in length, and if the cor-

responding interior angles are equal in measure, then the triangles are congruent.

Proof. If △ABC and △DEF exist such that AB = DE, AC = DF , and ∠BAC =

∠EDF , then △ABC ∼= △DEF .

Figure 1.4.5: [1.4]

Recall that superposition allows us to move one object top of another without dis-

torting its shape or measure. If △ABC is positioned30 on △DEF such that the

point A is positioned on the point D and side AB is positioned on side DE, then the

point B coincides with the point E because AB = DE.

Since AB coincides with DE, the side AC also coincides with side DF because

∠BAC = ∠EDF . Since AC = DF , C coincides with F .

Because B coincides with E, the base BC of △ABC coincides with the base EF of

△DEF ; it follows that BC = EF .

Hence all sides and angles of one triangle are equal with their corresponding sides

and angles in the other triangle. We conclude that △ABC ∼= △DEF .

Remark. Euclid’s Elements contains three propositions on the congruence of trian-

gles: [1.4] side-angle-side (SAS), [1.8] side-side-side (SSS), and [1.26] angle-angle-

side (AAS or SAA) and angle-side-angle (ASA).

Exam questions.

1. What is meant by superposition?

2. How many parts make up a triangle? (Ans. 6, three sides and three angles.)

3. When it is required to prove that two triangles are congruent, how many parts of

one must be given equal to the corresponding parts of the other? (Ans. In general,

30We may write “positioned” instead of “superpositioned” with the understanding that the words are

synonymous in context.
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any three except the three angles. This will be established in [1.8] and [1.26], both

of which use [1.4].)

Exercises.

1. Prove that the line which bisects the vertical angle of an isosceles triangle also

bisects the base perpendicularly. [See the final chapter for a solution.]

2. If two adjacent sides of a quadrilateral are equal in length and the diagonal

bisects the angle between them, prove that their remaining sides are also equal in

length. [See the final chapter for a solution.]

3. If two segments stand perpendicularly to each other and if each bisects the other,

prove that any point on either segment is equally distant from the endpoints of the

other segment. [See the final chapter for a solution.]

4. If equilateral triangles are constructed on the sides of any triangle, prove that

the distances between the vertices of the original triangle and the opposite vertices

of the equilateral triangles are equal. (This may be proven after studying [1.32].)
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Proposition 1.5. ISOSCELES TRIANGLES I.

If a triangle is isosceles, then:

(1) if the sides of the triangle other than the base are extended, the angles under

the base are equal in measure

(2) the angles at the base are equal in measure.

Proof. Construct △ABC such that sides AB = AC and denote side BC as the tri-

angle’s base. Extend AB to AD and AC to AE such that CE ≥ BD. We claim

that:

(1) ∠DBC = ∠ECB

(2) ∠ABC = ∠ACB

We will prove each claim separately. Claim 1: ∠DBC = ∠ECB

Let F be a point on BD other than B or D. On CE, choose point G such that

CG = BF [1.3]. (Since CE ≥ BD, such a point exists and is not an endpoint.)

Construct BG and CF [two applications of Postulate 1 from section 1.2].

Figure 1.4.6: [1.5]

Because AF = AG by construction and AB = AC by hypothesis, it follows that

sides AF and AC in △FAC are respectively equal in length to sides AG and AB

in △GAB. Also, the angle ∠BAC is the interior angle to both pairs of sides in

each triangle. By [1.4], △FAC ∼= △GAB; this implies that ∠AFC = ∠AGB and

BG = CF .

Consider△FBC,△GCB: since BF = CG, CF = BG, and ∠AFC = ∠AGB, by [1.4]

△FBC ∼= △GCB. This implies that ∠FBC = ∠GCB, which are the angles under

the base of △ABC; or,

∠DBC = ∠FBC = ∠GCB = ∠ECB

This proves claim 1.
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Claim 2: ∠ABC = ∠ACB

Since△FBC ∼= △GCB, we have ∠FCB = ∠GBC. By the above31, ∠FCA = ∠GBA.

Notice that:

∠FCA = ∠GBA

∠FCB + ∠ACB = ∠GBC + ∠ABC

∠FCB + ∠ACB = ∠FCB + ∠ABC

∠ACB = ∠ABC

This proves claim 2 and completes the proof.

Remark. The difficulty which beginners may have with this proposition is due to

the fact that △ACF , △ABG overlap. A teacher or tutor should graph these trian-

gles separately and point out the corresponding parts: AF = AG, AC = AB, and

∠FAC = ∠GAB. By [1.4], it follows that ∠ACF = ∠ABG, ∠AFC = ∠AGB.

Corollary. 1.5.1. A triangle is equilateral if and only if it is equiangular.

Exercises.

1. Prove that the angles at the base are equal without extending the sides.

2. Prove that
←→
AH is an Axis of Symmetry of △ABC. [See the final chapter for a

solution.]

3. Prove that each diagonal of a rhombus is an Axis of Symmetry of the rhombus.

4. Take the midpoint on each side of an equilateral triangle; the segments joining

them form a second equilateral triangle. [See the final chapter for a solution.]

5. Prove [Cor. 1.5.1].

“Detection is, or ought to be, an exact science, and should be treated in the same

cold unemotional manner. You have attempted to tinge it with romanticism,

which produces the same effect as if you worked a love-story into the fifth propo-

sition of Euclid.”

- Sir Arthur Conan Doyle, “The Sign of Four”a

a
https://gutenberg.org/ebooks/2097

31“By the above” means “This is a result from earlier in the proof. You may need to reread the proof

to find it, but it’s there.”

https://gutenberg.org/ebooks/2097
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Proposition 1.6. ISOSCELES TRIANGLES II.

If a given triangle has two equal angles, then the sides opposite the two angles are

equal in length (i.e., the triangle is isosceles).

Proof. Construct △ABC such that ∠ABC = ∠ACB. In order to prove our claim

that AB = AC, we will use a proof by contradiction32 33.

Figure 1.4.7: [1.6]

Without loss of generality34, suppose side AB > AC. On AB, construct a point D

such that BD = CA [1.3] and construct CD. Notice that △ACD > 0 (i.e., the area

of △ACD is greater than 0); otherwise, we would not have △ACD.

Consider △DBC and △ACB: since DB = AC, ∠DBC = ∠ACB, and each triangle

contains the side BC, by [1.4] △DBC ∼= △ACB. It follows that △ACB = △DBC.

But △ACB = △ACD ⊕ △DBC, and so it follows that △ACD = 0 (i.e., the area

of △ACD equals 0). But above we showed that △ACD > 0. By showing that

△ACD = 0 and △ACD > 0, we obtain a contradiction.

Specifically, we assumed that AB > AC and obtained a contradiction. If we instead

assume that AC > AB, we would obtain the same contradiction (this is what we

mean by “without loss of generality”; we had two ways to begin the proof, and

either way would have obtained the same result). Since AB > AC and AC > AB

each produce a contradiction, we must have AB = AC, which proves our claim.

Corollary. 1.6.1. Together, [1.5] and [1.6] state that a triangle is isosceles if and

only if35 the angles at its base are equal.

32Mathematics rigidly follows the laws of Western logic, which means that contradictions are always a

sign of error. If we attempt to prove a proposition and obtain a contradiction, then, because a proposition

is either true or false, the proposition must be false.

See also: https://en.wikipedia.org/wiki/Contradition
33This proof by contradiction will show that the statement “A triangle with two equal angles has

unequal opposite sides” is false.

See also: https://en.wikipedia.org/wiki/Proof_by_ontradition
34This term is used before an assumption in a proof which narrows the premise to some special case;

it is implied that either the proof for that case can be easily applied to all others or that all other cases

are equivalent. Thus, given a proof of the conclusion in the special case, it is trivial to adapt it to prove

the conclusion in all other cases. It is usually abbreviated as wlog.

See also: http://en.wikipedia.org/wiki/Without_loss_of_generality
35Often abbreviated as “iff”.

https://en.wikipedia.org/wiki/Contradiction
https://en.wikipedia.org/wiki/Proof_by_contradiction
http://en.wikipedia.org/wiki/Without_loss_of_generality
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Exam questions.

1. What is the hypothesis in this proposition?

2. What proposition is this the converse of?

3. What is the inverse of this proposition?

4. What is the inverse of [1.5]?

5. What is meant by a proof by contradiction?

6. How does Euclid generally prove converse propositions?

7. What false assumption is made in order to prove the proposition?

8. What does this false assumption lead to?

Exercises.

1. Prove [Cor. 1.6.1].

See also: https://en.wikipedia.org/wiki/If_and_only_if

https://en.wikipedia.org/wiki/If_and_only_if
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Proposition 1.7. DISTINCT TRIANGLES.

If we construct two distinct triangles such that two sides are equal in length, then

the third side of each triangle will be unequal in length.

Proof. Construct distinct triangles △ADB, △ACB which share the base AB. Sup-

pose that AC = AD. We claim that BC 6= BD.

Figure 1.4.8: [1.7], case 1

The vertex of the second triangle may be either within or outside the first triangle.

Case 1: Vertex outside of the other triangle.

Let the vertex of each triangle lie outside the interior of the other triangle (i.e., D

does not lie inside△ACB and C does not lie inside△ADB). Construct CD. Because

AD = AC by hypothesis, △ACD is isosceles. By [Cor. 1.6.1], ∠ACD = ∠ADC.

Since ∠ADC = ∠ADB + ∠BDC and ∠ADB > 0, it follows that ∠ADC > ∠BDC

[1.3.1 Axiom 12]. Because ∠ACD = ∠ADC, we also have that ∠ACD > ∠BDC.

Since ∠BCD = ∠BCA+ ∠ACD, we also have that ∠BCD > ∠BDC.

Consider △BDC. Since ∠BCD > ∠BDC, by [Cor. 1.6.1] we find that BD 6= BC,

which proves our claim.

Case 2: Vertex inside the other triangle.

Wlog, let the vertex of the triangle △ADB be located within the interior of △ACB.

Extend side AC to segment AE and side AD to segment AF . Construct CD. Be-

cause AC = AD by hypothesis, the triangle △ACD is isosceles; by [1.5] ∠ECD =

∠FDC.
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Figure 1.4.9: [1.7], case 2

Since ∠ECD = ∠ECB + ∠BCD, it follows that ∠ECD > ∠BCD [1.3.1 Axiom 12].

Because ∠ECD = ∠FDC, we also have that ∠FDC > ∠BCD. Since ∠BDC =

∠BDF + ∠FDC, we find that ∠BDC > ∠BCD.

Consider △BDC. Since ∠BDC > ∠BCD, by [Cor. 1.6.1] we find that BD 6= BC,

which proves our claim and completes the proof.

Corollary. 1.7.1. Two triangles are distinct whenever no side of one triangle is

equal in length to any side of the other triangle.

Exercises.

1. Prove [Cor. 1.7.1].
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Proposition 1.8. THE “SIDE-SIDE-SIDE” THEOREM FOR THE CONGRUENCE

OF TRIANGLES.

If all three pairs of sides of two triangles are respectively equal in length, then the

triangles are congruent.

Proof. Suppose△ABC and△DEF are triangles where sides AB = DE, AC = DF ,

and BC = EF (where BC and EF are the bases of those triangles). We claim that

△ABC ∼= △DEF .

Figure 1.4.10: [1.8]

Let △ABC be positioned on △DEF such that point B coincides with point E and

the side BC coincides with the side EF . Because BC = EF , the point C coincides

with point F . If the vertex A falls on the same side of EF as vertex D, then the

point A must coincide with D.

If this were not true, then A must have a different location: call this point G. Our

hypothesis then states EG = AB and AB = ED. By [1.3.1 Axiom 8], EG = ED.

Similarly, FG = FD. However, by [1.7], FG 6= FD, a contradiction.

Hence the point A must coincide with point D, and so the three angles of one tri-

angle are respectively equal to the three angles of the other (specifically, ∠ABC =

∠DEF , ∠BAC = ∠EDF , and ∠BCA = ∠EFD). Therefore,△ABC ∼= △DEF .

Exam questions.

1. What use is made of [1.7]? (Ans: As a lemma to [1.8].)

2. Can [1.7] and [1.8] be combined into a single proposition? If so, how?
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Proposition 1.9. BISECTING A RECTILINEAR ANGLE.

It is possible to bisect an angle.

Proof. Construct ∠BAC, point D on
−−→
AB, and point E on

−→
AC such that AE = AD

[1.3]. Construct DE; also construct the equilateral triangle △DEF [1.1] such that

F stands on the other side of DE than A. Construct AF . We claim that AF bisects

∠BAC.

Figure 1.4.11: [1.9]

Consider △DAF , △EAF : each shares AF , AD = AE by construction, and DF =

EF by construction. By [1.8], △DAF ∼= △EAF , and so ∠DAF = ∠EAF . Notice

that

∠BAC = ∠DAF + ∠EAF

= 2 · ∠DAF

=⇒
1

2
· ∠BAC = ∠DAF

Or, ∠BAC is bisected by AF , which completes the proof.

Corollary. 1.9.1. If AF is extended to the line
←→
AF , then

←→
AF is the Axis of Symmetry

of the △AED, △DEF , figure BDAEC, and segment DE.

Corollary. 1.9.2. In [1.9], AB and AC may be constructed as lines, rays, or seg-

ments of appropriate length with point A as the vertex, mutatis mutandis.
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Exam questions.

1. Why does Euclid construct the equilateral triangle on the side opposite of A?

2. If the equilateral triangle were constructed on the other side of DE, in what case

would the construction fail?

Exercises.

1. Prove [1.9] without using [1.8]. (Hint: use [1.5, #2].)

2. Prove that AF ⊥ DE. (Hint: use [1.5, #2].) [See the final chapter for a solution.]

3. Prove that any point on AF is equally distant from the points D and E. [See the

final chapter for a solution.]

4. Prove [Cor. 1.9.1].

5. Prove [Cor. 1.9.2].
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Proposition 1.10. BISECTING A SEGMENT.

It is possible to bisect a segment of arbitrary length (i.e., it is possible to locate the

midpoint of a segment).

Proof. Construct AB; we claim that the segment AB can be bisected.

Figure 1.4.12: [1.10]

Construct the equilateral triangle △ABC with AB as its base [1.1]. Bisect ∠ACB

by constructing the segment CD [1.9] which intersects AB at D. Clearly, AB =

AD⊕DB. We claim that AB = 2 ·AD = 2 ·DB (which is equivalent to stating that

AB is bisected at D).

Consider△ACD,△BCD: AC = BC (since each are sides of the equilateral triangle

△ACB); each triangle shares side CD; ∠ACD = ∠BCD by construction. By [1.4],

△ACD ∼= △BCD, and so AD = DB. Therefore,

AB = AD +DB = 2 ·AD = 2 ·DB

which proves our claim.

Exercises.

1. Bisect a segment by constructing two circles. [See the final chapter for a solu-

tion.]

2. Extend CD to
←→
CD. Prove that every point equally distant from the points A and

B are points on
←→
CD. [See the final chapter for a solution.]
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Proposition 1.11. CONSTRUCTING A PERPENDICULAR SEGMENT I.

It is possible to construct a segment at a right angle to a given line from any point

on the line.

Proof. Construct
←→
AB containing point C. On

−→
CA, choose any point D; on

−−→
CB, choose

E such that CE = CD [1.3]. Construct the equilateral triangle △DFE on DE [1.1]

and construct CF . We claim that
←→
AB ⊥ CF .

Figure 1.4.13: [1.11]

Consider △DCF , △ECF : each shares side CF , CD = CE by construction, and

DF = EF since △DFE is equilateral. By [1.8] △DCF ∼= △ECF , and so ∠DCF =

∠ECF . Since these are adjacent angles, [Def. 1.13] states that each of these angles

is a right angle, which proves our claim.

Corollary. 1.11.1. [1.11] holds when AB is a segment or ray and/or when CF is a

straight line or a ray, mutatis mutandis.

Exercises.

1. Prove that the diagonals of a rhombus bisect each other perpendicularly. [See

the final chapter for a solution.]

2. Prove [1.11] without using [1.8].

3. Find a point on a given line that is equally distant from two given points. [See

the final chapter for a solution.]

4. Find a point on a given line such that if it is joined to two given points on opposite

sides of the line, then the angle formed by the connecting segment is bisected by

the given line. (Hint: similar to the proof of #3.)

5. Find a point that is equidistant from three given points. (Hint: you are looking

for the circumcenter of the triangle.)

6. Prove [Cor. 1.11.1].
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Proposition 1.12. CONSTRUCTING A PERPENDICULAR SEGMENT II.

Given an arbitrary line and an arbitrary point not on the line, we may construct a

perpendicular segment from the point to the line.

Proof. Construct
←→
AB and C such that C is not on

←→
AB. We wish to construct CH

such that H is on
←→
AB and CH ⊥ ←→AB.

Figure 1.4.14: [1.12]

Take any point D from the opposite side of
←→
AB to C. Construct the circle #C with

CD as its radius [Postulate 1.3] where #C intersects
←→
AB at the points F and G.

Bisect FG at H [1.10] and construct CH [Postulate 1.1]. We claim that CH ⊥ ←→AB.

Construct △CFG, and consider △FHC and △GHC: FH = GH by construction;

the triangles share HC; CF = CG since each are radii of #C [Def. 1.32]. By [1.8],

△FHC ∼= △GHC, and so ∠CHF = ∠CHG. Since these are adjacent angles, [Def.

1.13] states that each angle is a right angle, which proves our claim.

Corollary. 1.12.1. [1.12] holds when CH and/or AB are replaced by rays, mutatis

mutandis.

Exercises.

1. Prove that circle #C cannot meet
←→
AB at more than two points. [See the final

chapter for a solution.]

2. Prove [Cor. 1.12.1].
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Proposition 1.13. ANGLES AT INTERSECTIONS OF STRAIGHT LINES.

If a line intersects another line, the lines either stand at right angles or at two

angles whose sum equals two right angles.

Proof. If the line
←→
AB intersects the line

←→
CD at B, we claim that either ∠ABC and

∠ABD are right angles or that ∠ABC + ∠ABD equals two right angles.

Figure 1.4.15: [1.13] (α) on left, (β) on right

If
←→
AB ⊥ ←→CD as in Fig. 1.4.15(α), then ∠ABC and ∠ABD are right angles.

Otherwise, ∠ABC and ∠ABD are not right angles as in Fig. 1.4.15(β); construct
←→
BE ⊥ ←→CD [1.11]. Notice that ∠ABC = ∠CBE + ∠EBA [Def. 1.11]. Adding ∠ABD

to each side of this equality, we obtain that

∠ABC + ∠ABD = ∠CBE + ∠EBA+ ∠ABD

Similarly, we find that

∠CBE + ∠EBA+ ∠ABD = ∠CBE + ∠EBD

By [1.3.1 Axiom 8], we find that

∠ABC + ∠ABD = ∠CBE + ∠EBD

Since ∠CBE and ∠EBD are right angles, ∠ABC + ∠ABD equals the sum of two

right angles, which proves our claim.
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An alternate proof:

Proof. Denote ∠EBA by θ. Notice that:

∠CBA = right angle + θ

∠ABD = right angle − θ

=⇒
∠CBA+ ∠ABD = right angle

Corollary. 1.13.1. The above proposition holds when the straight lines are replaced

by segments and/or rays, mutatis mutandis.

Corollary. 1.13.2. The sum of two supplemental angles equals two right angles.

Corollary. 1.13.3. Two distinct straight lines cannot share a common segment.

Corollary. 1.13.4. The bisector of any angle bisects the corresponding re-entrant

angle.

Corollary. 1.13.5. The bisectors of two supplemental angles are at right angles to

each other.

Corollary. 1.13.6. The angle ∠EBA = 1
2 · (∠CBA− ∠ABD).

Exercises.

1. Prove [Cor. 1.13.1].

2. Prove [Cor. 1.13.2].

3. Prove [Cor. 1.13.3].

4. Prove [Cor. 1.13.4].

5. Prove [Cor. 1.13.5].

6. Prove [Cor. 1.13.6].
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Proposition 1.14. RAYS TO STRAIGHT LINES.

If at the endpoint of a ray there exists two other rays constructed on opposite sides

of the first ray such that the sum of their adjacent angles is equal to two right

angles, then these two rays form one line.

Proof. Construct
−−→
BA. On opposite sides of

−−→
BA, construct

−−→
BC and

−−→
BD such that the

sum of their adjacent angles, ∠CBA + ∠ABD, equals two right angles. We claim

that
−−→
BC ⊕−−→BD =

←→
CD.

Figure 1.4.16: [1.14]

Suppose instead that
−−→
BC ⊕ −−→BE =

←→
CE and ∠EBD > 0. Since

←→
CE is a line and

−−→
BA stands on it, the sum ∠CBA + ∠ABE equals two right angles [1.13]. Also by

hypothesis, the sum ∠CBA+ ∠ABD equals two right angles. Therefore,

∠CBA+ ∠ABE = ∠CBA+ ∠ABD

∠ABE = ∠ABD

∠ABE = ∠ABE + ∠EBD

0 = ∠EBD

Since ∠EBD = 0 and ∠EBD > 0, we have a contradiction. Hence,
−−→
BC⊕−−→BD =

←→
CD,

which proves our claim.

Corollary. 1.14.1. The above result holds for segments, mutatis mutandis.

Exercises.

1. Prove [Cor. 1.14.1].
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Proposition 1.15. OPPOSITE ANGLES ARE EQUAL.

If two lines intersect at a point, then their opposite angles are equal.

Proof. Suppose
←→
AB and

←→
CD intersect at E. We claim that ∠AEC = ∠DEB and

∠BEC = ∠DEA.

Figure 1.4.17: [1.15]

Because
←→
AB intersects

←→
CD at E, the sum ∠DEA + ∠AEC equals two right angles

[1.13]. Similarly, because
←→
CD intersects

←→
AB at E, the sum ∠AEC + ∠BEC also

equals two right angles. Therefore,

∠AEC + ∠DEA = ∠AEC + ∠BEC

∠DEA = ∠BEC

Similarly, we can also show that ∠AEC = ∠DEB, which proves our claim.

An alternate proof:

Proof. Because opposite angles share a common supplement, they are equal.

Corollary. 1.15.1. [1.15] holds when either one or both of the two straight lines are

replaced either by segments or by rays, mutatis mutandis.
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Exam questions for [1.13]−[1.15].

1. What problem is required in Euclid’s proof of [1.13]?

2. What theorem? (Ans. No theorem, only the axioms.)

3. If two lines intersect, how many pairs of supplemental angles do they make?

4. What is the relationship between [1.13] and [1.14]?

5. What three lines in [1.14] are concurrent?

6. State the converse of Proposition [1.15] and prove it.

7. What is the subject of [1.13], [1.14], [1.15]? (Ans. Angles at a point.)

Exercises.

1. Prove [Cor. 1.15.1].
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Proposition 1.16. THE EXTERIOR ANGLE OF A TRIANGLE IS GREATER

THAN EITHER OF THE NON-ADJACENT INTERIOR ANGLES.

If any side of a triangle is extended, the resulting exterior angle is greater than

either of the non-adjacent interior angles.

Proof. Construct △ABC. Wlog, we extend side BC to BD. We claim that the exte-

rior angle ∠ACD is greater than either of the interior non-adjacent angles ∠ABC,

∠BAC.

Figure 1.4.18: [1.16]

Bisect AC at E [1.10] and construct BE [Postulate 1.1]. Extend BE to BF such

that BE = EF [1.3]. Also construct CF .

Consider△CEF and△AEB: CE = EA by construction, BE = EF by construction,

and ∠CEF = ∠AEB [1.15]. By [1.4], △CEF ∼= △AEB, and so ∠ECF = ∠EAB.

Since ∠ACD = ∠ECF + ∠FCD and ∠EAB = ∠BAC,

∠ACD = ∠EAB + ∠FCD = ∠BAC + ∠FCD

It follows that ∠ACD > ∠BAC.

Similarly, if BC is bisected, it can be shown that ∠ACD > ∠ABC, which completes

the proof.

Corollary. 1.16.1. The sum of the three interior angles of the triangle △BCF is

equal to the sum of the three interior angles of the triangle△ABC.

Corollary. 1.16.2. The area of△BCF is equal to the area of △ABC, which we will

write as △BCF = △ABC.
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Corollary. 1.16.3. If sides BA and CF are extended to lines, they cannot meet at

any finite distance: if they met at any point X , then the triangle△CAX would have

an exterior angle ∠BAC equal to the interior angle ∠ACX .

Exercise.

1. Prove [Cor. 1.16.1].

2. Prove [Cor. 1.16.2].

3. Prove [Cor. 1.16.3] using a proof by contradiction.
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Proposition 1.17. THE SUM OF TWO INTERIOR ANGLES OF A TRIANGLE.

The sum of two interior angles of a triangle is less than the sum of two right angles.

Proof. We claim that the sum of any two interior angles of △ABC is less than the

sum of two right angles.

Figure 1.4.19: [1.17]

Wlog, choose ∠ABC and ∠BAC and extend side BC to BD. By [1.16], ∠ACD >

∠ABC. To each, add the angle ∠ACB:

∠ACD + ∠ACB > ∠ABC + ∠ACB

By [1.13], ∠ACD+∠ACB equals two right angles; therefore, ∠ABC+∠ACB is less

than two right angles.

Similarly, we can show that the sums ∠ABC + ∠BAC and ∠ACB + ∠BAC are

each less than two right angles, mutatis mutandis. A similar argument follows on

△EFG, which proves our claim.

Corollary. 1.17.1. Every triangle has at least two acute angles.

Corollary. 1.17.2. If two angles of a triangle are unequal, then the shorter angle is

acute.

Exercises.

1. Prove [1.17] without extending a side. (Attempt after completing Chapter 1.

Hint: use parallel line theorems.)

2. Prove [Cor. 1.17.1].

3. Prove [Cor. 1.17.2].
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Proposition 1.18. ANGLES AND SIDES IN A TRIANGLE I.

If one side of a triangle is longer than another side, then the angle opposite the

longer side is greater in measure than the angle opposite the shorter side.

Proof. Construct△ABC with sides AB and AC where AC > AB. We claim that the

angle opposite AC is greater in measure than the angle opposite AB; or, ∠ABC >

∠ACB.

Figure 1.4.20: [1.18]

On AC, find D such that AD = AB [1.3], and construct BD; notice that △ABD is

isosceles. By [1.6], ∠ADB = ∠ABD. Since ∠ADB > ∠ACB by [1.16], ∠ABD >

∠ACB. Since ∠ABC = ∠ABD + ∠CBD, we also have that ∠ABC > ∠ACB, which

proves our claim.

Exercises.

1. Prove that if two of the opposite sides of a quadrilateral are respectively the

greatest and the least sides of the quadrilateral, then the angles adjacent to the

least are greater than their opposite angles.

2. In any triangle, prove that the perpendicular from the vertex opposite the side

which is not less than either of the remaining sides falls within the triangle.
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Proposition 1.19. ANGLES AND SIDES IN A TRIANGLE II.

In a triangle, if one angle is greater in measure than another, then the side opposite

the greater angle is longer than the side opposite the shorter angle.

Proof. Construct △ABC where ∠ABC > ∠ACB. We claim that AC > AB.

Figure 1.4.21: [1.19]

If AC 6> AB, then either AC = AB or AC < AB.

1. If AC = AB, △ACB is isosceles and ∠ACB = ∠ABC [Cor. 1.6.1]. This contra-

dicts our hypothesis that ∠ABC > ∠ACB, and so AC 6= AB.

2. If AC < AB, we find that ∠ACB > ∠ABC [1.18]. This also contradicts our

hypothesis that ∠ABC > ∠ACB, and so AC 66< AB.

Since AC 6≤ AB, we must have that AC > AB.

Corollary. 1.19.1. In a triangle, longer sides stand opposite the greater interior

angles and shorter interior angles stand opposite the shorter sides.

Exercises.

1. Prove this proposition by a direct demonstration.

2. Prove that a segment from the vertex of an isosceles triangle to any point on the

base is less than either of the equal sides but greater if the base is extended and

the point of intersection falls outside of the triangle.

3. Prove that three equal and distinct segments cannot be constructed from the

same point to the same line. [See the final chapter for a solution.]

4. Consider [1.16], Fig 1.4.18: if AB is the longest side of the △ABC, then BF is

the longest side of △FBC and ∠BFC < 1
2 · ∠ABC.

5. If △ABC is a triangle such that side AB ≤ AC, then a segment AG, constructed

from A to any point G on side BC, is less than AC. [See the final chapter for a

solution.]

6. Prove [Cor. 1.19.1].
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Proposition 1.20. THE SUM OF THE LENGTHS OF ANY PAIR OF SIDES OF

A TRIANGLE.

In a triangle, the sum of the lengths of any pair of sides is greater than the length

of the remaining side.

Proof. Construct △ABC; wlog, we claim that AB +AC > BC.

Figure 1.4.22: [3.20]

Extend BA to BD such that AD = AC [1.3], and construct CD.

Consider △ACD: by construction AD = AC, and so ∠ACD = ∠ADC [1.5]. Since

∠BCD = ∠BCA + ∠ACD, ∠BCD > ∠ACD = ∠ADC = ∠BDC. By [1.19], BD >

BC.

Notice that

AD = AC

BA+AD = BA+AC

BD = BA+AC

and so BA+AC > BC, which proves our claim.

Alternatively:

Proof. Construct △ABC; wlog, we claim that AB + AC > BC. Bisect ∠BAC by

constructing AE [1.9]. Then ∠BEA > ∠EAC = ∠EAB. It follows that BA > BE

[1.19]. Similarly, AC > EC. It follows that

BA+AC > BE + EC = BC

which proves our claim.
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Exercises.

1. Let a, b, and c be side-lengths of any triangle. Prove that

|a− b| < c < (a+ b)

2. Any side of any polygon is less than the sum of the remaining sides.

3. The perimeter of any triangle is greater than the perimeter of any inscribed

triangle and less than the perimeter of any circumscribed triangle. (See also [Def.

4.1].)

4. The perimeter of any polygon is greater than that of any inscribed (and less than

that of any circumscribed) polygon of the same number of sides.

5. The perimeter of a quadrilateral is greater than the sum of its diagonals. [See

the final chapter for a solution.]

6. The sum of the lengths of the three medians of a triangle is less than 3
2 times its

perimeter. [See the final chapter for a solution.]
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Proposition 1.21. TRIANGLES WITHIN TRIANGLES.

In an arbitrary triangle, if two segments are constructed from the vertexes of its

base to a point within the triangle, then:

(1) the sum of the lengths of these inner sides will be less than the sum of the

outer sides (excluding the base);

(2) these inner sides will contain a greater angle than the corresponding sides of

the outer triangle.

Proof. Construct △ABC with base BC, and construct D within △ABC. Finally,

construct segments BD, CD. We claim that:

1. BA+AC > BD +DC

2. ∠BDC > ∠BAC

Figure 1.4.23: [3.21]

Claim 1: BA+AC > BD +DC.

Extend BD to BE where E is on AC. In△BAE, we find that BA+AE > BE [1.20].

It follows that:

BA+AC = BA+AE + EC > BE + EC

Similarly, in △DEC, we find that DE + EC > DC, from which it follows that

BE + EC = BD +DE + EC > BD +DC

From these two inequalities, we obtain that BA + AC > BD + DC, which proves

claim 1.

Claim 2: ∠BDC > ∠BAC.

By [1.16], we find that ∠BDC > ∠BEC. Similarly, ∠BEC > ∠BAE. It follows that

∠BDC > ∠BAE = ∠BAC, which proves claim 2 and completes the proof.

An alternative proof of claim 2 that does not extend sides BD and DC:
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Figure 1.4.24: [3.21, alternate proof]

Proof. Construct △ABC and △BDC as above. Also construct AD and extending it

to intersect BC at F . Consider△BDA and △CDA. By [1.16], ∠BDF > ∠BAF and

∠FDC > ∠FAC. Then

∠BDC = ∠BDF + ∠FDC > ∠BAF + ∠FAC = ∠BAC

which completes the proof.

Exercises.

1. The sum of the side lengths constructed from any point within a triangle to its

vertices is less than the length of the triangle’s perimeter.

Figure 1.4.25: [1.21, #2]

2. If a convex polygonal line ABCD lies within a convex polygonal line AMND

terminating at the same endpoints, prove that the length of ABCD is less than

that of AMND.
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Proposition 1.22. CONSTRUCTION OF TRIANGLES FROM ARBITRARY SEG-

MENTS.

It is possible to construct a triangle whose sides are respectively equal in length to

three arbitrary segments whenever the sum of the lengths of each pair of segments

is greater than the length of the remaining segment.

Proof. Let AR, BS, and CT be arbitrary segments which satisfy our hypothesis.

Figure 1.4.26: [1.22]

Construct
−−→
DE such that it contains the segments DF = AR, FG = BS, and

GH = CT [1.3]. With F as the center and DF as radius, construct #F [Section

1.2, Postulate 3]. With G as the center and GH as radius, construct #G where K is

one intersection between #F and #G. Construct KF , KG. We claim that △KFG

is the required triangle.

Since F is the center of #F , FK = FD. Since FD = AR by construction, FK = AR.

Also by construction, FG = BS and KG = CT . Therefore, the three sides of the

triangle △KFG are respectively equal to the three segments AR, BS, and CT ,

which proves our claim.

Exercises.

1. Prove that when the above conditions are fulfilled that the two circles must

intersect.

2. If the sum of two of the segments equals the length of the third, prove that the

segments will not intersect.
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Proposition 1.23. CONSTRUCTING EQUAL ANGLES.

It is possible to construct an angle equal to an arbitrary angle on a given point.

Proof. Construct an arbitrary angle ∠DEF from
−−→
ED and

−−→
EF as well as point A.

We claim it is possible to construct an angle equal to ∠DEF on A.

Figure 1.4.27: [1.23]

Construct DF , and construct the triangle △BAC where AB = ED, AC = EF , and

CB = FD [1.22]. By [1.8], △BAC ∼= △DEF , and so ∠BAC = ∠DEF .

Exercises.

1. Construct a triangle given two sides and the angle between them. [See the final

chapter for a solution.]

2. Construct a triangle given two angles and the side between them.

3. Construct a triangle given two sides and the angle opposite one of them.

4. Construct a triangle given the base, one of the angles at the base, and the sum

or difference of the sides.

5. Given two points, one of which is in a given line, find another point on the given

line such that the sum or difference of its distances from the former points may be

given. Show that two such points may be found in each case.
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Proposition 1.24. ANGLES AND SIDES IN A TRIANGLE III.

Suppose we have two triangles such that two sides of the first triangle are respec-

tively equal in length to two sides of the second triangle and that the interior angles

of each of these pairs of sides are unequal. The third side of the triangle with the

larger interior angle will be longer than the third side of the triangle with the

smaller interior angle.

Proof. Construct two triangles △ABC and △DEF where AB = DE, AC = DF ,

and ∠BAC > ∠EDF . We claim that BC > EF .

Figure 1.4.28: [1.24]

Construct point G on BC such that ∠BAG = ∠EDF . Wlog, suppose that AB < AC;

by [1.19, #5] we find that AG < AC. Extend AG to AH where AH = DF = AC

[1.3].

Construct BH and CH . In triangles△BAH and△EDF , we have AB = DE, AH =

DF , and ∠BAH = ∠EDF by construction. By [1.4], △BAH ∼= △EDF , and so

BH = EF .

Notice that ∠ACH > ∠BCH since ∠ACH = ∠BCH + ∠BCA. Because AH = AC

by construction, △ACH is isosceles; therefore, ∠ACH = ∠AHC [1.5]. It follows

that ∠AHC > ∠BCH . And since ∠BHC = ∠BHA + ∠AHC, we also have that

∠BHC > ∠BCH .

By [1.19], BC > BH . Since BH = EF by the above, BC > EF , which proves our

claim.

Alternatively, the concluding part of this proposition may be proved without con-

structing CH .
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Proof. Assume the hypotheses and construct the triangles as in the previous proof;

we claim that this proof does not require CH .

Notice that

BG+GH > BH [1.20] and

AG+GC > AC [1.20] ⇒
(BG+GH) + (AG+GC) > BH +AC ⇒
(BG+GC) + (AG+GH) > BH +AC ⇒

BC +AH > BH +AC

Since AH = AC and BH = EF by construction, we have

BC +AC > EF +AC

BC > EF

which proves our claim.

Another alternative:

Proof. In △ABC, bisect the angle ∠CAH by
←→
AO. In △CAO and △HAO we have

the sides CA, AO in one triangle respectively equal to the sides AH , AO in the

other where the interior angles are equal. By [1.4], OC = OH . It follows that

BO +OH = BO +OC = BC. But BO +OH > BH [1.20], and so BC > BH . Since

BH = EF , BC > EF , which proves our claim.

Remark. The reader will have noticed by now that the number of explicit references

to definitions, axioms, and theorems has dwindled since the first proposition. This

is normal in mathematical writing even though it is sub-optimal to the reader.

Such practice is normal because to do otherwise would place an impossible burden

on the writer. One reader will wish I had cited the Inequality Properties of Addition

and Subtraction in the above. Another would be insulted if I had halted the proof

to cite something so obvious.36 Yet another reader will ask why the Inequality

Properties of Addition and Subtraction was assumed rather than proven.37 No

writer can satisfy contradictory demands. The best way out for the author is to

discard whatever he or she finds obvious and to leave the detective work to the

reader.

Exercises.

1. Prove this proposition by constructing the angle ∠ABH to the left of AB.

2. Prove that the angle ∠BCA > ∠EFD.

36Exactly what is and is not obvious in mathematics is a can of worms I do not intend to open here.
37The questions regarding the foundations of mathematics are not as simple as one might think.

Whitehead & Russell’s “Principia Mathematica” is so detailed that the authors take well over 300 pages

to prove that 1 + 1 = 2.
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Proposition 1.25. ANGLES AND SIDES IN A TRIANGLE IV.

Suppose two triangles exist such that two sides of the first triangle are respectively

equal in length to two sides of the second triangle and the third sides are unequal

in length. The triangle with the longer third side will have a larger interior angle

than the triangle with the shorter side.

Proof. Construct △ABC and △DEF such that AB = DE, AC = DF , and BC >

EF . We claim that ∠BAC > ∠EDF .

Figure 1.4.29: [1.25]

Suppose instead that ∠BAC = ∠EDF ; since AB = DE and AC = DF by construc-

tion, by [1.4] △ABC ∼= △DEF , and so BC = EF . This contradicts our hypothesis

that BC > EF ; hence, ∠BAC 6= ∠EDF .

Now suppose that ∠BAC < ∠EDF ; since AB = DE and AC = DF , by [1.24]

we find that EF > BC. This contradicts our hypothesis that BC > EF ; hence,

∠BAC ≮ ∠EDF .

Since ∠BAC � ∠EDF , ∠BAC > ∠EDF , which proves our claim.

Corollary. 1.25.1. Construct △ABC and △DEF where AB = DE and AC = DF .

By [1.24] and [1.25], BC > EF iff ∠BAC > ∠EDF .

Exercise.

1. Demonstrate this proposition directly by constructing a segment on BC equal in

length to EF .
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Proposition 1.26. CONGRUENCE OF TRIANGLES WITH ONE EQUAL SIDE

AND TWO EQUAL INTERIOR ANGLES.

If two triangles exist such that one side of the first triangle is equal in length to

one side of the second triangle and that two interior angles of the first triangle are

respectively equal in measure to two interior angles of the second triangle, then the

triangles are congruent. Most express this proposition as two theorems:

1. “ANGLE-SIDE-ANGLE” CONGRUENCE. If the equal side stands between the

two equal angles, then the triangles are congruent.

2. “ANGLE-ANGLE-SIDE” CONGRUENCE. If the equal side does not stand be-

tween the two equal angles, then the triangles are congruent.

We will prove this proposition in two cases.

Proof. Construct △ABC and △DEF such that ∠ABC = ∠DEF and ∠ACB =

∠EFD. We claim that if one side of △ABC is equal in length to its respective

side in △DEF , then △ABC ∼= △DEF .

Figure 1.4.30: [1.26], case 1

Case 1. ANGLE-SIDE-ANGLE

Suppose that BC = EF . If AB 6= DE, suppose that AB = GE where G is a point

on DE such that D 6= G. Construct GF , and notice that ∠GFD > 0. (If ∠GFD = 0,

then D = G, a contradiction.)

Consider △ABC and △GEF : AB = GE, BC = EF , and ∠ABC = ∠GEF . By [1.4],

△ABC ∼= △GEF , and so ∠ACB = ∠GFE. Since ∠ACB = ∠DFE by hypothesis,

we find that ∠GFE = ∠DFE and ∠GFE +∠GFD = ∠DFE; hence ∠GFD = 0 and

∠GFD > 0, a contradiction. Therefore, AB = DE.

Since AB = DE, BC = EF , and ∠ABC = ∠DEF , by [1.4] △ABC ∼= △DEF .

Case 2. ANGLE-ANGLE-SIDE

Now suppose that AB = DE.
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Figure 1.4.31: [1.26], case 2

If BC 6= EF , suppose that EF = BG where G is a point on BC such that C 6=
G. Construct AG, and consider △ABG and △DEF : AB = DE, BG = EF , and

∠ABG = ∠DEF . By [1.4], △ABG ∼= △DEF , and so ∠AGB = ∠DFE. Since

∠ACB = ∠DFE by hypothesis, ∠AGB = ∠ACB; that is, the exterior angle of

△ACG is equal to an interior and non-adjacent angle, contradicting [1.16]. Thus

BC = EF .

Since AB = DE, BC = EF , and ∠ABC = ∠DEF , by [1.4] △ABC ∼= △DEF .

This proves both claims and completes proof.

Exercises.

1. Prove that the endpoints of the base of an isosceles triangle are equally distant

from any point on the perpendicular segment from the vertical angle on the base.

2. Prove that if the line which bisects the vertical angle of a triangle also bisects

the base, then the triangle is isosceles.

3. In a given straight line, find a point such that the perpendiculars from it on two

given lines are equal. State also the number of solutions.

4. Prove that if two right triangles have hypotenuses of equal length and an acute

angle of one is equal to an acute angle of the other, then they are congruent.

5. Prove that if two right triangles have equal hypotenuses and that if a side of one

is equal in length to a side of the other, then the triangles they are congruent. (Note:

this proves the special case of Side-Side-Angle congruency for right triangles.)

6. The bisectors of two external angles and the bisector of the third internal angle

are concurrent.

7. Through a given point, construct a straight line such that perpendiculars on it

from two given points on opposite sides are equal to each other.

8. Through a given point, construct a straight line intersecting two given lines

which forms an isosceles triangle with them.
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1.5 Book I, Propositions 27-48

Additional definitions regarding parallel lines:

Parallel Lines

40. If two straight lines in the same plane do not meet at any finite distance, they

are said to be parallel. If rays or segments can be extended into lines which do not

meet at any finite distance, they are also said to be parallel.

41. A parallelogram is a quadrilateral where both pairs of opposite sides are paral-

lel.

42. The segment joining either pair of opposite angles of a quadrilateral is called a

diagonal. See Fig. 1.5.1.

Figure 1.5.1: [Def 1.41] and [Def. 1.42]: AC is a diagonal of the square ⊡ABCD,

which is also a parallelogram.

43. The altitude of a triangle is the perpendicular segment from the triangle’s base

to the base’s opposing vertex.

45. A quadrilateral where one pair of opposite sides is parallel is called a trapezoid.
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46. When a straight line intersects two other straight lines, between them are eight

angles (see Fig. 1.5.2).

• Angles 1 and 2 are exterior angles; so are angles 7 and 8.

• Angles 3 and 4 are called interior angles; so are angles 5 and 6.

• Angles 4 and 6 are called alternate angles; so are angles 3 and 5.

• Angles 1 and 5 are called corresponding angles; so are angles 2 and 6, 3 and

8, and 4 and 7.

These definitions hold if we replace lines with either rays or segments, mutatis

mutandis.

Figure 1.5.2: [Def. 1.46]
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Proposition 1.27. PARALLEL LINES I.

If a line intersects a pair of lines and their alternate angles are equal, then the pair

of lines are parallel.

Proof. Let
←→
EF intersect

←→
AB and

←→
CD such that ∠AEF = ∠EFD. We claim that

←→
AB ‖ ←→CD.

Figure 1.5.3: [1.27]

If
←→
AB 6‖ ←→CD, then

←→
AB and

←→
CD intersect at point G where the length of BG is finite.38

It follows that △EGF is a triangle where ∠AEF is an exterior angle and ∠EFG a

non-adjacent interior angle. By [1.16], ∠AEF > ∠EFD; but ∠AEF = ∠EFD by

hypothesis, a contradiction. Therefore,
←→
AB ‖ ←→CD.

38“The length of BG is finite” can also be expressed as “BG < ∞”.
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Proposition 1.28. PARALLEL LINES II & III.

Suppose a line intersects a pair of lines.

1) PARALLEL LINES II. If the intersecting line makes the exterior angle equal to

its corresponding interior angle, then the pair of lines is parallel.

2) PARALLEL LINES III. If the intersecting line makes the sum of two interior

angles on the same side equal to two right angles, then the pair of lines is parallel.

Proof. Suppose
←→
EF intersects

←→
AB and

←→
CD.

Figure 1.5.4: [1.28] and [1.29]

Claim 1: If ∠EGB = ∠GHD, we claim that
←→
AB ‖ ←→CD.

Since
←→
AB,

←→
EF intersect at G, ∠AGH = ∠EGB [1.15]. By hypothesis, ∠AGH =

∠GHD. Since these are alternate angles,
←→
AB ‖ ←→CD by [1.27], which proves our

claim.

Claim 2: If ∠BGH + ∠GHD equals two right angles, we claim that
←→
AB ‖ ←→CD.

Since ∠AGH and ∠BGH are adjacent angles, by [1.13] the sum ∠AGH + ∠BGH

equals two right angles. Since ∠BGH = ∠BGH ,

∠BGH + ∠GHD = ∠BGH + ∠AGH

∠GHD = ∠AGH

Since ∠GHD and ∠AGH are alternate angles,
←→
AB ‖ ←→CD by [1.27], which proves

our claim and completes the proof.
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Proposition 1.29. PARALLEL LINES IV.

If a line intersects two parallel lines, then:

(1) corresponding alternate angles are equal,

(2) exterior angles are equal to corresponding interior angles,

(3) the sum of interior angles on the same side equals two right angles.

Proof. If
←→
EF intersects

←→
AB and

←→
CD where

←→
AB ‖ ←→CD, we claim that:

(1) ∠AGH = ∠GHD (∠BGH = ∠GHC, mutatis mutandis);

(2) ∠EGB = ∠GHD (∠EGA = ∠GHC, mutatis mutandis);

(3) ∠GHD + ∠HGB equals two right angles (∠AGH + ∠GHC also equals two

right angles, mutatis mutandis)

Claim 1: if ∠AGH 6= ∠GHD, one angle must be greater than the other. Wlog,

suppose that ∠AGH > ∠GHD. Then we obtain the inequality

∠AGH + ∠BGH > ∠GHD + ∠BGH

where ∠AGH + ∠BGH is equal to the sum of two right angles by [1.13]. It follows

that ∠GHD + ∠BGH is less than two right angles. By the proof of [1.27],
←→
AB and

←→
CD meet at some finite distance; this contradicts our hypothesis that

←→
AB ‖ ←→CD.

Hence, ∠AGH = ∠GHD, proving claim 1.

Claim 2: since ∠EGB = ∠AGH by [1.15] and ∠AGH = ∠GHD by claim 1, ∠EGB =

∠GHD, proving claim 2.

Claim 3. since ∠AGH = ∠GHD by claim 1,

∠AGH + ∠HGB = ∠GHD + ∠HGB

Since ∠AGH + ∠HGB equals the sum of two right angles, ∠GHD +∠HGB equals

the sum of two right angles. This proves claim 3 and completes the proof.
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Corollary. 1.29.1. EQUIVALENT STATEMENTS REGARDING PARALLEL LINES.

If a line intersects a pair of lines, then the pair of lines are parallel if and only if any

of these three properties hold:

1) corresponding alternate angles are equal;

2) exterior angles equal their corresponding interior angles;

3) the sum of the interior angles on the same side are equal to two right angles.

Corollary. 1.29.2. We may replace the lines in [1.29, Cor. 1] with segments of

appropriate length or rays, mutatis mutandis.

Figure 1.5.5: [1.28] and [1.29]

Exercises.

Remark. We may use [1.31] in the proofs of these exercises since the proof of [1.31]

does not require [1.29].

1. Demonstrate both parts of [1.28] without using [1.27].

2. Construct
←→
AB containing the point C and

←→
EF containing the point D such that

←→
AB ‖ ←→EF . Construct CH and CJ such that CJ bisects ∠ACD and CH bisects

∠BCD. Prove that DH = DJ . [See the final chapter for a solution.]

4. If any other secant is constructed through the midpoint O of any line terminated

by two parallel lines, the intercept on this line made by the parallels is bisected at

O.

5. Two lines passing through a point which is equidistant from two parallel lines

intercept equal segments on the parallels. [See the final chapter for a solution.]

6. Construct the perimeter of the parallelogram formed by constructing parallels to

two sides of an equilateral triangle from any point in the third side. This perimeter

is equal to 2× the side.
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7. If the opposite sides of a hexagon are equal and parallel, prove that its diagonals

are concurrent.

8. If two intersecting segments are respectively parallel to two others, the angle

between the former is equal to the angle between the latter. (Hint: if
←→
AB,

←→
AC are

respectively parallel to
←→
DE,

←→
DF and if

←→
AC,

←→
DE intersect at G, then the angles at

points A, D are each equal to the angle at G [1.29].)

Proposition 1.30. TRANSITIVITY OF PARALLEL LINES.

Lines parallel to the same line are parallel to each other.

Proof. Construct lines
←→
AB,

←→
CD,

←→
EF such that

←→
AB ‖ ←→EF and

←→
CD ‖ ←→EF . We claim

that
←→
AB ‖ ←→CD.

Figure 1.5.6: [1.30]

Construct any secant line
←−−→
GHK. Since

←→
AB ‖ ←→EF , the angle ∠AGH = ∠GHF [Cor.

1.29.1]. Since
←→
CD ‖ ←→EF , the angle ∠GHF = ∠HKD [Cor. 1.29.1]. It follows

that ∠AGH = ∠GHF = ∠HKD. Since ∠AGH = ∠AGK and ∠HKD = ∠GKD,

∠AGK = ∠GKD. By [1.27],
←→
AB ‖ ←→CD.

Corollary. 1.30.1.
←→
AB,

←→
CD,

←→
EF , and

←→
GK in [1.30] may be replaced by segments of

appropriate length or rays, mutatis mutandis.
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Proposition 1.31. CONSTRUCTION OF A PARALLEL LINE.

We wish to construct a line which is parallel to a given line and passing through a

given point.

Proof. Given the line
←→
AB and a point C, we wish to construct the line

←→
CE such that

←→
CE ‖ ←→AB.

Figure 1.5.7: [1.31]

Using [1.23], construct D on
←→
AB and E not on

←→
AB such that, after constructing

←→
CE,

∠ADC = ∠DCE. By [Cor. 1.29.1],
←→
CE ‖ ←→AB.

Corollary. 1.31.1.
←→
AB and

←→
CE in [1.31] may be replaced by segments of appropriate

length or rays, mutatis mutandis.

Exercises.

1. Given the altitude of a triangle and the base angles, construct the triangle. [See

the final chapter for a solution.]

2. From a given point, construct a segment to a given segment such that the resul-

tant angle is equal in measure to a given angle. Show that there are two solutions.

3. Prove the following construction for trisecting a given line
←→
AB: on

←→
AB, construct

an equilateral △ABC. Bisect the angles at points A and B by the lines
←→
AD and

←→
BD. Through D, construct parallels to

←→
AC and

←→
BC which intersect

←→
AB at E and F .

Claim: E and F are the points of trisection of
←→
AB.

4. Inscribe a square in a given equilateral triangle such that its base stands on a

given side of the triangle.

5. Through two given points on two parallel lines, construct two segments forming

a rhombus with given parallels.

6. Between two lines given in position, place a segment of given length which is

parallel to a given line. Show that there are two solutions.
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Proposition 1.32. EXTERIOR ANGLES AND SUMS OF ANGLES IN A TRIAN-

GLE.

If the side of a triangle is extended,

(1) the exterior angle equals the sum of the its interior and opposite angles;

(2) the sum of the three interior angles equals two right angles.

Proof. Construct △ABC, and wlog extend side AB to segment AD.

Figure 1.5.8: [1.32]

Claim 1: ∠CBD = ∠BAC + ∠ACB.

Construct BE ‖ AC [1.31]. Since BC intersects BE and AC, we find that ∠EBC =

∠ACB [1.29]. Also, since AB intersects BE and AC, we find that ∠DBE = ∠BAC

[1.29]. Since ∠CBD = ∠EBC + ∠DBE,

∠CBD = ∠ACB + ∠BAC

Claim 2: ∠BAC + ∠ACB + ∠ABC = two right angles.

Adding ∠ABC to each side of the equality in claim 1, we obtain

∠ABC + ∠CBD = ∠ABC + ∠ACB + ∠BAC

By [1.13], ∠ABC + ∠CBD equals two right angles, and so

∠BAC + ∠ACB + ∠ABC

equals two right angles. This completes the proof.

Corollary. 1.32.1. If a right triangle is isosceles, then each base angle equals half

of a right angle.

Corollary. 1.32.2. If two triangles have two angles in one respectively equal to two

angles in the other, then their remaining pair of angles is also equal.
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Corollary. 1.32.3. Since a quadrilateral can be divided into two triangles, the sum

of its angles equals four right angles.

Corollary. 1.32.4. If a figure of n sides is divided into triangles by drawing diag-

onals from any one of its angles, we will obtain (n− 2) triangles. Hence, the sum of

its angles equals 2(n− 2) right angles.

Corollary. 1.32.5. If all the sides of any convex polygon are extended, then the sum

of the external angles equals to four right angles.

Corollary. 1.32.6. Each angle of an equilateral triangle equals two-thirds of a right

angle.

Corollary. 1.32.7. If one angle of a triangle equals the sum of the other two, then it

is a right angle.

Corollary. 1.32.8. Every right triangle can be divided into two isosceles triangles

by a line constructed from the right angle to the hypotenuse.

Exercises.

1. Trisect a right angle.

2. If the sides of a polygon of n sides are extended, then the sum of the angles

between each alternate pair is equal to 2(n− 4) right angles.

3. If the line which bisects an external vertical angle of a triangle is parallel to

the base of the triangle, then the triangle is isosceles. [See the final chapter for a

solution.]

4. If two right triangles △ABC, △ABD are on the same hypotenuse AB and if the

vertices C and D are joined, then the pair of angles standing opposite any side of

the resulting quadrilateral are equal.

5. Prove that the three altitudes of a triangle are concurrent. Note: We are proving

the existence of the orthocenter39 of a triangle: the point where the three alti-

tudes intersect, and one of a triangle’s points of concurrency40. [See the final

chapter for a solution.]

6. The bisectors of the adjacent angles of a parallelogram stand at right angles.

[See the final chapter for a solution.]

7. The bisectors of the external angles of a quadrilateral form a circumscribed

quadrilateral, the sum of whose opposite angles equals two right angles.

39
http://mathworld.wolfram.om/Orthoenter.html

40
http://www.mathopenref.om/onurrentpoints.html

http://mathworld.wolfram.com/Orthocenter.html
http://www.mathopenref.com/concurrentpoints.html
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8. If the three sides of one triangle are respectively perpendicular to those of an-

other triangle, the triangles are equiangular. (This problem may be delayed until

the end of chapter 1.)

9. Construct a right triangle being given the hypotenuse and the sum or difference

of the sides.

10. The angles made with the base of an isosceles triangle by altitudes from its

endpoints on the equal sides are each equal to half the vertical angle.

11. The angle included between the internal bisector of one base angle of a triangle

and the external bisector of the other base angle is equal to half the vertical angle.

12. In the construction of [1.18], prove that the angle ∠DBC is equal to half the

difference of the base angles.

13. If A, B, C denote the angles of a triangle, prove that 1
2 (A + B), 1

2 (B + C),

and 1
2 (A + C) are the angles of a triangle formed by any side, the bisectors of the

external angles between that side, and the other extended sides.

14. Prove [Cor. 1.32.1].

15. Prove [Cor. 1.32.2].

16. Prove [Cor. 1.32.3].

17. Prove [Cor. 1.32.4].

18. Prove [Cor. 1.32.5].

19. Prove [Cor. 1.32.6].

20. Prove [Cor. 1.32.7].

21. Prove [Cor. 1.32.8].
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Proposition 1.33. PARALLEL SEGMENTS.

Segments which join adjacent endpoints of two equal, parallel segments are them-

selves parallel and equal in length.

Proof. Suppose that AB ‖ CD and AB = CD. Construct ⊡ABDC. We claim that

AC = BD and AC ‖ BD.

Figure 1.5.9: [1.33] and [1.34]

Construct BC. Since AB ‖ CD by hypothesis and BC intersects them, ∠ABC =

∠DCB [Cor. 1.29.1].

Consider△ABC and△DCB: AB = DC, the triangles share side BC, and ∠ABC =

∠DCB. By [1.4], △ABC ∼= △DCB.

It follows that AC = BD and ∠ACB = ∠CBD. By [Cor. 1.29.1], ∠ACB = ∠CBD

implies that AC ‖ BD, which completes the proof.

Corollary. 1.33.1. [1.33] holds for straight lines and rays, mutatis mutandis.

Corollary. 1.33.2. Figure ⊡ABDC is a parallelogram [Def. 1.39].

Exercises.

1. Prove that if two segments AB, BC are respectively equal and parallel to two

other segments DE, EF , then the segment AC joining the endpoints of the former

pair is equal in length to the segment DF joining the endpoints of the latter pair.

[See the final chapter for a solution.]
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Proposition 1.34. OPPOSITE SIDES AND OPPOSITE ANGLES OF PARAL-

LELOGRAMS.

Opposite sides and opposite angles of a parallelogram are equal to one another and

either diagonal bisects the parallelogram.

Proof. Construct ⊡ABCD. We claim that:

(1)AB = CD and AC = BD;

(2)∠CAB = ∠CDB;

(3)∠ACD = ∠ABD;

(4) either diagonal (BC or AD) bisects the parallelogram.

Construct BC, and consider △ABC and △DBC: since AB ‖ CD by construction

and BC intersects them, ∠ABC = ∠DCB and ∠ACB = ∠CBD [1.29]. Also,△ABC

and △DBC share side BC. By [1.26], △ABC ∼= △DCB: it follows that AB = CD

and AC = BD (claim 1) and ∠CAB = ∠CDB (claim 2).

Now ∠ACD = ∠ACB + ∠DCB and ∠ABD = ∠CBD + ∠ABC. Since ∠ACB =

∠CBD and ∠DCB = ∠ABC by [Cor. 1.29.1], we obtain

∠ACD = ∠ACB + ∠DCB

= ∠CBD + ∠ABC

= ∠ABD

(claim 3).

Since ⊡ABCD = △ABC ⊕ △DEF and △ABC ∼= △DCB, △ABC = △DBC. It

follows that BC bisects ⊡ABCD. The remaining case follows mutatis mutandis if

we construct AD instead of BC (claim 4).

Corollary. 1.34.1. ⊡ABDC = 2 · △ACB = 2 · △BCD

Corollary. 1.34.2. If one angle of a parallelogram is a right angle, each of its angles

are right angles.

Corollary. 1.34.3. If two adjacent sides of a parallelogram are equal in length,

then it is a lozenge.

Corollary. 1.34.4. If both pairs of opposite sides of a quadrilateral are equal in

length, it is a parallelogram.

Corollary. 1.34.5. If both pairs of opposite angles of a quadrilateral are equal, it is

a parallelogram.
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Corollary. 1.34.6. If the diagonals of a quadrilateral bisect each other, it is a par-

allelogram.

Corollary. 1.34.7. If both diagonals of a quadrilateral bisect the quadrilateral, it

is a parallelogram.

Corollary. 1.34.8. If the adjacent sides of a parallelogram are equal, its diagonals

bisect its angles.

Corollary. 1.34.9. If the adjacent sides of a parallelogram are equal, its diagonals

intersect at right angles.

Corollary. 1.34.10. In a right parallelogram, the diagonals are equal in length.

Corollary. 1.34.11. If the diagonals of a parallelogram are perpendicular to each

other, the parallelogram is a rhombus.

Corollary. 1.34.12. If a diagonal of a parallelogram bisects the angles whose ver-

tices it joins, the parallelogram is a rhombus.

Exercises.

1. Prove that the diagonals of a parallelogram bisect each other. [See the final

chapter for a solution.]

2. If the diagonals of a parallelogram are equal, then each of its angles are right

angles. [See the final chapter for a solution.]

3. The segments joining the adjacent endpoints of two unequal parallel segments

will meet when extended on the side of the shorter parallel.

4. If two opposite sides of a quadrilateral are parallel but unequal in length and

the other pair are equal but not parallel, then its opposite angles are supplemental.

5. Construct a triangle after being given the midpoints of its three sides.
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6. Prove [Cor. 1.34.1].

7. Prove [Cor. 1.34.2].

8. Prove [Cor. 1.34.3].

9. Prove [Cor. 1.34.4].

10. Prove [Cor. 1.34.5].

11. Prove [Cor. 1.34.6].

12. Prove [Cor. 1.34.7].

13. Prove [Cor. 1.34.8].

14. Prove [Cor. 1.34.9].

15. Prove [Cor. 1.34.10].

16. Prove [Cor. 1.34.11].

17. Prove [Cor. 1.34.12].
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Proposition 1.35. AREAS OF PARALLELOGRAMS I.

Parallelograms on the same base and between the same parallels are equal in area.

Proof. We shall prove three cases.

Figure 1.5.10: [1.35], case 1

Case 1: Construct ⊡ABCD and ⊡FDBC on base BC and between parallels AF

and BC where ⊡ABCD and ⊡FDBC share the base and a vertex at D. We claim

that ⊡ABCD = ⊡FDBC.

By [Cor. 1.34.1], ⊡ADCB = 2 · △BCD = ⊡FDBC, which proves case 1.

Figure 1.5.11: [1.35], case 2

Case 2: Construct ⊡ABCD and ⊡EFCB on base BC and between parallels AF and

BC where ⊡ABCD and ⊡EFCB share the base and ED. We claim that ⊡ABCD =

⊡EFCB.

Because ⊡ABCD is a parallelogram, AD = BC [1.34]; because ⊡BCEF is a paral-

lelogram, EF = BC, and so AD = EF . Notice that

AD − ED = EF − ED

AE = DF

Consider △BAE and △CDF : AE = DF , BA = CD [1.34], and ∠BAE = ∠CDF by
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[1.29, Cor. 1]. By [1.4], △BAE ∼= △CDF . Notice that

AFCB = ⊡EFCB +△BAE

= ⊡ABCD +△CDF

Since △BAE = △CDF , ⊡ABCD = ⊡EFCB, proving case 2.

Figure 1.5.12: [1.35], case 3

Case 3: Construct ⊡ABCD and ⊡EFCB on base BC and between parallels AF

and BC where ⊡ABCD and ⊡EFCB share the base and point G where G is not a

vertex. We claim that ⊡ABCD = ⊡EFCB.

Notice that AD = BC = EF . Since AD+DE = AE, DE+EF = DF , and AD = EF ,

we have AE = DF .

Consider△BAE and △CDF : BA = CD, AE = DF , and ∠BAE = ∠CDF by [1.29].

By [1.4],△BAE ∼= △CDF , from which it follows that:

△BAE = △CDF

△BAE −△DEG = △CDF −△DEG

ADGB = CGEF

ADGB +△BGC = CGEF +△BGC

⊡ABCD = ⊡EFCB

This proves case 3 and completes the proof.
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Proposition 1.36. AREAS OF PARALLELOGRAMS II.

Parallelograms on equal bases and on the same parallels are equal in area.

Proof. Construct ⊡ADCB and ⊡EHGF between
←→
AH ‖ ←→BG on bases BC and FG

such that BC = FG. We claim that ⊡ADCB = ⊡EHGF .

Figure 1.5.13: [1.36]

Construct BE and CH . Since ⊡EHGF is a parallelogram, FG = EH [1.34]. Since

BC = FG by hypothesis, BC = EH. Given this equality and BC ‖ EH, by [1.33]

BE = CH and BE ‖ CH . It follows that ⊡EHCB is a parallelogram.

By [1.35], ⊡EHCB = ⊡EHGF and ⊡EHCB = ⊡ADCB. Therefore, ⊡ADCB =

⊡EHGF , which completes the proof.
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Proposition 1.37. TRIANGLES OF EQUAL AREA I.

Triangles which stand on the same base and in the same parallels are equal in

area.

Proof. Construct △ABC and △DBC on base BC such that each triangle stands

between parallels
←→
AD and

←→
BC. We claim that △ABC = △DBC.

Figure 1.5.14: [1.37]

Construct
←→
BE ‖ ←→AC and

←→
CF ‖ ←→BD. It follows that ⊡AEBC and ⊡DBCF are

parallelograms. By [1.35], ⊡AEBC = ⊡DBCF .

Notice that 1
2 · △ABC = ⊡AEBC because the diagonal AB bisects ⊡AEBC [1.34,

#1]. Similarly, 1
2 · △DBC = ⊡DBCF , and so

1

2
· △ABC =

1

2
· △DBC

△ABC = △DBC

Exercises.

1. If two triangles of equal area stand on the same base but on opposite sides of the

base, the segment connecting their vertices is bisected by the base or its extension.

[See the final chapter for a solution.]

2. Construct a triangle equal in area to a given quadrilateral figure.

3. Construct a triangle equal in area to a given polygon.

4. Construct a rhombus equal in area to a given parallelogram and having a given

side of the parallelogram as the base.
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Proposition 1.38. TRIANGLES OF EQUAL AREA II.

Triangles which stand on equal bases and in the same parallels are equal in area.

Proof. Construct △ABC and △DEF between
←→
BF and

←→
AD such that

←→
BF ‖ ←→AD and

BC = EF . We claim that △ABC = △DEF .

Figure 1.5.15: [1.38]

By [1.31], construct BG where G is a point on
←→
AD such that BG ‖ AC; similarly,

construct FH whereH is a point on
←→
AD such that FH ‖ DE. It follows that ⊡GACB

and ⊡DHFE are parallelograms. Since BC = EF , by [1.36] ⊡GACB = ⊡DHFE.

Since AB bisects ⊡GACB and DF bisects ⊡DHFE by [1.34], △ABC = △DEF ,

completing the proof.

Exercises.

1. Every median of a triangle bisects the triangle. [See the final chapter for a

solution.]

2. If two triangles have two sides of one respectively equal to two sides of the other

and where the interior angles are supplemental, then their areas are equal.

3. If the base of a triangle is divided into any number of equal segments, then

segments constructed from the vertex to the points of division divide the whole

triangle into as many equal parts.

4. The diagonal of a parallelogram and segments from any point on the diagonal

to the vertices through which the diagonal does not pass divide the parallelogram

into four triangles which are equal (in a two-by-two fashion).

5. One diagonal of a quadrilateral bisects the other if and only if the diagonal also

bisects the quadrilateral. [See the final chapter for a solution.]

6. If△ABC and△ABD each stand on the base AB and between the same parallels,

and if a parallel to AB meets the sides AC and BC at the points E and F and meets

the sides AD and BD at the points G, H , then EF = GH .
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7. If instead of triangles on the same base we have triangles on equal bases and

between the same parallels, the intercepts made by the sides of the triangles on

any parallel to the bases are equal in length.

8. If the midpoints of any two sides of a triangle are joined, the triangle formed

with the two half sides has an area equal to one-fourth of the whole.

9. The triangle whose vertices are the midpoints of two sides and any point in the

base of another triangle has an area equal to one-fourth the area of that triangle.

10. Bisect a given triangle by a segment constructed from a given point in one of

the sides.

11. Trisect a given triangle by three segments constructed from a given point

within it.

12. Prove that any segment through the intersection of the diagonals of a parallel-

ogram bisects the parallelogram.

13. The triangle formed by joining the midpoint of one of the non-parallel sides of

a trapezoid to the endpoints of the opposite side is equal in area to half the area of

the trapezoid. (Recall that a trapezoid is any rectilinear quadrilateral plane figure

which is not a parallelogram.)
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Proposition 1.39. TRIANGLES OF EQUAL AREA III.

Triangles which are equal in area and stand on the same base and on the same side

of the base also stand between the same parallels.

Proof. Suppose that △BAC and △BDC stand on the same base, BC, on the same

side of BC, and that△BAC = △BDC; we claim △BAC and△BDC stand between

AD ‖ BC.

Figure 1.5.16: [1.39]

Construct AD. Clearly, the triangles stand between AD and BC. We need only

prove that AD ‖ BC.

Suppose AD 6‖ BC and that AE ‖ BC where E is a point on BD other than D;

construct EC. Notice that △EDC > 0 (if △EDC = 0, then E = D, a contradiction).

Since the triangles △BEC, △BAC stand on the same base BC and between the

same parallels (BC and AE), we find that △BEC = △BAC [1.37]. By hypothe-

sis, △BAC = △BDC. Therefore, △BDC = △BEC [Axiom 1.1]. But △BDC =

△BEC + △EDC, and so △EDC = 0 and △EDC > 0. A similar contradiction

results if we place E anywhere other than on D.

It follows that AD ‖ BC, which completes the proof.
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Proposition 1.40. TRIANGLES OF EQUAL AREA IV.

Triangles which are equal in area and stand on equal bases on the same side of

their bases stand between the same parallels.

Proof. Construct△ABC and△DEF on BF such that BC = EF , CE > 0,△ABC =

△DEF , and where each triangle stands on the same side of its base. Construct AD.

Clearly,△ABC and △DEF stand between AD and BF ; we claim that AD ‖ BF .

Figure 1.5.17: [1.40]

If AD 6‖ BF , construct AG (where G is a point on DE) such that AG ‖ BF . Also

construct FG. Notice that △DFG > 0.

Consider the triangles △GEF and △ABC: they stand on equal bases (BC, EF )

and between the same parallels (BF , AG). By [1.38], △GEF = △ABC.

But △DEF = △ABC by hypothesis, and so △DEF = △GEF . Since △DEF =

△GEF +△DGF , △DGF = 0 and △DFG > 0. A similar contradiction results if we

place G anywhere other than on D.

It follows that AD ‖ BF , which completes the proof.

Exercises.

1. Prove that triangles with equal bases and altitudes are equal in area. [See the

final chapter for a solution.]

2. The segment joining the midpoints of two sides of a triangle is parallel to the

base, and the medians from the endpoints of the base to these midpoints will each

bisect the original triangle. Hence, the two triangles whose base is the third side

and whose vertices are the points of bisection are equal in area. [See the final

chapter for a solution.]

3. The parallel to any side of a triangle through the midpoint of another bisects the

third.

4. The segments which connect the midpoints of the sides of a triangle divide the

triangle into four congruent triangles. [See the final chapter for a solution.]
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5. The segment which connects the midpoints of two sides of a triangle is equal in

length to half the third side.

6. The midpoints of the four sides of a convex quadrilateral, taken in order, are the

vertices of a parallelogram whose area is equal to half the area of the quadrilateral.

7. The sum of the two parallel sides of a trapezoid is double the length of the

segment joining the midpoints of the two remaining sides.

8. The parallelogram formed by the segment which connects the midpoints of two

sides of a triangle and any pair of parallels constructed through the same points to

meet the third side is equal in area to half the area of the triangle.

9. The segment joining the midpoints of opposite sides of a quadrilateral and the

segment joining the midpoints of its diagonals are concurrent.
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Proposition 1.41. PARALLELOGRAMS AND TRIANGLES.

If a parallelogram and a triangle stand on the same base and between the same

parallels, then the parallelogram is double the area of the triangle.

Proof. Construct ⊡ABCD and △EBC on base BC and between AE ‖ BC. We

claim that ⊡ABCD = 2 · △EBC.

Figure 1.5.18: [1.41]

Construct AC and DE. By [1.34], ⊡ABCD = 2 ·△ABC; by [1.37],△ABC = △EBC.

Therefore, ⊡ABCD = 2 · △EBC, which completes the proof.

Corollary. 1.41.1. If a triangle and a parallelogram have equal altitudes and if

the base of the triangle is double of the base of the parallelogram, then their areas

are equal.

Corollary. 1.41.2. Suppose we have two triangles whose bases are two opposite

sides of a parallelogram and which have any point between these sides as a common

vertex. Then the sum of the areas of these triangles equals half the area of the

parallelogram.
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Proposition 1.42. CONSTRUCTION OF PARALLELOGRAMS I.

Given an arbitrary triangle and an arbitrary acute angle, it is possible to construct

a parallelogram equal in area to the triangle which contains the given angle.

Proof. Construct △ABC and ∠RDS. We wish to construct ⊡FGBE such that

⊡FGBE = △ABC and where ⊡FGBE contains an angle equal in measure to

∠RDS.

Figure 1.5.19: [1.42]

Bisect AB at E, and construct EC. Construct ∠BEF = ∠RDS [1.23], CG ‖ AB,

and BG ‖ EF [1.31].

Because AE = EB by construction,△AEC = △EBC by [1.38]. Therefore,△ABC =

2 · △EBC. By [1.41], ⊡FGBE = 2 · △EBC. Therefore, ⊡FGBE = △ABC.

Since ⊡FGBE contains ∠BEF where ∠BEF = ∠RDS, the proof is complete.
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Proposition 1.43. COMPLEMENTS OF PARALLELOGRAMS.

Parallel segments through any point in one of the diagonals of a parallelogram di-

vides the parallelogram into four smaller parallelograms: the two through which

the diagonal does not pass are called the complements of the other two parallelo-

grams, and these complements are equal in area.

Proof. Construct ⊡ABCD and diagonal AC. Let K be any point on AC except A

or C. Construct GH and EF through K such that GH ‖ CD and EF ‖ AD. This

divides ⊡ABCD into four smaller parallelograms where ⊡EBGK, ⊡HKFD are

the complements of ⊡AEKH , ⊡KGCF . We claim that ⊡EBGK = ⊡HKFD.

Figure 1.5.20: [1.43]

Because AC bisects the parallelograms ⊡ABCD, ⊡AEKH , and ⊡KGCF by [1.34],

we have △ADC = △ABC, △AHK = △AEK, and △KFC = △KGC. Therefore,

⊡EBGK = △ABC −△AEK −△KGC

= △ADC −△AHK −△KFC

= ⊡HKFD

which completes the proof.

Corollary. 1.43.1. If through some point K within parallelogram ⊡ABCD we

have constructed parallel segments to its sides in order to make the parallelograms

⊡HDFK, ⊡EKGB equal in area, then K is a point on the diagonal AC.

Given [1.43], we find that ⊡HDFK, ⊡EKGB equal in area if and only if K is a

point on the diagonal AC.

Corollary. 1.43.2. ⊡AHGB = ⊡ADFE and ⊡EFCB = ⊡HDCG.

Exercises.
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1. Prove [1.43, Cor. 1].

2. Prove [1.43, Cor. 2].

Proposition 1.44. CONSTRUCTION OF PARALLELOGRAMS II.

Given an arbitrary triangle, an arbitrary angle (acute, right, or obtuse), and an

arbitrary segment, we can construct a parallelogram equal in area to the triangle

which contains the given angle and has a side length equal to the given segment.

Proof. Construct ∠RST , △NPQ, and AB. We wish to construct ⊡BALM on AB

such that ⊡BALM = △NPQ and ⊡BALM contains an angle equal to ∠RST .

Figure 1.5.21: [1.44]

Construct the parallelogram ⊡BEFG where ⊡BEFG = △NPQ [1.42], ∠GBE =

∠RST , and AB ⊕ BE = AE. Also construct segment AH ‖ BG [1.31]. Extend FG

to FH , and construct HB.

Since AH ‖ BG and BG ‖ FE by construction, AH ‖ FE by [1.30]. Notice that HF

intersects AH and FE; therefore, ∠AHF + ∠HFE = two right angles. It follows

that ∠BHG+∠GFE < two right angles. By [1.3.3, Axiom 4], if we extend HB and

FE, they will intersect at some point K. Through K, construct KL ‖ AB [1.31],

extend AH to intersect KL at L, and extend GB to intersect KL at M . We claim

that ⊡BALM fulfills the required conditions.

Clearly, ⊡BALM is constructed on AB. By [1.43], ⊡BMLA = ⊡FEBG, and ⊡FEBG =

△NPQ by construction; therefore ⊡BALM = △NPQ. By [1.15], ∠ABM = ∠EBG,

and ∠EBG = ∠RST by construction; therefore, ∠ABM = ∠RST . This completes

the proof.
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Proposition 1.45. CONSTRUCTION OF PARALLELOGRAMS III.

Given an arbitrary angle (acute, right, or obtuse) and an arbitrary polygon, we can

construct a parallelogram equal in area to the polygon which contains an angle

equal to the given angle.

Proof. Construct polygon ABCD and ∠LMN . We wish to construct ⊡FIKE such

that it contains an angle equal to ∠LMN and ⊡FIKE = ABCD.

Figure 1.5.22: [1.45]

By [1.42]. we may construct BD and ⊡FGHE such that ⊡FGHE = △ABD where

∠FEH = ∠LMN .

On GH , construct ⊡GIKH such that ⊡GIKH = △BCD where ∠GHK = ∠LMN

[1.44]. (We may continue to this algorithm for any additional triangles that remain

in ABCD. This allows us to claim that the proof which follows applies to any n−gon

where n < ∞.) Upon completing this algorithm, we claim that ⊡FEKI fulfills the

required conditions.

Because ∠GHK = ∠LMN = ∠FEH by construction, ∠GHK = ∠FEH . From this,

we obtain

∠GHK + ∠GHE = ∠FEH + ∠GHE

Since HG ‖ EF and EH intersects them, the sum ∠FEH + ∠GHE = two right

angles [1.29]. Hence, ∠GHK +∠GHE = two right angles, and so EH ⊕HK = EK

[1.14, Cor. 1]. Since EH ‖ FG by construction, we now have EK ‖ FG.

Similarly to the above, because GH intersects the parallels FG and EK, ∠FGH =

∠GHK [Cor. 1.29.1], and so

∠FGH + ∠HGI = ∠GHK + ∠HGI

Since GI ‖ HK and GH intersects them, the sum ∠GHK + ∠HGI = two right

angles [1.29]. Hence, ∠FGH + ∠HGI = two right angles, and FG⊕GI = FI.

Because ⊡FEHG and ⊡GHKI are parallelograms, EF and KI are each parallel

to GH ; by [1.30], EF ‖ KI. Since ∠GHK = ∠FGH by the above, by [Cor. 1.29.1],

EK ‖ FI. Therefore, ⊡FIKE is a parallelogram.
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Since ∠FEK = ∠LMN , ⊡FIKE contains an angle equal to a ∠LMN .

Figure 1.5.23: [1.45]

Because ⊡FGHE = △ABD by construction and ⊡GIKH = △BCD,

ABCD = △ABD ⊕△BCD

= ⊡FGHE ⊕⊡GIKH

= ⊡FIKE

which completes the proof.

Exercises.

1. Construct a rectangle equal to the sum of 2, 3, ..., n number of polygons.

2. Construct a rectangle equal in area to the difference in areas of two given figures.
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Proposition 1.46. CONSTRUCTION OF A SQUARE I.

Given an arbitrary segment, we may construct a square on that segment.

Proof. Construct AB; we wish to construct a square on AB.

Figure 1.5.24: [1.46]

Construct AD ⊥ AB [1.11] where AD = AB [1.3]. Through D, construct CD ‖ AB
[1.31] where AB = CD, and through B construct BC ‖ AD. We claim that ⊡ABCD

is the required square.

By construction,

AD = AB = CD

Because ⊡ABCD is a parallelogram, AD = BC [1.34]; hence, all four sides of

⊡ABCD are equal. It follows that ⊡ABCD is a rhombus and ∠DAB is a right

angle. By [Def. 1.30], ⊡ABCD is a square.

Remark. [1.46] is a lemma to [1.47]. [2.14] offers a second method to construct a

square.

Exercises.

1. Prove that two squares have equal side-lengths if and only if the squares are

equal in area. [See the final chapter for a solution.]

2. Prove that the parallelograms about the diagonal of a square are squares.

3. If on the four sides of a square (or on the sides which are extended) points are

taken which are equidistant from the four angles, then they will be the vertices of

another square (and similarly for a regular pentagon, hexagon, etc.).

4. Divide a given square into five equal parts: specifically, four right triangles and

a square.

5. Prove that the formula for the area of a rectangle is A = bh.
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Proposition 1.47. THE PYTHAGOREAN THEOREM (aka. THE GOUGU THE-

OREM).

In a right triangle, the square on the side opposite the right angle (the hypotenuse)

is equal in area to the sum of the areas of the squares on the remaining sides.

Proof. Construct right triangle△ABC where AB is the hypotenuse. We claim that

AB2 = AC2 +BC2

Figure 1.5.25: [1.47]

By [1.46], we may construct squares on sides AB, BC, and CA of △ABC as in

Fig. 1.5.25. Construct CL ‖ AG where L is a point on GF . Also construct CG

and BK. Because both ∠ACB and ∠ACH are right angles by construction, the

sum ∠ACB + ∠ACH equals two right angles. Therefore BC ⊕ CH = BH [1.14].

Similarly, AC ⊕ CD = AD.

Because ∠BAG and ∠CAK are each angles within a square, they are right angles.

Hence,

∠BAG = ∠CAK

∠BAG+ ∠BAC = ∠CAK + ∠BAC

∠CAG = ∠KAB

Since ⊡BAGF and ⊡CHKA are squares, BA = AG and CA = AK. Consider

△CAG and △KAB: since CA = AK, BA = AG, and ∠CAG = ∠KAB, by [1.4]

△CAG ∼= △KAB.
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By [1.41], ⊡AGLO = 2 · △CAG because they both stand on AG and stand between

the parallels AG and CL. Similarly, ⊡CHKA = 2 · △KAB because they stand on

AK and between AK and BH . Since △CAG ∼= △KAB, ⊡AGLO = ⊡KACH .

Similarly, it can be shown that ⊡OLFB = ⊡DCBE. Hence,

AB2 = ⊡AGFB

= ⊡AGLO ⊕⊡OLFB

= ⊡KACH +⊡DCBE

= AC2 +BC2

which proves our claim.

Remark. [1.47] is a special case of [6.31].

Remark 1.48. [Cor. 10.28.1] describes a ratio which provide Pythagorean Triples41

(three positive integers a, b, and c such that a2 + b2 = c2): if a and b are positive

integers and b < a, then Pythagorean Triples follow the ratio

ab :
a2 − b2

2
:
a2 + b2

2

41
https://en.wikipedia.org/wiki/Pythagorean_triple

https://en.wikipedia.org/wiki/Pythagorean_triple
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Alternatively:

Proof. Construct the squares as in Fig. 1.5.26 such that △ACB is a right triangle

where ∠ACB is the right angle.

Figure 1.5.26: [1.47], alternate proof

Construct CG and BK; through C construct OL ‖ AG. Notice that ∠GAK =

∠GAC + ∠BAC + ∠BAK and that ∠BAG and ∠CAK are right angles. It follows

that:

∠BAG = ∠CAK

∠BAG− ∠BAC = ∠CAK − ∠BAC

∠CAG = ∠BAK

Consider △CAG and △BAK: CA = AK, AG = AB, and ∠CAG = ∠BAK; by [1.4],

△CAG ∼= △BAK.

Applying [1.41], we find that ⊡GAOL = ⊡AKHC. Similarly, ⊡LOBF = ⊡DEBC.

Remark. The alternative proof is shorter since it’s not necessary to prove that AC

and CD form one segment. Similarly, the proposition may be proven by taking

any of the eight figures formed by turning the squares in all possible directions.

Another simplification of the proof can be obtained by considering that the point A

is such that one of the triangles△CAG or△BAK can be turned round it in its own

plane until it coincides with the other; hence, they are congruent.
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Exercises.

1. Prove that the square on AC is equal in area to the rectangle ⊡AB ·AO, and the

square on ⊡BC = ⊡AB ·BO. (Note: ⊡AB ·AO denotes the rectangle formed by the

segments AB and AO.)

2. Prove that the square on ⊡CO = ⊡AO · OB.

3. Prove that AC2 −BC2 = AO2 −BO2

4. Find a segment whose square is equal to the sum of the areas of two given

squares. [See the final chapter for a solution.]

5. Given the base of a triangle and the difference of the squares of its sides, the

locus of its vertex is a segment perpendicular to the base.

6. Prove that BK ⊥ CG. BK and CG are transverse segments.

7. If EG is constructed, then EG
2
= AC

2
+ 4 · BC

2
.

8. The square constructed on the sum of the sides of a right triangle exceeds the

square on the hypotenuse by four times the area of the triangle (see [1.46, #3]).

More generally, if the vertical angle of a triangle is equal to the angle of a regular

polygon of n sides, then the regular polygon of n sides, constructed on a segment

equal to the sum of its sides exceeds the area of the regular polygon of n sides

constructed on the base by n times the area of the triangle.

9. If AC and BK intersect at P and a segment is constructed through P which is

parallel to BC, meeting AB at Q, then CP = PQ.

10. Prove that each of the triangles △AGK and △BEF formed by joining adjacent

corners of the squares in [1.47] is equal in area to△ABC. [See the final chapter for

a solution.]

11. Find a segment whose square is equal to the difference of the squares on two

segments.

12. The square on the difference of the sides AC, CB is less than the square on the

hypotenuse by four times the area of the triangle.

13. If AE is connected, then the segments AE, BK, CL are concurrent.

14. In an equilateral triangle, three times the square on any side is equal to four

times the square on the perpendicular to it from the opposite vertex.

15. We construct the square ⊡BEFG on BE, a part of the side BC of a square

⊡ABCD, having its side BG in the continuation of AB. Divide the figure AGFECD

into three parts which will form a square.

16. Four times the sum of the squares on the medians which bisect the sides of a

right triangle is equal to five times the square on the hypotenuse.

17. If perpendiculars fall on the sides of a polygon from any point and if we divide

each side into two segments, then the sum of the squares on one set of alternate

segments is equal to the sum of the squares on the remaining set.
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18. The sum of the squares on segments constructed from any point to one pair of

opposite angles of a rectangle is equal to the sum of the squares on the segments

from the same point to the remaining pair.

19. Divide the hypotenuse of a right triangle into two parts such that the difference

between their squares equals the square on one of the sides.

20. From the endpoints of the base of a triangle, let altitudes fall on the opposite

sides. Prove that the sum of the rectangles contained by the sides and their lower

segments is equal to the square on the base.

Proposition 1.49. THE CONVERSE OF THE PYTHAGOREAN/GOUGU THE-

OREM.

Construct squares on all sides of a triangle. If the square on the hypotenuse is

equal in area to the sum of the areas of the squares on the remaining sides, then

the angle opposite to the longest side is a right angle.

Proof. Construct △ABC such that AB is the longest side and

AB2 = AC2 +BC2

We claim that ∠ACB is a right angle.

Figure 1.5.27: [1.48]

Construct CD such that CD = CA [1.3] and CD ⊥ CB [1.11]. Construct BD, and

consider △BCD: ∠BCD is a right angle by construction. AC = CD implies that

AC2 = CD2, and so

AC2 + CB2 = CD2 + CB2

By [1.47] CD2+CB2 = BD2; by hypothesis, AC2+CB2 = AB2. Hence AB2 = BD2;

it follows that AB = BD [1.46, #1].

Consider △ACB and △DCB: AB = DB, AC = CD by construction, and each

shares the side CD. By [1.8], △ACB ∼= △DCB, and so ∠ACB = ∠DCB. Since

∠DCB is a right angle by construction, ∠ACB is also a right angle.
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An alternate proof by contradiction:

Figure 1.5.28: [1.48], alternative proof

Proof. Construct △ABC such that AC2 + BC2 = AB2. If CB 6⊥ CA, construct

CD ⊥ CA such that CD = CB. Construct AD.

Consider△ABC and△ADC: CD = CB, the triangles share side AC, and as in the

above proof, it can be shown that AD = AB. This contradicts [1.7]; it follows that,

∠ACB is a right angle.

Corollary. 1.48.1 Let a, b, and c be sides of △A where c is the longest side. △A is a

right triangle if and only if a2 + b2 = c2.

Exam questions on chapter 1.

1. What is geometry?

2. What is geometric object?

3. Name the primary concepts of geometry. (Ans. Points, lines, surfaces, and solids.)

4. What kinds of lines exist in geometry? (Ans. Straight and curved.)

5. How is a straight line constructed? (Ans. By connecting any two collinear points.)

6. How is a curved line constructed? (Ans. By connecting any three non-collinear

points.)

7. How may surfaces be divided? (Ans. Into planes and curved surfaces.)

8. How may a plane surface be constructed?

9. Why does a point have no dimensions?

10. Does a line have either width nor thickness?

11. How many dimensions does a surface possess?

12. What is plane geometry?

13. What portion of plane geometry forms the subject of this chapter?

14. What is the subject-matter of the remaining chapters?

15. How is a proposition proved indirectly?

16. What is meant by the inverse of a proposition?
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17. What proposition is an instance of the Rule of Symmetry?

18. What are congruent figures?

19. What is another way to describe congruent figures? (Ans. They are identically

equal.)

20. Mention all the instances of equality which are not congruence that occur in

chapter 1.

21. What is the difference between the symbols denoting congruence and equality?

22. Define adjacent, exterior, interior, and alternate angles.

23. What is meant by the projection of one line on another?

24. What are meant by the medians of a triangle?

25. What is meant by the third diagonal of a quadrilateral?

26. State some propositions in chapter 1 which are particular cases of more general

ones that follow.

27. What is the sum of all the exterior angles of any polygon equal to?

28. How many conditions must be given in order to construct a triangle? (Ans.

Three; such as the three sides, or two sides and an angle, etc.)
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Chapter 1 exercises.

1. Suppose △1 and △2 are triangles such that:

(a)△1 is constructed within △2

(b) each side of △2 passes through one vertex of △1

(c) each side of △2 is parallel to its opposite side in △1

We claim that △2 = 4 · △1 . [See the final chapter for a solution.]

2. The three altitudes of the first triangle in #1 are the altitudes at the midpoints

of the sides of the second triangle.

3. Through a given point, construct a line so that the portion intercepted by the

segments of a given angle are bisected at the point.

4. The three medians of a triangle are concurrent. (Note: we are proving the

existence of the centroid of a triangle. Students are encouraged to use Ceva’s

Theorem, not found in Euclid, to solve this problem. Students who seek a challenge

should attempt this problem without using Ceva’s Theorem.)

5. Construct a triangle given two sides and the median of the third side.

6. Let P =the perimeter of a triangle and S =the sum of the lengths of a triangle’s

medians. Prove that 3
4 · P < S < P .

7. Construct a triangle given a side and the two medians of the remaining sides.

8. Construct a triangle given the three medians. [See the final chapter for a solu-

tion.]

9. The angle included between the perpendicular from the vertical angle of a trian-

gle on the base and the bisector of the vertical angle is equal to half the difference

of the base angles.

10. Find in two parallels two points which are equidistant from a given point and

whose connecting line is parallel to a given line.

11. Construct a parallelogram given two diagonals and a side.

12. The shortest median of a triangle corresponds to the largest side.

13. Find in two parallels two points standing opposite a right angle at a given point

and which are equally distant from it.

14. The sum of the distances of any point in the base of an isosceles triangle from

the equal sides is equal to the distance of either endpoint of the base from the

opposite side.

15. The three perpendiculars at the midpoints of the sides of a triangle are concur-

rent. Hence, prove that perpendiculars from the vertices on the opposite sides are

concurrent.

16. Inscribe a lozenge in a triangle having for an angle one angle of the triangle.

[See the final chapter for a solution.]
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17. Inscribe a square in a triangle having its base on a side of the triangle.

18. Find the locus of a point, the sum or the difference of whose distance from two

fixed lines is equal to a given length.

19. The sum of the perpendiculars from any point in the interior of an equilateral

triangle is equal to the perpendicular from any vertex on the opposite side.

20. Find a point in one of the sides of a triangle such that the sum of the intercepts

made by the other sides on parallels constructed from the same point to these sides

are equal to a given length.

21. If two angles exist such that their segments are respectively parallel, then their

bisectors are either parallel or perpendicular.

22. Inscribe in a given triangle a parallelogram whose diagonals intersect at a

given point.

23. Construct a quadrilateral where the four sides and the position of the midpoints

of two opposite sides are given.

24. The bases of two or more triangles having a common vertex are given, both in

magnitude and position, and the sum of the areas is given. Prove that the locus of

the vertex is a straight line.

25. If the sum of the perpendiculars from a given point on the sides of a given

polygon is given, then the locus of the point is a straight line.

26. If △ABC is an isosceles triangle whose equal sides are AB, AC and if B′C′ is

any secant cutting the equal sides at B′, C′, such that AB′+AC′ = AB+AC, prove

that B′C′ > BC.

27. If A, B are two given points and P is a point on a given line L, prove that the

difference between AP and PB is a maximum when L bisects the angle ∠APB.

Show that their sum is a minimum if it bisects the supplement.

28. Bisect a quadrilateral by a segment constructed from one of its vertices.

29. If
←→
AD and

←→
BC are two parallel lines cut obliquely by

←→
AB and perpendicularly

by
←→
AC, and between these lines we construct BED, cutting

←→
AC at point E such that

ED = 2 ·AB, prove that the angle ∠DBC = 1
3 · ∠ABC.

30. If O is the point of concurrence of the bisectors of the angles of the triangle

△ABC, if AO is extended to intersect BC at D, and if OE is constructed from O

such that OE ⊥ BC, prove that the ∠BOD = ∠COE.

31. The angle made by the bisectors of two consecutive angles of a convex quadri-

lateral is equal to half the sum of the remaining angles; the angle made by the

bisectors of two opposite angles is equal to half the difference of the two other an-

gles.

32. If in the construction of [1.47] we join EF , KG, then EF 2 +KG2 = 5 · AB2.

33. Given the midpoints of the sides of a convex polygon of an odd number of sides,

construct the polygon.
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34. Trisect a quadrilateral by lines constructed from one of its angles.

35. Given the base of a triangle in magnitude and position and the sum of the sides,

prove that the perpendicular at either endpoint of the base to the adjacent side and

the external bisector of the vertical angle meet on a given line perpendicular to the

base.

36. The bisectors of the angles of a convex quadrilateral form a quadrilateral whose

opposite angles are supplemental. If the first quadrilateral is a parallelogram, the

second is a rectangle; if the first is a rectangle, the second is a square.

37. Suppose that the midpoints of the sides AB, BC, CA of a triangle are respec-

tively D, E, F and that DG ‖ BF and intersects EF . Prove that the sides of the

triangle △DCG are respectively equal to the three medians of the triangle △ABC.

38. Find the path of a pool ball started from a given point which, after being re-

flected from the four sides of the table, will pass through another given point. (As-

sume that the ball does not enter a pocket.)

39. If two segments which bisect two angles of a triangle and are terminated by the

opposite sides are equal in length, prove that the triangle is isosceles.

40. If a square is inscribed in a triangle, the rectangle under its side and the sum

of the base and altitude is equal to twice the area of the triangle.

41. If AB, AC are equal sides of an isosceles triangle and if BD ⊥ AC, prove that

BC2 = 2 · AC · CD.

42. Given the base of a triangle, the difference of the base angles, and the sum or

difference of the sides, construct it.

43. Given the base of a triangle, the median that bisects the base, and the area,

construct it.

44. If the diagonals AC and BD of a quadrilateral ABCD intersect at E and are

bisected at the points F and G, then

4 · △EFG = (AEB + ECD)− (AED + EBC)

45. If squares are constructed on the sides of any triangle, the lines of connection

of the adjacent corners are respectively:

(a) the doubles of the medians of the triangle;

(b) perpendicular to them.



Chapter 2

Rectangles

Chapter 2 proves a number of propositions that are familiar in the form of alge-

braic equations. Algebra as we know it had not been developed when Euclid wrote

“The Elements”, and so the results are more of historical importance than practical

use (except when they are used in subsequent propositions). This is why Book II

appears in truncated form.

If definitions, postulates, or axioms from chapter 1 are used, they generally won’t

be cited.

2.1 Definitions

1. If AB contains point C, then C is the point of division between AC and CB.

(Notice that the midpoint of AB is a special case of all such points of division.)

2. If AB is extended to point C, then point C is called a point of external division.

Figure 2.1.1: [Def. 2.1] above, [Def 2.2] below

3. A parallelogram whose angles are right angles is called a rectangle.

113
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Figure 2.1.2: [Def. 2.3, 2.4, and 2.5]

4. A rectangle is said to be contained by any two adjacent sides: thus, ⊡ABCD is

contained by sides AB and AD, or by sides AB and BC, etc.

5. The rectangle contained by two separate adjacent sides (such as AB and AD

above) is the parallelogram formed by constructing a perpendicular to AB at B

which is equal in length to AD and then constructing parallels.

The area of the rectangle is written AB · AD.

Figure 2.1.3: [Def. 2.6]

6. In any parallelogram, a figure which is composed of either of the parallelograms

about a diagonal and the two complements is called a gnomon [see also 1.43]. If

in Fig. 2.1.3 we remove either of the parallelograms ⊡AGDE or ⊡OFCH (but not

both) from the parallelogram ⊡ADCB, the remaining object is a gnomon.

7. A segment divided as in [2.11] is said to be divided in “extreme and mean ratio.”

2.2 Axioms

1. A semicircle (half-circle) may be constructed given only a center point and a

radius.
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2.3 Propositions from Book II

Proposition 2.1. Suppose that two segments (AB, BD) which intersect at one point

(B) are constructed such that one segment (BD) is divided into an arbitrary but finite

number of segments (BC, CE, EF , FD). Then the rectangle contained by the two

segments AB, BD is equal in area to the sum of the areas of the rectangles contained

by AB and the subsegments of the divided segment.

Figure 2.3.1: [2.1]

Corollary. 2.1.1. Algebraically, [2.1] states that the area

AB ·BD = AB · BC +AB · CE +AB · EF +AB · FD

More generally, if y = y1 + y2 + ...+ yn, then

xy = x(y1 + ...+ yn)

= xy1 + xy2 + ...+ xyn

[Cor. 2.1.1] restates the Distributive Property from [1.3.2] Congruence Axioms.

Corollary. 2.1.2. The rectangle contained by a segment and the difference of two

other segments equals the difference of the rectangles contained by the segment and

each of the others.

Corollary. 2.1.3. The area of a triangle is equal to half the rectangle contained by

its base and perpendicular.

Exercises.

1. Prove [Cor 2.1.1].

2. Prove [Cor. 2.1.2].

3. Prove [Cor. 2.1.3].
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Proposition 2.2. If a segment (AB) is divided into any two subsegments at a point

(C), then the square on the entire segment is equal in area to the sum of the areas of

the rectangles contained by the whole and each of the subsegments (AC, CB).

Figure 2.3.2: [2.2]

Corollary. 2.2.1. Algebraically, [2.2] is a special case of [2.1] when n = 2. Specifi-

cally, it states that

AF · FD = AF · FE +AF ·ED

or: if y = y1 + y2, then

xy = x(y1 + y2)

= xy1 + xy2

Exercise.

1. Prove [Cor. 1.2.1].
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Proposition 2.3. If a segment (AB) is divided into two subsegments (at C), the

rectangle contained by the whole segment and either subsegment (CB or CF ) is

equal to the square on that segment together with the rectangle contained by each of

the segments.

Figure 2.3.3: [2.3]

Corollary. 2.3.1. Algebraically, [2.3] states that if x = y + z, then

xy = (y + z)y

= y2 + yz

Exercise.

1. Prove [Cor. 1.3.1].

Proposition 2.4. If a segment (AB) is divided into any two parts (at C), the square

on the whole segment is equal in area to the sum of the areas of the squares on the

subsegments (AC, CB) together with twice the area of their rectangle.

Figure 2.3.4: [2.4]

Corollary. 2.4.1. Algebraically, [2.4] states that if x = y + z, then

x2 = (y + z)2

= y2 + 2yz + z2
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where AC = y, CB = z, and AH ·GH = GF · FI = yz.

Corollary. 2.4.2. The parallelograms about the diagonal of a square are squares.

Corollary. 2.4.3. If a segment is divided into any number of subsegments, the

square on the whole is equal in area to the sum of the areas of the squares on all the

subsegments, together with twice the sum of the areas of the rectangles contained by

the several distinct pairs of subsegments.

Corollary. 2.4.4. The square on a segment is equal in area to four times the square

on its half.

Exercises.

1. Prove [2.4] by using [2.2] and [2.3].

2. If from the right angle of a right triangle a perpendicular falls on the hypotenuse,

its square equals the area of the rectangle contained by the segments of the hy-

potenuse. [See the final chapter for a solution.]

3. If from the hypotenuse of a right triangle subsegments are cut off equal to the

adjacent sides, prove that the square on the middle segment is equal in area to

twice the area of rectangle contained by the segments at either end.

4. In any right triangle, the square on the sum of the hypotenuse and perpendicular

from the right angle on the hypotenuse exceeds the square on the sum of the sides

by the square on the perpendicular.

5. The square on the perimeter of a right-angled triangle equals twice the rectangle

contained by the sum of the hypotenuse and one side and the sum of the hypotenuse

and the other side.

6. Prove [Cor. 2.4.1].

7. Prove [Cor. 2.4.2].

8. Prove [Cor. 2.4.3].

9. Prove [Cor. 2.4.4]. [See the final chapter for a solution.]
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Proposition 2.5. If a segment (AB) is divided into two equal parts (at C) and also

into two unequal parts (at D), the rectangle contained by the unequal parts (AD,

DB) together with the square on the part between the points of section (CD) is equal

in area to the square on half the line.

Figure 2.3.5: [2.5]

Corollary. 2.5.1. Algebraically, [2.5] states1

xy =
(x+ y)2

2
+

(x− y)2

2

This may also be expressed as AD ·DB + (CD)2 = (AC)2 = (CB)2.

Corollary. 2.5.2. The rectangle AD · DB is the rectangle contained by the sum

of the segments AC, CD and their difference, and we have proved it equal to the

difference between the square on AC and the square on CD. Hence the difference of

the squares on two segments is equal to the rectangle contained by their sum and

their difference.

Corollary. 2.5.3. The perimeter of the rectangle AH = 2 · AB, and is therefore

independent of the position of the point D on AB. The area of the same rectangle is

less than the square on half the segment by the square on the subsegment between

D and the midpoint of the line; therefore, when D is the midpoint, the rectangle will

have the maximum area. Hence, of all rectangles having the same perimeter, the

square has the greatest area.

Exercises.

1. Divide a given segment so that the rectangle contained by its parts has a maxi-

mum area.

2. Divide a given segment so that the rectangle contained by its subsegments is

equal to a given square, not exceeding the square on half the given line.

1
http://aleph0.larku.edu/~djoye/java/elements/bookII/propII5.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII5.html
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3. The rectangle contained by the sum and the difference of two sides of a triangle

is equal to the rectangle contained by the base and the difference of the segments

of the base made by the perpendicular from the vertex.

4. The difference of the sides of a triangle is less than the difference of the segments

of the base made by the perpendicular from the vertex.

5. The difference between the square on one of the equal sides of an isosceles

triangle and the square on any segment constructed from the vertex to a point in

the base is equal to the rectangle contained by the segments of the base.

6. The square on either side of a right triangle is equal to the rectangle contained

by the sum and the difference of the hypotenuse and the other side.

7. Prove [Cor. 2.5.1].

8. Prove [Cor. 2.5.2].

9. Prove [Cor. 2.5.3].



CHAPTER 2. RECTANGLES 121

Proposition 2.6. If a segment (AB) is bisected (at C) and extended to a segment

(BD), the rectangle contained by the segments (AD, BD) made by the endpoint of the

second segment (D) together with the square on half of the segment (CB) equals the

square on the segment between the midpoint and the endpoint of the second segment.

Figure 2.3.6: [2.6]

Corollary. 2.6.1. Algebraically, [2.6] states that2

x(x − b) = (x − b

2
)2 − (

b

2
)2

This may also be expressed as AD ·BD + (CB)2 = (CD)2.

Exercises.

1. Show that [2.6] is reduced to [2.5] by extending the line in the opposite direction.

2. Divide a given segment externally so that the rectangle contained by its subseg-

ments is equal to the square on a given line.

3. Given the difference of two segments and the rectangle contained by them, find

the subsegments.

4. The rectangle contained by any two segments equals the square on half the sum

minus the square on half the difference.

5. Given the sum or the difference of two lines and the difference of their squares,

find the lines.

6. If from the vertex C of an isosceles triangle a segment CD is constructed to any

point in the extended base, prove that (CD)2 − (CB)2 = AD ·DB.

7. Give a common statement which will include [2.5] and [2.6]. [See the final

chapter for a solution.]

8. Prove [Cor. 2.6.1].

2
http://aleph0.larku.edu/~djoye/java/elements/bookII/propII6.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII6.html
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Proposition 2.7. If a segment (AB) is divided into any two parts (at C), the sum

of the areas of the squares on the whole segment (AB) and either subsegment (CB)

equals twice the rectangle (AB, CB) contained by the whole segment and that sub-

segment, together with the square on the remaining segment.

Figure 2.3.7: [2.7]

Corollary. 2.7.1. Algebraically, [2.7] states that if x = y + z, then3

x2 + z2 = (y + z)2 + z2

= y2 + 2yz + 2z2

= y2 + 2z(y + z)

= y2 + 2xz

Or,

(AB)2 + (BC)2 = 2 · AB · BC + (AC)2

Equivalently, this result can be stated as x2 + z2 = 2xz + (x–z)2.

Corollary. 2.7.2. Comparison of [2.4] and [2.7]:

[2.4]: square on sum = sum of the areas of squares + twice rectangle

[2.7]: square on difference = sum of the areas of squares− twice rectangle

3
http://aleph0.larku.edu/~djoye/java/elements/bookII/propII7.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII7.html
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Proposition 2.8. If a segment (AB) is cut arbitrarily (at C), then four times the

area of the rectangle contained by the whole and one of the segments (AB, BC) plus

the area of the square on the remaining segment (AC) equals the area of the square

constructed on the whole and the aforesaid segment constructed as on one segment

(AB ⊕ BC).4

Figure 2.3.8: [2.8]

Corollary. 2.8.1. Algebraically, [2.8] states that if x = y + z, then

(x+ y)2 = x2 + 2xy + y2

= (y + z)2 + 2(y + z)y + y2

= y2 + 2yz + z2 + 2y2 + 2yz + y2

= 4y2 + 4yz + z2

= 4y(y + z) + z2

= 4xy + z2

= 4xy + (x− y)2

Exercises.

1. In [1.47], if EF , GK are joined, prove that (EF )2 − (CO)2 = (AB +BO)2.

2. In [1.47], prove that (GK)2 − (EF )2 = 3 ·AB · (AO −BO).

3. Given that the difference of two segments equals R and the area of their rectan-

gle equals 4R2, find the segments.

4
http://aleph0.larku.edu/~djoye/java/elements/bookII/propII8.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII8.html
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Proposition 2.9. If a segment (AB) is bisected (at C) and divided into two unequal

segments (at D), the area of the squares on the unequal subsegments (AD, DB) is

double the area of the squares on half the line (AC) and on the segment (CD) between

the points of section.

Figure 2.3.9: [2.9]

Corollary. Algebraically, [2.9] states that

(y + z)2 + (y − z)2 = 2(y2 + z2)

Exercises.

1. The sum of the squares on the subsegments of a larger segment of fixed length

is a minimum when it is bisected.

2. Divide a given segment internally so that the sum of the areas of the squares on

the subsegments equals the area of a given square and state the limitation to its

possibility.

3. If a segment AB is bisected at C and divided unequally in D, then (AD)2 +

(DB)2 = 2 ·AD ·DB + 4 · (CD)2.

4. Twice the area of a square on the segment joining any point in the hypotenuse

of a right isosceles triangle to the vertex is equal to the sum of the areas of the

squares on the segments of the hypotenuse.

5. If a segment is divided into any number of subsegments, the continued product of

all the parts is a maximum and the sum of the areas of their squares is a minimum

when all the parts are equal.
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Proposition 2.10. If a segment (AB) is bisected (at C) and is extended to a segment

(AD), the sum of the areas of the squares on the segments (AD, DB) made by the

endpoint (D) is equal to twice the area of the square on half the segment and twice

the square on the segment between the points of that section.

Figure 2.3.10: [2.10]

Corollary. 2.10.1. Algebraically, [2.10] states the same result as Proposition 2.9:

(y + z)2 + (y − z)2 = 2(y + z)2

Corollary. 2.10.2. The square on the sum of any two segments plus the square on

their difference equals twice the area of the sum of their squares.

Corollary. 2.10.3. The sum of the area of the squares on any two segments is equal

to twice the area of the square on half the sum plus twice the square on half the

difference of the lines.

Corollary. 2.10.4. If a segment is cut into two unequal subsegments and also into

two equal subsegments, the sum of the area of the squares on the two unequal sub-

segments exceeds the sum of the areas of the squares on the two equal subsegments

by the sum of the areas of the squares of the two differences between the equal and

unequal subsegments.

Exercises.

1. Given the sum or the difference of any two segments and the sum of the areas of

their squares, find the segments.

2. Consider △ABC: the sum of the areas of the squares on two sides AC, CB is

equal to twice the area of the square on half the base AB and twice the square on

the median which bisects AB.

3. If the base of a triangle is given both in magnitude and position and the sum

of the areas of the squares on the sides in magnitude, the locus of the vertex is a

circle.
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4. Consider △ABC: if a point D on the base BC exists such that (BA)2 + (BD)2 =

(CA)2 + (CD)2, prove that the midpoint of AD is equally distant from both B and

C.

5. Prove [Cor. 2.10.1].

6. Prove [Cor. 2.10.2].

7. Prove [Cor. 2.10.3].

8. Prove [Cor. 2.10.4].

Proposition 2.11. It is possible to divide a given segment (AB) into two segments

(at H) such that the rectangle (AB, BH) contained by the segment and its subseg-

ment is equal in area to the square on the remaining segment (AH).

Figure 2.3.11: [2.11]

Corollary. 2.11.1. Algebraically, [2.11] solves the equation AB · BH = (AH)2, or

a(a− x) = x2. Specifically,

a(a− x) = x2

a2 − ax = x2

x2 + ax− a2 = 0

x = −a
2 (1±

√
5)

Note that φ = 1+
√
5

2 is called the Golden Ratio5.

Corollary. 2.11.2. The segment CF is divided in “extreme and mean ratio” at A.

Corollary. 2.11.3. If from the greater segment CA of CF we take a segment equal

to AF , it is evident that CA will be divided into parts respectively equal to AH , HB.

Hence, if a segment is divided in extreme and mean ratio, the greater segment will

be cut in the same manner by taking on it a part equal to the less, and the less will

be similarly divided by taking on it a part equal to the difference, and so on.

5
https://en.wikipedia.org/wiki/Golden_ratio

https://en.wikipedia.org/wiki/Golden_ratio
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Corollary. 2.11.4. Let AB be divided in “extreme and mean ratio” at C. It is evident

([2.11], Cor. 2) that AC > CB. Cut off CD = CB. Then by ([2.11], Cor. 2), AC is cut

in “extreme and mean ratio” at D, and CD > AD. Next, cut off DE = AD, and in the

same manner we have DE > EC, and so on. Since CD > AD, it is evident that CD

is not a common measure of AC and CB, and therefore not a common measure of AB

and AC. Similarly, AD is not a common measure of AC and CD and so is therefore

not a common measure of AB and AC. Hence, no matter how far we proceed, we

cannot arrive at any remainder which will be a common measure of AB and AC.

Hence, the parts of a line divided in “extreme and mean ratio” are incommensurable

(i.e., their ratio will never be a rational number).

Figure 2.3.12: [2.11, Cor. 4]

See also [6.30] where we divide a given segment (AB) into its “extreme and mean

ratio”; that is, we divide AB at point C such that AB · BC = (AC)2.

Exercises.

1. The difference between the areas of the squares on the segments of a line divided

in “extreme and mean ratio” is equal to the area of their rectangle.

2. In a right triangle, if the square on one side is equal in area to the rectangle

contained by the hypotenuse and the other side, the hypotenuse is cut in “extreme

and mean ratio” by the perpendicular on it from the right angle.

3. If AB is cut in “extreme and mean ratio” at H , prove that

(a) (AB)2 + (BH)2 = 3 · (AH)2

(b) (AB +BH)2 = 5 · (AH)2

[See the final chapter for a solution to (a).]

4. The three lines joining the pairs of points G, B; F , D; A, K, in the construction

of [2.11] are parallel.

5. If CH intersects BE at O, then AO ⊥ CH .

6. If CH is extended, then CH ⊥ BF .

7. Suppose that △ABC is a right-angled triangle having AB = 2 · AC. If AH is

equal to the difference between BC and AC, then AB is divided in “extreme and

mean ratio” at H .

8. Prove [Cor. 2.11.1].

9. Prove [Cor. 2.11.2].

10. Prove [Cor. 2.11.3].
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11. Prove [Cor. 2.11.4].

Proposition 2.12. On an obtuse triangle (△ABC), the square on the side opposite

the obtuse angle (AB) exceeds the sum of the areas of the squares on the sides con-

taining the obtuse angle (BC, CA) by twice the area of the rectangle contained by

either of them (BC) and its extension (CD) to meet a perpendicular (AD) on it from

the opposite angle.

Figure 2.3.13: [2.12]

Corollary. 2.12.1. Algebraically, [2.12] states that in an obtuse triangle

(AB)2 = (AC)2 + (BC)2 + 2 · BC · CD

This is extremely close to stating the law of cosines6: c2 = a2 + b2–2ab · cos(α)

Corollary. 2.12.2. If perpendiculars from A and B to the opposite sides meet them

in H and D, the rectangle AC · CH is equal in area to the rectangle BC · CD (or

⊡AC · CH = ⊡BC · CD).

Exercises.

1. If the angle ∠ACB of a triangle is equal to twice the angle of an equilateral

triangle, then AB2 = BC2 + CA2 +BC · CA.

2. Suppose that ABCD is a quadrilateral whose opposite angles at points B and D

are right, and when AD, BC are extended meet at E, prove that AE ·DE = BE ·CE.

3. If △ABC is a right triangle and BD is a perpendicular on the hypotenuse AC,

prove that AB ·DC = BD ·BC.

4. If a segment AB is divided at C so that (AC)2 = 2 · (BC)2, prove that (AB)2 +

(BC)2 = 2 ·AB · AC.

6
https://en.wikipedia.org/wiki/Trigonometri_funtions

https://en.wikipedia.org/wiki/Trigonometric_functions
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5. If AB is the diameter of a semicircle, find a point C in AB such that, joining

C to a fixed point D in the circumference and constructing a perpendicular CE

intersecting the circumference at E, then (CE)2− (CD)2 is equal to a given square.

6. If the square of a segment CD, constructed from the angle C of an equilateral

triangle △ABC to a point D on the extended side AB is equal in area to 2 · (AB)2,

prove that AD is cut in “extreme and mean ratio” at B.

7. Prove [Cor. 2.12.1].

8. Prove [Cor. 2.12.2].
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Proposition 2.13. In any triangle (△ABC), the square on any side opposite an

acute angle (at C) is less than the sum of the squares on the sides containing that

angle by twice the area of the rectangle (BC, CD) contained by either of them (BC)

and the intercept (CD) between the acute angle and the foot of the perpendicular on

it from the opposite angle.

Figure 2.3.14: [2.13]

Corollary. 2.13.1. Algebraically, [2.13] states that in an acute triangle

(AB)2 = (AC)2 + (BC)2 + 2 · BC · CD

which repeats the result of [2.12].

Exercises.

1. If the angle at point C of the △ACB is equal to an angle of an equilateral

triangle, then AB2 = AC2 +BC2 −AC.BC.

2. The sum of the squares on the diagonals of a quadrilateral, together with four

times the square on the line joining their midpoints, is equal to the sum of the

squares on its sides.

3. Find a point C in a given extended segment AB such that AC2+BC2 = 2AC.BC.
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Proposition 2.14. CONSTRUCTION OF A SQUARE II. It is possible to construct

a square equal in area to any given polygon.

Proof. We wish to construct a square equal in area to polygon MNPQ.

Figure 2.3.15: [2.14]

Construct rectangle ⊡ABCD equal in area to MNPQ [1.45]. If any two adjacent

sides of ⊡ABCD are equal, then ⊡ABCD is a square and we have completed the

construction.

Otherwise, extend side AB to AE such that BE = BC. Bisect AE at F , and with F

as center and FE as radius, construct semicircle AGE. Extend CB to the semicircle

at G. We claim that the square constructed on BG is equal in area to MNPQ.

To see this, construct FG. Because AE is divided equally at F and unequally at B,

by [2.5] AB · BE + (FB)2 = (FE)2. Also, (FE)2 = (FG)2, since both are radii of

semicircle AGE. By [1.47], (FG)2 = (FB)2 + (BG)2. Therefore,

AB · BE + (FB)2 = (FB)2 + (BG)2

AB · BE = (BG)2

AB · BC = (BG)2

⊡ABCD = (BG)2

which completes the construction.

Corollary. 2.14.1. The square on the perpendicular from any point on a semicircle

to the diameter is equal to the rectangle contained by the segments of the diameter.
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Exercises.

1. Given the difference of the squares on two segments and their rectangle, find the

segments.

2. Prove [Cor. 2.14.1].

Chapter 2 exam questions.

1. What is the subject-matter of chapter 2? (Ans. Theory of rectangles.)

2. What is a rectangle? A gnomon?

3. What is a square inch? A square foot? A square mile? (Ans. The square

constructed on a line whose length is an inch, a foot, or a mile.)

4. When is a line said to be divided internally? When externally?

5. How is the area of a rectangle determined?

6. How is a line divided so that the rectangle contained by its segments is a maxi-

mum?

7. How is the area of a parallelogram found?

8. What is the altitude of a parallelogram whose base is 65 meters and area 1430

square meters?

9. How is a segment divided when the sum of the squares on its subsegments is a

minimum?

10. The area of a rectangle is 108 ·60 square meters and its perimeter is 48 ·20 linear

meters. Find its dimensions.

11. What proposition in chapter 2 expresses the distributive law of multiplication?

12. On what proposition is the rule for extracting the square root founded?

13. Compare [1.47], [2.12], and [2.13].

14. If the sides of a triangle are expressed algebraically by x2 + 1, x2 − 1, and 2x

units, respectively, prove that it is a right triangle.

15. How would you construct a square whose area would be exactly an acre? Give

a solution using [1.47].

16. What is meant by incommensurable lines? Give an example from chapter 2.

17. Prove that a side and the diagonal of a square are incommensurable.

18. The diagonals of a lozenge are 16 and 30 meters respectively. Find the length

of a side.

19. The diagonal of a rectangle is 4.25 inches, and its area is 7.50 square inches.

What are its dimensions?

20. The three sides of a triangle are 8, 11, 15. Prove that it has an obtuse angle.
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21. The sides of a triangle are 13, 14, 15. Find the lengths of its medians. Also find

the lengths of its perpendiculars and prove that all its angles are acute.

22. If the sides of a triangle are expressed by m2 + n2, m2 − n2, and 2mn linear

units, respectively, prove that it is right-angled.

Chapter 2 exercises.

1. The squares on the diagonals of a quadrilateral are together double the sum of

the areas of the squares on the segments joining the midpoints of opposite sides.

2. If the medians of a triangle intersect at O, then (AB)2 + (BC)2 + (CA)2 =

3((OA)2 + (OB)2 + (OC)2).

3. Through a given point O, construct three segments OA, OB, OC of given lengths

such that their endpoints are collinear and that AB = BC.

4. If in any quadrilateral two opposite sides are bisected, the sum of areas of the

squares on the other two sides, together with the sum of areas of the squares on

the diagonals, is equal to the sum of the areas of the squares on the bisected sides

together with four times the area of the square on the line joining the points of

bisection.

5. If squares are constructed on the sides of any triangle, the sum of the areas of

the squares on the segments joining the adjacent corners is equal to three times

the sum of the areas of the squares on the sides of the triangle.

6. Divide a given segment into two parts so that the rectangle contained by the

whole and one segment is equal in area to any multiple of the square on the other

segment.

7. If P is any point in the diameter AB of a semicircle and CD is any parallel chord,

then (CP )2 + (PD)2 = (AP )2 + (PB)2.

8. If A, B, C, D are four collinear points taken in order, then AB ·CD+BC ·AD =

AC · BD.

9. Three times the sum of the area of the squares on the sides of any pentagon

exceeds the sum of the area of the squares on its diagonals by four times the sum

of the area of the squares on the segments joining the midpoints of the diagonals.

10. In any triangle, three times the sum of the area of the squares on the sides is

equal to four times the sum of the area of the squares on the medians.

11. If perpendiculars are constructed from the vertices of a square to any line,

the sum of the squares area of the on the perpendiculars from one pair of opposite

angles exceeds twice the area of the rectangle of the perpendiculars from the other

pair by the area of the square.

12. If the base AB of a triangle is divided at D such that m · AD = n · BD, then

m · (AC)2 + n · (BC)2 = m · (AD)2 + n · (DB)2 + (m+ n) · (CD)2.
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13. If the point D is taken on the extended segment AB such that m ·AD = n ·BD,

then m · (AC)2 − n · (BC)2 = m · (AD)2 − n · (DB)2 + (m− n) · (CD)2.

14. Given the base of a triangle in magnitude and position as well as the sum or the

difference of m times the square on one side and n times the square on the other

side in magnitude, then the locus of the vertex is a circle.

15. Any rectangle is equal in area to half the rectangle contained by the diagonals

of squares constructed on its adjacent sides. [See the final chapter for a solution.]

16. If A, B, C, ... are any finite number of fixed points and P a movable point, find

the locus of P if (AP )2 + (BP )2 + (CP )2 + ... is given.

17. If the area of a rectangle is given, its perimeter is a minimum when it is a

square.

18. Construct equilateral triangles on subsegments AC, CB of segment AB. Prove

that if D, D1 are the centers of circles constructed about these triangles, then 6 ·D ·
D2

1 = (AB)2 + (AC)2 + (CB)2.

19. If a, b denote the sides of a right triangle about the right angle and p denotes

the perpendicular from the right angle on the hypotenuse, then 1
a2 + 1

b2 = 1
c2 .

20. If upon the greater subsegment AB of a segment AC which is divided in ex-

treme and mean ratio, an equilateral triangle △ABD is constructed and CD is

joined, then (CD)2 = 2 · (AB)2.

21. If a variable line, whose endpoints rest on the circumferences of two given

concentric circles, stands opposite a right angle at any fixed point, then the locus of

its midpoint is a circle.



Chapter 3

Circles

Axioms and Mathematical Properties from chapters 1 and 2 will be assumed and

not generally cited. This will be a rule that we will apply to subsequent chapters,

mutatis mutandis.

Remark. Modern geometry no longer uses Euclid’s definitions for curves, tangents,

etc. However, for our purposes, the definitions are adequate.

3.1 Definitions

1. Equal circles are circles with equal radii.1

2. A chord of a circle is a segment which intersects two points of the circle’s cir-

cumference. If the chord is extended to a line, then this line is called a secant, and

each of the parts into which a secant divides the circumference is called an arc—the

larger is called the major conjugate arc, and the smaller is called the minor conju-

gate arc.

3. A segment, ray, or straight line is said to touch a circle when it intersects the cir-

cumference of a circle at one and only one point. The segment, ray, or straight line

is called a tangent to the circle, and the point where it touches the circumference is

called the point of intersection.

1This is actually a theorem, and not a definition. If two circles have equal radii, they are evidently

congruent figures and therefore equal in all aspects. Using this method to prove the theorem, [3.26]-

[3.29] follow immediately.

135
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Figure 3.1.1: [Def. 3.3]
←→
CD touches #A at B; or,

←→
CD is tangent to #A and B is the

point of intersection between #A and
←→
CD.

4. Circles are said to touch one another when they intersect at one and only one

point. There are two types of contact:

a) When one circle is external to the other.

b) When one circle is internal to the other.

When circles intersect at two points, the intersection may be referred to as a cut.
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Figure 3.1.2: On the left: [Def. 3.4] The circles #A and #D touch externally at E,

while the circles #C and #A touch internally at B. On the right: [Def. 3.5] The

chord CD of the circle #A divides the circle itself into segments DEC and DBC.

Segment DEC (shaded) is bounded by chord CD and arc DEC, and segment DBC
(unshaded) is bounded by chord CD and arc DBC.

5. A segment of a circle is a two-dimensional figure bounded by a chord and an arc

whose boundary points include the endpoints of the chord.

6. Chords are said to be equally distant from the center when the perpendiculars

constructed to them from the center are equal in length.

7. The angle in the segment is the rectilinear angle contained between two chords

which intersect at the same endpoint on the circumference of a circle. In Fig. 3.1.3,

∠DCE is an angle in the segment. See also [3.21].

8. The angle of a segment is the non-rectilinear angle contained between its chord

and the tangent at either endpoint. In Fig. 3.1.3, the arc DEC is the angle of

segment DEC. These angles only appeared in the original proof to [3.16].

9. An angle in a segment is said to stand on its conjugate arc.

10. Similar arcs are those that contain equal angles.

11. A sector of a circle is formed by two radii and the arc that is included between

them. In Fig. 3.1.3, #A, radius AD, and radius AC form the sectors DACE and

DACB.
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Figure 3.1.3: [Def. 3.8], [Def. 3.9], and [Def. 3.11]

12. Concentric circles are those which have the same center point.

13. Points which lie on the circumference of a circle are called concyclic.

14. A cyclic quadrilateral is a quadrilateral which is inscribed in a circle.

15. A modern definition on an angle2: an angle in geometry is the figure formed by

two rays, called the sides of the angle, which share a common endpoint, called the

vertex of the angle. This measure is the ratio of the length of a circular arc to its

radius, where the arc is centered at the vertex and delimited by the sides.

The size of a geometric angle is usually characterized by the magnitude of the

smallest rotation that maps one of the rays into the other. Angles that have the

same size are called congruent angles.

Figure 3.1.4: The measure of angle θ is the quotient of s and r.

In order to measure an angle θ, a circular arc centered at the vertex of the angle

is constructed, e.g., with a pair of compasses. The length of the arc is then divided

by the radius of the arc r, and possibly multiplied by a scaling constant k (which

depends on the units of measurement that are chosen):

θ = ks/r

2
http://en.wikipedia.org/wiki/Angle

http://en.wikipedia.org/wiki/Angle
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The value of θ thus defined is independent of the size of the circle: if the length of

the radius is changed, then the arc length changes in the same proportion, and so

the ratio s/r is unaltered.

Figure 3.1.5: θ = s/r rad = 1 rad.

A number of units are used to represent angles: the radian and the degree are by

far the most commonly used.

Most units of angular measurement are defined such that one turn (i.e. one full

circle) is equal to n units, for some whole number n. In the case of degrees, n = 360.

A turn of n units is obtained by setting k = n
2π in the formula above.

The radian is the angle subtended by an arc of a circle (that is, the angle standing

opposite the arc of a circle) that has the same length as the circle’s radius. The

case of radian for the formula given earlier, a radian of n = 2π units is obtained

by setting k = 2π
2π = 1. One turn is 2π radians, and one radian is 180

π degrees,

or about 57.2958 degrees. The radian is abbreviated rad, though this symbol is

often omitted in mathematical texts, where radians are assumed unless specified

otherwise. When radians are used angles are considered as dimensionless. The

radian is used in virtually all mathematical work beyond simple practical geometry,

due, for example, to the pleasing and "natural" properties that the trigonometric

functions display when their arguments are in radians. The radian is the (derived)

unit of angular measurement in the SI system.

The degree, written as a small superscript circle (◦), is 1/360 of a turn, so one turn

is 360◦. Fractions of a degree may be written in normal decimal notation (e.g. 3.5◦

for three and a half degrees), but the "minute" and "second" sexagesimal sub-units

of the "degree-minute-second" system are also in use, especially for geographical

coordinates and in astronomy and ballistics.

Although the definition of the measurement of an angle does not support the con-

cept of a negative angle, it is frequently useful to impose a convention that allows

positive and negative angular values to represent orientations and/or rotations in

opposite directions relative to some reference.

In a two-dimensional Cartesian coordinate system, an angle is typically defined by

its two sides, with its vertex at the origin. The initial side is on the positive x-axis,

while the other side or terminal side is defined by the measure from the initial

side in radians, degrees, or turns. Positive angles represent rotations toward the

positive y-axis, and negative angles represent rotations toward the negative y-axis.
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When Cartesian coordinates are represented by standard position, defined by the

x-axis rightward and the y-axis upward, positive rotations are anticlockwise and

negative rotations are clockwise.

Figure 3.1.6: ∠CBA measured as a positive angle, ∠EDF measured as a negative

angle

16. Suppose we have two points F and P such that when the area of the rectangle

OF ·OP is equal to the area of the square of the radius of that circle, then F and P

are called inverse points with respect to the circle.

17. The supplement of an arc is the amount by which an arc is less than a semicir-

cle, or an angle less than two right angles.
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3.2 Propositions from Book III

Proposition 3.1. THE CENTER OF A CIRCLE I.

It is possible to locate the center of a circle.

Proof. Construct a circle and take any two points A, B on the circumference. Con-

struct AB and bisect AB at C [1.10]. Construct CD ⊥ AB (where D is on the

circumference) and extend CD to intersect the circumference at E. Bisect DE at F .

We claim that F is the center of the circle.

Figure 3.2.1: [3.1]

Suppose instead that point G, which does not lie on chord DE, is the center of the

circle. Construct GA, GC, and GB. Notice that ∠ACG = ∠ACD + ∠DCG; clearly,

∠DCG > 0.

Consider △ACG and △BCG: we have AC = CB by construction, GA = GB (since

they are radii by hypothesis), and side CG is shared in common. By [1.8], we find

that ∠ACG = ∠BCG; therefore, each angle is a right angle. But ∠ACD is right by

construction; therefore ∠DCG = 0. But ∠DCG > 0 above, a contradiction.

Hence, no point can be the center of the circle other than a point on DE. Since all

radii are equal in length and FE = FD, it follows that F , the midpoint of DE, is

the center of #F . This proves our claim.
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Alternatively:

Proof. Consider the objects constructed in the proof above: because ED ⊥ AB and

ED bisects AB, every point equally distant from the points A and B must lie on

ED [1.10, #2]. Since the center is equally distant from A and B, the center must lie

on ED. And since the center must also lie equally distant from E and D, the center

is the midpoint of ED.

Corollary. 3.1.1. The line, ray, or segment which bisects any chord of a circle per-

pendicularly passes through the center of the circle.

Corollary. 3.1.2. The locus of the centers of the circles which pass through two fixed

points is the line bisecting at right angles the line that connects the two points.

Corollary. 3.1.3. If A, B, C are three points on the circumference of a circle, the

lines which perpendicularly bisect the chords AB, BC will intersect at the center of

the circle.

Exercises.

1. Prove [Cor. 3.1.1].

2. Prove [Cor. 3.1.2].

3. Prove [Cor. 3.1.3].
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Proposition 3.2. POINTS ON A LINE INSIDE AND OUTSIDE A CIRCLE.

If any two points are chosen from the circumference of a circle and a line is con-

structed on those points, then:

(1) The points between the endpoints on the circumference form a chord (i.e., they

lie inside the circle).

(2) The remaining points of the line lie outside the circle.

Proof. Construct #C where A and B are arbitrary points on the circumference of

#C and construct
←→
AB. We claim that:

(1) AB is a chord of #C.

(2) All points of
←→
AB which are not on AB lie outside of the circle.

Figure 3.2.2: [3.2]

Take any point D on AB and construct CA, CD, and CB. Notice that ∠ADC >

∠ABC by [1.16]; however, ∠ABC = ∠BAC because△CAB is isosceles [1.5]. There-

fore, ∠ADC > ∠BAC = ∠DAC. By [1.29], AC > CD [1.29], and so CD is less than

the radius of #C. Consequently, D must lie within the circle [Def. 1.23]. Similarly,

every other point between A and B lies within #C. Finally, since A and B are

points in the circumference of #C, AB is a chord. This proves claim 1.

Wlog, let E be any point on
−→
AE such that EA > BA, and construct CE. By [1.16],

∠ABC > ∠AEC; by the above, ∠CAE > ∠AEC. It follows that in △ACE, CE >

CA, and so the point E lies outside #C. This proves claim 2, which completes the

proof.

Corollary. 3.2.1. Three collinear points cannot be concyclic.

Corollary. 3.2.2. A straight line, ray, or segment cannot intersect a circle at more

than two points.
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Corollary. 3.2.3. The circumference of a circle is everywhere concave towards the

center.

Exercises.

1. Prove [Cor. 3.1.1].

2. Prove [Cor. 3.1.2].

3. Prove [Cor. 3.1.3].
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Proposition 3.3. CHORDS I.

Suppose there exist two chords of a circle, only one of which passes through the cen-

ter of the circle. The chord which does not pass through the center is bisected by the

chord that passes through the center if and only if the chords are perpendiculars.

Proof. Construct #O with chords AB and CD where AB contains the center of #O.

We claim that AB bisects CD if and only if AB ⊥ CD.

Figure 3.2.3: [3.3]

Suppose that AB bisects CD. Construct OC and OD, and consider △CEO and

△DEO: CE = ED by hypothesis, OC = OD since each are radii of #O, and both

triangles have EO in common. By [1.8], ∠CEO = ∠DEO; since they are also

adjacent angles, each is a right angle, and therefore AB ⊥ CD.

Now suppose that AB ⊥ CD. Because OC = OD, △CDO is isosceles; by [1.5],

∠OCD = ∠ODC. Consider △OEC and △OED: ∠OCD = ∠ODC, ∠CEO = ∠DEO

since AB ⊥ CD, and they share side EO. By [1.26], △OEC ∼= △OED, and so

CE = ED. Since CD = CE ⊕ ED, AB bisects CD, proving our claim.

The second part of the proposition may also be proved this way:

Proof. By [1.47], we find that

(OC)2 = (OE)2 + (EC)2

(OD)2 = (OE)2 + (ED)2

Since OC = OD, we also have that (OC)2 = (OD)2, and it follows that (EC)2 =

(ED)2. Therefore, EC = ED.
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Corollary. 3.3.1. The line which bisects perpendicularly one of two parallel chords

of a circle bisects the other perpendicularly.

Corollary. 3.3.2. The locus of the midpoints of a system of parallel chords of a

circle is the diameter of the circle perpendicular to them all.

Corollary. 3.3.3. If a line intersects two concentric circles, its intercepts between

the circles are equal in length.

Corollary. 3.3.4. The line connecting the centers of two intersecting circles bisects

their common chord perpendicularly.

Observation: [3.1], [3.3], and [3.3, Cor. 1] are related such that if any one of them

is proved directly, then the other two follow by the Rule of Symmetry.

Exercises.

1. If a chord of a circle stands opposite a right angle at a given point, the locus of

its midpoint is a circle.

2. Prove [3.3, Cor. 1].

3. Prove [3.3, Cor. 2].

4. Prove [3.3, Cor. 3].

5. Prove [3.3, Cor. 4]. [See the final chapter for a solution.]
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Proposition 3.4. CHORDS II.

If two chords exist in a circle where at most one is a diameter, then it is not the case

that each chord bisects the other.

Proof. Construct #O with chords AB and CD such that at most one of these chords

is a diameter and such that AB and CD intersect at E where ∠AEC > 0. If AB

and CD are not diameters, they do not contain O. Construct OE and extend OE to

FG. We claim it is not the case that AE = EB and CE = ED.

Figure 3.2.4: [3.4]

Suppose instead that AE = EB and CE = ED. By [3.3], ∠OEA is a right angle.

Similarly, ∠OEC is a right angle, or ∠OEA = ∠OEC. But ∠OEC = ∠OEA+∠AEC,

and so ∠AEC = 0. It follows that ∠AEC > 0 and ∠AEC = 0, a contradiction.

Thus it is not the case that AE = EB and CE = ED, which completes the proof.

Corollary. 3.4.1. If two chords of a circle bisect each other, they are both diameters.
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Proposition 3.5. NON-CONCENTRIC CIRCLES I.

If two circles intersect at exactly two points, then they are not concentric.

Proof. Construct #ABC and #ABD which intersect at A and B; we claim that

#ABC and #ABD are not concentric.

Figure 3.2.5: [3.5]

Suppose instead that #ABC and #ABD share a common center, O. Construct OA

and OCD where A, B, C, and D are distinct. Notice that CD > 0.

Because O is the center of #ABC, OA = OC. Because O is the center of the circle

#ABD, OA = OD; hence, OD = OC where OD = OC ⊕CD. It follows that CD = 0

and CD > 0, a contradiction. Therefore, #ABC and #ABD are not concentric.

Exercises.

1. Two circles cannot have three points in common without coinciding. [See the

final chapter for a solution.]
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Proposition 3.6. NON-CONCENTRIC CIRCLES II.

If one circle intersects another circle internally at exactly one point, then the circles

are not concentric.

Proof. Construct #ADE and #ABC such that #ABC intersects #ADE internally

at A and only at A. We claim that #ADE and #ABC are not concentric.

Figure 3.2.6: [3.6]

Suppose instead that #ADE and #ABC are concentric, and let O be the center of

each circle. Construct OA and OBD. Notice that BD > 0; if BD = 0, then B = D

and #ADE and #ABC intersect at two points, contrary to hypothesis.

Because O is the center of each circle by hypothesis, OA = OB and OA = OD;

therefore, OB = OD and OB ⊕BD = OD. Hence, BD = 0, a contradiction. There-

fore, the circles are not concentric.
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Proposition 3.7. UNIQUENESS OF SEGMENT LENGTHS FROM A POINT ON

THE DIAMETER OTHER THAN THE CENTER.

Choose any point on the diameter of a circle other than the center, and from that

point construct a finite number of segments to the circumference. Then:

(1) The longest segment constructed will contain the center of the circle.

(2) The shortest segment constructed will form a diameter with the longest seg-

ment.

(3) As for the remaining segments, those with endpoints on the circumference

nearer to the endpoint of the longest segment will be longer than segments with

endpoints farther from the endpoint of the longest segment.

(4) Two and only two equal segments can be constructed from each point to the

circumference, one on each side of the diameter.

Proof. Construct #O with point P on diameter AE such that O and P are distinct.

Construct a finite number of segments from P to the circumference (PA, PB, PC,

etc.). Notice that PA is a segment on the diameter. We will prove four claims.

Figure 3.2.7: [3.7] #EAG

1. The longest segment, PA, is the segment which passes through O.

Construct OB where B is a point on #O. Clearly, OA = OB. From this we obtain

PA = OA + OP = OB + OP . Consider △OPB: since OB + OP > PB by [1.20],

it follows that PA > PB. Since this inequality holds for any segment constructed

using this method, PA is the longest segment of all such constructed segments.

2. The extension of PA in the opposite direction, PE, is the shortest segment of all

such constructed segments.

Construct OD and consider△OPD: by [1.20], OP + PD > OD. Since, OD = OE =

OP + PE, it follows that

OP + PD > OP + PE

PD > PE
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Since this inequality holds for any segment constructed using this method, PE is

the shortest segment of all such constructed segments.

Figure 3.2.8: [3.7] #EAG

3. As for the remaining segments, those with endpoints on the circumference

nearer to the endpoint of the longest segment (PA) will be longer than segments

with endpoints farther from the endpoint of the longest segment (i.e., PA > PB >

PC > PD).

Construct OC, and consider △POB and △POC: OB = OC and each shares side

OP . Since ∠POB = ∠POC + ∠BOC, we find that ∠POB > ∠POC. By [1.24],

PB > PC. Similarly, PC > PD.

4. Two and only two segments making equal angles with the diameter and standing

on opposite sides of the diameter are equal in length (i.e., PD = PF ).

At O, construct ∠POF = ∠POD and construct PF . Consider △POD and △POF :

OD = OF , each shares side OP , and ∠POD = ∠POF by construction. By [1.4],

△POD ∼= △POF , and so ∠OPF = ∠OPD and PD = PF .

We claim that a third segment cannot be constructed from P equal to PD = PF .

Suppose this were possible and let PG = PD. Then PG = PF , contradicting claim

3 above.

This completes the proof.
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Corollary. 3.7.1. If two equal segments PD, PF are constructed from a point P to

the circumference of a circle, the diameter through P bisects the angle ∠DPF formed

by these segments.

Corollary. 3.7.2. If P is the common center of circles whose radii are PA, PB, PC,

PD, etc., then:

(1) The circle whose radius is the maximum segment (#P with radius PA) lies

outside #O and intersects it at A [Def. 3.4].

(2) The circle whose radius is the minimum segment (#P with radius PE) lies

inside #O and intersects it at E.

(3) A circle having any of the remaining radii (such as PD) cuts #O at two points

(such as D, F ).

Exercises.

1. Prove [Cor. 3.7.1].

2. Prove [Cor. 3.7.2].

Remark. [3.7] is a good illustration of the following important definition: if a geo-

metrical magnitude varies its position continuously according to any well-defined

relationship, and if it retains the same value throughout, it is said to be a constant

(such as the radius of a fixed circle).

But if a magnitude increases for some time and then begins to decrease, it is said

to be a maximum when the increase stops. Therefore in the previous figure, PA,

which we suppose to revolve around P and meet the circle, is a maximum.

Again, if it decreases for some time, and then begins to increase, it is a minimum

at the beginning of the increase. Thus PE, which we suppose as before to revolve

around P and meet the circle, is a minimum. [3.8] will provide other illustrations

of this concept.
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Proposition 3.8. SEGMENT LENGTHS FROM A POINT OUTSIDE THE CIR-

CLE AND THEIR UNIQUENESS.

Suppose a point is chosen outside of a circle and from that point segments are

constructed such that they intersect the circumference of the circle at two points,

one on the “outer” or convex side of the circumference and one on the “inner” or

concave side of the circumference. Let one segment be constructed which intersects

the center of the circle and the others all within the same semicircle but not through

the center of the circle. Then:

(1) The largest segment passes through the center.

(2) The segments nearer to the segment through the center are greater in length

than those which are farther away.

(3) If segments are constructed to the convex circumference, the minimum seg-

ment is that which passes through the center when extended.

(4) Of the other segments, that which is nearer to the minimum is smaller than

one more farther out.

(5) From the given point outside of the circle, there can be constructed two equal

segments to the concave or the convex circumference, both of which make equal

angles with the line passing through the center.

(6) Three or more equal segments cannot be constructed from the given point

outside the circle to either circumference.

Proof. Construct #O, point P outside of #O, and all points indicated in the figure

below. We will prove each claim separately.

Figure 3.2.9: [3.8] #O
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1. The maximum segment passes through the center.

Notice that OA = OB and so AP = OA + OP = OB + OP . Consider △BOP :

OB +OP > BP [1.20]. Therefore, AP > BP .

Figure 3.2.10: [3.8] #O

2. The segments nearer to the segment through the center are greater in length

than those which are farther.

Consider△BOP and△COP : OB = OC, each share side OP , and the angle ∠BOP >

∠COP . Therefore, BP > CP [1.24]. Similarly, CP > DP , etc.

3. If segments are constructed to the convex circumference, the minimum segment

is that which passes through the center when extended.

Consider△OFP : OF + FP > OP = OE +EP [1.20]. Since OF = OE, we find that

FP > EP .

4. Of the other segments, that which is nearer to the minimum is smaller than one

more farther out.

Consider △GOP and △FOP : GO = FO, each shares side OP , and the angle

∠GOP > ∠FOP . By [1.24], GP > FP . Similarly, HP > GP .

5. From the given point outside of the circle, there can be constructed two equal

segments to the concave or the convex circumference, both of which make equal

angles with the line passing through the center.

Construct ∠POI such that ∠POI = ∠POF [1.23], and consider△IOP and△FOP :

IO = FO, each shares side OP , and ∠IOP = ∠POF by construction. By [1.4],

IP = FP . Segments IP and FP fulfill the above requirements, which proves this

claim.

6. Three or more equal segments cannot be constructed from the given point outside

the circle to either circumference.
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Above, we obtain IP = FP . We claim that a third segment cannot is constructed

from P equal to IP and FP . Suppose this were possible and let PK = PF . However

by claim 4, PK > PF . This contradiction proves our claim.

Corollary. 3.8.1. If PI is extended to meet the circle at L, then PL = PB.

Corollary. 3.8.2. If two equal segments are constructed from P to either the convex

or concave circumference, the diameter through P bisects the angle between them,

and the segments intercepted by the circle are equal in length.

Corollary. 3.8.3. If P is the common center of circles whose radii are segments

constructed from P to the circumference of #O, then:

a) The circle whose radius is the minimum segment (PE) has external contact with

#O [Def. 3.4].

b) The circle whose radius is the maximum segment (PA) has internal contact with

#O.

c) A circle having any of the remaining segments (PF ) as radius intersects #O at

two points (F , I).

Exercises.

1. Prove [Cor. 3.8.1].

2. Prove [Cor. 3.8.2].

3. Prove [Cor. 3.8.3].
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Proposition 3.9. THE CENTER OF A CIRCLE II.

A point within a circle from which three or more equal segments can be constructed

to the circumference is the center of that circle.

Proof. Construct #ABC and equal segments DA, DB, and DC. We claim that D is

the center of #ABC.

Figure 3.2.11: [3.9]

Construct AB and BC and bisect them at points E and F , respectively [1.10]. Then

construct GEDK and LDFH.

Consider △AED and △BED: ED is a common side, AE = EB, and DB = DA

since each are radii of #ABC. By [1.8], △AED ∼= △BED, and so ∠AED = ∠BED;

it follows that ∠AED and ∠BED are each right angles.

Since GEDK ⊥ AB and GEDK bisects AB, [3.1, Cor. 1] states that the center of

#ABC is a point on GEDK. Similarly, the center of #ABC is a point on LDFH .

Since GEDK and LDFH intersect at D, D is the center of #ABC.

Alternatively:

Proof. Since AD = LD, the segment bisecting the angle ∠ADL passes through

the center [3.7, Cor. 1]. Similarly, the segment bisecting the angle ∠BDA passes

through the center. Hence, the point of intersection of these bisectors, D, is the

center.
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Proposition 3.10. THE UNIQUENESS OF CIRCLES.

If two circles have more than two points of their circumferences in common, they

coincide.

Proof. Construct #ABC and #DAB such that they have more than two points in

common. We claim that #ABC and #DAB coincide.

Figure 3.2.12: [3.10]

Suppose that #ABC and #DAB share three points in common (A, B, C). From P ,

the center of #ABC, construct PA, PB, PC; since each is a radius, PA = PB = PC.

Since #DAB is a circle and P a point from which three equal segments PA, PB,

PC can be constructed to its circumference, P is also the center of #DAB [3.9]. By

[Def. 3.1] #ABC and #DAB coincide, which proves our claim.

Corollary. 3.10.1. Two circles which do not coincide do not have more than two

points common.

Remark. Similarly to [3.10, Cor. 1], two lines which do not coincide cannot have

more than one point common.

Exercise.

1. Prove [Cor. 3.10.1].
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Proposition 3.11. SEGMENTS CONTAINING CENTERS OF CIRCLES.

If one circle touches another circle internally at one point, then the line joining the

centers of the two circles must contain that point of intersection.

Proof. Construct #O and #H such that #H touches #O internally at P . Also con-

struct
←→
OH . We claim that

←→
OH contains P .

Figure 3.2.13: [3.11]

Suppose instead that E is the center of #H such that E does not lie on
←→
OP , and

construct EP . Extend OE to intersect #H at C and D and intersect #O at A and

B. Since E is a point on the diameter of #O between O and A, EA < EP [3.7].

Notice that EA = EC + CA. Since CA > 0, EA > EC. Also notice that EP =

EC since each are radii of #H , and so EA > EP . But EA < EP above; this

contradiction demonstrates that the center of the internal circle, H , must lie on
←→
OP ; that is,

←→
OP contains H . Equivalently,

←→
OH contains P , which concludes the

proof.

Alternatively:

Proof. Since EP is a segment constructed from a point within the circle #O to the

circumference of #O but not forming part of the diameter through E, the circle

whose center is E with radius EP cuts #H at P [3.7, Cor. 2] and also touches it

at P by hypothesis, a contradiction. A similar argument holds for all points not on

OP . Hence, the center of #O must lie on OP .
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Proposition 3.12. INTERSECTING CIRCLES I.

If two circles intersect externally at one point, then the segment joining their cen-

ters contains that point of intersection.

Proof. Construct #PCF and #PDE which intersect externally at point P . Also

construct AG. We claim that AG contains P .

Figure 3.2.14: [3.12]

Construct APE; a claim equivalent to the above is that APE contains G.

Suppose instead that B is the center of #PDE and is not on APE. Construct AB,

intersecting #PDE at D and #PCF at C but not intersecting at P . Also construct

BP . By our hypothesis, AP = AC and BP = BD. Hence

AC +DB = AP +BP

Also notice that AB = AC⊕CD⊕DB where CD > 0; it follows that AB > AC+DB.

By the above equality, AB > AP +BP .

Consider △APB: we find that one side of △APB is greater than the sum of the

other two, contradicting [1.20]. Thus, the center of #PDE lies on APE at G. Equiv-

alently, AG contains P , which completes the proof.

Alternatively:

Proof. Suppose that the center of #PDE lies on BP . Since BP is a segment con-

structed from a point outside of the circle #PCF to its circumference which does

not pass through the center when it is extended, the circle whose center is B with

radius BP must cut the circle #PCF at P [3.8, Cor. 3].

However, such a circle touches #PCF at P by hypothesis, a contradiction. Since

BP was chosen as any segment other than PE, the center of #PDE must lie on

PE.
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Remark. [3.11] and [3.12] may written as one theorem: “If two circles touch each

other at any point, the centers and that point are collinear.” This is a limiting case

of the theorem given in [3.3, Cor. 4]: “The line joining the centers of two intersecting

circles bisects the common chord perpendicularly.”

Figure 3.2.15: [3.12], Suppose #O and #O′ have two points of intersection, A and

B. Suppose further that A remains fixed while the second circle moves so that the

point B ultimately coincides with A. Since the segment OO′ always bisects AB, we

see that OO′ intersects A. In consequence of this motion, the common chord CD
becomes the tangent to each circle at A.

Corollary. 3.12.1. If two circles touch each other, their point of intersection is the

union of two points of intersection. When counting the number of points at which

two circles intersect, we may for purposes of calculation consider this point of inter-

section as two points.
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Corollary. 3.12.2. If two circles touch each other at any point, they cannot have

any other common point.

Figure 3.2.16: [3.2, Cor. 2]

For, since two circles cannot have more than two points common [3.10] and their

point of intersection is equivalent to two points for purposes of calculation, circles

that touch cannot have any other point common. The following is a formal proof of

this Corollary:

Construct #O and #O′ where A is the point of intersection, and let O′ lie between

O and A. Take any other point B in the circumference of #O, and construct O′B.

By [3.7], O′B > O′A. Therefore, B is outside the circumference of the inner circle.

Hence, B cannot be common to both circles. Since point B was chosen arbitrarily,

the circles cannot have any other common point except for A.
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Proposition 3.13. INTERSECTING CIRCLES II.

Two circles cannot touch each other at two points either internally or externally.

Proof. We divide the proof into its internal and external cases:

Figure 3.2.17: [3.13]

Internal case: suppose two distinct circles #ACB and #ADB touch internally at

two points A and B. Since the two circles touch at A, the segment joining their

centers passes through A [3.11]. Similarly, the segment joining their centers passes

through B. Hence, the centers of these circles and the points A and B are on AB,

and so AB is a diameter of each circle. Bisect AB at E: clearly, E is the center of

each circle, i.e., the circles are concentric. This contradicts [3.5], and thus #ACB

and #ADB do not touch internally at two points.

External case: if two circles #E and #H touch externally at points I and J where

I and J are distinct, then by [3.12] EH contains the points I and J ; in other words,

I and J are not distinct, a contradiction. Thus, #E and #H do not touch externally

at two points.

An alternative proof to the internal case:

Proof. Construct a line bisecting AB perpendicularly. By [3.1, Cor. 1], this line

passes through the center of each circle, and by [3.11] and [3.12] must pass through

each point of intersection, a contradiction. Hence, two circles cannot touch each

other at two points.
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Remark. This proposition is an immediate inference from [3.12, Cor. 1] that if

a point of intersection counts for two intersections, then two contacts would be

equivalent to four intersections; but there cannot be more than two intersections

[3.10]. It also follows from [3.12, Cor. 2] that if two circles touch each other at point

A, they cannot have any other point in common; hence, they cannot touch again at

B.

Exercises.

1. If a circle with a non-fixed center touches two fixed circles externally, the differ-

ence between the distances of its center from the centers of the fixed circles is equal

to the difference or the sum of their radii, according to whether the contacts are of

the same or of opposite type [Def. 3.4].

2. If a circle with a non-fixed center is touched by one of two fixed circles internally

and touches the other fixed circle either externally or internally, the sum of the

distances from its center to the centers of the fixed circles is equal to the sum or the

difference of their radii, according to whether the contact with the second circle is

internal or external.

3. Suppose two circles touch externally. If through the point of intersection any

secant is constructed cutting the circles again at two points, the radii constructed

to these points are parallel. [See the final chapter for a solution.]

4. Suppose two circles touch externally. If two diameters in these circles are par-

allel, the line from the point of intersection to the endpoint of one diameter passes

through the endpoint of the other. [See the final chapter for a solution.]
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Proposition 3.14. EQUALITY OF CHORD LENGTHS.

Chords in a circle are equal in length if and only if they are equally distant from

the center.

Proof. Construct #O with chords AB and CD. We claim that AB = CD if and only

if AB and CD are equally distant from the center.

Figure 3.2.18: [3.14]

Suppose AB = CD, and construct OE ⊥ AB and OF ⊥ CD. We claim that EO =

FO.

Construct AO and CO. Because AB is a chord in #O and OE is a perpendicular

segment constructed from the center to E, OE bisects AB [3.3]; or AE = EB.

Similarly, CF = FD. Since AB = CD by hypothesis, AE = CF .

Because ∠OEF is a right angle, (AO)2 = (AE)2 + (EO)2 by [1.47]. Similarly,

(CO)2 = (CF )2 + (FO)2. Since (AO)2 = (CO)2 and (AE)2 = (CF )2, we have

(EO)2 = (FO)2, and so EO = FO.

Now suppose EO = FO under a construction similar to the above. We claim that

AB = CD.

Construct AO and CO. By [1.47] and similarly to the above proof, (AE)2 +(EO)2 =

(CF )2 +(FO)2 where (EO)2 = (FO)2 due to our hypothesis. Hence (AE)2 = (CF )2,

and so AE = CF . But AB = 2 ·AE and CD = 2 · CF by [3.3], and so AB = CD.

Exercises.

1. If a chord of given length slides around a fixed circle, then:

(a) the locus of its midpoint is a circle;

(b) the locus of any point fixed on the chord is a circle.
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Proposition 3.15. INEQUALITY OF CHORD LENGTHS.

The diameter is the longest chord in a circle, and a chord is nearer to the center of

a circle than another chord if and only if it is the longer of the two chords.

Proof. Construct #O with diameter AB and chords CD and EF such that CD is

nearer to O that EF . We claim that:

(1) AB is the longest chord in a circle;

(2) CD > EF ;

(3) Longer chords are nearer to the center than shorter chords.

Figure 3.2.19: [3.15]

(1) We claim that AB is the longest chord in a circle.

Construct OC, OD, OE as well as OG ⊥ CD and OH ⊥ EF . Notice that AB =

OA + OB = OC + OD. Consider △CDO: OC + OD > CD by [1.20]. Therefore,

AB > CD. Since the choice of CD was arbitrary, the proof is complete.

(2) We claim that CD > EF .

Since CD is nearer to O than EF by hypothesis, it follows that OG < OH [3.14].

Since △OGC and △OHE are right triangles, we find that (OC)2 = (OG)2 + (GC)2

and (OE)2 = (OH)2 + (HE)2. Since OC = OE, (OG)2 + (GC)2 = (OH)2 + (HE)2.

But (OG)2 < (OH)2, and so (GC)2 > (HE)2. It follows that GC > HE. Since

CD = 2 ·GC and EF = 2 ·HE by [3.3], CD > EF .

(3) Longer chords are nearer to the center than shorter chords.

Suppose that CD > EF . We claim that OG < OH .

As before, we find that (OG)2 + (GC)2 = (OH)2 + (HE)2. Due to our hypothesis,

(GC)2 > (HE)2. Therefore (OG)2 < (OH)2, and so OG < OH .
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Exercises.

1. The shortest chord which can be constructed through a given point within a

circle is the perpendicular to the diameter which passes through that point.

2. Through a given point, within or outside of a given circle, construct a chord of

length equal to that of a given chord.

3. Through one of the points of intersection of two circles, construct a secant

(a) where the sum of its segments intercepted by the circles is a maximum;

(b) which is of any length less than that of the maximum.

4. Suppose that circles touch each other externally at A, B, C and that the chords

AB, AC of two of them are extended to meet the third again in the points D and

E. Prove that DE is a diameter of the third circle and is parallel to the segment

joining the centers of the others.
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Proposition 3.16. THE PERPENDICULAR TO A DIAMETER OF A CIRCLE.

The perpendicular to a diameter of a circle intersects the circumference at one and

only one point, and any other segment through the diameter’s endpoint intersects

the circle at two points.

Proof. Construct #C with points A, B, and H on its circumference where AB is a

diameter of #C. Also construct BH and
←→
BI ⊥ AB where

←→
BI intersects #C at B.

We claim that:

(1)
←→
BI touches #C at B only;

(2) BH cuts #C.

Figure 3.2.20: [3.16]

Claim 1:
←→
BI touches #C at B only.

Let I be an arbitrary point on
←→
BI and construct the segment CI. Because ∠CBI

is a right angle, (CI)2 = (CB)2 + (BI)2 by [1.47]. It follows that (CI)2 > (CB)2,

and so CI > CB. By [3.2], I lies outside of #C. Similarly, every other point on
←→
BI

except B lies outside of the #C. Hence,
←→
BI intersects touches #C at B only.

Claim 2: BH cuts #C.

Construct CG ⊥ BH . It follows that (BC)2 = (CG)2 + (GB)2. Therefore (BC)2 >

(CG)2, and so BC > CG. By [3.2], G must lie within #C, and consequently if BG

is extended it must also intersect #C at H and therefore cut it.

This completes the proof.
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Exercises.

1. If two circles are concentric, all chords of the larger circle which touch the smaller

circle are equal in length. [See the final chapter for a solution.]

2. Construct a parallel to a given line which touches a given circle.

3. Construct a perpendicular to a given line which touches a given circle.

4. Construct a circle having its center at a given point

(a) and touches a given line;

(b) and touches a given circle.

How many solutions exist in this case?

5. Construct a circle of given radius that touches two given lines. How many

solutions exist?

6. Find the locus of the centers of a system of circles touching two given lines.

7. Construct a circle of given radius that touches a given circle and a given line or

that touches two given circles.
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Proposition 3.17. TANGENTS ON CIRCLES I.

It is possible to construct a tangent of a given circle from a given point outside of

the circle.

Proof. Construct #O and P such that P is outside of #O. We wish to construct

tangent BP to #O.

Figure 3.2.21: [3.17] (α), (β)

Construct radius OC and extend OC to OP . With O as center and OP as radius,

construct the circle #O1. Also construct CA ⊥ OP . Construct OA, intersecting #O

at B, and construct BP . We claim that BP is the required tangent to #O.

Since O is the center of #O and #O1, we find that OA = OP and OC = OB.

Consider △AOC and △POB: OA = OP , OC = OB, and each shares ∠BOC =

∠AOC = ∠POB. By [1.4],△AOC ∼= △POB, and so ∠OCA = ∠OBP .

But ∠OCA is a right angle by construction; therefore ∠OBP is a right angle, and

by [3.16], BP touches the circle #O at B. By definition BP is a tangent of #O at

point B, which proves our claim.
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Corollary. 3.17.1. If AC is extended to AE and OE is constructed, then #O is cut

at D. Construct DP ; DP is a second tangent of #O at P .
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Exercises.

1. Prove that tangents PB and PD in [3.17] are equal in length because the square

of each is equal to the square of OP minus the square of the radius.

2. If a quadrilateral is circumscribed to a circle, the sum of the lengths of one pair

of opposite sides is equal to the sum of the lengths of the other pair.

3. If a parallelogram is circumscribed to a circle, it must be a rhombus, and so its

diagonals intersect at the center.

4. If BD is constructed and OP is intersected at F , then OP ⊥ BD.

5. The locus of the intersection of two equal tangents to two circles is a segment

(called the radical axis of the two circles).

6. Find a point such that tangents from it to three given circles is equal. (This point

is called the radical center of the three circles.)

7. Prove that the rectangle OF · OP is equal in area to the square of the radius of

#O. (Note: we are locating the inverse points with respect to #O. See the definition

below.)

8. The intercept made on a variable tangent by two fixed tangents stands opposite

a constant angle at the center.

9. Construct a common tangent to two circles. Demonstrate how to construct a

segment cutting two circles so that the intercepted chords are of given lengths.

10. Prove [Cor. 3.17.1].
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Proposition 3.18. TANGENTS ON CIRCLES II.

If a line touches a circle, the segment from the center of the circle to the point of

intersection with the line is perpendicular to the line.

Proof. Construct #O with point C on its circumference, and also construct
←→
CD. We

claim that if
←→
CD touches #O, then OC ⊥ ←→CD.

Figure 3.2.22: [3.18]

Suppose instead that another segment OG is constructed from the center such that

OG ⊥ ←→CD where OG cuts the circle at F . Because the angle ∠OGC is right by

hypothesis, the angle ∠OCG must be acute [1.17]. By [1.19], OC > OG. But OG =

OF ⊕ FG and OC = OF , and so OC < OG, a contradiction. Hence OC ⊥ ←→CD.

Alternatively:

Proof. Since the perpendicular must be the shortest segment from O to
←→
CD and

OC is evidently the shortest line, it follows that OC ⊥ ←→CD.
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Proposition 3.19. TANGENTS ON CIRCLES III.

If a line is a tangent to a circle, then the perpendicular constructed from its point

of intersection passes through the center of the circle.

Proof. Suppose
←→
AB is tangent to #CDA. We claim that if

←→
AB ⊥ AC, then AC

contains the center of #CDA.

Figure 3.2.23: [3.19]

Suppose otherwise: let O be the center of #CDA and construct AO. Notice that

∠OAC > 0. Because
←→
AB touches #CDA and OA is constructed from the center to

the point of intersection, OA ⊥ ←→AB by [3.18]. Since
←→
AB ⊥ AC by hypothesis, ∠OAB

and ∠CAB are right angles.

It follows that ∠CAB = ∠OAB and ∠CAB = ∠OAB + ∠OAC; hence ∠OAC = 0

and ∠OAC > 0, a contradiction. Therefore, the center lies on AC.

Corollary. 3.19.1. If a number of circles touch the same line at the same point, the

locus of their centers is the perpendicular to the line at the point.

Corollary. 3.19.2. Suppose we have a circle and any two of the following properties:

(a) a tangent to a circumference;

(b) a segment, ray, or straight line constructed from the center of the circle to the

point of intersection;

(c) right angles at the point of intersection.

Then by [3.16], [3.18], [3.19], and the Rule of Symmetry, the remaining property

follows. If we have (a) and (c), then it may be necessary to extend a given segment or

a ray to the center of the circle: these are limiting cases of [3.1, Cor. 1] and [3.3].
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Proposition 3.20. ANGLES AT THE CENTER OF A CIRCLE AND ON THE

CIRCUMFERENCE.

The angle at the center of a circle is double the angle at the circumference when

each stands on the same arc of the circumference.

Proof. Construct #E with EB as radius, and construct ∠BEC and ∠BAC where A,

C, and D are points on the circumference of #E. We claim that ∠BEC = 2·∠BAC =

2 · ∠BDC.

Figure 3.2.24: [3.20]

Construct AEF , and consider △EAB: since EA = EB, by [1.6] ∠EAB = ∠EBA

and therefore ∠EAB + ∠EBA = 2 · ∠EAB. Since ∠BEF = ∠EAB + ∠EBA by

[1.32], ∠BEF = 2 · ∠EAB. Similarly in △EAC, ∠FEC = 2 · ∠EAC. It follows that

∠BEC = ∠BEF + ∠FEC = 2 · (∠EAB + ∠EAC) = 2 · ∠BAC

Now construct GD, BD, and CD. By an argument similar to the above, we can

prove that ∠GEC = 2 · ∠EDC and ∠GEB = 2 · ∠EDB. Since ∠BEC = ∠GEC −
∠GEB, we find that

∠BEC = 2 · (∠EDC − ∠EDB) = 2 · ∠BDC

which completes the proof.

Corollary. 3.20.1. The angle in a semicircle is a right angle.
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Proposition 3.21. ANGLES ON CHORDS.

In a circle, angles standing on the same arc are equal in measure to each other.

Proof. Construct #E, and also construct ∠BAC and ∠BDC on the same arc BFC.

We claim that ∠BAC = ∠BDC.

Figure 3.2.25: [3.21]

By [3.20], ∠BEC = 2 · ∠BAC = 2 · ∠BDC, or ∠BAC = ∠BDC. This proves our

claim.

Corollary. 3.21.1. If two triangles△ACB, △ADB stand on the same base AB and

have equal vertical angles on the same side of it, then the four points A, C, D, B are

concyclic.

Corollary. 3.21.2. If A, B are two fixed points and if C varies its position in such

a way that the angle ∠ACB retains the same value throughout, the locus of C is a

circle. (Or: given the base of a triangle and the vertical angle, the locus of the vertex

is a circle).

Exercises.

1. Given the base of a triangle and the vertical angle, find the locus

(a) of the intersection of its perpendiculars;

(b) of the intersection of the internal bisectors of its base angles;

(c) of the intersection of the external bisectors of the base angles;
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(d) of the intersection of the external bisector of one base angle and the internal

bisector of the other.

2. If the sum of the squares of two segments is given, prove that their sum is a

maximum when the segments are equal in length.

3. Of all triangles having the same base and vertical angle, prove that the sum of

the sides of an isosceles triangle is a maximum.

4. Of all triangles inscribed in a circle, the equilateral triangle has the maximum

perimeter.

5. Of all concyclic figures having a given number of sides, the area is a maximum

when the sides are equal.

6. Prove [Cor. 3.20.1].

7. Prove [Cor. 3.21.1].

8. Prove [Cor. 3.21.2].
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Proposition 3.22. QUADRILATERALS INSCRIBED INSIDE CIRCLES.

The sum of the opposite angles of a quadrilateral inscribed in a circle equals two

right angles.

Proof. Construct quadrilateral ABCD inscribed in #E. We claim that the sum of

the opposite angles of ABCD equals two right angles.

Figure 3.2.26: [3.22]

Let π radians = two right angles, and construct diameters AC and BD. Since

∠ABD and ∠ACD stand on arc AD, ∠ABD = ∠ACD by [3.21]. Similarly, ∠DBC =

∠DAC because they stand on arc DC. Hence

∠ABC = ∠ABD + ∠DBC

= ∠ACD + ∠DAC

From this, we obtain

∠ABC + ∠CDA = ∠ACD + ∠DAC + ∠CDA

where the right-hand side of the equality is the sum of the interior angles of△ACD.

Since this sum equals π radians by [1.32], ∠ABC + ∠CDA = π radians.

Similarly, ∠DAB+∠BCD = π radians (mutatis mutandis), which proves our claim.

Corollary. 3.22.1. If the sum of two opposite angles of a quadrilateral are equal to

two right angles, then a circle may be inscribed about the quadrilateral.

Corollary. 3.22.2. If a parallelogram is inscribed in a circle, then it is a rectangle.



CHAPTER 3. CIRCLES 178

Exercises.

1. If the opposite angles of a quadrilateral are supplemental, it is cyclic.

2. A segment which makes equal angles with one pair of opposite sides of a cyclic

quadrilateral makes equal angles with the remaining pair and with the diagonals.

3. If two opposite sides of a cyclic quadrilateral are extended to meet and a perpen-

dicular falls on the bisector of the angle between them from the point of intersection

of the diagonals, this perpendicular will bisect the angle between the diagonals.

4. If two pairs of opposite sides of a cyclic hexagon are respectively parallel to each

other, the remaining pair of sides are also parallel.

5. If two circles intersect at the points A, B, and any two segments ACD, BFE are

constructed through A and B, cutting one of the circles in the points C, E and the

other in the points D, F , then CE ‖ DF .

6. If equilateral triangles are constructed on the sides of any triangle, the segments

joining the vertices of the original triangle to the opposite vertices of the equilateral

triangles are concurrent.

7. In the same case as #7, prove that the centers of the circles constructed about

the equilateral triangles form another equilateral triangle.

8. If a quadrilateral is constructed about a circle, the angles at the center standing

opposite the opposite sides are supplemental.

9. If a tangent which varies in position meets two parallel tangents, it stands

opposite a right angle at the center.

10. If a hexagon is circumscribed about a circle, the sum of the angles standing

opposite the center from any three alternate sides is equal to two right angles.

11. Prove [Cor. 3.22.1].

12. After completing #11, rewrite the results of [3.22] and [Cor. 3.22.1] into one

proposition.

13. Prove [Cor. 3.22.2].
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Proposition 3.23. UNIQUENESS OF ARCS.

Two similar and unequal arcs cannot be constructed on the same side of the same

chord.

Proof. Construct AB. Suppose instead that two similar and unequal arcs ACB and

ADB are constructed on the same side of AB. Construct ADC, CB, and DB.

Figure 3.2.27: [3.23]

Since arc ACB is similar to arc ADB, ∠ADB = ∠ACB by [Def. 3.10]; this contra-

dicts [1.16] and proves our claim.

Proposition 3.24. EQUALITY OF SIMILAR ARCS.

Similar arcs standing on equal chords are equal in length.

Proof. Construct AB = CD and arcs AEB and CFD such that AEB ∼ CFD. We

claim AEB = CFD.

Figure 3.2.28: [3.24]

Since AB = CD, if AB is applied to CD such that the point A coincides with C

and the point B coincides with D, then the chord AB coincides with CD. Because

AEB ∼ CFD, they must coincide at every point [3.23]. This proves our claim.

Corollary. 3.24.1. Since the chords are equal in length, they are congruent; there-

fore the arcs, being similar, are also congruent.
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Proposition 3.25. CONSTRUCTION OF A CIRCLE FROM AN ARC.

Given an arc of a circle, it is possible to construct the circle to which the arc belongs.

Proof. Given an arc (ABC) of #F , we wish to construct #F .

Figure 3.2.29: [3.25]

Take any three points A, B, C on arc ABC. Construct AB, BC. Bisect AB at D and

BC at E. Construct DF ⊥ AB and EF ⊥ BC. We claim that F , the intersection of

DF and EF , is the center of the required circle.

Because DF bisects and is perpendicular to AB, the center of the circle of which

ABC is an arc lies on DF [3.1, Cor. 1]. Similarly, the center of the circle of which

ABC is an arc lies on EF .

Since F is the intersection of DF and EF , our proof is complete.
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Proposition 3.26. ANGLES AND ARCS I.

In equal circles, equal angles at the centers or on the circumferences stand upon

arcs of equal length.

Proof. Construct #G and #H with equal radii and with equal angles at the centers:

∠BGC in #G and ∠EHF in #H . Also construct equal angles ∠BAC in #G where

A is on the circumference and ∠EDF in #H where D is on the circumference. We

claim that arc BKC = arc ELF .

Figure 3.2.30: [3.26]

Construct BC and EF and consider△BGC and△EHF : BG = EH , GC = HF , and

∠BGC = ∠EHF . By [1.4], △BGC ∼= △EHF , and so BC = EF .

By [3.20], ∠BAC = 1
2 · ∠BGC and ∠EDF = 1

2 · ∠EHF . Since ∠BGC = ∠EHF by

hypothesis, ∠BAC = ∠EDF . By [Def. 3.10], arc BAC ∼ arc EDF . And by [3.24],

arc BAC = arc EDF .

By [Def. 3.1], #G and #H are equal in measure, and so arc BKC = arc ELF which

proves our claim.

Corollary. 3.26.1. If the opposite angles of a cyclic quadrilateral are equal, one of

its diagonals must be a diameter of the circumscribed circle.

Corollary. 3.26.2. Parallel chords in a circle intercept equal arcs.

Corollary. 3.26.3. If two chords intersect at any point within a circle, the sum of

the opposite arcs which they intercept is equal to the arc which parallel chords inter-

secting on the circumference intercept. If two chords intersect at any point outside

a circle, the difference of the arcs they intercept is equal to the arc which parallel

chords intersecting on the circumference intercept.
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Corollary. 3.26.4. If two chords intersect at right angles, the sum of the opposite

arcs which they intercept on the circle is a semicircle.

Exercises.

1. Prove [Cor. 3.26.1].

2. Prove [Cor. 3.26.2].

3. Prove [Cor. 3.26.3].

4. Prove [Cor. 3.26.4].
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Proposition 3.27. ANGLES AND ARCS II.

In equal circles, angles at the centers or at the circumferences which stand on equal

arcs are equal in measure.

Proof. Construct #G and #H with equal radii and construct angles at the centers

(∠AOB, ∠DHE) and at the circumferences (∠ACB, ∠DFE) which stand on equal

arcs (AGB, DKE). We claim that ∠AOB = ∠DHE and ∠ACB = ∠DFE.

Figure 3.2.31: [3.27]

Consider the angles at the centers (∠AOB, ∠DHE). Suppose that ∠AOB > ∠DHE

and that ∠AOL = ∠DHE. Since the circles are equal in all respects, arc AGL =

arc DKE [3.26]. Notice that arc LB > 0.

But arc AGB = arc DKE by hypothesis. Hence arc AGB = arc AGL and arc AGB =

arc AGL⊕arc LB where arc LB = 0, a contradiction. A corresponding contradiction

follows if we assume that ∠AOB < ∠DHE. Therefore, ∠AOB = ∠DHE.

Now consider the angles at the circumference. Since 2 · ∠ACB = ∠AOB and 2 ·
∠DFE = ∠DHE by [3.20], ∠ACB = ∠DFE. This completes the proof.
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Proposition 3.28. CHORDS AND ARCS I.

In equal circles, chords of equal length divide the circumferences into arcs, and

these arcs are respectively equal.

Proof. Construct equal circles (#O, #H) with equal chords (AB, DE). We claim

that AB and DE divide the circumferences of #O and #H , respectively, so that arc

AGB = arc DKE and arc ACB = arc DFE.

Figure 3.2.32: [3.28]

If the equal chords are diameters, all arcs are equal semicircles, which completes

the proof.

Otherwise, construct AO, OB, DH , and HE. Because the circles are equal in all

respects, their radii are equal [Def. 3.1].

Consider △AOB and △DHE: AO = DH , OB = HE, and AB = DE. By [1.8],

△AOB ∼= △DHE; hence ∠AOB = ∠DHE, and so arc AGB = arc DKE [3.26].

Since the whole circumference AGBC is equal in measure to the whole circumfer-

ence DKEF , it follows that arc ACB = arc DFE. This proves our claim.
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Proposition 3.29. CHORDS AND ARCS II.

In equal circles, equal arcs stand opposite equal chords.

Proof. Construct equal circles #O and #H where arc AGB = arc DKE. We claim

that AB = DE.

Figure 3.2.33: [3.29]

Construct AO, OB, DH , and HE. Because the circles are equal in measure, the

angles ∠AOB and ∠DHE at the centers which stand on the equal arcs AGB and

DKE are themselves equal [3.27].

Consider △AOB and △DHE: AO = DH , OB = HE, and ∠AOB = ∠DHE. By

[1.4], △AOB ∼= △DHE. Therefore, AB = DE, which proves our claim.

Corollary. 3.29.1. Propositions [3.26]-[3.29] are related in the following sense: in

circles with equal radius,

1. In [3.26], equal angles imply equal arcs.

2. In [3.27], equal arcs imply equal angles. Together, [3.26] and [3.27] state that

equal angles and equal arcs are equivalent.

3. In [3.28], equal chords imply equal arcs.

4. In [3.29], equal arcs imply equal chords. Together, [3.28] and [3.29] state that

equal chords and equal arcs are equivalent.

Or: in circles with equal radius, equal chords ⇐⇒ equal angles ⇐⇒ angles stand

on equal arcs.

Remark. Since the two circles in the four last propositions are equal, they are con-

gruent figures, and the truth of the propositions is made evident by superposition.
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Proposition 3.30. BISECTING AN ARC.

Proof. We wish to bisect the given arc ACB.

Figure 3.2.34: [3.30]

Construct the chord AB and bisect it at D. Construct DC ⊥ AB, intersecting the

arc at C. We claim that arc ACB is bisected at C.

Construct AC and BC, and consider △ADC and △BDC: AD = DB, they share

side DC, and ∠ADC = ∠BDC. By [1.4], △ADC ∼= △BDC, and so AC = BC.

By [3.28], arc AC = arc BC; since arc ACB = arc AC⊕arc BC, arc ACB is bisected

at C.

Exercises.

1. Suppose that ABCD is a semicircle with diameter AD and a chord BC. Extend

BC to
−−→
BC and AD to

−−→
AD, and suppose each ray intersects at E. Prove that if CE is

equal in length to the radius of ABCD, then arc AB = 3 ·CD. [See the final chapter

for a solution.]

2. The internal and the external bisectors of the vertical angle of a triangle in-

scribed in a circle meet the circumference again at points equidistant from the

endpoints of the base.

3. If A is one of the points of intersection of two given circles and two chords

ACD, ACD are constructed, cutting the circles in the points C, D, C′, and D′,

then the triangles △BCD, △BC′D′ formed by joining these to the second point B

of intersection of the circles are equiangular.

4. If the vertical angle ∠ACB of a triangle inscribed in a circle is bisected by a

line
←→
CD which meets the circle again at D, and from D perpendiculars DE, DF are

constructed to the sides, one of which is extended, prove that EA = BF and hence

that CE = 1
2 (AC +BC).
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Proposition 3.31. THALES’ THEOREM.

In a circle,

(1) if a circle is divided into two semicircles, then the angle contained in either

arc is a right angle;

(2) if a circle is divided into two unequal arcs and an angle is contained in the

larger of the two arcs, then the angle contained in that arc is an acute angle;

(3) if a circle is divided into two unequal arcs and an angle is contained in the

smaller of the two arcs, then the angle contained in that arc is an obtuse angle.

Proof. Construct #O, diameter AB, and points C, D, and E such that C and D are

on one semicircle and E is on the other semicircle. We claim that:

(1) ∠ACB in arc ACB is a right angle;

(2) ∠ACE in arc ACE is an acute angle.

(3) ∠ACD in arc ACD is an obtuse angle.

Figure 3.2.35: [3.31]

Claim 1: ∠ACB in arc ACB is a right angle;

Construct radius OC and extend AC to
−→
AC. Consider △AOC: since AO = OC,

∠ACO = ∠OAC. Similarly in △OCB, ∠OCB = ∠CBO. Hence,

∠ACB = ∠ACO + ∠OCB

= ∠OAC + ∠CBO

= ∠BAC + ∠CBA

Consider △ABC: by [1.32], ∠FCB = ∠BAC + ∠CBA. Hence, ∠ACB = ∠FCB

where each are adjacent angles; thus, ∠ACB is a right angle.
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Claim 2: ∠ACE in arc ACE is an acute angle.

Construct CE. Since ∠ACB = ∠ACE + ∠BCE, ∠ACB > ∠ACE. But we have

proven that ∠ACB is a right angle; thus, ∠ACE is acute.

Figure 3.2.36: [3.31]

Claim 3: ∠ACD in arc ACD is an obtuse angle;

Construct CD. Since ∠ACD = ∠ACB +∠BCD, ∠ACD > ∠ACB. Since ∠ACB is a

right angle, ∠ACE is obtuse.

Corollary. 3.31.1. If a parallelogram is inscribed in a circle, its diagonals intersect

at the center of the circle.

Corollary. 3.31.2. [3.31] holds if arcs are replaced by chords of appropriate

length, mutatis mutandis.
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Proposition 3.32. TANGENT-CHORD ANGLES RELATED TO ANGLES ON THE

CIRCUMFERENCE WHICH STAND ON THE CHORD.

If a line is tangent to a circle, and from the point of intersection a chord is con-

structed cutting the circle, the angles made by this chord with the tangent are

respectively equal to the angles in the alternate arcs of the circle.

Proof. Construct
←→
EF such that

←→
EF is tangent to #ABC at A. Construct chord AC;

notice that AC cuts #ABC. We claim that the angles made by this chord with the

tangent are respectively equal to the angles in the alternate arcs of the circle. We

shall prove this in two cases.

Figure 3.2.37: [3.32](α)

Case 1: We wish to show that ∠ABC = ∠FAC in figure (α).

Construct AB such that AB ⊥ ←→EF . Also construct BC. Because
←→
EF is tangent to

#ABC, AB is clearly constructed at A, and AB ⊥ ←→EF , by [3.19] we find that AB

passes through the center of #ABC. By [3.31], ∠ACB is a right angle; since△ABC

is a triangle, the sum of the two remaining angles, ∠ABC+∠CAB, equals one right

angle.

Since ∠BAF is a right angle by construction, ∠ABC + ∠CAB = ∠BAF . From this

we obtain ∠ABC = ∠BAF − ∠CAB = ∠FAC, which proves the first case.
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Case 2: We wish to prove that ∠CAE = ∠CDA in figure (β).

Figure 3.2.38: [3.32](β)

Take any point D on the arc AC. Since the quadrilateral ABCD is inscribed in a

circle, the sum of the opposite angles ∠ABC+∠CDA equals two right angles [3.22]

and is therefore equal to the sum ∠FAC + ∠CAE. However, ∠ABC = ∠FAC by

case 1. Hence, ∠CDA = ∠CAE.

This proves our second and last case, completing the proof.

Exercises.

1. If two circles touch, any line constructed through the point of intersection will

cut off similar segments.

2. If two circles touch and any two lines are constructed through the point of inter-

section (cutting both circles again), the chord connecting their points of intersection

with one circle is parallel to the chord connecting their points of intersection with

the other circle.

3. Suppose that ACB is an arc of a circle,
←→
CE a tangent at C (meeting the chord

AB extended to E), and AD ⊥ AB where D is a point of AB. Prove that if DE be

bisected at C then the arc AC = 2 · CB.

4. If two circles touch at a point A and if ABC is a chord through A, meeting the

circles at points B and C, prove that the tangents at B and C are parallel to each

other, and that when one circle is within the other, the tangent at B meets the outer

circle at two points equidistant from C.

5. If two circles touch externally, their common tangent at either side stands oppo-

site a right angle at the point of intersection, and its square is equal to the rectangle

contained by their diameters.
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Proposition 3.33. CONSTRUCTING A SEGMENT OF A CIRCLE ON A LINE

WHERE THE SEGMENT CONTAINS AN ANGLE EQUAL TO A GIVEN ANGLE.

Proof. Construct
←→
AB and ∠HGF . On

←→
AB, we wish to construct a segment of a circle

which contains an angle equal to ∠HGF .

Figure 3.2.39: [3.33]

If ∠HGF is a right angle, construct a semicircle on
←→
AB as our segment. By [3.31],

a semicircle contains a right angle.

Otherwise, construct ∠BAE = ∠HGF . Construct AC ⊥ AE and BC ⊥ AB. Let AC

be the diameter of #ABC, which we claim is the required circle.

Notice that #ABC has B on its circumference because ∠ABC is a right angle [3.31].

Also, #ABC touches AE because ∠CAE is a right angle [3.16]. It follows that

∠BAE = ∠ACB. Since ∠BAE = ∠HGF by construction, ∠HGF = ∠ACB.

Thus on
←→
AB, we have constructed a segment of #ABC which contains an angle

equal to ∠HGF .

Exercises.

1. Construct a triangle, being given the base, vertical angle, and any of the follow-

ing data:

(a) a perpendicular.

(b) the sum or difference of the sides.

(c) the sum or difference of the squares of the sides.

(d) the side of the inscribed square on the base.
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(e) the median that bisects the base.

2. If lines are constructed from a fixed point to all the points of the circumference

of a given circle, prove that the locus of all their points of bisection is a circle.

3. Given the base and vertical angle of a triangle, find the locus of the midpoint of

the line joining the vertices of equilateral triangles constructed on the sides.

4. In the same case, find the loci of the vertices of a square constructed on one of

the sides.

Proposition 3.34. CONSTRUCTING A SEGMENT OF A CIRCLE WHERE THE

SEGMENT CONTAINS AN ANGLE EQUAL TO A GIVEN ANGLE.

Proof. Construct #ABC and ∠HGF . We wish to construct a segment of #ABC

which contains an angle equal to ∠HGF .

Choose point A on the circumference of #ABC and construct the tangent AD. On

AD, construct ∠DAC = ∠HGF . We claim that segment AC of #ABC is the re-

quired segment.

Figure 3.2.40: [3.34]

Choose any point B on the circumference of #ABC other than from the arc AC.

Construct AB and BC. By [3.32], ∠DAC = ∠ABC. But ∠DAC = ∠HGF by

construction, and so ∠HGF = ∠ABC.

Thus on #ABC, we have constructed a segment of #ABC which contains an angle

equal to ∠HGF .
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Proposition 3.35. AREAS OF RECTANGLES CONSTRUCTED ON CHORDS.

If two chords of a circle intersect at one point within the circle, then the area of the

rectangle contained by the divided segments of the first chord is equal in area to

the rectangle contained by the divided segments of the second chord [Def. 2.4].

Proof. Construct #O with chords AB and CD which intersect at one point. We

claim that the rectangles contained by the divided segments are equal in area and

shall prove this claim in four cases.

Figure 3.2.41: [3.35], case 1

Case 1: if the point of intersection is the center of #O, AO = OB = DO = OC.

Hence, AO ·OB = DO ·OC.

Figure 3.2.42: [3.35], case 2

Case 2: suppose that AB passes through O and that CD does not; also suppose

they intersect at E and that AB ⊥ CD.

Construct OC. Because AB is divided equally at O and unequally at E, by [2.5]

AE · EB + (OE)2 = (OB)2

Since OB = OC,

AE · EB + (OE)2 = (OC)2
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But (OC)2 = (OE)2 + (EC)2 by [1.47], and therefore

AE · EB + (OE)2 = (OE)2 + (EC)2

AE · EB = (EC)2

Figure 3.2.43: [3.35], case 2

Because AB passes through the center and cuts CD, which does not pass through

the center at a right angle, AB bisects CD by [3.3]. So (EC)2 = CE · ED, and

therefore, AE ·EB = CE · ED.

Figure 3.2.44: [3.35], case 3

3. Construct diameter AB of #O which cuts CD such that AB 6⊥ CD.

Construct OC, OD, and OF ⊥ CD [1.11]. Since CD is cut at right angles by OF

where OF passes through O, CD is bisected at F [3.3] and divided unequally at E.

By [2.5], CE · ED + (FE)2 = (FD)2.

Adding (OF )2 to each side of the equality and applying [1.47], we obtain:

CE ·ED + (FE)2 + (OF )2 = (FD)2 + (OF )2

CE ·ED + (OE)2 = (OD)2

CE ·ED + (OE)2 = (OB)2

Again, since AB is bisected at O and divided unequally at E, AE · EB + (OE)2 =

(OB)2 [2.5].
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Figure 3.2.45: [3.35], case 3

It follows that

CE ·ED + (OE)2 = AE ·EB + (OE)2

CE ·ED = AE ·EB

4. Suppose neither chord passes through the center and they intersect at E.

Figure 3.2.46: [3.35], case 4

Through E, construct diameter FG. By case 3, the rectangle FE · EG = AE · EB

and FE · EG = CE · ED. Hence, AE ·EB = CE · ED.

Corollary. 3.35.1. If a chord of a circle is divided at any point within the circle, the

rectangle contained by its segments is equal to the difference between the square of

the radius and the square of the segment constructed from the center to the point of

section.

Corollary. 3.35.2. If the rectangle contained by the segments of one of two inter-

secting segments is equal to the rectangle contained by the segments of the other, the

four endpoints are concyclic.
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Corollary. 3.35.3. If two triangles are equiangular, the rectangle contained by the

non-corresponding sides about any two equal angles are equal.

Figure 3.2.47: [3.35], Cor. 3

Proof. Let△ABO and△DCO be the equiangular triangles, and let them be placed

so that the equal angles at O are vertically opposite and that the non-corresponding

sides, AO and CO, form segment CA. Then the non-corresponding sides BO, OD

form segment BD. Since ∠ABD = ∠ACD, the points A, B, C, D are concyclic [3.21,

Cor. 1]. Hence, AO ·OC = BO · OD [3.35].

Exercises.

1. In any triangle, the rectangle contained by two sides is equal in area to the

rectangle contained by the perpendicular on the third side and the diameter of the

circumscribed circle.

2. The rectangle contained by the chord of an arc and the chord of its supplement

is equal to the rectangle contained by the radius and the chord of twice the supple-

ment.

3. If the base of a triangle is given with the sum of the sides, the rectangle contained

by the perpendiculars from the endpoints of the base on the external bisector of the

vertical angle is given.

4. If the base and the difference of the sides is given, the rectangle contained by

the perpendiculars from the endpoints of the base on the internal bisector is given.

5. Through one of the points of intersection of two circles, construct a secant so that

the rectangle contained by the intercepted chords may be given, or is a maximum.

6. If we join AF , BF , we find that the rectangle AF · FB is equal in area to the

rectangle contained by the radius and 2 · FI; that is, it is equal to the rectangle

contained by the radius and the sum of CF and BG. Hence, if the sum of two arcs

of a circle is greater than a semicircle, the rectangle contained by their chords is

equal to the rectangle contained by the radius and the sum of the chords of the

supplements of their sum and their difference.
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7. Through a given point, construct a transversal cutting two given lines so that

the rectangle contained by the segments intercepted between it and the line may

be given.

8. If the sum of two arcs AC, CB of a circle is less than a semicircle, the rectangle

AC ·CB contained by their chords is equal in area to the rectangle contained by the

radius and the excess of the chord of the supplement of their difference above the

chord of the supplement of their sum.
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Proposition 3.36. THE AREA OF RECTANGLES CONSTRUCTED ON A TAN-

GENT AND A POINT OUTSIDE THE CIRCLE I.

Suppose we are given a circle and a point outside of the circle. If two segments

are constructed from the point to the circle, the first of which intersects the circle

at two points and the second of which is tangent to the circle, then the area of the

rectangle contained by the subsegments of the first segment is equal to the square

on the tangent.

Proof. Construct #O and point P outside of #O. Then construct PT tangent to #O

at T ; also construct PA such that PA intersects the circle at B and again at A. We

claim that AP ·BP = (PT )2. We prove this claim in two cases.

Figure 3.2.48: [3.36], case 1

Case 1: PA passes through O.

Construct OT . Because AB is bisected at O and divided externally at P , the rect-

angle AP ·BP + (OB)2 = (OP )2 [2.6].

Since PT is a tangent to #O and OT is constructed from the center to the point

of intersection, the angle ∠OTP is right [3.18]. Hence (OT )2 + (PT )2 = (OP )2 by

[1.47].

Therefore AP ·BP +(OB)2 = (OT )2+(PT )2. But (OB)2 = (OT )2, and so AP ·BP =

(PT )2.
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Case 2: PA does not pass through O.

Figure 3.2.49: [3.36], case 2

Construct the perpendicular OC ⊥ AB; also construct OT , OB, OP . Because OC,

a segment through the center, cuts AB, which does not pass through the center at

right angles, OC bisects AB [3.3].

Since AB is bisected at C and divided externally at P , we find that AP · BP +

(CB)2 = (CP )2 [2.6]. Adding (OC)2 to each side, we obtain:

AP · BP + (CB)2 + (OC)2 = (CP )2 + (OC)2

AP ·BP + (OB)2 = (OP )2

We also have that (OT )2 + (PT )2 = (OP )2, from which it follows that

AP · BP + (OB)2 = (OT )2 + (PT )2

Since OB = OT , (OB)2 = (OT )2, and so AP · BP = (PT )2.

Remark. The two propositions [3.35] and [3.36] may be written as one statement:

the rectangle AP · BP contained by the segments of any chord of a given circle

passing through a fixed point P , either within or outside of the circle, is constant.

Proof. Suppose O is the center the circle, and construct OA, OB, OP . Notice that

△OAB is an isosceles triangle, and OP is a segment constructed from its vertex to

a point P in the base or the extended base.

It follows that the rectangle AP ·BP is equal to the difference of the squares of OB

and OP ; therefore, it is constant.

Corollary. 3.36.1. If two segments AB, CD are extended to meet at P , and if the

rectangle AP · BP = CP · DP , then the points A, B, C, D are concyclic (compare

[3.35, Cor. 2]).
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Corollary. 3.36.2. Tangents to two circles from any point in their common chord

are equal (compare [3.17, #6]).

Corollary. 3.36.3. The common chords of any three intersecting circles are concur-

rent (compare [3.17, #7]).

Exercises.

1. If the segment AD is constructed from the vertex A of △ABC which then in-

tersects CB extended to D and creates the angle ∠BAD = ∠ACB, prove that

DB ·DC = (DA)2.

2. Prove [Cor. 3.36.1].
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Proposition 3.37. THE AREA OF RECTANGLES CONSTRUCTED ON A TAN-

GENT AND A POINT OUTSIDE THE CIRCLE II.

Suppose we are given a circle and a point outside of the circle. If two segments are

constructed from the point to the circle, the first of which intersects the circle at

two points, and the area of the rectangle contained by the subsegments of the first

segment is equal to the square on the second segment, then the second segment is

tangent to the circle.

Proof. If the rectangle (AP · BP ) contained by the segments of a secant and con-

structed from any point (P ) outside of the circle (#O) is equal in area to the square

on the segment (PT ) constructed from the same point to meet the circle, we claim

that the segment which meets the circle is a tangent to that circle.

Figure 3.2.50: [3.37]

From P , construct PQ touching #O [3.17]. Construct OP , OQ, OT . By hypothesis,

AP · BP = (PT )2; by [3.36], AP · BP = (PQ)2. Hence (PT )2 = (PQ)2, and so

PT = PQ.

Consider the triangles △OTP and △OQP : each have OT = OQ, TP = QP , and

they share base OP in common. By [1.8],△OTP ∼= △OQP , and so ∠OTP = ∠OQP .

But ∠OQP is a right angle since PQ is a tangent [3.38]; hence ∠OTP is right, and

therefore PT is a tangent to #O [3.16].

Corollary. 3.37.1. Suppose we are given a circle and a point outside of the circle

where two segments are constructed from the point to the circle, the first of which

intersects the circle at two points. Then the second segment is tangent to the circle

if and only if the area of the rectangle contained by the subsegments of the first

segment is equal to the square on the tangent.
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Exercises.

1. Construct a circle passing through two given points and fulfilling either of the

following conditions:

(a) touching a given line;

(b) touching a given circle.

2. Construct a circle through a given point and touching two given lines; or touching

a given line and a given circle.

3. Construct a circle passing through a given point having its center on a given line

and touching a given circle.

4. Construct a circle through two given points and intercepting a given arc on a

given circle.

5. If A, B, C, D are four collinear points and EF is a common tangent to the cir-

cles constructed upon AB, CD as diameters, then prove that the triangles △AEB,

△CFD are equiangular.

6. The diameter of the circle inscribed in a right-angled triangle is equal to half the

sum of the diameters of the circles touching the hypotenuse, the perpendicular from

the right angle of the hypotenuse, and the circle constructed about the right-angled

triangle.

Exam questions for chapter 3.

1. What is the subject-matter of chapter 3?

2. Define equal circles.

3. Define a chord.

4. When does a secant become a tangent?

5. What is the difference between an arc and a sector?

6. What is meant by an angle in a segment?

7. If an arc of a circle is one-sixth of the whole circumference, what is the magnitude

of the angle in it?

8. What are segments?

9. What is meant by an angle standing on a segment?

10. What are concyclic points?

11. What is a cyclic quadrilateral?

12. How many intersections can a line and a circle have?

13. How many points of intersection can two circles have?

14. Why is it that if two circles touch they cannot have any other common point?
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15. State a proposition that encompasses [3.11] and [3.12].

16. What proposition is #16 a limiting case of?

17. What is the modern definition of an angle?

18. How does the modern definition of an angle differ from Euclid’s?

19. State the relations between [3.16], [3.18] and [3.19].

20. What propositions are [3.16], [3.18] and [3.19] limiting cases of?

21. How many common tangents can two circles have?

22. What is the magnitude of the rectangle of the segments of a chord constructed

through a point 3.65m distant from the center of a circle whose radius is 4.25m?

23. The radii of two circles are 4.25 and 1.75 ft respectively, and the distance

between their centers 6.5 ft. Find the lengths of their direct and their transverse

common tangents.

24. If a point is h feet outside the circumference of a circle whose diameter is 7920

miles, prove that the length of the tangent constructed from it to the circle is
√

3h/2

miles.

25. Two parallel chords of a circle are 12 inches and 16 inches respectively and the

distance between them is 2 inches. Find the length of the diameter.

26. What is the locus of the centers of all circles touching a given circle in a given

point?

27. What is the condition that must be fulfilled that four points may be concyclic?

28. If the angle in a segment of a circle equals 1.5 right angles, what part of the

whole circumference is it?

29. Mention the converse propositions of chapter 3 which are proved directly.

30. What is the locus of the midpoints of equal chords in a circle?

31. The radii of two circles are 6 and 8, and the distance between their centers is

10. Find the length of their common chord.

32. If a figure of any even number of sides is inscribed in a circle, prove that the

sum of one set of alternate angles is equal to the sum of the remaining angles.

Chapter 3 exercises.

1. If two chords of a circle intersect at right angles, the sum of the squares on their

segments is equal to the square on the diameter.

2. If a chord of a given circle stands opposite a right angle at a fixed point, the

rectangle of the perpendiculars on it from the fixed point and from the center of the

given circle is constant. Also, the sum of the squares of perpendiculars on it from

two other fixed points (which may be found) is constant.
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3. If through either of the points of intersection of two equal circles any line is

constructed meeting them again in two points, these points are equally distant

from the other intersection of the circles.

4. Construct a tangent to a given circle so that the triangle formed by it and two

fixed tangents to the circle shall be:

(a) a maximum;

(b) a minimum.

5. If through the points of intersection A, B of two circles any two segments ACD,

BEF are constructed parallel to each other which meet the circles again at C, D,

E, F , then we find that CD = EF .

6. In every triangle, the bisector of the greatest angle is the least of the three

bisectors of the angles.

7. The circles whose diameters are the four sides of any cyclic quadrilateral inter-

sect again in four concyclic points.

8. The four vertices of a cyclic quadrilateral determine four triangles whose ortho-

centers (the intersections of their perpendiculars) form an equal quadrilateral.

9. If through one of the points of intersection of two circles we construct two com-

mon chords, the segments joining the endpoints of these chords make a given angle

with each other.

10. The square on the perpendicular from any point in the circumference of a circle

on the chord of contact of two tangents is equal to the rectangle of the perpendicu-

lars from the same point on the tangents.

11. Find a point on the circumference of a given circle such that the sum of the

squares on whose distances from two given points is either a maximum or a mini-

mum.

12. Four circles are constructed on the sides of a quadrilateral as diameters. Prove

that the common chord of any two on adjacent sides is parallel to the common chord

of the remaining two.

13. The rectangle contained by the perpendiculars from any point in a circle on the

diagonals of an inscribed quadrilateral is equal to the rectangle contained by the

perpendiculars from the same point on either pair of opposite sides.

14. The rectangle contained by the sides of a triangle is greater than the square

on the internal bisector of the vertical angle by the rectangle contained by the

segments of the base.

15. If through A, one of the points of intersection of two circles, we construct any

line
←−−→
ABC which cuts the circles again at B and C, the tangents at B and C intersect

at a given angle.

16. If a chord of a given circle passes through a given point, the locus of the inter-

section of tangents at its endpoints is a straight line.
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17. The rectangle contained by the distances of the point where the internal bisec-

tor of the vertical angle meets the base and the point where the perpendicular from

the vertex meets it from the midpoint of the base is equal to the square on half the

difference of the sides.

18. State and prove the proposition analogous to [3.17] for the external bisector of

the vertical angle.

19. The square on the external diagonal of a cyclic quadrilateral is equal to the sum

of the squares on the tangents from its endpoints to the circumscribed circle.

20. If a “movable” circle touches a given circle and a given line, the chord of contact

passes through a given point.

21. If A, B, C are three points in the circumference of a circle, and D, E are the

midpoints of the arcs AB, AC, and if the segment DE intersects the chords AB, AC

at F and G, then AF = AG.

22. If a cyclic quadrilateral is such that a circle can be inscribed in it, the lines

joining the points of contact are perpendicular to each other.

23. If through the point of intersection of the diagonals of a cyclic quadrilateral the

minimum chord is constructed, that point will bisect the part of the chord between

the opposite sides of the quadrilateral.

24. Given the base of a triangle, the vertical angle, and either the internal or the

external bisector at the vertical angle, construct the triangle.

25. If through the midpoint A of a given arc BAC we construct any chord AD,

cutting BC at E, then the rectangle AD · AE is constant.

26. The four circles circumscribing the four triangles formed by any four lines pass

through a common point.

27. If X , Y , Z are any three points on the three sides of a triangle△ABC, the three

circles about the triangles △Y AZ, △ZBX ,△XCY pass through a common point.

28. If the position of the common point in the previous exercise are given, the three

angles of the triangle △XY Z are given, and conversely.

29. Place a given triangle so that its three sides shall pass through three given

points.

30. Place a given triangle so that its three vertices shall lie on three given lines.

31. Construct the largest triangle equiangular to a given one whose sides shall pass

through three given points.

32. Construct the smallest possible triangle equiangular to a given one whose ver-

tices shall lie on three given lines.

33. Construct the largest possible triangle equiangular to a given triangle whose

sides shall touch three given circles.

34. If two sides of a given triangle pass through fixed points, the third touches a

fixed circle.
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35. If two sides of a given triangle touch fixed circles, the third touches a fixed

circle.

36. Construct an equilateral triangle having its vertex at a given point and the

endpoints of its base on a given circle.

37. Construct an equilateral triangle having its vertex at a given point and the

endpoints of its base on two given circles.

38. Place a given triangle so that its three sides touch three given circles.

39. Circumscribe a square about a given quadrilateral.

40. Inscribe a square in a given quadrilateral.

41. Construct the following circles:

(a) orthogonal (cutting at right angles) to a given circle and passing through

two given points;

(b) orthogonal to two others, and passing through a given point;

(c) orthogonal to three others.

42. If from the endpoints of a diameter AB of a semicircle two chords AD, BE are

constructed which meet at C, we find that AC · AD +BC ·BE = (AB)2.

43. If ABCD is a cyclic quadrilateral, and if we construct any circle passing through

the points A and B, another through B and C, a third through C and D, and

a fourth through D and A, then these circles intersect successively at four other

points E, F , G, H , forming another cyclic quadrilateral.

44. If △ABC is an equilateral triangle, what is the locus of the point M , if MA =

MB +MC?

45. In a triangle, given the sum or the difference of two sides and the angle formed

by these sides both in magnitude and position, the locus of the center of the circum-

scribed circle is a straight line.

46. Construct a circle:

(a) through two given points which bisect the circumference of a given circle;

(b) through one given point which bisects the circumference of two given circles.

47. Find the locus of the center of a circle which bisects the circumferences of two

given circles.

48. Construct a circle which bisects the circumferences of three given circles.

49. If CD is a perpendicular from any point C in a semicircle on the diameter AB,

#EFG is a circle touching DB at E, CD at F , and the semicircle at G, then prove

that:

(a) the points A, F , G are collinear;

(b) AC = AE.
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50. Being given an obtuse-angled triangle, construct from the obtuse angle to the

opposite side a segment whose square is equal to the rectangle contained by the

segments into which it divides the opposite side.

51. If O is a point outside a circle whose center is E and two perpendicular segments

passing through O intercept chords AB, CD on the circle, then prove that (AB)2 +

(CD)2 + 4 · (OE)2 = 8 · (R)2 .

52. The sum of the squares on the sides of a triangle is equal to twice the sum

of the rectangles contained by each perpendicular and the portion of it comprised

between the corresponding vertex and the orthocenter. It is also equal to 12 · (R)2

minus the sum of the squares of the distances of the orthocenter from the vertices.

53. If two circles touch at C, if D is any point outside the circles at which their radii

through C stands opposite equal angles, and if DE, DF are tangent from D, prove

that DE ·DF = (CD)2.



Chapter 4

Inscription and

Circumscription

This chapter contains sixteen propositions: four relate to triangles, four to squares,

four to pentagons, and four to other figures.

4.1 Definitions

1. If two polygons are related such that the vertices of one lie on the sides of the

other, then:

(a) the inner figure is said to be inscribed in the outer figure;

(b) the outer figure is said to be circumscribed around or about the inner figure.

2. A polygon is said to be inscribed in a circle when all of its vertices intersect the

circumference. Reciprocally, a polygon is said to be circumscribed about or around

a circle when each of its sides touch the circle.

Figure 4.1.1: The hexagon is inscribed in the circle, and the circle is circumscribed

about the hexagon.

3. A circle is said to be inscribed in a polygon when it touches each side of the

208
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figure. Reciprocally, a circle is said to be circumscribed about or around a polygon

when it passes through each vertex of the figure.

4. A polygon which is both equilateral and equiangular is said to be regular.

5. The bisectors of the three internal angles of a triangle are concurrent. Their

point of intersection is called the incenter of the triangle.

6. The circle from [4.5] is called the circumcircle, its radius the circumradius, and

its center the circumcenter of the triangle.

Figure 4.1.2: [4.5]

Figure 4.1.3: [4.5, #2]

7. In [4.5, #2], construct ◦O such that its radius equals OA·OP = OB·OQ = OC·OR;

this circle is defines as the polar circle of the triangle △ABC.
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8. The nine-points circle is a circle that can be constructed for any given triangle.

It is so named because it passes through nine significant concyclic points defined

from the triangle. These nine points are:

(a) the midpoint of each side of the triangle

(b) the foot of each altitude

(c) the midpoint of the line segment from each vertex of the triangle to the

orthocenter (where the three altitudes meet; these line segments lie on their re-

spective altitudes).1

Figure 4.1.4: [4.5, #4] The nine-points circle

1
https://en.wikipedia.org/wiki/Nine-point_irle

https://en.wikipedia.org/wiki/Nine-point_circle
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4.2 Propositions from Book IV

Proposition 4.1. CONSTRUCTING A CHORD INSIDE A CIRCLE.

Construct an arbitrary circle and an arbitrary segment such that the segment is

less than or equal to the length of the diameter of the circle. It is possible to con-

struct a chord within the circle equal to the length of the segment.

Proof. Construct #ABC with diameter AC and the segment DG ≤ AC. We wish to

construct a chord in #ABC equal in length to DG.

Figure 4.2.1: [4.1]

If DG = AC, then the required chord already exists (the diameter of ◦A).

If DG < AC, cut sub-segment AE from diameter AC such that AE = DG [1.3].

With A as center and AE as radius, construct the circle #A, cutting the circle

#ABC at the points B and F .

Construct AB: we claim that AB is the required chord.

Notice that AB = AE. Since AE = DG by construction, AB = DG. Since AB is a

chord of #ABC, the construction is complete.
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Proposition 4.2. INSCRIBING A TRIANGLE INSIDE A CIRCLE.

In a given circle, it is possible to inscribe a triangle that is equiangular to a given

triangle.

Proof. We wish to inscribe a triangle equiangular to △DEF in #ABC.

Figure 4.2.2: [4.2]

At A on the circumference of #ABC, construct the tangent line
←−−→
GAH . Construct

∠HAC = ∠DEF , ∠GAB = ∠DFE [1.23], and segment BC. We claim that △ABC

fulfills the required conditions.

Since ∠DEF = ∠HAC by construction and ∠HAC = ∠ABC by [3.32], ∠DEF =

∠ABC. Similarly, ∠DFE = ∠ACB. By [1.32], ∠FDE = ∠BAC.

This completes the construction.
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Proposition 4.3. CIRCUMSCRIBING A TRIANGLE ABOUT A CIRCLE.

It is possible to circumscribe a triangle about a circle such that the triangle is

equiangular to a given triangle.

Proof. We wish to to construct a triangle equiangular to △DEF about #O.

Figure 4.2.3: [4.3]

Extend side DE of △DEF to GH , and construct OA. Construct ∠AOB = ∠GEF

and ∠AOC = ∠HDF [1.23]. At the points A, B, and C, construct the tangents LM ,

MN , and NL to #O. We claim that △LMN fulfills the required conditions.

Because AM touches #O at A, ∠OAM is right [3.18]. Similarly, ∠MBO is right; but

the sum of the four angles of the quadrilateral OAMB is equal to four right angles

[1.32, Cor. 3]. Therefore the sum of the two remaining angles ∠AOB + ∠AMB

equals two right angles.

By [1.13], ∠GEF + ∠FED = two right angles, and so ∠AOB + ∠AMB = ∠GEF +

∠FED. But ∠AOB = ∠GEF by construction; hence ∠AMB = ∠FED. Similarly,

∠ALC = ∠EDF . By [1.32], ∠BNC = ∠DFE, and so △LMN is equiangular to

△DEF . This completes the construction.
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Proposition 4.4. INSCRIBING A CIRCLE IN A TRIANGLE.

It is possible to inscribe a circle in a given triangle.

Proof. We wish to inscribe #O in △ABC.

Figure 4.2.4: [4.4]

Bisect angles ∠CAB and ∠ABC of△ABC with AO and BO, respectively. We claim

that O, their point of intersection, is the center of the required circle.

From O construct OD ⊥ CB, OE ⊥ AB, and OF ⊥ AC. Consider the triangles

△OAE and △OAF : ∠OAE = ∠OAF by construction; ∠AEO = ∠AFO since each is

right; each triangle shares side OA. By [1.26], △OAE ∼= △OAF , and so OE = OF .

Similarly, OD = OF , and so OD = OE = OF . As a consequence of [3.9], the circle

constructed with O as center and OD as radius will intersect the points D, E, F .

Since each of the angles ∠ODB, ∠OEA, ∠OFA is right, each segment touches the

respective sides of the triangle △ABC [3.16]. Therefore, the circle #O is inscribed

in the triangle △ABC, which completes the construction.
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Exercises.

1. In [4.4]: if OC is constructed, prove that ∠ACB is bisected. Hence, the existence

of the incenter of a triangle is proven. [See the final chapter for a solution.]

2. If the sides BC, CA, AB of the triangle △ABC are written as a, b, c, and half

the sum of their side-lengths is defined as s, prove that the distances of the vertices

A, B, and C of the triangle from the points of contact of the inscribed circle are

respectively s− a, s− b, s− c.

Figure 4.2.5: [4.4, #3]

3. If the external angles of the triangle △ABC are bisected as in the above Figure,

prove that the three vertices O′, O′′, O′′′ of the triangle formed by the three bisectors

are the centers of three circles, each touching one side externally and the other two

when extended. These three circles are defined as the escribed circles of the triangle

△ABC.

4. Prove that center of the inscribed circle, the center of each escribed circle, and

two of the vertices of the triangle are concyclic. Also, prove that any two of the

escribed centers are concyclic with the corresponding two of the vertices of the tri-

angle.

5. Of the four points O, O′, O′′, O′′′, prove that any one is the orthocenter of the

triangle formed by the remaining three.

6. In the above figure, prove that △BCO′, △CAO′′, and △ABO′′′ are equiangular.

7. Given the base of a triangle, the vertical angle, and the radius of the inscribed

or any of the escribed circles, construct it.
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Proposition 4.5. CIRCUMSCRIBING A CIRCLE ABOUT A TRIANGLE.

It is possible to circumscribe a circle about a given triangle.

Proof. We wish to construct #O about △ABC.

Figure 4.2.6: [4.5]

Bisect sides AC and BC of △ABC at the points E and D, respectively. Construct

DO ⊥ BC and EO ⊥ CA. We claim that O, the point of intersection of the perpen-

dicular segments, is the center of the required circle.

Construct OA, OB, OC, and consider triangles△BDO and△CDO: sides BD = CD

by construction, the triangles share side DO in common, and ∠BDO = ∠CDO

because each is right. By [1.4], △BDO ∼= △CDO, and so BO = OC.

Similarly, AO = OC, and so AO = BO = CO. As a consequence of [3.9], a circle can

be constructed with O as its center and OA as its radius such that the circumference

#O will pass through A, B, and C. Thus #O is circumscribed about the triangle

△ABC.

Corollary. 4.5.1. Since the perpendicular from O to AB bisects AB by [3.3], we see

that the perpendiculars at the midpoints of the sides of a triangle are concurrent.

(See also [Def. 4.7].)
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Exercises.

1. Prove that the three altitudes of a triangle (△ABC) are concurrent. (This proves

the existence of the orthocenter of a circle.) [See the final chapter for a solution.]

2. In the figure below, prove that the three rectangles OA · OP , OB · OQ, OC · OR

are equal in area. (See also [Def. 4.7].)

Figure 4.2.7: [4.5, #2]

3. If the altitudes of a triangle are extended to meet a circumscribed circle, prove

that the intercepts between the orthocenter and the circle are bisected by the sides

of the triangle.

4. Prove that the circumcircle of a triangle is the “nine points circle” of each of the

four triangles formed by joining the centers of the inscribed and escribed circles.

(See [Def. 4.8].)

5. Prove that the radius of the “nine points circle” of a triangle is equal to half its

circumradius. (See [Def. 4.8].)

6. Prove that the distances between the vertices of a triangle and its orthocenter

are respectively the doubles of the perpendiculars from the circumcenter on the

sides.

Remark. The orthocenter, centroid, and circumcenter of any triangle are collinear;

they lie on the Euler line2.

2
https://en.wikipedia.org/wiki/Euler_line

https://en.wikipedia.org/wiki/Euler_line
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Figure 4.2.8: The Euler Line

Proposition 4.6. INSCRIBING A SQUARE IN A CIRCLE.

It is possible to to inscribe a square in a given circle.

Proof. We wish to inscribe the square ⊡ABCD in #O.

Figure 4.2.9: [4.6]

Construct diameters AC and BD such that AC ⊥ BD. Also construct AB, BC, CD,

and DA. We claim that ⊡ABCD is the required square.

Notice that the four angles at O are equal since they are right angles. Hence the

arcs on which they stand are equal [3.26] and the four chords on which they stand

are equal in length [3.29]. Therefore the figure ⊡ABCD is equilateral.

Again, since AC is a diameter, the angle ∠ABC is right [3.31]. Similarly, the re-

maining angles are right. It follows that ⊡ABCD is a square inscribed in #O,

which completes the construction.
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Proposition 4.7. CIRCUMSCRIBING A SQUARE ABOUT A CIRCLE.

It is possible to circumscribe a square about a given circle.

Proof. We wish to construct the square ⊡EHGF about #O.

Figure 4.2.10: [4.7]

Through O construct diameters AC and BD such that AC ⊥ BD, and at the points

A, B, C, and D construct the tangential segments HE = EF = FG = GH . We

claim that ⊡EFGH is the required square.

Since AE touches the circle at A, the angle ∠EAO is right [3.18] and therefore

equal to ∠BOC, which is right by construction. Thus AE ‖ OB and EB ‖ AO.

Since AO = OB (both are radii of ◦O), the figure HDOA is a rhombus. Since the

angle ∠AOB is right, ⊡AOBE is a square.

Similarly, each of the figures ⊡OCFB, ⊡DGCO, and ⊡HDOA is a square. Simi-

larly to the above, ⊡EHGF is also a square circumscribed about #O, which com-

pletes the construction.

Corollary. 4.7.1. The circumscribed square, ⊡EHGF , has double the area of the

inscribed square, ⊡BCDA.

Exercises.

1. Prove [Cor. 4.7.1]. [See the final chapter for a solution.]
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Proposition 4.8. INSCRIBING A CIRCLE IN A SQUARE.

It is possible to inscribe a circle in a given square.

Proof. We wish to inscribe #O in ⊡EHGF .

Figure 4.2.11: [4.8]

Bisect adjacent sides EH and EF at A and B, respectively. Through A and B,

construct AC ⊥ EH and BD ⊥ EF . We claim that O, the point of intersection of

these parallel segments, is the center of the required circle, #O.

Because ⊡EAOB is a parallelogram, its opposite sides are equal; therefore OA =

EB. But EB is half the side of ⊡EHGF , and so OA = half of the side of ⊡EHGF .

This is also true for each of the segments OB, OC, and OD, mutatis mutandis.

Hence

OA = OB = OC = OD

As a consequence of [3.9], O is the center of #O. And since these segments are

perpendicular to the sides of the given square, the circle constructed with O as

center and OA as radius is inscribed in the square. This completes the construction.
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Proposition 4.9. CIRCUMSCRIBING A CIRCLE ABOUT A GIVEN SQUARE.

It is possible to circumscribe a circle about a given square.

Proof. We wish to construct #O about ⊡ABCD.

Figure 4.2.12: [4.9]

Construct perpendicular diagonals AC and BD intersecting at O. We claim that O

is the center of the required circle.

Consider △ABD and △CBD: since ⊡ABCD is a square, DA = AB = BC = CD.

The triangles share side BD. By [1.8], △ABD ∼= △CBD, and so ∠ABD = ∠CBD.

Since ∠ABC = ∠ABD + ∠CBD, ∠ABC is bisected by BD. Similarly, we can prove

that ∠ADC is bisected by BD and that ∠DAB and ∠BCD are bisected by AC.

Since ⊡ABCD is a square, ∠ABC = ∠BCD = ∠CDA = ∠DAB, and so ∠ABO =

∠CBO = ∠BCO = ∠DCO = ∠CDO = ∠ADO = ∠DAO = ∠BAO.

Consider △ABO and △CBO: ∠ABO = ∠CBO by the above, they share side OB,

and AB = BC by the above. By [1.4], △ABO ∼= △CBO. Also notice that ∠BAO =

∠ABO = ∠CBO = ∠BCO, and so each triangle is isosceles. By [1.6], AO = BO =

CO.

As a consequence of [3.9], O is the center of #O with radius = OA which intersects

B, C, and D and is clearly constructed about the square ⊡ABCD. This completes

the construction.
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Proposition 4.10. CONSTRUCTION OF AN ISOSCELES TRIANGLE WITH BASE

ANGLES DOUBLE THE VERTICAL ANGLE.

It is possible to construct an isosceles triangle such that each base angle is double

the vertical angle.

Proof. We wish to construct an isosceles triangle △ABD such that

∠DBA = 2 · ∠DAB = ∠BDA

Figure 4.2.13: [4.10]

Construct AB and divide it at C such that AB ·BC =
(

AC
)2

[2.6].

With A as center and AB as radius, construct #A; on its circumference construct

BD = AC [4.1]. Also construct AD. We claim that △ABD fulfills the required

conditions.

Construct CD and the circle #ACD about △ACD [4.5].

Since BD = AC, AB · BC =
(

BD
)2

. Notice that B is outside of ◦ACD. By [3.37]

BD is tangent to #ACD. By [3.32], ∠BDC = ∠DAC, and so

∠CDA+ ∠BDC = ∠BDA = ∠CDA+ ∠DAC

By [1.32], ∠BCD = ∠CDA+ ∠DAC, and so ∠BDA = ∠BCD.

Since AB = AD, by [1.5] ∠BDA = ∠BCD = ∠CBD.

Since ∠CBD = ∠BCD, by [1.6] BD = DC. Hence BD = DC = AC.

Again from [1.5], ∠CDA = ∠DAC, and so ∠CDA+ ∠DAC = 2 · ∠DAC.

By the above, ∠BCD = ∠CDA+ ∠DAC, and so ∠BCD = 2 · ∠DAC = 2 · ∠DAB.

Since ∠BCD = ∠CBD = ∠DBA, ∠DBA = 2 · ∠DAB.

Since ∠BDA = ∠BCD, ∠DBA = 2 · ∠DAB = ∠BDA, which completes the con-

struction.
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Exercises.

1. Prove that △ACD is an isosceles triangle whose vertical angle is equal to three

times each of the base angles. [See the final chapter for a solution.]

2. Prove that BD is the side of a regular decagon inscribed in the circle #BDE.

3. If DB, DE, and EF are consecutive sides of a regular decagon inscribed in a

circle, prove that BF −BD = radius of a circle.

4. If E is the second point of intersection of the circle #ACD with #BDE, prove

that DE = DB. If AE, BE, CE, and DE are constructed, then triangles △ACE

and △ADE are each congruent with △ABD.

5. Prove that AC is the side of a regular pentagon inscribed in the circle #ACD,

and EB the side of a regular pentagon inscribed in the circle #BDE.

6. Since △ACE is an isosceles triangle, (EB)2 − (EA)2 = AB · BC = (BD)2; that

is, prove that the square of the side of a pentagon inscribed in a circle exceeds the

square of the side of the decagon inscribed in the same circle by the square of the

radius.
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Proposition 4.11. INSCRIBING A REGULAR PENTAGON IN A GIVEN CIR-

CLE.

It is possible to inscribe a regular pentagon in a given circle.

Proof. We wish to inscribe a regular pentagon in #ABC.

Figure 4.2.14: [4.11]

Construct any isosceles triangle having each base angle equal to double the vertical

angle [4.10], and then construct△ABD equiangular to that triangle such that it is

inscribed in #ABC [4.4].

Bisect the angles ∠DAB and ∠ABD by constructing AC and BE, respectively. Also

construct EA, ED, DC, and CB. We claim that the figure ABCDE is a regular

pentagon.

Since ∠DAB = ∠ABD = 2 · ∠ADB by construction, AC bisects ∠DAB, and BE

bisects ∠ABD, and so

∠BAC = ∠CAD = ∠ADB = ∠DBE = ∠EBA

By [Cor. 3.29.1], the chords on which these angles stand are equal in length:

AB = BC = CD = DE = EA

Hence ABCDE is equilateral.

Again, because the arcs AB and DE are equal in length, if we add the arc BCD to

both, then the arc ABCD is equal in length to the arc BCDE, and therefore the

angles ∠AED, ∠BAE which stand on them are equal [3.27].

Similarly, it can be shown that all of these angles are equal; therefore ABCDE is

equiangular and a regular pentagon; this proves our claim.
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Exercises.

1. Prove that the figure formed by the five diagonals of a regular pentagon is an-

other regular pentagon.

2. If the alternate sides of a regular pentagon are extended to intersect, the five

points of meeting form another regular pentagon.

3. Prove that every two consecutive diagonals of a regular pentagon divide each

other in the extreme and mean ratio [2.11].

4. Being given a side of a regular pentagon, construct it.

5. Divide a right angle into five equal parts.
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Proposition 4.12. CIRCUMSCRIBING A REGULAR PENTAGON ABOUT A GIVEN

CIRCLE.

It is possible to circumscribe a regular pentagon about a given circle.

Proof. We wish to construct a regular pentagon about #O.

Figure 4.2.15: [4.12]

Use [4.11] to inscribe a regular pentagon inside #O with vertices at points A, B, C,

D, and E; at these points, construct equal tangential segments FG, GH , HI, IJ ,

and JF . We claim that FGHIJ is the required circumscribed regular pentagon.

Construct OE, OA, and OB. Because the angles ∠OAF and ∠OEF of the quadri-

lateral AOEF are right angles [3.18], the sum of the two remaining angles ∠AOE+

∠AFE equals two right angles. Similarly, the sum ∠AOB+∠AGB equals two right

angles; hence ∠AOE+∠AFE = ∠AOB+∠AGB. But ∠AOE = ∠AOB because they

stand on equal segments AE and AB [3.27]. Hence ∠AFE = ∠AGB. Similarly, the

remaining angles of the figure FGHIJ are equal, and so FGHIJ is equiangular.

Now construct OF and OG and consider △EOF and △AOF : AF = FE [3.17, #1],

the triangles share side FO, and AO = EO since each are radii of #O. By [1.8],

△EOF ∼= △AOF , and so ∠AFO = ∠EFO; or, ∠AFE is bisected at F .

Since ∠AFE = ∠AFO + ∠EFO = 2 · ∠AFO, it follows that ∠AFO = 1
2∠AFE.

Similarly, ∠AGO = 1
2∠AGB.

Consider △AFO and △AGO: ∠AFE = ∠AGB implies that ∠AFO = ∠AGO;

∠FAO = ∠GAO since each are right angles; finally, each shares side AO. By [1.26],

△AFO ∼= △AGO, and so AF = AG.

As a consequence, GF = 2 · AF ; similarly, JF = 2 · EF . And since AF = EF ,

GF = JF , and so on for all remaining sides. Therefore, FGHIJ is equilateral and

equiangular; thus, it is a regular pentagon, which proves our claim.
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Remark. This proposition is a particular case of the following general theorem

(which has an analogous proof): “If tangents are constructed on a circle at the ver-

tices of an inscribed polygon with a finite number of sides, they will form a regular

polygon with the same number of sides circumscribed to the circle.”
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Proposition 4.13. INSCRIBING A CIRCLE IN A REGULAR PENTAGON.

It is possible to inscribe a circle in a regular pentagon.

Proof. We wish to inscribe #O in regular pentagon ABCDE.

Figure 4.2.16: [4.13]

Bisect two adjacent angles ∠JAF and ∠FBG by constructing AO and BO, respec-

tively; we claim that the point of intersection of the bisectors, O, is the center of the

required circle.

Construct CO as well as perpendiculars from O to the five sides of the pentagon.

Consider △ABO and △CBO: AB = BC by hypothesis, ∠ABO = ∠CBO by con-

struction, and each shares side BO. By [1.4] △ABO ∼= △CBO, and so ∠BAO =

∠BCO; however, ∠BAO = 1
2 · ∠BAE by construction. Therefore

∠BCO =
1

2
· ∠BAE =

1

2
· ∠BCD

Hence CO bisects the angle ∠BCD. Similarly, we can show that DO bisects ∠HDI

and that EO bisects ∠IEJ .

Consider △BOF and △BOG: ∠OFB = ∠OGB since each are right, ∠OBF =

∠OBG because OB bisects ∠ABC by construction, and each shares side OB. By

[1.26], △BOF ∼= △BOG, and so OF = OG.

Similarly, all the perpendiculars from O to the sides of the pentagon are equal. By

[3.9], the circle whose center is O with radius OF is inscribed in regular pentagon

ABCDE, which completes the construction.
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Proposition 4.14. CIRCUMSCRIBING A CIRCLE ABOUT A REGULAR PEN-

TAGON.

It is possible to circumscribe a circle about a regular pentagon.

Proof. We wish to construct #O about regular pentagon ABCDE.

Figure 4.2.17: [4.14]

Bisect adjacent angles ∠BAE by AO and ∠ABC by BO. We claim that O, the point

of intersection of the bisectors, is the center of the required circle.

Similarly, construct OC, OD, and OE. Consider△ABO and△CBO: AB = BC and

∠ABO = ∠CBO by construction, and the triangles share BO in common. By [1.4],

△ABO ∼= △CBO, and so ∠BAO = ∠BCO.

But ∠BAE = ∠BCD since ABCDE is a regular pentagon. Since ∠BAO = 1
2∠BAE

by construction, ∠BCO = 1
2∠BCD; hence, CO bisects ∠BCD. Similarly, it can be

shown that DO bisects ∠CDE and EO bisects ∠DEA.

Because ∠EAB = ∠ABC, it follows that ∠OAB = ∠OBA. Consider △OBA: by

[1.4], OA = OB. Similarly, we can show that

OA = OB = OC = OD = OE

By [3.9], O is the center of a circle with radius OA which passes through points

B, C, D, and E, and is constructed about the regular pentagon ABCDE. This

completes the construction.
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Proposition 4.15. INSCRIBING A REGULAR HEXAGON IN A CIRCLE.

It is possible to inscribe a regular hexagon in a circle.

Proof. We wish to to inscribe regular hexagon ABCDEF in #O.

Figure 4.2.18: [4.15]

Take a point A on the circumference of #O and construct AO. With A as center and

AO as radius, construct the circle #A, intersecting #O at the points B and F .

Construct OB and OF ; extend AO to intersect #A at D, extend BO to intersect #A

at E, and extend FO to intersect #A at C. Also construct AB, BC, CD, DE, EF ,

and FA; we claim that hexagon ABCDEF is the required hexagon.

Notice that OA = OB since each are radii of #O. Similarly, AB = OA since each

are radii of #A. Hence, OA = OB = AB, and so △OAB is equilateral.

Since the sum of the interior angles of a triangle is two right angles and equilateral

triangles have equal angles, ∠AOB = ∠OBA = ∠OAB.

Mutatis mutandis, we can show that

∠AOB = ∠AOF = ∠FOE = ∠EOD = ∠DOC = ∠BOC

By [Cor. 3.29.1], AB = BC = CD = DE = EF = FA and so hexagon ABCDEF is

equilateral.

Also OA = OB = OC = OD = OE = OF since each are radii of #O. By [1.8], each

sub-triangle of hexagon ABCDEF is congruent. It follows that

∠ABC = ∠BCD = ∠CDE = ∠DEF = ∠EFA = ∠FAB

and so ABCDEF is equiangular. This completes the construction.

Remark. [4.13] and [4.14] are particular cases of the following theorem: “A regular

polygon of any finite number of sides has one circle inscribed in it and another

constructed about it, and both circles are concentric.”
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Corollary. 4.15.1. The length of the side of a regular hexagon inscribed in a circle

is equal to the circle’s radius.

Corollary. 4.15.2. If three alternate angles of a hexagon are joined, they form an

inscribed equilateral triangle.

Exercises.

1. Prove that the area of a regular hexagon inscribed in a circle is equal to twice the

area of an equilateral triangle inscribed in the circle. Also prove that the square of

the side of the triangle equals three times the square of the area of the side of the

hexagon.

2. If the diameter of a circle is extended to C until the extended segment is equal

to the radius, prove that the two tangents from C and their chord of contact form

an equilateral triangle.

3. Prove that the area of a regular hexagon inscribed in a circle is half the area of

an equilateral triangle and three-fourths of the area of a regular hexagon circum-

scribed to the circle.

4. Prove [Cor. 4.15.1].

5. Prove [Cor. 4.15.2].
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Proposition 4.16. INSCRIBING A REGULAR FIFTEEN-SIDED POLYGON IN

A GIVEN CIRCLE.

It is possible to inscribe a regular fifteen-sided polygon in a given circle.

Proof. We wish to inscribe a regular fifteen-sided polygon in #O.

Figure 4.2.19: [4.16]

Inscribe a regular pentagon ABCDE in the circle #O [4.11] as well as an equilat-

eral triangle△AGH [4.2]. Construct CG. We claim that CG is a side of the required

polygon.

Since ABCDE is a regular pentagon, the arc ABC is 2
5 of the circumference.

Since △AGH is an equilateral triangle, the arc ABG is 1
3 of the circumference.

Hence arc GC is the difference between these two arcs and equal to 2
5 − 1

3 = 1
15 of

the circumference.

Therefore, if chords equal in length to GC are similarly constructed [4.1], we have

a regular fifteen-sided polygon (i.e., a quindecagon) inscribed in ◦O.

Remark. Until 1801, no regular polygon was constructible by segments and circles

only except those described in Book IV of Euclid and those obtained by the contin-

ued bisection of the arcs of which their sides are chords. Then, Gauss proved that

if 2n+ 1 is a prime number, regular polygons with 2n+ 1 sides are constructible by

elementary geometric methods.
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Exam questions for chapter 4.

1. What is the subject-matter of chapter 4?

2. When is one polygon said to be inscribed in another?

3. When is one polygon said to be circumscribed about another?

4. When is a circle said to be inscribed in a polygon?

5. When is a circle said to be circumscribed about a polygon?

6. What is a regular polygon?

7. What figures can be inscribed in, and circumscribed about, a circle by means of

chapter 4?

8. What regular polygons has Gauss proved to be constructible by the line and

circle?

9. What is meant by escribed circles?

10. How many circles can be constructed to touch three lines forming a triangle?

11. What is the centroid of a triangle?

12. What is the orthocenter?

13. What is the circumcenter?

14. What is the polar circle?

15. What is the “nine-points circle”?

16. How does a nine-points circle get its name?

17. Name the nine points that a nine-points circle passes through.

18. What three regular figures can be used in filling up the space round a point?

(Ans. Equilateral triangles, squares, and hexagons.)

19. If the sides of a triangle are 13, 14, 15 units in length, what are the values of

the radii of its inscribed and escribed circles?

20. What is the radius of the circumscribed circle?

21. What is the radius of its nine-points circle?

22. What is the distance between the centers of its inscribed and circumscribed

circles?

23. If r is the radius of a circle, what is the area:

(a) of its inscribed equilateral triangle?

(b) of its inscribed square?

(c) its inscribed pentagon?

(d) its inscribed hexagon?

(e) its inscribed octagon?
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(f) its inscribed decagon?

24. Find the side-lengths of the polygons in parts (a)-(f) in the previous problem.

Exercises for chapter 4.

1. If a circumscribed polygon is regular, prove that the corresponding inscribed

polygon is also regular. Also prove the converse.

2. If a circumscribed triangle is isosceles, prove that the corresponding inscribed

triangle is isosceles. Also prove the converse.

3. If the two isosceles triangles have equal vertical angles, prove that they are both

equilateral.

4. Divide an angle of an equilateral triangle into five equal parts.

5. Inscribe a circle in a sector of a given circle.

6. Inscribe a regular octagon in a given square.

7. If a segment of given length slides between two given lines, find the locus of the

intersection of perpendiculars from its endpoints to the given lines.

8. If the perpendicular to any side of a triangle at its midpoint meets the internal

and external bisectors of the opposite angle at the points D and E, prove that D, E

are points on the circumscribed circle.

9. Through a given point P , construct a chord of a circle so that the intercept EF

stands opposite a given angle at point X .

10. In a given circle, inscribe a triangle having two sides passing through two given

points and the third parallel to a given line.

11. Given four points, no three of which are collinear, construct a circle which is

equidistant from them.

12. In a given circle, inscribe a triangle whose three sides pass through three given

points.

13. Construct a triangle, being given:

(a) the radius of the inscribed circle, the vertical angle, and the perpendicular

from the vertical angle on the base.

(b) the base, the sum or difference of the other sides, and the radius of the in-

scribed circle, or of one of the escribed circles.

(c) the centers of the escribed circles.

14. If F is the midpoint of the base of a triangle, DE the diameter of the circum-

scribed circle which passes through F , and L the point where a parallel to the base

through the vertex meets DE, prove that DL ·FE equals the square of half the sum

of the two remaining sides and DF · LE equals the square of half the difference of

the two remaining sides.
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15. If from any point within a regular polygon of n sides perpendiculars fall on the

sides, prove that their sum is equal to n times the radius of the inscribed circle.

16. The sum of the lengths of perpendiculars falling from the vertices of a regular

polygon of n sides on any line is equal to n times the perpendicular from the center

of the polygon on the same line.

17. If R denotes the radius of the circle circumscribed about a triangle △ABC, r,

r′, r′′, r′′′ are the radii of its inscribed and escribed circles; δ, δ′, δ′′ are the per-

pendiculars from its circumcenter on the sides; µ, µ′, µ′′ are the segments of these

perpendiculars between the sides and circumference of the circumscribed circle,

prove that we have the equalities:

r′ + r′′ + r′′′ = 4R+ r (1)

µ+ µ′ + µ′′ = 2R− r (2)

δ + δ′ + δ′′ = R+ r (3)

The relation (3) supposes that the circumcenter is inside the triangle.

18. Take a point D from the side BC of a triangle△ABC and suppose we construct

a transversal EDF through it; suppose we also construct circles about the triangles

△DBF ,△ECD. Prove that the locus of their second point of intersection is a circle.

19. In every quadrilateral circumscribed about a circle, prove that the midpoints of

its diagonals and the center of the circle are collinear.

20. Prove that the line joining the orthocenter of a triangle to any point P in the

circumference of its circumscribed circle is bisected by the line of co-linearity of

perpendiculars from P on the sides of the triangle.

21. Prove that the orthocenters of the four triangles formed by any four lines are

collinear.

22. If a semicircle and its diameter are touched by any circle either internally or

externally, prove that twice the area of the rectangle contained by the radius of

the semicircle and the radius of the tangential circle equals the area of a rectangle

contained by the segments of any secant to the semicircle through the point of

intersection of the diameter and touching circle.

23. If ρ, ρ′ are radii of two circles touching each other at the center of the inscribed

circle of a triangle where each touches the circumscribed circle, prove that

1

ρ
+

1

ρ′
=

2

r

and state and prove corresponding theorems for the escribed circles.

24. If from any point in the circumference of the circle, circumscribed about a

regular polygon of n sides, segments are constructed to its vertices, prove that the

sum of their squares is equal to 2n times the square of the radius.
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25. In the above problem, if the segments are constructed from any point in the

circumference of the inscribed circle, prove that the sum of their squares is equal to

n times the sum of the squares of the radii of the inscribed and the circumscribed

circles.

26. State the corresponding theorem for the sum of the squares of the lines con-

structed from any point in the circumference of any concentric circle.

27. If from any point in the circumference of any concentric circle perpendiculars

fall to all the sides of any regular polygon, prove that the sum of their squares is

constant.

28. See #27. For the inscribed circle, prove that the constant is equal to 3n/2 times

the square of the radius.

29. See #27. For the circumscribed circle, prove that the constant is equal to n

times the square of the radius of the inscribed circle, together with 1
2n times the

square of the radius of the circumscribed circle.

30. If from the midpoint of the segment joining any two of four concyclic points a

perpendicular falls on the segment joining the remaining two, the six perpendicu-

lars thus obtained are concurrent.

31. Given a regular polygon circumscribed about an arbitrary circle, prove that as

the number of sides of a regular polygon increases, the perimeter of the polygon

decreases.

32. The area of any regular polygon of more than four sides circumscribed about a

circle is less than the square of the diameter.

33. If two sides of a triangle are given in position, and if their included angle is

equal to an angle of an equilateral triangle, prove that the locus of the center of its

nine-points circle is a straight line.

34. If s equals half of the perimeter of a triangle (i.e., the triangle’s semi-perimeter),

and if r′, r′′, r′′′ are the radii of its escribed circles, prove that

r′ · r′′ + r′′ · r′′′ + r′′′ · r′ = s2

35. Given the base of a triangle and the vertical angle, find the locus of the center

of the circle passing through the centers of the escribed circles.

36. If AB is the diameter of a circle, PQ is any chord cutting AB at O, and if the

segments AP , AQ intersect the perpendicular to AB at O (at D and E respectively),

prove that the points A, B, D, E are concyclic.

37. Inscribe in a given circle a triangle having its three sides parallel to three given

lines.

38. If the sides AB, BC, etc., of a regular pentagon are bisected at the points A′,

B′, C′, D′, E′, and if the two pairs of alternate sides BC, AE and AB, DE meet at

the points A′′, E′′, respectively, prove that

△A′′AE′′ −△A′AE′ = pentagon A′B′C′D′E′
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39. In a circle, prove that an equilateral inscribed polygon is regular; also prove

that if the number of its sides are odd, then it is an equilateral circumscribed poly-

gon.

40. Prove that an equiangular circumscribed polygon is regular; also prove that if

the number of its sides are odd, then it is an equilateral inscribed polygon.

41. Prove that the sum of the perpendiculars constructed to the sides of an equian-

gular polygon from any point inside the figure is constant.

42. Express the lengths of the sides of a triangle in terms of the radii of its escribed

circles.



Chapter 5

Theory of Proportions

Chapter 5, like Chapter 2, proves a number of propositions that are familiar in the

form of algebraic equations. Like Book II, Book V appears in truncated form.

5.1 Definitions

0. Variables a, b, c, x, y, ... represent positive real numbers unless stated otherwise.

1. Let x and y be two positive integers where x < y. We say that x is a factor of y

when there exists a positive integer n ≥ 1 such that nx = y. We also say that y is a

multiple of x.

2. Suppose that x and y are two positive integers such that x 6= 0. A ratio is the

number y
x which may also be written as y : x.

3. Numbers are said to have a ratio to one another when the lesser number can be

multiplied so as to exceed the greater.

4. Numbers which have the same ratio are called proportions. When four numbers

are proportions, it may be described as: “The first is to the second as the third is to

the fourth.” Or:

a

b
=

c

d

The above equality may also be written as a : b = c : d.

5. Inequalities of fractions:

(a

b
>

c

d

)

⇐⇒
(

ad

bd
>

bc

bd

)

⇐⇒ (ad > bc)

The symbol > may be replaced with ≥, <, and ≤. Numbers which have the same

ratio are called proportional.

6. Proportions consist of at minimum three terms.

238
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Remark. This definition has the same fault as some of the others: it is not a defini-

tion but an inference. It occurs when the means in a proportion are equal, and so

there are four terms. As an example, take the numbers 4, 6, 9. Here the ratio of

4 : 6 is 2/3, and the ratio of 6 : 9 is 2/3; therefore 4, 6, 9 are continued proportionals.

But, in reality, there are four terms: the full proportion is 4 : 6 = 6 : 9.

7. The duplicate ratio is a compound ratio of two equal ratios. Algebraically, the

duplicate ratio of x : y is x2 : y2. (The duplicate ratio of 2 : 5 is 4 : 25.)

John Casey updates Euclid’s definition of the duplicate ratio of two lines: the ratio

of the squares constructed on these segments.

8. The triplicate ratio is a compound ratio of three equal ratios. Algebraically, the

triplicate ratio of x : y is x3 : y3. (The triplicate ratio of 2 : 5 is 8 : 125.)

9. Harmonic division of a segment AB means identifying two points C and D such

that AB is divided internally and externally in the same ratio CA
CB = DA

DB .

Figure 5.1.1: Here, the ratio is 2. Specifically, the distance AC is one unit, the

distance CB is half a unit, the distance AD is three units, and the distance BD is

1.5 units.

Harmonic division of a line segment is reciprocal: if points C and D divide the

segment AB harmonically, the points A and B also divide the line segment CD

harmonically. In that case, the ratio is given by BC
BD = AC

AD which equals one-third

in the example above.1

1
http://en.wikipedia.org/wiki/Harmoni_division

http://en.wikipedia.org/wiki/Harmonic_division
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5.2 Propositions from Book V

Proposition 5.1. If any number of numbers are each the same multiple of the same

number of other numbers, then the sum is that multiple of the sum.

Corollary. 5.1.1. [5.1] is equivalent to kx+ ky = k(x + y).

Proposition 5.2. If a first number is the same multiple of a second that a third is

of a fourth, and a fifth also is the same multiple of the second that a sixth is of the

fourth, then the sum of the first and fifth also is the same multiple of the second that

the sum of the third and sixth is of the fourth.

Corollary. 5.2.1. [5.2] is equivalent to the following: if kv = x, kw = r, mv = y, and

mw = u, then x+ y = (k +m)v and r + u = (k +m)w.

Proposition 5.3. If a first number is the same multiple of a second that a third is

of a fourth, and if equimultiples are taken of the first and third, then the numbers

taken also are equimultiples respectively, the one of the second and the other of the

fourth.

Corollary. 5.3.1. [5.3] is equivalent to the following: Let A = kB and C = kD. If

EF = mA and GM = mC, then EF = mkB and GH = mkD.

Proposition 5.4. If a first number has to a second the same ratio as a third to a

fourth, then any equimultiples whatever of the first and third also have the same

ratio to any equimultiples whatever of the second and fourth respectively, taken in

corresponding order.

Corollary. 5.4.1. [5.4] is equivalent to: if A
B = k = C

D , then A = kB and C = kD.

Proposition 5.5. If a number is the same multiple of a number that a subtracted

part is of a subtracted part, then the remainder also is the same multiple of the

remainder that the whole is of the whole.

Corollary. 5.5.1. [5.5] is equivalent to: if x+y = k(m+n) and x = km, then y = kn.

Proposition 5.6. If two numbers are equimultiples of two numbers, and any num-

bers subtracted from them are equimultiples of the same, then the remainders either

equal the same or are equimultiples of them.

Corollary. 5.6.1. [5.6] is equivalent to: if x + y = km, u + v = kn, x = lm, y = ln,

and all variables are positive, then y = (k − l)m and v = (k − l)n whenever k > l.
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Proposition 5.7. Equal numbers have to the same the same ratio; and the same

has to equal numbers the same ratio.

Corollary. 5.7.1. If any numbers are proportional, then they are also proportional

inversely.

Corollary. 5.7.2. [5.7] is equivalent to: if a = b, then a : c = b : c, and c : a = c : b.

Proposition 5.8. Of unequal numbers, the greater has to the same a greater ratio

than the less has; and the same has to the less a greater ratio than it has to the

greater.

Corollary. 5.8.1. [5.8] is equivalent to: if AB > C and D > 0, then AB = C + k

where k > 0, and AB
D = C+k

D = C
D + k

D > C
D . It follows that D

C > D
AB , since all

quantities are positive.

Proposition 5.9. Numbers which have the same ratio to the same equal one an-

other; and numbers to which the same has the same ratio are equal.

Corollary. 5.9.1. [5.9] is equivalent to: if A = kC and B = kC, then A = B.

Proposition 5.10. Of numbers which have a ratio to the same, that which has a

greater ratio is greater; and that to which the same has a greater ratio is less.

Corollary. 5.10.1. [5.10] is equivalent to: if A
C > B

C and C > 0, then A > B.

Proposition 5.11. Ratios which are the same with the same ratio are also the same

with one another.

Corollary. 5.11.1. [5.11] is equivalent to: if A
B = C

D and C
D = E

F , then A
B = E

F . This

is the transitive property for fractions.

Proposition 5.12. If any number of numbers are proportional, then one of the an-

tecedents is to one of the consequents as the sum of the antecedents is to the sum of

the consequents.

Corollary. 5.12.1. [5.12] is equivalent to: if x
a = y

b = z
c , then

x

a
=

y

b
=

z

c
=

x+ y + z

a+ b+ c



CHAPTER 5. THEORY OF PROPORTIONS 242

Proposition 5.13. If a first number has to a second the same ratio as a third to a

fourth, and the third has to the fourth a greater ratio than a fifth has to a sixth, then

the first also has to the second a greater ratio than the fifth to the sixth.

Corollary. 5.13.1. [5.13] is equivalent to: if A = kB, C = kD, C = lD, E = jF and

l > j, then k = l and so k > j.

Proposition 5.14. If a first number has to a second the same ratio as a third has to

a fourth, and the first is greater than the third, then the second is also greater than

the fourth; if equal, equal; and if less, less.

Corollary. 5.14.1. [5.14] is equivalent to: if A = kB, C = kD, A > C, and k > 0,

then kB = A > C = kD and so B > D. If A < C and B < D, the result follows

mutatis mutandis.

Proposition 5.15. Parts have the same ratio as their equimultiples.

Corollary. 5.15.1. [5.15] is equivalent to: if AB = kC, DE = kF , and C = mF ,

then AB = kmF = mDE.

Proposition 5.16. If four numbers are proportional, then they are also proportional

alternately.

Corollary. 5.16.1. [5.16] is equivalent to: if A
B = C

D , then A
C = B

D .

Proposition 5.17. If numbers are proportional taken jointly, then they are also

proportional taken separately.

Corollary. 5.17.1. [5.17] is equivalent to: if x+ y = ky, u+ v = kv, and x = ly, then

ly + y = ky, or l + 1 = k. Thus u+ v = (l + 1)v, or u = lv.

Proposition 5.18. If numbers are proportional taken separately, then they are also

proportional taken jointly.

Corollary. 5.18.1. [5.18] is equivalent to: if x = ky, u = kv, and x + y = ly, then

(k + 1)y = ly and so k + 1 = l and u+ v = kv = (k + 1)v = lv.

Proposition 5.19. If a whole is to a whole as a part subtracted is to a part sub-

tracted, then the remainder is also to the remainder as the whole is to the whole.
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Corollary. 5.19.1. If numbers are proportional taken jointly, then they are also

proportional in conversion.

Corollary. 5.19.2. [5.19] is equivalent to: if x + y = k(u + v) and x = ku, then

y = kv.

Remark. 5.19.3. If u : v, the [5.16] [5.17], [5.18], and [5.19] show the following

proportions to be equivalent2:

1. u : v = x : y

2. (u+ v) : v = (x + y) : y

3. (u+ v) : u = (x+ y) : x

4. (u+ v) : (x+ y) = v : y

5. (u+ v) : (x+ y) = u : x

6. u : x = v : y

(2)-(5) also hold when + is replaced by −.

Proposition 5.20. If there are three numbers, and others equal to them in multi-

tude, which taken two and two are in the same ratio, and if the first is greater than

the third, then the fourth is also greater than the sixth; if equal, equal, and; if less,

less.

Corollary. 5.20.1. [5.20] is equivalent to: let A = kB, B = lC, D = kE, E = lF ,

and A > C. We wish to show that D > F .

Suppose that A = c+m, m > 0. Then A = klC, D = klF , and so A
C = D

F .

Now A
C > 1 since A > C. If D = F , A

C = 1; and if D < F , A
C < 1. Hence, D > F .

The remaining cases follow mutandis mutatis.

Proposition 5.21. If there are three numbers, and others equal to them in multi-

tude, which taken two and two together are in the same ratio, and the proportion of

them is perturbed, then, if the first number is greater than the third, then the fourth

is also greater than the sixth; if equal, equal; and if less, less.

Corollary. 5.21.1. The result of [5.21] is the same as the result [5.20].

2David E. Joyce provides these results at:

aleph0.larku.edu/~djoye/java/elements/bookX/propX29.html

aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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Proposition 5.22. If there are any number of numbers whatever, and others equal

to them in multitude, which taken two and two together are in the same ratio, then

they are also in the same ratio.

Corollary. 5.22.1. [5.22] is equivalent to: if A = kB, B = lC, D = kE, and E = lF ,

then A = klC and D = klF .

Proposition 5.23. If there are three numbers, and others equal to them in multi-

tude, which taken two and two together are in the same ratio, and the proportion of

them be perturbed, then they are also in the same ratio.

Corollary. 5.23.1. The result of [5.23] is the same as the result of [5.22].

Proposition 5.24. If a first number has to a second the same ratio as a third has

to a fourth, and also a fifth has to the second the same ratio as a sixth to the fourth,

then the sum of the first and fifth has to the second the same ratio as the sum of the

third and sixth has to the fourth.

Corollary. 5.24.1. [5.24] is equivalent to: if x = km, u = kn, y = lm, and v = ln,

then x+ y = km+ lm = (k + l)m and u+ v = kn+ ln = (k + l)n.

Proposition 5.25. If four numbers are proportional, then the sum of the greatest

and the least is greater than the sum of the remaining two.

Corollary. 5.25.1. [5.25] is equivalent to: let x + y = k(u + v), k > 1, and x = ku.

Since x+ y = ku+ kv, y = kv; and since k > 1, y > v.
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Exam questions for chapter 5.

1. What is the subject-matter of this chapter?

2. When is one number said to be a multiple of another?

3. What is a measure?

4. What is the ratio of two commensurable numbers?

5. What is meant by the ratio of incommensurable numbers?

6. Give an illustration of the ratio of incommensurables.

7. What are the terms of a ratio called?

8. What is duplicate ratio?

9. Define triplicate ratio.

10. What is proportion? (Ans. Equality of ratios.)

11. When is a segment divided harmonically?

12. What are reciprocal ratios?

Chapter 5 exercises.

1. Prove that if four numbers are proportionals, the sum of the first and second is

to their difference as the sum of the third and fourth is to their difference.

2. Prove that if four numbers are proportionals, their squares, cubes, etc., are

proportionals. [See the final chapter for a solution.]

3. If two proportions have three terms of one respectively equal to three correspond-

ing terms of the other, the remaining term of the first is equal to the remaining term

of the second.

4. If three numbers are continual proportionals, prove that the first is to the third

as the square of the difference between the first and second is to the square of the

difference between the second and third.

5. If AB is cut harmonically at C and D and is bisected at O, prove that OC, OB,

OD are continual proportionals.

6. Continuing from #5: if O′ is the midpoint of CD, prove that (OO′)2 = (OB)2 +

(OD)2.

7. Continuing from #5: prove that AB · (AC +AD) = 2 ·AC ·AD, or 1
AC + 1

AD = 2
AB

8. Continuing from #5: prove that CD · (AD+BD) = 2 ·AD ·BD, or 1
BD + 1

AD = 2
AC

9. Continuing from #5: prove that AB · CD = 2 · AD · CB.



Chapter 6

Applications of Proportions

Recall that we write△GHI = △JKL to indicate that the area of△GHI equals the

area of △JKL.

Similarly, if we wish to state that the area of △ABC divided by the area of △DEF

equals the area of △GHI divided by the area of △JKL, we may write either

△ABC
△DEF = △GHI

△JKL

or

△ABC : △DEF = △GHI : △JKL

6.1 Definitions

1. Similar polygons are polygons that have the same shape, or one that has the

same shape as the mirror image of the other. More precisely, one polygon can be

obtained from the other by uniformly scaling (enlarging or shrinking), possibly with

additional translation, rotation and reflection. This means that either object can

be re-scaled, re-positioned, and reflected so as to coincide precisely with the other

object.

A modern perspective of similarity is to consider polygons similar if one appears

congruent to the other when zoomed in or out at some level.1

Similar polygons agree in shape; if they also agree in size, then they are congruent.

If polygons A and B are similar, we will denote this as A ∼ B.

(a) When the shape of a figure is given, it is said to be given in species. Thus

a triangle whose angles are given is given in species. Hence, similar figures are of

the same species.

(b) When the size of a figure is given, it is said to be given in magnitude, such

as a square whose side is of given length.

(c) When the place which a figure occupies is known, it is said to be given in

position.

1Adapted from: https://en.wikipedia.org/wiki/Similarity_(geometry)
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(d) Any two equilateral triangles are similar.

2. A segment is said to be cut at a point in extreme and mean ratio when the whole

segment is to the greater segment as the greater segment is to the lesser segment.

This ratio is also referred to as the golden ratio.

The figure below illustrates the geometric relationship.

Figure 6.1.1: The golden ratio

Expressed algebraically, for quantities a and b with a > b > 0,

a+ b

a
=

a

b

def
= ϕ

where the Greek letter phi (ϕ or φ) represents the golden ratio. Its value is:

ϕ =
1 +
√
5

2
= 1.6180339887 . . .

The golden ratio also is called the golden mean or golden section (Latin: sectio au-

rea). Other names include medial section, divine proportion, divine section (Latin:

sectio divina), golden proportion, golden cut, and golden number.2

3. If three quantities of the same kind are in continued proportion, the middle

term is called a mean proportional between the other two. Numbers in continued

proportion are also said to be in geometrical progression.

4. If four quantities of the same kind are in continued proportion, the two middle

terms are called two mean proportionals between the other two.

5. The altitude of any figure is the length of the perpendicular from its highest

point to its base.

6. Two corresponding angles of two figures have the sides about them reciprocally

proportional when a side of the first is to a side of the second as the remaining side

of the second is to the remaining side of the first.

7. Similar figures are said to be similarly constructed upon given segments when

these segments are corresponding sides of the figures.

8. Corresponding points in the planes of two similar figures are such that segments

constructed from them to the vertices of the two figures are proportional to the

corresponding sides of the two figures. See Fig. 6.1.2.

2Much of this section comes from https://en.wikipedia.org/wiki/Golden_ratio.

https://en.wikipedia.org/wiki/Golden_ratio
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Figure 6.1.2: [Def 6.9] See [6.20, #2]

9. The point O in Fig. 6.1.2 is called the center of similitude of the figures. It is also

called their double point.

10. Two polygons are said to be homothetic if they are similar and their correspond-

ing sides are parallel. If two polygons are homothetic, then the lines joining their

corresponding vertices meet at a point.3

11. The center of mean position of any number of points A, B, C, D, etc., is a point

which may be found as follows: bisect the segment joining any two points A, B at

G. Join G to a third point C; divide GC at H so that GH = 1
3 · GC. Join H to a

fourth point D and divide HD at K, so that HK = 1
4 ·HD, and so on. The last point

found will be the center of mean position of the given points.

3
http://amerianhistory.si.edu/olletions/searh/objet/nmah_694635

http://americanhistory.si.edu/collections/search/object/nmah_694635
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6.2 Propositions from Book VI

Proposition 6.1. PROPORTIONAL TRIANGLES AND PARALLELOGRAMS.

Triangles and parallelograms which have the same altitude have areas which are

proportional to their bases.

Proof. Construct △ACB and △ACD such that the triangles have the same alti-

tude; also construct ⊡EACB and ⊡AFDC each with the same height as the previ-

ously constructed triangles. We claim that

BC : CD = △ACB : △ACD = ⊡EACB : ⊡AFDC

Figure 6.2.1: [6.1]

Extend BD in both directions to the H and L. Construct any finite number of

segments toward H , each equal in the length to BC: in this proof, we construct BG

and GH . Similarly, construct an equal number of segments which are equal in the

length to CD toward L. Also construct AG, AH , AK, and AL.

Since BC = BG = GH , by [1.38] △ACB = △ABG = △AGH . Similarly, if CH =

k · BC (where k is a positive integer such that k > 1), △ACH = k · △ACB; and if

CL = m · CD (where m is a positive integer such that m > 1),△ACL = m · △ACD.

Finally, CH = n · CL (where n is a positive real number such that n > 0); again,

[1.38] implies that △ACH = n · △ACL. That is,

CH

CL
= n =

△ACH

△ACL

Hence,

CH : CL = △ACH : △ACL ⇒
k · BC : m · CD = (k · △ACB) : (m · △ACD) ⇒

BC : CD = △ACB : △ACD

By [1.41], ⊡EACB = 2 · △ACB and ⊡ACDF = 2 · △ACD. Therefore
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2 · BC : 2 · CD = ⊡EACB : ⊡AFCD ⇒
BC : CD = ⊡EACB : ⊡AFCD

Clearly,△ACB : △ACD = ⊡EACB : ⊡AFCD, which completes the proof.
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Proposition 6.2. PROPORTIONALITY OF SIDES OF TRIANGLES.

A segment within a triangle divides the sides of a triangle proportionally if and

only if the segment is constructed parallel to one of the sides of a triangle.

Proof. Construct △ABC and DE where D is on AB and E is on AC. We claim that

DE ‖ BC if and only if AD : DB = AE : EC.

Figure 6.2.2: [6.2]

First, suppose that DE ‖ BC. We claim that AD : DB = AE : EC.

Construct BE and CD, and consider△BDE and△CED: each shares base DE and

stands between the parallels BC and DE. By [1.37], △BDE = △CDE. By [5.7],

△ADE : △BDE = △ADE : △CDE.

By [6.1], △ADE : △BDE = AD : DB and △ADE : △CDE = AE : EC. Since

△BDE = △CDE, it follows that AD : DB = AE : EC.

Now suppose that AD : DB = AE : EC. We claim DE ‖ BC.

By [6.1], AD : DB = △ADE : △BDE and AE : EC = △ADE : △CDE. Since

AD : DB = AE : EC by hypothesis,△ADE : △BDE = △ADE : △CDE.

By [5.9],△BDE = △CDE. These triangles also stand on the same base DE as well

as on the same side of DE. By [1.39], they stand between the same parallels, and

so DE ‖ BC.

Exercise.

1. If two segments are cut by three or more parallels, the intercepts on one are

proportional to the corresponding intercepts on the other.
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Proposition 6.3. ANGLES AND PROPORTIONALITY OF TRIANGLES.

A line bisects an angle of a triangle if and only if the line divides the side opposite

the angle into segments proportional to the adjacent sides.

Proof. Construct △ABC and
←→
AD where D is a point on AC. We claim that AD

bisects ∠BAC if and only if BD : DC = BA : AC.

Figure 6.2.3: [6.3]

Suppose that AD bisects ∠BAC of a triangle △ABC. We claim that BD : DC =

BA : AC.

Construct CE such that CE ‖ AD. Extend BA to intersect CE at E. Because BE

intersects the parallels AD and EC, ∠BAD = ∠AEC [1.29].

Because AC intersects the parallels AD and EC, ∠ACE = ∠DAC. By hypothesis,

∠DAC = ∠BAD. Therefore, ∠ACE = ∠DAC = ∠BAD = ∠AEC. Consider△ACE:

since ∠ACE = ∠AEC, by [1.6] AE = AC.

Again, because AD ‖ EC, where EC is one of the sides of the triangle △BEC, by

[6.2] BD : DC = BA : AE. Since AE = AC by the above, BD : DC = BA : AC.

Now suppose that BD : DC = BA : AC. We claim that ∠BAC is bisected by AD.

Let the same construction be made as above. Because AD ‖ EC, by [6.2] BA : AE =

BD : DC.

But BD : DC = BA : AC by hypothesis. By [5.11], it follows that BA : AE = BA :

AC, and so AE = AC by [5.9].

Consider △ACE: by [Cor. 1.6.1], ∠AEC = ∠ACE. By [1.29], ∠AEC = ∠BAD and

∠ACE = ∠DAC. Hence ∠BAD = ∠DAC.

Since ∠BAC = ∠BAD + ∠DAC, it follows that ∠BAC is bisected by AD. This

completes the proof.
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Exercises.

1. If the segment AD bisects the external vertical angle ∠CAE, prove that BA :

AC = BD : DC, and conversely.

Figure 6.2.4: [6.3], #1

Hint: construct AE = AC. Also construct ED. Then the triangles △ACD and

△AED are evidently congruent; therefore the angle ∠EDB is bisected, and hence

BA : AE = BD : DE and BA : AC = BD : DC by [6.3].

2. Prove #1 without using [6.3], and then prove [6.3] using #1.

3. Prove that the internal and the external bisectors of the vertical angle of a

triangle divide the base harmonically.

4. Prove that any segment intersecting the legs of any angle is cut harmonically by

the internal and external bisectors of the angle.

5. Prove that any segment intersecting the legs of a right angle is cut harmonically

by any two lines through its vertex which make equal angles with either of its sides.

6. If the base of a triangle is given in number and position and if the ratio of the

sides is also given, prove that the locus of the vertex is a circle which divides the

base harmonically in the ratio of the sides.

7. If a, b, c denote the sides of a triangle△ABC, and D, D′ are the points where the

internal and external bisectors of A meet BC, then prove that

DD′ =
2abc

b2−c2

8. In the same case as #7, if E, E′, F , F ′ are points similarly determined on the

sides CA, AB, respectively, prove that

1
DD′

+ 1
EE′

+ 1
FF ′

= 0
a2

DD′
+ b2

EE′
+ c2

FF ′
= 0
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Proposition 6.4. EQUIANGULAR TRIANGLES I.

In equiangular triangles, the sides about the equal angles are proportional where

the corresponding sides stand opposite the equal angles.

Proof. Let △ABC and △DCE be equiangular triangles where ∠ABC = ∠DCE,

∠BAC = ∠CDE, and ∠ACB = ∠CED. We claim that BA : AC = CD : DE. (The

proof of the remaining cases will be analogous.)

Figure 6.2.5: [6.4]

Place BC such that BE = BC ⊕ CE. Since ∠ABC + ∠ACB is less than two right

angles [1.17] and ∠ACB = ∠DEC, it follows that ∠ABC + ∠DEC is less than two

right angles. Hence when BA and DE are extended, they will intersect at F by

[Cor. 1.29.1].

By [1.28], since ∠DCE = ∠ABC, DC ‖ FB; and since ∠DEC = ∠ACB, AC ‖ FE.

Therefore ⊡FACD is a parallelogram; by [1.34], FA = DC and AC = FD.

Consider △FBE: since AC ‖ FE, by [6.2] BA : AF = BC : CE. But AF = CD, and

so BA : CD = BC : CE. By [5.16], BA : BC = CD : CE.

Similarly, since CD ‖ BF , by [6.2] BC : CE = FD : DE. But FD = AC, and so

BC : CE = AC : DE; or BC : AC = CE : DE.

Since BA : BC = CD : CE and BC : AC = CE : DE, by [5.22] BA : AC = CD : DE,

which proves our claim.

Corollary. 6.4.1. By [Def. 6.1], the triangles in [6.4] have been proved to be similar.

Therefore, equiangular triangles are similar.
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Exercises.

1. If two circles intercept equal chords AB, A′B′ on any secant, prove that the

tangents
←→
AT ,

←→
A′T to the circles at the points of intersection are to one another as

the radii of the circles.

2. If two circles intercept on any secant chords that have a given ratio, prove that

the tangents to the circles at the points of intersection have a given ratio, namely,

the ratio compounded of the direct ratio of the radii and the inverse ratio of the

chords.

3. Being given a circle and a line, prove that a point may be found such that the

rectangle of the perpendiculars falling on the line from the points of intersection of

the circle with any chord through the point shall be given.

4. If AB is the diameter of a semicircle ADB and CD ⊥ AB, construct through A

a chord AF of the semicircle meeting CD at E such that the ratio CE : EF may be

given.
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Proposition 6.5. EQUIANGULAR TRIANGLES II.

If two triangles have proportional sides, then the triangles are equiangular with

the equal angles opposite the corresponding sides.

Proof. Construct △ABC and △DEF such that BA : AC = ED : DF and AC :

CB = DF : FE. We claim that:

(1)△ABC and △DEF are equiangular;

(2) equal angles stand opposite corresponding sides.

Figure 6.2.6: [6.5]

At D and E, construct the angles ∠EDG = ∠BAC and ∠DEG = ∠ABC. By [1.32],

△ABC and △DEG are equiangular; by [6.4], BA : AC = ED : DG.

Since BA : AC = ED : DF by hypothesis, DG = DF . Similarly, EG = EF .

Consider △EDF and △EDG: DG = DF , each shares side ED, and EG = EF . By

[1.8], △EDF ∼= △EDG, and so △EDF and △EDG are equiangular. But △EDG is

equiangular to△ABC by construction. Therefore,△EDF is equiangular to△ABC,

proving claim 1.

Since ∠BAC stands between BA and AC, and ∠EDF stands between ED and DF ,

we have also proven claim 2. This completes the proof.

Corollary. 6.5.1. Two triangles are equiangular if and only if the sides about

the equal angles are proportional where the corresponding sides stand opposite the

equal angles.
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Remark. In [Def. 6.1], two conditions are laid down as necessary for the similitude

of polygons:

(a) The equality of angles;

(b) The proportionality of sides.

Now by [6.4] and [6.5], we see that if two triangles possess either condition, they

also possess the other. Triangles are unique in this respect. In all other polygons,

one of these conditions may exist without the other. Thus two quadrilaterals may

have their sides proportional without having equal angles, or vice verse.
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Proposition 6.6. EQUIANGULAR TRIANGLES III.

If two triangles contain an equal angle enclosed by proportional sides, then the

triangles are equiangular and have those angles equal which stand opposite to

their corresponding sides.

Proof. Construct △ABC and △DEF such that:

(1) ∠BAC = ∠EDF

(2) BA : AC = ED : DF

We claim that △ABC and △DEF are equiangular and have those angles equal

which stand opposite to their corresponding sides.

Figure 6.2.7: [6.6]

Recreate the construction from [6.5]: by [6.4], BA : AC = ED : DG. By hypothesis,

BA : AC = ED : DF , and so DG = DF .

Because ∠EDG = ∠BAC by construction and ∠BAC = ∠EDF by hypothesis,

∠EDG = ∠EDF .

Consider △EDG and △EDF : DG = DF , each shares side DE, and ∠EDG =

∠EDF . By [1.4], △EDF ∼= △EDG, and so △EDF and △EDG are equiangular.

But△EDG is equiangular to△BAC by construction, and so△EDF is equiangular

to △BAC.

Finally, △ABC and △DEF have equal angles which stand opposite to their corre-

sponding sides, which proves our claim.

Remark. As in the case of [6.4], an immediate proof of [6.6] can also be obtained

from [6.2].
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Proposition 6.7. SIMILAR TRIANGLES I.

If two triangles each contain an equal angle, if the sides about two remaining angles

are proportional, and if the remaining angles are either both acute or not acute,

then the triangles are similar.

Proof. Construct △ABC and △DEF where ∠BAC = ∠EDF , AB : BC = DE : EF ,

and ∠EFD and ∠BCA are either both acute or not acute. We claim that △ABC ∼
△DEF .

Figure 6.2.8: [6.7]

If ∠ABC 6= ∠DEF , then one angle must be greater than the other. Wlog, suppose

∠ABC > ∠DEF such that ∠ABG = ∠DEF , from which it follows that ∠EFD =

∠BGA.

Consider △ABG and △DEF : ∠BAG = ∠EDF and ∠ABG = ∠DEF . By [1.32],

△ABG and △DEF are equiangular. By [6.4], AB : BG = DE : EF .

Since AB : BC = DE : EF by hypothesis, BG = BC. Consider △CBG: by the

above, the triangle is isosceles. By [1.5], ∠BGC = ∠BCG. By [Cor. 1.17.1], every

triangle has at least two acute angles, and so ∠BGC and ∠BCG are both acute.

Since ∠BGC is acute, ∠BGA is obtuse.

By hypothesis, ∠EFD = ∠BGA, and so ∠EFD is obtuse; since ∠BCG = ∠BCA,

∠BCA is acute. However, ∠EFD and ∠BCA are either both acute or both obtuse

by hypothesis, a contradiction. Hence ∠ABC = ∠DEF . Since ∠BAC = ∠EDF by

hypothesis, by [1.32] △ABC and △EFD are equiangular.

Since AB : BC = DE : EF by hypothesis, △ABC ∼ △DEF [6.4]. This proves our

claim.

Corollary. 6.7.1. If △ABC and △DEF each have two sides proportional to two

sides in the other triangle, then AB : BC = DE : EF , the angles at points A and D

opposite one pair of corresponding sides are equal, and the angles at points C and



CHAPTER 6. APPLICATIONS OF PROPORTIONS 260

F opposite the other are either equal or supplemental. This proposition is nearly

identical with [6.7].

Corollary. 6.7.2. If either of the angles at points C and F are right, the other angle

must be right.

Exercises.

1. Prove [Cor. 6.7.1].

2. Prove [Cor. 6.7.2].

3. Prove the Transitivity of Similar Triangles, i.e., if△ABC ∼ △DEF and△DEF ∼
△GHI, then △ABC ∼ △GHI. [See the final chapter for the solution.]
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Proposition 6.8. SIMILARITY OF RIGHT TRIANGLES.

The triangles formed by dividing a right triangle by the perpendicular from the

right angle to the hypotenuse are similar to the original triangle and to each other.

Proof. Construct right-triangle △ACB where ∠BCA is its right angle. Construct

CD such that D is on side AB and AB ⊥ DC. We claim that △ABC ∼ △ACD,

△ABC ∼ △BCD, and △ACD ∼ △BCD.

Figure 6.2.9: [6.8]

Consider △ABC and △ACD: they share ∠BAC, and they each contain a right

angle. By [1.32], △ABC and △ABD are equiangular. By [Cor. 6.4.1], △ABC ∼
△ABD.

Likewise, △ABC ∼ △BCD. By [6.7, #3], △ACD ∼ △BCD, which completes the

proof.

Corollary. 6.8.1. The perpendicular DC is a mean proportional between the seg-

ments AD and DB of the hypotenuse. (Since △ADC and △CDB are equiangular,

AD : DC = DC : DB. Thus DC is a mean proportional between AD and DB [Def.

6.3].)

Corollary. 6.8.2. BC is a mean proportional between AB and BD; also, AC is a

mean proportional between AB and AD.

Corollary. 6.8.3. The segments AD and DB are in the duplicate of AC : CB; in

other words, AD : DB = (AC)2 : (CB)2.

Corollary. 6.8.4. BA : AD are in the duplicate ratios of BA : AC, and AB : BD are

in the duplicate ratio of AB : BC. Or, AB : AD = (AB)2 : (AC)2 and AB : BD =

(AB)2 : (BC)2.
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Exercises.

1. Prove [Cor. 6.8.1].

2. Prove [Cor. 6.8.2].

3. Prove [Cor. 6.8.3].

4. Prove [Cor. 6.8.4].
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Proposition 6.9. CUTTING OFF SUB-SEGMENTS.

From a given segment, we may cut off any required sub-segment.

Proof. Construct AB; we wish to cut off any required sub-segment from AB.

Figure 6.2.10: [6.9]

Suppose we wish to cut 1
4 th of AB. Construct

−→
AF at any acute angle to AB. On

−→
AF ,

choose point C and cut off segments CD, DE, and EF where AC = CD = DE = EF

[1.3]. Construct CG, DH , EI, and FB such that each is parallel to CG. We claim

that AG = 1
4 · AB.

Since CG ‖ BF where BF is the side of △ABF , by [6.2]:

CF : AC = GB : AG
(

AC ⊕ CF
)

: AC =
(

AG⊕GB
)

: AG

AF : AC = AB : AG

AC : AF = AG : AB

But AC = 1
4 · AF by construction, and so AG = 1

4 · AB. Since our choice of 1
4 was

arbitrary, any other required sub-segment may similarly be cut off.

Remark. [1.10] is a particular case of this proposition.

Exercises.

1. Prove [6.9] using a proof by induction.
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Proposition 6.10. SIMILARLY DIVIDED SEGMENTS.

We wish to divide a segment similarly to a given divided segment.

Proof. Construct AC divided at points D and E as well as AB where ∠BAC is an

acute angle. We claim that AB can be divided similarly to AC.

Figure 6.2.11: [6.10]

Construct CB, DF , and EG such that DF ‖ CB and EG ‖ CB. Also construct DK

where DK intersects EG at H and where DK ‖ AB.

It follows that ⊡DHGF and ⊡HKBG are parallelograms; by [1.34] DH = FG and

HK = GB.

Consider △DCK: since EH ‖ CK, by [6.2] DE : EC = DH : HK.

But DH = FG and HK = GB; by [5.7], we find that DE : EC = FG : GB.

Consider △AEG: since DF ‖ EG, we find that AD : DE = AF : FG.

From the last two proportions we obtain AD : EC = AF : GB. This divides AB

similarly to AC.

Corollary. 6.10.1. We may divide a given undivided segment AB similarly to a

given divided segment DE by constructing AC at an acute angle to AB where AC is

divided into segments similar to DE.
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Exercises.

1. We wish to divide a given segment AB internally or externally in the ratio of two

given segments FG and HJ .

Figure 6.2.12: [6.11]

Through A and B construct any two parallels
←→
AC and

←→
BD. Construct segments

AC = FG and BD = HJ . Also construct CD: we claim that CD divides AB

internally at E in the ratio of FG : HJ .

2. In #1, if BD′ is constructed parallel to AC, then CD will cut AB externally at E

in the ratio of FG : HJ .

Corollary. 6.10.2. The two points in the above Figure, E and E′, divide AB har-

monically.

This problem is manifestly equivalent to the following: given the sum or difference

of two segments and their ratio, we wish to construct the segments.

Exercises.

3. In the above Figure, prove that any line AE′ through the midpoint B of the base

DD′ of△DCD′ is cut harmonically by the sides of the triangle and a parallel to the

base through the vertex.

4. Given the sum of the squares on two segments and their ratio, construct the

segments.

5. Given the difference of the squares on two segments and their ratio, construct

the segments.
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6. Given the base and ratio of the sides of a triangle, construct it when any of the

following data is given:

(a) the area;

(b) the difference on the squares of the sides;

(c) the sum of the squares on the sides;

(d) the vertical angle;

(e) the difference of the base angles.

Proposition 6.11. PROPORTIONAL SEGMENTS I.

Given two segments, we wish to find a third proportional segment.

Proof. Construct JK and LM . We wish to construct a segment X such that JK :

LM = LM : X.

Figure 6.2.13: [6.11]

Construct
−→
AC and

−→
AE at an arbitrary acute angle. Cut off AB = JK, BC = LM ,

and AD = LM . Construct BD such that CE ‖ BD. We claim that DE is the

required third proportional segment.

In △CAE, BD ‖ CE; by [6.2]. AB : BC = AD : DE. But AB = JK and BC =

LM = AD. Hence JK : LM = LM : DE, which completes the construction.

Remark. Another solution can be inferred from [6.8]. If AD and DC in that propo-

sition are respectively equal to JK and LM , then DB is the third proportional.

Corollary. 6.11.1 Algebraically, this problem can be written as

a

b
=

b

x
⇒ x =

b2

a

where a and b are positive real numbers.
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Exercises.

1. Suppose that△AOQ is a triangle where AQ > AO. If we cut AB = AO, construct

BB′ ‖ AO, cut BC = BB′, and so on, prove that the series of segments AB, BC,

CD, etc., are in continual proportion.

Figure 6.2.14: [6.2, #1]

2. In the above Figure, prove that (AB − BC) : AB = AB : AQ. (Hint: This is

evident by constructing MB′ ‖ AQ.)
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Proposition 6.12. PROPORTIONAL SEGMENTS II.

We wish to find a fourth proportional to three given segments.

Proof. Construct AK, BM , and CP . We wish to construct a fourth segment pro-

portional to these three segments; specifically, we wish to construct X such that

AK : BM = CP : X.

Construct
−−→
DE and

−−→
DF at an arbitrary acute angle. Also construct DG = AK,

GE = BM , and DH = CP . Construct GH such that EF ‖ GH [1.31]. We claim

that HF is the required fourth proportional segment.

Figure 6.2.15: [6.12]

In △DEF , GH ‖ EF , and so DG : GE = DH : HF [6.2]. But the above equalities

give us AK : BM = CP : HF . Hence, HF is the fourth proportional to AK, BM ,

and CP , completing the construction.

Corollary. 6.12.1 Algebraically, this problem can be written as

a

b
=

c

x
⇒ x =

bc

a

where a, b, and c are positive real numbers. From this equation, it is possible to infer

[Cor. 6.11.1] where c = b.
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Proposition 6.13. PROPORTIONAL SEGMENTS III.

We wish to find a mean proportional between two given segments.

Proof. Construct EF and GH . We wish to construct a mean proportional between

these segments; specifically, we wish to construct X such that EF : X = X : GH .

Figure 6.2.16: [6.13]

Construct segment AC such that AC = EF ⊕GH where AB = EF and BC = GH .

On AC, construct semicircle ADC. Also construct BD ⊥ AC which intersects the

semicircle at D. We claim that BD is the required mean proportional.

Construct AD and DC. Since ADC is a semicircle, ∠ADC is right [3.31]. Since

△ADC is a right triangle and BD is a perpendicular from the right angle on the

hypotenuse, BD is a mean proportional between AB and BC [6.8, Cor. 1]. Thus

EF : BD = BD : GH .

This completes the construction.

Corollary. 6.13.1. Algebraically, we have

a

x
=

x

b
⇒ x =

√
ab

where a and b are positive real numbers.

Exercises.

1. If through any point within a circle a chord is constructed which is bisected at

that point, prove that its half is a mean proportional between the segments of any

other chord passing through the same point.

2. Prove that the tangent to a circle from any external point is a mean proportional

between the segments of any secant passing through the same point.
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3. If through the midpoint C of any arc of a circle, a secant is constructed cutting

the chord of the arc at D and the circle again at E, prove that the chord of half the

arc is a mean proportional between CD and CE.

4. If a circle is constructed touching another circle internally and with two parallel

chords, prove that the perpendicular from the center of the former on the diameter

of the latter, which bisects the chords, is a mean proportional between the two

extremes of the three segments into which the diameter is divided by the chords.

5. If a circle is constructed touching a semicircle and its diameter, prove that the

diameter of the circle is a harmonic mean between the segments into which the

diameter of the semicircle is divided at the point of intersection.
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Proposition 6.14. EQUIANGULAR PARALLELOGRAMS.

Equiangular parallelograms are equal in area if and only if the sides about the

equal angles are reciprocally proportional.

Proof. Construct equiangular parallelograms ⊡HACB and ⊡CGDE. We wish to

prove that ⊡HACB = ⊡CGDE if and only if AC : CE = GC : CB.

Figure 6.2.17: [6.14]

Suppose that ⊡HACB = ⊡CGDE; we claim that AC : CE = GC : CB.

Place ⊡HACB and ⊡CGDE so that AE = AC ⊕ CE and the equal angles ∠ACB

and ∠ECG stand vertically opposite each other. Notice that

∠ACB + ∠BCE = ∠ECG+ ∠BCE = two right angles

since ∠ACB + ∠BCE equals two right angles [1.13]. By [1.14], BC ⊕ CG = BG.

Construct ⊡BCEF . Since ⊡HACB = ⊡CGDE,

AC : CE = ⊡HACB : ⊡BCEF [6.1]

⊡HACB : ⊡BCEF = ⊡CGDE : ⊡BCEF (hypothesis)

⊡CGDE : ⊡BCEF = GC : CB [6.1]

Therefore, AC : CE = GC : CB, which proves our first claim.

Now suppose that AC : CE = GC : CB. We claim that ⊡HACB = ⊡CGDE.
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Figure 6.2.18: [6.14]

By [6.1],

AC : CE = ⊡HACB : ⊡BCEF

GC : CB = ⊡CGDE : ⊡BCEF

Since AC : CE = GC : CB by hypothesis,

⊡HACB : ⊡BCEF = ⊡CGDE : ⊡BCEF

By [5.9], ⊡HACB = ⊡CGDE, which proves our second and final claim.

An alternative proof:

Proof. Suppose that ⊡HACB = ⊡CGDE; we claim that AC : CE = GC : CB.

Construct HE, BE, HD, and BD. The area of the parallelogram ⊡HACB =

2 · △HBE, and the area of the parallelogram ⊡CGDE = 2 · △BDE. Therefore

△HBE = △BDE, and by [1.39.], HD ‖ BE. Hence HB : BF = DE : EF ; that is,

AC : CE = GC : CB.

Part two may be proved by reversing the above, which completes the proof.
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Proposition 6.15. TRIANGLES WITH EQUAL AREAS.

Construct two triangles which share an equal angle. These triangles have equal

area if and only if their sides about the equal angles are reciprocally proportional.

Proof. Construct△ACB and△DCE where ∠BCA = ∠DCE. We claim that△ACB =

△DCE if and only if AC : CD = EC : CB.

Figure 6.2.19: [6.15]

Suppose that △ACB = △DCE; we claim that AC : CD = EC : CB.

Place ∠BCA and ∠DCE to stand vertically opposite so that AD = AC ⊕ CD; as in

the proof to [6.14], we find that BE = BC ⊕ CE. Construct BD.

Since △ACB = △DCE,

△ACB : △BCD = △DCE : △BCD

△ACB : △BCD = AC : CD [6.1]

△DCE : △BCD = EC : CB [6.1]

Therefore, AC : CD = EC : CB, which proves our first claim.

Now suppose that AC : CD = EC : CB; we claim that △ACB = △DCE.

Using the same construction, we have

AC : CD = EC : CB (hypothesis)

AC : CD = △ACB : △BCD [6.1]

EC : CB = △DCE : △BCD [6.1]

Therefore △ACB : △BCD = △DCE : △BCD, and so △ACB = △DCE [5.9]. This

proves our second and final claim.
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Remark. [6.15] might have been appended as a corollary to [6.14] since the trian-

gles are the halves of equiangular parallelograms; it may also be proven by con-

structing AE and showing that it is parallel to BD.

Proposition 6.16. PROPORTIONAL RECTANGLES.

Four segments are proportional if and only if the rectangle contained by the ex-

tremes (i.e., the largest and the smallest segments) equals the rectangle contained

by the means (i.e., the remaining segments).

Proof. We claim that AB : CD = LM : NP if and only if AB ·NP = CD · LM .

Let AB = x, CD = y, LM = u, and NP = v. Then

x

y
=

u

v
⇐⇒ xv = yu

which completes the proof.

A geometric proof:

Proof. Place the four segments in a concurrent position so that the extremes form

one continuous segment and the means form a second continuous segment.

Figure 6.2.20: [6.16], Alternative proof

Place the four segments in the order AO, BO, OD, and OC. Construct AB and

CD. Because AO : OB = OD : OC and ∠AOB = ∠DOC, the triangles △AOB

and △COD are equiangular. Thus, the four points A, B, C, and D are concyclic; by

[3.35], AO · OC = BO ·OD.
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Proposition 6.17. LINES AND RECTANGLES.

Three segments are proportional if and only if the rectangle contained by the first

and fourth segments is equal in area to the area of the square of the mean.

Proof. Construct segments AB, CD, and GH so that they are proportional: AB :

CD = CD : GH . We claim that AB ·GH = (CD)2.

Let AB = x, CD = y, and GH = z. Then

x

y
=

y

z
⇒ xz = y2

This proves our claim.

Remark. This proposition may also be inferred as a corollary to [6.16] by setting

y = u.

Exercises.

1. If a segment CD bisects the vertical angle at C of an arbitrary triangle, △ACB,

prove that its square added to the rectangle AD ·DB contained by the segments of

the base is equal in area to the rectangle contained by the sides.

Figure 6.2.21: [6.17, #1]

Hint: Construct a circle about the triangle, and extend CD to intersect the cir-

cumference at E. Then show that △ACB and △ECB are equiangular. By [6.4],

AC : CD = CE : CB, and by [3.35]),

AC · CB = CE · CD

= (CD)2 + CD ·DE

= (CD)2 +AD ·DB
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2. If
←−→
CD′ bisects the external vertical angle of an arbitrary triangle, △ACB, prove

that its square subtracted from the rectangle AD′ ·D′B is equal in area to AC ·CB.

3. If a circle passing through the angle at point A of a parallelogram ⊡ABCD

intersects the two sides AB, AD again at the points E, G and the diagonal AC

again at F , prove that AB · AE +AD · AG = AC ·AF .

Figure 6.2.22: [6.17, #3]

Hint: construct EF , FG, and ∠ABH = ∠AFE. Then the triangles △ABH and

△AFE are equiangular: it follows that AB : AH = AF : AE, and so AB · AE =

AF ·AH .

Again, it is clear that the triangles △BCH and △GAF are equiangular, and there-

fore BC : CH = AF : AG, and so BC · AG = AF · CH , or AD · AG = AF · CH . But

since AB ·AE = AF ·AH , we find that AD · AG+AB ·AE = AF · CH .

4. If DE, DF are parallels to the sides of △ABC from any point D at the base,

prove that AB ·AE +AC ·AF = (AD)2 +BD ·DC.

5. If through a point O within a triangle △ABC parallels EF , GH , IK are con-

structed to the sides, prove that the sum of the areas of the rectangles constructed

by their segments is equal to the area of the rectangle contained by the segments

of any chord of the circumscribing circle passing through O.
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Figure 6.2.23: [6.17, #5]

Hint: notice that

AO · AL = AB · AK +AC ·AE

and

(AO)2 = AG ·AK +AH ·AE −GO · OH

Hence,

AO ·OL = BG ·AK + CH ·AE +GO ·OH

or

AO · OL = EO ·OF + IO · OK +GO ·OH

6. Prove that the rectangle contained by the side of an inscribed square standing

on the base of a triangle and the sum of the base and altitude equals twice the area

of the triangle.

7. Prove that the rectangle contained by the side of an escribed square standing on

the base of a triangle and the difference between the base and altitude equals twice

the area of the triangle.

8. If from any point P in the circumference of a circle a perpendicular is drawn to

any chord, its square is equal in area to the rectangle contained by the perpendic-

ulars from the extremities of the chord on the tangent at P .

9. If O is the point of intersection of the diagonals of a cyclic quadrilateral ABCD,

prove that the four rectangles AB ·BC, BD ·CD, CD ·DA, DA ·AB are proportional

to the four segments BO, CO, DO, AO.

10. PTOLEMY’S THEOREM. The sum of the areas of the rectangles of the opposite

sides of a cyclic quadrilateral ABCD equals the area to the rectangle contained by

its diagonals.

Hint: construct ∠DAO = ∠CAB. Then △DAO and △CAB are equiangular; there-

fore AD : DO = AC : CB and so AD · BC = AC ·DO. Again, the triangles △DAC

and △OAB are equiangular, and CD : AC = BO : AB, or AC · CD = AC ·BO.
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Hence AD ·BC +AB · CD = AC · BD.

11. If the quadrilateral ABCD is not cyclic, prove that the three rectangles AB ·CD,

BC ·AD, AC ·BD are proportional to the three sides of a triangle which has an angle

equal to the sum of a pair of opposite angles of the quadrilateral.

12. Prove by using [6.11] that if perpendiculars fall on the sides and diagonals of a

cyclic quadrilateral from any point on the circumference of the circumscribed circle

that the rectangle contained by the perpendiculars on the diagonals equals the area

of the rectangle contained by the perpendiculars on either pair of opposite sides.

13. If AB is the diameter of a semicircle, and PA, PB are chords from any point

P in the circumference, and if a perpendicular to AB from any point C intersects

PA, PB at D and E and the semicircle at F , prove that CF is a mean proportional

between CD and CE.
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Proposition 6.18. CONSTRUCTION OF A SIMILAR POLYGON.

We may construct a polygon that is similar and similarly placed to a given polygon

on a given segment.

Proof. Construct polygon CDEFG and segment AB. We wish to construct a poly-

gon on AB similar to polygon CDEFG and similarly placed.

Figure 6.2.24: [6.18]

Construct CE and CF . Also construct△ABH on AB such that△ABH is equiangu-

lar to △CDE and is similarly placed in regards to CD; that is, construct ∠ABH =

∠CDE and ∠BAH = ∠DCE.

Also construct △HAI equiangular to △ECF and similarly placed. Finally, con-

struct△IAJ equiangular and similarly placed with △FCG. We claim that ABHIJ

is the required polygon.

By construction, it is evident that the figures are equiangular, and it is only re-

quired to prove that the sides about the equal angles are proportional.

Because △ABH is equiangular to △CDE, we find that AB : BH = CD : DE [6.4].

Hence the sides about the equal angles at points B and D are proportional.

Again from the same triangles, we have BH : HA = DE : EC, and from the

triangles △IHA, △FEC, we have HA : HI = EC : EF . Therefore, BH : HI =

DE : EF , or the sides about the equal angles ∠BHI, ∠DEF are proportional.

This result follows about the other equal angles, mutatis mutandis. By [Def. 6.1]

and our placement of each triangle, the proof is complete.
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Remark. In the above construction, the segment AB corresponds to CD, and it is

evident that we may take AB to correspond to any other side of the given figure

CDEFG.

Again, in each case, if the figure ABHIJ is turned round the segment AB until

it falls on the other side, it will still be similar to the figure CDEFG. Hence on

a given segment AB, there can be constructed two figures each similar to a given

figure CDEFG and having the given segment AB correspond to any given side CD

of the given figure.

The first of the figures thus constructed is said to be directly similar, and the second

is said to be inversely similar to the given figure.

Corollary. 6.18.1. Twice as many polygons may be constructed on AB similar to a

given polygon CDEFG as that figure has sides.

Corollary. 6.18.2. If the figure ABHIJ is applied to CDEFG so that the point A

coincides with C and that the segment AB is placed along CD, then the points H ,

I, J will be respectively on the segments CE, CF , CG. Also, the sides BH , HI, IJ

of the one polygon will be respectively parallel to their corresponding sides DE, EF ,

FG of the other.

Corollary. 6.18.3. If segments constructed from any point O in the plane of a figure

to all its vertices are divided in the same ratio, the segments joining the points of

division will form a new figure similar to and having every side parallel to the

corresponding side of the original.

Exercises.

1. Prove [Cor. 6.18.1].

2. Prove [Cor. 6.18.2].

3. Prove [Cor. 6.18.3].
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Proposition 6.19. RATIOS OF SIMILAR TRIANGLES.

The areas of similar triangles have a ratio equal to the square of the ratio of the

triangles’ corresponding sides.

Proof. Construct △ABC and △DEF such that △ABC ∼ △DEF (where ∠ABC =

∠DEF ) and AB : BC = DE : EF . We claim that△ABC : △DEF =
(

BC
)2

:
(

EF
)2

.

Figure 6.2.25: [6.19]

Using [6.11], construct AG such that BC : EF = EF : BG.

Since AB : BC = DE : EF by hypothesis, AB : DE = BC : EF by [5.16]. Taken

together and applying [5.11], AB : DE = EF : BG.

Consider △ABG and △DEF : the sides about equal angles are reciprocally propor-

tional. By [6.15], △ABG = △DEF .

Since BC : EF = EF : BG, by [Def. 5.9], we have
(

BC
)2

:
(

EF
)2

= BC : BG.

By [6.1], we also have BC : BG = △ABC : △ABG, and applying the above, we

obtain △ABC : △ABG =
(

BC
)2

:
(

EF
)2

.

Since △ABG = △DEF , we have △ABC : △DEF =
(

BC
)2

:
(

EF
)2

, which proves

our claim.

Remark. [6.19] is the first of Euclid’s Proposition in which [Def. 5.9], the duplicate

ratio, is employed.
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An alternate proof:

Proof. Suppose that△ABC ∼ △DEF . On AB and DE, construct squares ⊡AGHB

and ⊡DLME, respectively. Through points C and F construct segments parallel

and respectively equal to AB and DE. Extend AG, BH , DL, and EM to points J,

I, O, and N , respectively; this constructs rectangles ⊡JABI and ⊡ODEN .

Figure 6.2.26: [6.19] (Casey’s proof)

Clearly, △JAC and △ODF are equiangular. By [6.4], JA : AC = OD : DF and

AC : AB = DF : DE; thus, JA : AB = OD : DE. Since AB = AG and DE = DL

by construction, JA : AG = OD : DL. By [6.1], JA : AG = ⊡JABI : ⊡AGHB and

OD : DL = ⊡ODEN : ⊡DLME. Hence

⊡JABI : ⊡AGHB = ⊡ODEN : ⊡DLME

By [5.16],

⊡JABI : ⊡ODEN = ⊡AGHB : ⊡DLME
1

2
·⊡JABI :

1

2
·⊡ODEN = (AB)2 : (DE)2

△ABC : △DEF = (AB)2 : (DE)2

Corollary. 6.19.1 If three segments are proportional, then the first is to the third as

the figure described on the first is to that which is similar and similarly described

on the second.4

4
https://proofwiki.org/wiki/Ratio_of_Areas_of_Similar_Triangles/Porism

https://proofwiki.org/wiki/Ratio_of_Areas_of_Similar_Triangles/Porism
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Exercises.

1. If one of two similar triangles has a side that is 50% longer than the correspond-

ing sides of the other, determine the ratio of their areas.

2. When the inscribed and circumscribed regular polygons of any common number

of sides to a circle have more than four sides, prove that the difference of their areas

is less than the square of the side of the inscribed polygon.

3. Prove [Cor. 6.19.1].
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Proposition 6.20. DIVISION OF SIMILAR POLYGONS.

Similar polygons may be divided such that:

(1) they divide into the same number of similar triangles,

(2) corresponding triangles have the same ratio to one another as the polygons

have to each other,

(3) the polygons have a duplicate ratio of their corresponding sides.

Proof. Construct polygons ABHIJ and CDEFG such that ABHIJ ∼ CDEFG and

sides AB and CD correspond to each other. Also construct AH , AI, CE, and CF .

We shall prove each claim separately.

Figure 6.2.27: [6.20]

Claim 1: ABHIJ and CDEFG divide into the same number of similar triangles.

Since ABHIJ ∼ CDEFG, ABHIJ and CDEFG are equiangular and have pro-

portional sides about their equal angles. It follows that ∠ABH = ∠CDE and

AB : BH = CD : DE. By [6.6], △ABH is equiangular to △CDE, and so ∠BHA =

∠DEC. Since ∠BHI = ∠DEF by hypothesis, it follows that ∠AHI = ∠CEF .

Again, since ABHIJ ∼ CDEFG, IH : HB = FE : ED. Since △ABH and △CDE

are equiangular, △ABH ∼ △CDE and so HB : HA = ED : EC. It follows that

IH : HA = FE : EC.

Since ∠AHI = ∠CEF and IH : HA = FE : EC, △AHI ∼ △CEF . Similarly,

we may show that all remaining triangles are also equiangular, which proves our

claim.
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Claim 2: corresponding triangles within ABHIJ and CDEFG have the same ratio

to one another as the polygons have to each other.

Since △ABH ∼ △CDE, by [6.19], △ABH : △CDE is in the duplicate ratio of

AH : CE.

Also by [6.19], △AHI : △CEF is in the duplicate ratio of AH : CE.

Hence, △ABH : △CDE = △AHI : △CEF and △AHI : △CEF = △AIJ : △CFG,

mutatis mutandis. Clearly,△ABH : △CDE = △AIJ : △CFG. By [5.12],

△ABH

△CDE
=

△ABH +△AHI +△AIJ

△CDE +△CEF +△CFG

△ABH

△CDE
=

ABHIJ

CDEFG

which proves claim 2.

Claim 3: the polygons have a duplicate ratio of their corresponding sides.

By [6.19], △ABH : △CDE is in the duplicate ratio of AB : CD. Since

△ABH

△CDE
=

ABHIJ

CDEFG

ABHIJ : CDEFG is also in the duplicate ratio of AB : CD, which proves our third

and final claim.

Corollary. 6.20.1. The perimeters of similar polygons are to one another in the

ratio of their corresponding sides.

Corollary. 6.20.2. As squares are to similar polygons, the duplicate ratio of two

segments is equal to the ratio of the squares constructed on them.

Corollary. 6.20.3. Similar portions of similar figures have the same ratio to each

other as the wholes of the figures.

Corollary. 6.20.4. Similar portions of the perimeters of similar figures are to each

other in the ratio of the whole perimeters.

Exercises.

1. If two figures are similar, prove that to each point in the plane of one there will

be a corresponding point in the plane of the other.
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Let ABCD and A′B′C′D′ be the two figures and P a point inside of ABCD. Con-

struct AP and BP , and also construct a triangle△A′P ′B′ on A′B′ similar to△APB.

Prove that segments from P ′ to the vertices of A′B′C′D′ are proportional to the

lines from P to the vertices of ABCD.

Figure 6.2.28: [6.20] #1
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2. If two figures are similar and in the same plane, there is in the plane called a

corresponding point with respect to the other (which may be regarded as belonging

to either figure).

Let AB, A′B′ be two corresponding sides of the figures and C their point of inter-

section. Through the two triads of points A, A′, C and B, B′, C construct two circles

intersecting again at the point O. Prove that O is the required point. Notice that

△OAB ∼ △OAB and either may be rotated around O, so that AB and A′B′ will be

parallel.

Figure 6.2.29: [6.20] #2 and [Def. 6.9]

3. Prove that two regular polygons of n sides each have n centers of similitude.

4. If any number of similar triangles have their corresponding vertices lying on

three given lines, they have a common center of similitude.

5. If two figures are directly similar and have a pair of corresponding sides parallel,

every pair of corresponding sides will be parallel.

6. If two figures are homothetic [Def. 6.10], the segments joining corresponding

vertices are concurrent, and the point of concurrence is the center of similitude of

the figures.

7. If two polygons are directly similar, either may be turned round their center

of similitude until they become homothetic, and this may be done in two different

ways.

8. Prove that sectors of circles having equal central angles are similar figures.

9. As any two points of two circles may be regarded as corresponding, two circles

have in consequence an infinite number of centers of similitude. Their locus is the

circle, whose diameter is the line joining the two points for which the two circles

are homothetic.

10. The areas of circles are to one another as the squares of their diameters. For

they are to one another as the similar elementary triangles into which they are

divided, and these are as the squares of the radii.
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11. The circumferences of circles are proportional to their diameters (see [6.20, Cor.

1]).

12. The circumference of sectors having equal central angles are proportional to

their radii. Hence if a, a′ denote the arcs of two sectors which stand opposite equal

angles at the centers, and if r, r′ are their radii, then we find that a
r = a′

r′ .

13. The area of a sector of a circle is equal to half the rectangle contained by the

arc of the sector and the radius of the circle.

14. Prove [Cor. 6.20.1].

15. Prove [Cor. 6.20.2].

16. Prove [Cor. 6.20.3].

17. Prove [Cor. 6.20.4].
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Proposition 6.21. TRANSITIVITY OF SIMILAR POLYGONS.

Polygons which are similar to the same figure are similar to one another.

Proof. Construct polygonsABC, DEF , and GHI such that ABC ∼ GHI and DEF ∼
GHI. We claim that ABC ∼ DEF .

Figure 6.2.30: [6.21] Note that the polygons need not be triangles.

Since ABC ∼ GHI, they are equiangular and have the sides about their equal

angles proportional. Similarly, DEF and GHI are equiangular and have the sides

about their equal angles proportional.

Hence ABC and DEF are equiangular and have the sides about their equal angles

proportional; or, ABC ∼ DEF . This completes the proof.

Remark. Our proof did not use any properties of triangles that are absent in an

arbitrary n−sided polygon.

Corollary. 6.21.1. Two similar polygons which are homothetic to a third are homo-

thetic to one another.

Exercises.

1. If three similar polygons are respectively homothetic, then their three centers of

similitudes are collinear.
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Proposition 6.22. PROPORTIONALITY OF FOUR SEGMENTS TO THE POLY-

GONS CONSTRUCTED UPON THEM.

Four segments are proportional if and only if the rectilinear figures similar and

similarly described upon them are also proportional.

Proof. Suppose that AB : CD = EF : GH . Construct similar polygons△ABK and

△CDL on AB and CD as well as ⊡MEFI and ⊡NGHJ on EF and GH .

Figure 6.2.31: [6.22]

Suppose AB : CD = EF : GH . We wish to show that △ABK : △CDL = ⊡HEFI :

⊡NGHJ . Notice that:

(

AB
)2

:
(

CD
)2

=
(

EF
)2

:
(

GH
)2

△ABK : △CDL = (AB)2 : (CD)2 [6.20]

⊡HEFI : ⊡NGHJ = (EF )2 : (GH)2 [6.20]

It follows that △ABK : △CDL = ⊡HEFI : ⊡NGHJ , which proves our first claim.

Now suppose △ABK : △CDL = ⊡HEFI : ⊡NGHJ ; similarly to the above, we

obtain (AB)2 : (CD)2 = (EF )2 : (GH)2. By [5.22, Cor. 1], AB : CD = EF : GH ,

which proves our second and final claim.
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Proposition 6.23. EQUIANGULAR PARALLELOGRAMS.

The areas of equiangular parallelograms have a ratio to each other equal to the

ratio of the rectangles contained by their sides about a pair of equal angles.

Proof. Construct equiangular parallelograms ⊡HABD and ⊡BGEC where ∠ABD =

∠GBC. We claim that ⊡HABD : ⊡BGEC =
(

AB · BD
)

:
(

BC · BG
)

.

Figure 6.2.32: [6.23]

Let the sides AB and BC about the equal angles ∠ABD and ∠CBG be placed such

that AC = AB ⊕BC. As in [6.14], GB ⊕BD = GD.

Complete the parallelogram ⊡DBCF . By [6.1],

⊡HABD : ⊡DBCF = AB : BC

⊡DBCF : ⊡BGEC = BD : BG

It follows that

(⊡HABD ·⊡DBCF ) : (⊡DBCF ·⊡BGEC) =
(

AB · BD
)

:
(

BC · BG
)

⊡HABD : ⊡BGEC =
(

AB · BD
)

:
(

BC · BG
)

which completes the proof.

Exercises.

1. Triangles which have one angle of one equal or supplemental to one angle of

the other are to one another in the ratio of the rectangles of the sides about those

angles.

2. Two quadrilaterals whose diagonals intersect at equal angles are to one another

in the ratio of the rectangles of the diagonals.
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Proposition 6.24. SIMILAR PARALLELOGRAMS ABOUT THE DIAGONAL.

In any parallelogram, the parallelograms about the diagonal are similar both to

the whole and to one another.

Proof. Construct ⊡ABCD, GH ‖ AB where GH = AB, and EK ‖ AD where EK =

AD. Also construct diagonal AC. We claim that ⊡ABCD ∼ ⊡AEFG, ⊡ABCD ∼
⊡FHCK, and ⊡AEFG ∼ ⊡FHCK.

Consider △ABC: since
←→
EF ‖ BC, by [6.2] BE : EA = CF : FA.

Consider △ACD: since
←→
FG ‖ CD, also by [6.2] CF : FA = DG : GA. It follows that

BE : EA = DG : GA.

Figure 6.2.33: [6.24]

By [5.18], BA : EA = AD : AG, and so BA : AD = EA : AG. Notice that in ⊡ABCD

and ⊡AEFG the sides about ∠DAB are proportional.

Since
←→
GF ‖ DC, ∠AFG = ∠ACD. Since △ADC and △AGF share ∠DAC and

∠ACD, it follows that △ADC and △AGF are equiangular. Likewise, △ACB and

△AFE are equiangular, and so ⊡ABCD and ⊡AEFG are also equiangular.

It follows that AD : DC = AG : GF , DC : AC = GF : AF , AC : CB = AF : FE, and

CB : BA = FE : EA. Notice that DC : CB = GF : FE, or the sides about ⊡ABCD

and ⊡AEFG are proportional. By [Def. 6.1], ⊡ABCD ∼ ⊡AEFG.

Likewise, ⊡ABCD ∼ ⊡FHCK. By [6.21], ⊡AEFG ∼ ⊡FHCK, which completes

the proof.

Corollary. 6.24.1. Taken in pairs, the parallelograms ⊡AEFG, ⊡FHCK, and

⊡ABCD are homothetic.
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Proposition 6.25. CONSTRUCTION OF A POLYGON EQUAL IN AREA TO A

GIVEN FIGURE AND SIMILAR TO A SECOND GIVEN FIGURE.

Proof. We wish to construct a polygon equal in area to ALMN but similar to poly-

gon BCD.

Figure 6.2.34: [6.25] Note that polygon BCD need not be a triangle.

Wlog, on side BC of the polygon BCD, construct the rectangle ⊡BJEC = △BCD

[1.44], and on CE construct the rectangle ⊡CEKF = ALMN [1.45].

Construct GH such that BC : GH = GH : CF [6.13]. On GH , construct polygon

GHI ∼ BCD [6.18] where BC and GH are corresponding sides. We claim that GHI

is the required polygon.

Since BC : GH = GH : CF ,

BC

CF
=

(

BC

GH

)2

Since BCD ∼ GHI, by [6.20]

BCD

GHI
=

(

BC

GH

)2

We also have that BC : CF = ⊡BJEC : ⊡CEKF , and so ⊡BJCE : ⊡CEKF =

BCD : GHI.

But the rectangle ⊡BJEC is equal in area to the polygon BCD; therefore,⊡CEKF =

GHI. Since ⊡CEKF = ALMN by construction, it follows that GHI = ALMN

where GHI ∼ BCD by construction.



CHAPTER 6. APPLICATIONS OF PROPORTIONS 294

An alternate proof:

Proof. Construct squares ⊡EFJK and ⊡LMNO such that ⊡EFJK = polygon DCB

and ⊡LMNO = polygon APQS [2.14]. By [6.12], construct GH such that EF :

LM = BC : GH .

Figure 6.2.35: [6.25], alternate proof. Note that BCD need not be a triangle.

On GH , construct the polygon GHI similar to the polygon BCD [6.18] such that

BC and GH are corresponding sides. We claim that GHI is the required polygon.

Because EF : LM = BC : GH by construction, we find that EFJK : LMNO =

BCD : GHI [6.22]. But EFJK = BCD by construction; therefore, LMNO = GHI.

But LMNO = APQS by construction. Therefore GHI = APQS and is similar to

BCD.
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Proposition 6.26. PARALLELOGRAMS ON A COMMON ANGLE.

If two similar and similarly situated parallelograms have a common angle, then

they stand on the same diagonal.

Proof. Construct ⊡AEFG and ⊡ABCD such that each are similar and similarly

situated where ∠GAF is a common angle. We claim that they stand on the same

diagonal, AC.

Figure 6.2.36: [6.26]

Construct the diagonals AF and AC. Because ⊡AEFG ∼ ⊡ABCD by hypothe-

sis, they can be divided into the same number of similar triangles [6.20]. Hence,

△GAF ∼ △CAD, and it follows that ∠GAF = ∠CAD.

Hence, AC contains point F , and so the parallelograms stand on AC.

Remark. [6.26] is the converse of [6.24] and may have been misplaced in an early

edition of Euclid. The following would be a simpler statement of result: “If two

homothetic parallelograms have a common angle, they stand on the same diagonal.”
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Proposition 6.27. INSCRIBING A PARALLELOGRAM IN A TRIANGLE I.

In a given triangle, we wish to inscribe the parallelogram with maximum area

having a common angle with a given triangle.

Proof. Construct △ABC where the given angle is ∠ABC. Bisect AC at P ; through

P, construct
←→
PE ‖ BC and

←→
PF ‖ AB. We claim that ⊡EBFP is the required

parallelogram.

Figure 6.2.37: [6.27]

Construct AL = BC where AL ‖ BC as well as CL. By [1.33], CL ‖ BA and

CL = BA.

Take any point D on AC other than P and construct
←→
DG ‖ BC which intersects

←→
PF

at O, AB at G, and CL at J . Also construct
←→
DH ‖ AB which intersects

←→
EK at I and

BC at H .

Since AC is bisected at P , EK is also bisected in P . By [1.36], ⊡EGOP = ⊡POJK.

Therefore, ⊡EGOP > ⊡IDJK; but ⊡IDJK = ⊡OFHD [1.43], and so ⊡EGOP >

⊡OFHD.

Add ⊡GBFO to each, and we find that ⊡EBFP > ⊡GBHD. Since our choice of D

was any point on AC other than P , and since ⊡EBFP contains ∠ABC, ⊡EBFP

is the maximum parallelogram which can be inscribed in the triangle △ABC and

which contains ∠ABC.

Corollary. 6.27.1. The maximum parallelogram exceeds the area of any other par-

allelogram about the same angle in the triangle by the area of the similar parallelo-

gram whose diagonal is the line between the midpoint P of the opposite side and the

point D, which is the corner of the other inscribed parallelogram.

Corollary. 6.27.2. The parallelograms inscribed in a triangle and having one angle

common with it are proportional to the rectangles contained by the segments of the

sides of the triangle made by the opposite corners of the parallelograms.
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Exercises.

1. Prove [Cor. 6.27.1].

2. Prove [Cor. 6.27.2].
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Proposition 6.28. INSCRIBING A PARALLELOGRAM IN A TRIANGLE II.

We wish to inscribe in a given triangle a parallelogram equal in area to a given poly-

gon (the area of which is less than or equal to the area of the maximum inscribed

polygon constructed in [6.27]) and having an angle in common with the triangle.

Proof. Construct△ABC. Bisect AC at P , construct PF ⊥ BC, and construct PE ⊥
AB. Applying [6.27], construct ⊡EBFP , the maximum inscribed parallelogram

within △ABC. We wish to inscribe in △ABC a parallelogram equal in area to

polygon X (given that area X ≤ ⊡EBFP ) and which shares ∠ABC.

Figure 6.2.38: [6.28]

If area X = ⊡EBFP , the construction is complete.

Otherwise, extend EP to EJ , construct CJ ‖ PF where CJ = PF [1.33].

By [6.25], construct ⊡KLMN such that ⊡KLMN = ⊡PFCJ −X and ⊡KLMN ∼
⊡PFCJ . On PJ , construct PI = KL. Construct IH = PF such that IH ‖ AB and

IH intersects AC at D. Also construct DG ‖ BC. We claim that ⊡GBHD is the

required parallelogram.

Clearly, ⊡GBHD shares ∠ABC in common with △ABC.

Since ⊡PFCJ and ⊡PODI stand on the same diagonal, by [6.24] ⊡PFCJ ∼ ⊡PODI.

Since ⊡PFCJ ∼ ⊡KMNL by construction, by [6.21] ⊡PODI ∼ ⊡KMNL. Since

KL = PI, ⊡PODI = ⊡KMNL.

By [Cor. 6.27.1], ⊡PODI = ⊡EBFP−⊡GBHD; by the above, ⊡KMNL = ⊡PFCJ−
X . Hence,

⊡EBFP −⊡GBHD = ⊡PFCJ −X
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Since BF = FC by construction, ⊡EBFP = ⊡PFCJ . Thus,

⊡GBHD = X

which completes the construction.

Remark. This proposition geometrically solves the equation ay−y2 = C where C =

the area of polygon X .
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Proposition 6.29. ESCRIBING A PARALLELOGRAM TO A TRIANGLE.

Given a polygon, a segment, and a parallelogram, we wish to construct a new par-

allelogram on the given segment whose area is equal to the given polygon. An

extension of this new parallelogram will be similar to the given parallelogram.

Proof. We wish to construct a parallelogram (⊡APOI) equal in area to polygon

CUVWX on segment AB. An extension of ⊡APOI (⊡BPOQ) will be similar to

⊡DRST .

Figure 6.2.39: [6.29]

Bisect AB at E. Construct ⊡FEBL on EB such that ⊡FEBL ∼ ⊡DRST and

where ⊡FEBL is similarly situated to ⊡DRST . By [6.25] construct ⊡GKHJ =

⊡FEBL+CUVWX where ⊡GKHJ ∼ ⊡DRST . Let KH correspond to FL and KG

correspond to FE.

Since ⊡GKHJ > ⊡FEBL, it follows that KH > FL and KG > FE.

Extend FL to FM where FM = KH, and extend FE to FN where FN = KG.

Construct ⊡FMON ; by [6.26] ⊡FMON = ⊡GKHJ and ⊡FMON ∼ ⊡GKHJ .

But ⊡GKHJ ∼ ⊡FEBL, and so ⊡FMON ∼ ⊡FEBL [6.21]. By [6.26], ⊡FMON

and ⊡FEBL stand on the same diameter.

Construct diameter FO of ⊡FMON . Since ⊡GKHJ = ⊡FEBL + CUVWX and

⊡GKHJ = ⊡FMON , ⊡FMON = ⊡FEBL + CUVWX . Subtracting the area of

⊡FEBL from each side of the equation, we obtain gnomon EBLMON = CUVWX .
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Construct ⊡AINE where AE = EB. Also construct BP = LM where BP ‖ LM ,

and BQ = PO where BQ ‖ PO. Finally, construct and BQ = EN .

By construction, ⊡AENI = ⊡EBQN . By [1.43], ⊡EBQN = ⊡LMBP , and so

⊡AENI = ⊡LMBP . Hence

⊡AENI +⊡EPON = ⊡LMBP +⊡EPON

⊡APOI = EBLMON

⊡APOI = CUVWX

Clearly, ⊡APOI is constructed on AB, and ⊡BPOQ ∼ ⊡DRST . This completes the

construction.

Remark. This proposition geometrically solves the equation ax+x2 = C where C =

the area of polygon CUVWX .
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Proposition 6.30. EXTREME AND MEAN RATIO OF A SEGMENT (aka. THE

GOLDEN SECTION)

A segment may be divided into its “extreme and mean ratio.”

Proof. On an arbitrary segment AB, divide AB at E such that AB · BE =
(

AE
)2

[2.11].

Figure 6.2.40: [6.30] Copyright Prime.mover & Daniel Callahan, licensed under CC

SA 3.0

Hence, we obtain

AB · BE = AE · AE
AB ·BE · 1

BE · AE = AE · AE · 1

BE ·AE
AB

AE
=

AE

BE

or AB : AE = AE : BE.

Exercises.

1. If the three sides of a right triangle are in continued proportion, prove that the

hypotenuse is divided in extreme and mean ratio by the perpendicular from the

right angle on the hypotenuse.

2. In the same case as #1, prove that the greater segment of the hypotenuse is

equal to the least side of the triangle.
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Proposition 6.31. AREA OF SQUARES ON A RIGHT TRIANGLE.

If any similar quadrilateral is similarly constructed on the three sides of a right

triangle, the quadrilateral on the hypotenuse is equal in area to the sum of the

areas of the quadrilaterals constructed on the two other sides.

Proof. Construct △ABC. Denote the sides of △ABC by a, b, and c where c is the

hypotenuse, and denote the corresponding areas of the similar polygons by α, β,

and γ. We claim that α+ β = γ.

Figure 6.2.41: [6.31]

Because the polygons are similar, by [6.20]

α

γ
=

a2

c2
and

β

γ
=

b2

c2

It follows that
α+ β

γ
=

a2 + b2

c2

But a2 + b2 = c2 by [1.47]. Therefore, α+ β = γ, which proves our claim.

Exercise.

1. If semicircles are constructed on supplemental chords of a semicircle, prove that

the sum of the areas of the two crescents thus formed is equal to the area of the

triangle whose sides are the supplemental chords and the diameter.
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Proposition 6.32. FORMATION OF TRIANGLES.

If two triangles exist such that a pair of sides in one is proportional to a pair of

sides in the other and placed such that their corresponding sides are parallel, then

the remaining sides of the triangles form a segment.

Proof. Construct △ABC and △DCE such that AB : AC = DC : DE, AB ‖ DC,

and AC ‖ DE. We claim that BC ⊕ CE = BE.

Figure 6.2.42: [6.32]

Since AB ‖ DC and each intersects AC, we find that ∠BAC = ∠ACD. Similarly,

∠CDE = ∠ACD; hence, ∠BAC = ∠CDE.

Consider △ABC and △DCE: ∠BAC = ∠CDE and AB : AC = DC : DE. By [6.6],

△ABC and △DCE are equiangular, and so ∠ABC = ∠DCE.

Furthermore,

∠ACE = ∠ACD + ∠DCE

= ∠BAC + ∠ABC

⇒
∠ACE + ∠ACB = ∠BAC + ∠ABC + ∠ACB

= two right angles [1.32]

Thus, BE = BC ⊕ CE, which proves our claim.
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Proposition 6.33. RATIOS OF EQUAL TRIANGLES.

In equal circles, angles at the centers or at the circumferences have the same ratio

to one another as the arcs on which they stand.

Proof. Construct ◦G and ◦H with equal radii. Construct ∠BGC at the center of ◦G
and ∠EHF at the center of ◦H ; also construct ∠BAC at the circumference of ◦G
and ∠EDF at the circumference of ◦H . We wish to show that

arc BC : arc EF = ∠BGC : ∠EHF = ∠BAC : ∠EDF

Figure 6.2.43: [6.33] Copyright Prime.mover, licensed under CC SA 3.0

On ◦G, construct a finite number n of consecutive arcs CK, KL which are equal in

length to arc BC. On ◦H , construct n consecutive arcs FM , MN which are equal

in length to arc EF .

Construct GK, GL, HM , and HN . Since BC = CK = KL, by [3.27] ∠BGC =

∠CGK = ∠KGL. It follows that if arc BL = n · arc BC, then ∠BGL = n · ∠BGC.

Similarly, if arc EN = n · arc EF , then ∠EHN = n · ∠EHF .

Since BL > 0 and EN > 0, BL
EN = k where k > 0 is a positive real number. Hence,

BL = k ·EN .

Since
∠EHN

∠EHF
=

∠BGL

∠BGC
= n =

BL

BC
=

EN

EF

it follows that
k ·EN

BC
=

k ·EN

k · EF

and so
BC

EF
= k



CHAPTER 6. APPLICATIONS OF PROPORTIONS 306

Similarly, ∠BGL = k · ∠EHN , and so BC : EF = ∠BGC : ∠EHF . Applying [3.20],

we obtain

BC : EF = ∠BGC : ∠EHF = ∠BAC : ∠DEF

This proves our claim.

Corollary. 6.33.1 In equal circles, sectors have the same ratio to one another as the

arcs on which they stand.

Exercises.

#1. Prove [Cor. 6.33.1].
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Exam questions for chapter 6.

1. What is the subject-matter of chapter 6? (Ans. Application of the theory of

proportion.)

2. What are similar polygons?

3. What do similar polygons agree in?

4. How many conditions are necessary to define similar triangles?

5. How many conditions are necessary to define similar polygons of more than three

sides?

6. When is a polygon said to be given in species?

7. What is a mean proportional between two lines?

8. Define two mean proportionals.

9. What is the altitude of a polygon?

10. If two triangles have equal altitudes, how do their areas vary?

11. How do these areas vary if they have equal bases but unequal altitudes?

12. If both bases and altitudes differ, how do the areas vary?

13. When are two segments divided proportionally?

14. If two triangles have equal areas, prove that their perpendiculars are recipro-

cally proportional to the bases.

15. What is meant by inversely similar polygons?

16. How many polygons similar to a given polygon of sides can be constructed on a

given line?

17. What are homothetic polygons?

18. How do the areas of similar polygons vary?

19. What proposition is [6.19] a special case of?

Exercises for chapter 6.

1. If a transversal meets the sides of a triangle △ABC at the points A′, B′, C′,

prove that AB′ ·BC′ · CA′ = −A′B · B′C · C′A.

2. If D is the midpoint of the base BC of a triangle △ABC, E the foot of the

perpendicular, L is the point where the bisector of the angle at A meets BC, and

H the point of intersection of the inscribed circle with BC, prove that DE · HL =

HE ·HD.

3. As in #2, if K is the point of intersection with BC of the escribed circle, which

touches the other extended sides, prove that LH · BK = BD · LE.
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4. If R, r, r′, r′′, r′′′ are the radii of the circumscribed, the inscribed, and the

escribed circles of a plane triangle, d, d′, d′′, d′′′ the distances of the center of the

circumscribed circle from the centers of the others, prove that R2 = d2 + 2Rr =

d′2 − 2Rr′, etc.

5. As in #4, prove that 12R2 = d2 + d′2 + d′′2 + d′′′2.

6. If p′, p′′, p′′′ denote the altitudes of a triangle, then:

(1) 1
p′

+ 1
p′′

+ 1
p′′′

= 1
r

(2) 1
p′′

+ 1
p′′′
− 1

p = 1
r′ (etc.)

(3) 2
p = 1

r − 1
r′ (etc.)

(4) 2
p′

= 1
r′′ +

1
r′′′ (etc.)

7. Suppose that the angle at point A and the area of a triangle △ABC are given in

magnitude. If the point A is fixed in position and the point B move along a fixed

line or circle, prove that the locus of the point C is a circle.

8. Find the area of a triangle:

(a) in terms of its medians;

(b) in terms of its perpendiculars.

9. If there are three given parallel lines and two fixed points A, B, and if the lines

connecting A and B to any variable point in one of the parallels intersects the other

parallels at the points C and D, E and F , respectively, prove that CF and DE each

pass through a fixed point.

10. Find a point O in the plane of a triangle △ABC such that the diameters of

the three circles about the triangles△OAB, △OBC, △OCA may be in the ratios of

three given segments.

11. Suppose that ABCD is a cyclic quadrilateral, and the segments AB, AD, and

the point C are given in position. Find the locus of the point which divides BD in a

given ratio.

12. If CA, CB are two tangents to a circle and BE ⊥ AD (where AD is the the

diameter through A), prove that CD bisects BE.

13. If three segments from the vertices of a triangle △ABC to any interior point O

meet the opposite sides in the points A′, B′, C′, prove that

OA′

AA′ +
OB′

BB′ +
OC′

CC′ = 1

14. If three concurrent segments OA, OB, OC are cut by two transversals in the

two systems of points A, B, C; A′, B’, C′, respectively, then prove that

AB

A′B′ ·
OC

OC′ =
BC

B′C′ ·
OA

OA′ =
CA

C′A′ ·
OB

OB′

15. Prove that the line joining the midpoints of the diagonals of a quadrilateral

circumscribed to a circle:
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(a) divides each pair of opposite sides into inversely proportional segments;

(b) is divided by each pair of opposite segments into segments which when

measured from the center are proportional to the sides;

(c) is divided by both pairs of opposite sides into segments which when mea-

sured from either diagonal have the same ratio to each other.

16. If CD, CD′ are the internal and external bisectors of the angle at C of the

triangle △ACB, prove that the three rectangles AD · DB, AC · CB, AD · BD are

proportional to the squares of AD, AC, AD and are:

(a) in arithmetical progression, if the difference of the base angles is equal to a

right angle;

(b) in geometrical progression if one base angle is right;

(c) in harmonic progression if the sum of the base angles is equal to a right

angle.

17. If a variable circle touches two fixed circles, the chord of contact passes through

a fixed point on the line connecting the centers of the fixed circles.

Figure 6.2.44: Ch. 6, #27

Let O,O′ be the centers of the two fixed circles where O is the center of the variable

circle. Let A, B the points of contact, and let AB and OO′ meet at C, and cut the

fixed circles again in the points A′, B′ respectively.

Construct A′O, AO, BO′. Then AO, BO′ meet at O′′ [3.11]. Now because △OAA′,

△O′′AB are isosceles, the angles ∠O′′BA = ∠O′′AB = ∠OA′A.

Hence OA′ ‖ O′B; therefore OC : O′C = OA′ : O′B is in a given ratio. Hence, C is a

given point.

18. In #17, if DD′ is the common tangent to the two circles, prove that (DD′)2 =

AB′ · A′B.

19. If R denotes the radius of O′′ and ρ, ρ′ the radii of O, O′, then (DD′)2 : (AB)2 =

(R ± ρ)(R± ρ′) : R2 where the choice of sign depends on the nature of the contacts.

(This result follows from #18.)
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20. Prove that the inscribed and escribed circles of any triangle are all touched by

its nine-points circle.

21. If a, b, c, d denote the four sides of a quadrilateral, and D, D′ denote the

diagonals of a quadrilateral, prove that the sides of the triangle, formed by joining

the feet of the perpendiculars from any of its vertices on the sides of the triangle

formed by the three remaining points, are proportional to the three rectangles ac,

bd, DD′.

22. Prove the converse of Ptolemy’s theorem (see [6.17], #10).

23. Construct a circle which:

(a) passes through a given point, and touches two given circles;

(b) touches three given circles.

24. Prove that if a variable circle touches two fixed circles, the tangent to it from

their center of similitude through which the chord of contact passes is of constant

length. (See #17 above.)

25. If segments AD, BD′ are extended, prove that they meet at a point on the

circumference of O′′ and the line O′′P is perpendicular to DD′. (See #17 above.)

26. If a segment EF divides proportionally two opposite sides of a quadrilateral,

and a segment GH the other sides, prove that each of these is divided by the other

in the same ratio as the sides which determine them.

27. In a given circle, inscribe a triangle such that the triangle whose vertices are

the feet of the perpendiculars from the endpoints of the base on the bisector of the

vertical angle and the foot of the perpendicular from the vertical angle on the base

may be a maximum.

28. In a circle, prove that the point of intersection of the diagonals of any inscribed

quadrilateral coincides with the point of intersection of the diagonals of the circum-

scribed quadrilateral whose sides touch the circle at the vertices of the inscribed

quadrilateral.

29. Through two given points construct a circle whose common chord with another

given circle may be parallel to a given line, or pass through a given point.

30. If concurrent lines constructed from the angles of a polygon of an odd number

of sides divide the opposite sides each into two segments, prove that the product of

one set of alternate segments is equal in area to the product of the other set.

31. If a triangle is constructed about a circle, prove that the lines from the points

of contact of its sides with the circle to the opposite vertices are concurrent.

32. If a triangle is inscribed in a circle, prove that the tangents to the circle at its

three vertices meet the three opposite sides at three collinear points.

33. Prove that the external bisectors of the angles of a triangle meet the opposite

sides in three collinear points.
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34. Construct a circle touching a given line at a given point and cutting a given

circle at a given angle.

35. Prove that the center of mean position of the vertices of a regular polygon is the

center of figure of the polygon.

36. Prove that the sum of the squares of segments constructed from any system of

points A, B, C, D, etc., to any point P exceeds the sum of the squares of segments

from the same points to their center of mean position, O, by n · (OP )2.

37. If a point is taken within a triangle so as to be the center of mean position of

the feet of the perpendiculars constructed from it to the sides of the triangle, prove

that the sum of the squares of the perpendiculars is a minimum.

38. Construct a quadrilateral being given two opposite angles, the diagonals, and

the angle between the diagonals.

39. Construct two points, C, D in the circumference of a given circle are on the

same side of a given diameter. Find a point P in the circumference at the other side

of the given diameter, AB, such that PC, PD may cut AB at equal distances from

the center.

40. If the sides of any polygon are cut by a transversal, prove that the product of

one set of alternate segments is equal to the product of the remaining set.

41. A transversal being constructed cutting the sides of a triangle, prove that

the lines from the angles of the triangle to the midpoints of the segments of the

transversal intercepted by those angles meet the opposite sides in collinear points.

42. If segments are constructed from any point P to the angles of a triangle, prove

that the perpendiculars at P to these segments meet the opposite sides of the tri-

angle at three collinear points.

43. Prove that the rectangle contained by the perpendiculars from the endpoints of

the base of a triangle on the internal bisector of the vertical angle is equal to the

rectangle contained by the external bisector and the perpendicular from the middle

of the base on the internal bisector.

44. State and prove the corresponding theorem for perpendiculars on the external

bisector.

45. Suppose that R, R′ denote the radii of the circles inscribed in the triangles

into which a right triangle is divided by the perpendicular from the right angle

on the hypotenuse. If c is the hypotenuse and s is the semi-perimeter, prove that

R2 +R′2 = (s− c)2.

46. If A, B, C, D are four collinear points, find a point O in the same line with them

such that OA · OD = OB · OC.

47. Suppose the four sides of a cyclic quadrilateral are given; construct it.

48. If a circle touches internally two sides of a triangle, CA, CB, and its circum-

scribed circle, prove that the distance from C to the point of intersection on either

side is a fourth proportional to the semi-perimeter, CA and CB.
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49. State and prove the corresponding theorem for a circle touching the circum-

scribed circle externally and two extended sides.

50. Pascal’s Theorem: if the opposite sides of an irregular hexagon ABCDEF in-

scribed in a circle are extended until they meet, the three points of intersection G,

H , I are collinear.

Figure 6.2.45: Pascal’s Theorem

Hint: construct AD. Construct a circle about the triangle △ADI, cutting the ex-

tended segments AF , CD, if necessary, at K and L. Construct IK, KL, LI. By

[3.21], we find that ∠KLG = ∠FCG = ∠GAD. Therefore KL ‖ CF .

Similarly, LI ‖ CH and KI ‖ FH; hence the triangles △KLI, △FCH are homoth-

etic, and so the lines joining corresponding vertices are concurrent. Therefore, the

points I, H , G are collinear.

51. If two sides of a triangle are given in position, and if the area is given in

magnitude, prove that two points can be found at each of which the base stands

opposite a constant angle.

52. If a, b, c, d denote the sides of a cyclic quadrilateral and s its semi-perimeter,

prove that its area =
√

(s− a)(s− b)(s− c)(s− d).

53. If three concurrent lines from the angles of a triangle△ABC meet the opposite

side in the points A′, B′, C′, and the points A′, B′, C′ are joined and form a second
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triangle △A′B′C′, prove that

△ABC : △A′B′C′ = AB ·BC · CA : 2 ·AB′ · BC′ · CA′

54. In the same case as #53, find the diameter of the circle circumscribed about the

triangle △ABC = AB′ ·BC′ · CA′ divided by the area of A′B′C′.

55. If a quadrilateral is inscribed in one circle and circumscribed to another, the

square of its area is equal to the product of its four sides.

56. If on the sides AB and AC of a triangle △ABC we take two points D and E on

their connecting segment such that

BD

AD
=

AE

CE
=

DE

EF

then prove that △BFC = 2 · △ADE.

57. If through the midpoints of each of the two diagonals of a quadrilateral we

construct a parallel to the other, prove that the lines constructed from their points

of intersection to the midpoints of the sides divide the quadrilateral into four equal

parts.

58. Suppose that CE, DF are perpendiculars to the diameter of a semicircle, and

two circles are constructed touching CE, DE, and the semicircle, one internally

and the other externally. Prove that the area of the rectangle contained by the

perpendiculars from their centers on AB is equal to the area CE ·DF .

59. If segments are constructed from any point in the circumference of a circle to

the vertices of any inscribed regular polygon of an odd number of sides, prove that

the sums of the alternate lines are equal.

60. If at the endpoints of a chord constructed through a given point within a given

circle tangents are constructed, prove that the sum of the reciprocals of the perpen-

diculars from the point upon the tangents is constant.

61. If the vertical angle and the bisector of the vertical angle is given, prove that

the sum of the reciprocals of the containing sides is constant.

62. If P , P ′ denote the areas of two regular polygons of any common number of sides

inscribed and circumscribed to a circle, and Π, Π′ are the areas of the corresponding

polygons of double the number of sides, prove that Π is a geometric mean between

P and P ′ and Π′ a harmonic mean between Π and P .

63. Prove that the difference of the areas of the triangles formed by joining the cen-

ters of the circles constructed about the equilateral triangles constructed outwards

on the sides of any triangle is equal to the area of that triangle. Prove the same if

they are constructed inwards.

64. In the same case as #63, prove that the sum of the squares of the sides of the

two new triangles is equal to the sum of the squares of the sides of the original

triangle.
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65. Suppose that R and r denote the radii of the circumscribed and inscribed circles

to a regular polygon of any number of sides, R′, r′, corresponding radii to a regular

polygon of the same area, and double the number of sides. Prove that R′ =
√
Rr

and r′ =
√

r(R+r)
2 .

66. If the altitude of a triangle is equal to its base, prove that the sum of the

distances of the orthocenter from the base and from the midpoint of the base is

equal to half the base.

67. Given the area of a parallelogram, one of its angles, and the difference between

its diagonals, construct the parallelogram.

68. Given the base of a triangle, the vertical angle, and the point in the base whose

distance from the vertex is equal half the sum of the sides, construct the triangle.

69. If the midpoint of the base BC of an isosceles triangle △ABC is the center of

a circle touching the equal sides, prove that any variable tangent to the circle will

cut the sides in points D, E, such that the rectangle BD · CE is constant.

70. Inscribe in a given circle a trapezoid, the sum of whose opposite parallel sides

is given and whose area is given.

71. Inscribe in a given circle a polygon all of whose sides pass through given points.

72. If two circles #ABC, #XYZ are related such that a triangle may be inscribed

in #ABC and circumscribed about #XY Z, prove that an infinite number of such

triangles can be constructed.

73. In the same case as #72: prove that the circle inscribed in the triangle formed

by joining the points of contact on #XY Z touches a given circle.

74. In the same case as #72: prove that the circle constructed about the trian-

gle formed by drawing tangents to #ABC at the vertices of the inscribed triangle

touches a given circle.

75. Find a point, the sum of whose distances from three given points is a minimum.

76. Prove that a line constructed through the intersection of two tangents to a circle

is divided harmonically by the circle and the chord of contact.

77. Construct a quadrilateral similar to a given quadrilateral whose four sides pass

through four given points.

78. Construct a quadrilateral similar to a given quadrilateral whose four vertices

lie on four given lines.

79. Given the base of a triangle, the difference of the base angles, and the rectangle

of the sides, construct the triangle.

80. Suppose that ⊡ABCD is a square, the side CD is bisected at E, and EF is

constructed making the angle ∠AEF = ∠EAB. Prove that EF divides the side BC

in the ratio of 2 : 1.

81. If two circles touch and through their point of intersection two secants be con-

structed at right angles to each other, cutting the circles respectively in the points

A, A′; B, B′; then (AA′)2 + (BB′)2 is constant.
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82. If two secants stand at right angles to each other which pass through one of the

points of intersection of two circles also cut the circles again, and the line through

their centers is the two systems of points a, b, c; a′, b′, c′ respectively, prove that

ab : bc = a′b′ : b′c′.

83. The rectangle contained by the segments of the base of a triangle made by the

point of intersection of the inscribed circle is equal to the rectangle contained by the

perpendiculars from the endpoints of the base on the bisector of the vertical angle.

84. If O is the center of the inscribed circle of the triangle, prove

OA2

bc
+

OB2

ca
+

OC2

ab
= 1

85. State and prove the corresponding theorems for the centers of the escribed

circles.

86. Suppose that four points A, B, C, D are collinear. Find a point P at which the

segments AB, BC, CD stand opposite equal angles.

87. Prove that the product of the bisectors of the three angles of a triangle whose

sides are a, b, c, is
8abc · s · area

(a+ b)(b + c)(c+ a)

88. In the same case as #87, prove that the product of the alternate segments of

the sides made by the bisectors of the angles is

a2b2c2

(a+ b)(b + c)(a+ c)

89. If three of the six points in which a circle meets the sides of any triangle are

such that the lines joining them to the opposite vertices are concurrent, prove that

the same property is true of the three remaining points.

90. If a triangle △A′B′C′ is inscribed in △ABC, prove

AB′ ·BC′ · CA′ +A′B · B′C · C′A

equals twice the area of △A′B′C′ multiplied by the diameter of the circle #ABC.

91. Prove that the medians of a triangle divide each other in the ratio of 2 : 1.



Chapter 7

Elementary Number Theory

All variables represent natural numbers (i.e, positive integers) unless otherwise

specified.

7.1 Definitions

0. The Whole Numbers are the set of numbers containing 0, 1, 2, 3, ... . The Natural

Numbers (the positive integers) are a subset of the Whole numbers, containing 1, 2,

3, ... . Rational Numbers are the set of numbers that can be written p
q where both

p and q are whole numbers where q 6= 0. (Notice that the rational numbers include

the whole numbers.) The Real Numbers consist of the rational numbers and the

irrational numbers. We do not require the use of negative numbers.

1. We define the number 1 as the unit number, or more simply as the unit.

2. A number is a multiple of units; that is, if x is a natural number, then x = xu =

u+ u+ ...+ u where u = 1 and u is added to itself a total of x times.

3. A number x is a factor of y when x < y and there exists some whole number

n ≥ 1 where nx = y. We may also write that x is a divisor of y or that y is a multiple

of x.

Notice that the condition nx = y may be rewritten y − nx = 0.

The proper factors of y are all factors of y except 1 and y.

4. An even number x is any whole number such that x = 2b where b ≥ 1 is whole

number.

5. An odd number is any whole number which is not even. We may write such

numbers as x = 2b+ 1 where b ≥ 1 is whole number.

6. An even-times even number x is any whole number which is the product of two

even numbers.

7. An even-times odd number is any whole number which is the product of an even

number and an odd number.

316
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8. An odd-times odd number is any whole number which is the product of two odd

numbers.

9. A prime number p is any whole number such that p > 1 and where p has only

two factors: 1 and itself.

The prime factors of y are all prime numbers which are factors of y.

10. natural numbers x and y are said to be relatively prime (or co-prime) if the only

whole number that evenly divides both x and y is 1.

11. A composite number c is any whole number where c > 1 and where c is not

prime. All natural numbers other than 1 are prime or composite.

12. natural numbers x and y are said to be relatively composite if x and y are not

relatively prime.

13. A whole number x is said to multiply a whole number y when xy = y+ y+ ...+ y

where y is added to itself a total of x times.

14. When two numbers are multiplied to produce a third number, the third number

is called a product. Since both numbers are positive, the product is positive, and

it may be admissible to interpret the product as an area. (Euclid refers to these

numbers as plane numbers.)

15. When three numbers are multiplied to produce a fourth number and the initial

three numbers are positive, the product is positive, and it may be admissible to in-

terpret the product as a volume. (Euclid refers to these numbers as solid numbers.)

16. A square number x is any number such that x = b2 = b · b for some real number

b.

17. A cube (or a cubed number) x is any number such that x = b3 = b · b · b for some

real number b.

18. Four numbers a, b, c, d are proportional whenever a : b = c : d or equivalently

when
a

b
=

c

d

19. A perfect number x is a whole number which is equal to the sum of its factors

except for x itself.1

Examples: 6 is a perfect number because 6 = 1 · 6 = 2 · 3 and 6 = 1 + 2 + 3. Also, 28

is also a perfect number: since 28 = 1 · 28 = 2 · 14 = 4 · 7 and 28 = 1 + 2 + 4 + 7 + 14.

20. A proper fraction has a numerator which is less than its denominator.

Remark. Let k, x, and y be natural numbers. The following statements are equiv-

alent:

(1) y = x · k
1See https://en.wikipedia.org/wiki/List_of_perfet_numbers for a list of known perfect num-

bers.

https://en.wikipedia.org/wiki/List_of_perfect_numbers
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(2) x is a factor of y

(3) x is not relatively prime to y

(4) y is not relatively prime to x

(5) x divides y

(6) x is a divisor of y

(7) x|y

Remark. Let x and y be natural numbers. The following statements are equivalent:

(1) x is not a factor of y

(2) x is relatively prime to y

(3) y is relatively prime to x

(4) x ∤ y
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7.2 Propositions from Book VII

Proposition 7.1. THE EUCLIDEAN ALGORITHM TO DETERMINE IF TWO

NUMBERS ARE RELATIVELY PRIME.

Let x1 ≥ x2 be natural numbers. There exists some positive integer n such that

x1 − n · x2 ≥ 0

and

x1 − (n+ 1) · x2 < 0

We begin the algorithm with x1 − n1 · x2 = x3 where n1 is chosen as above. We

continue as long as the right-hand side of each equation is greater than 1:

x1 − n1 · x2 = x3

x2 − n2 · x3 = x4

...

xk − nk · xk+1 = xk+2

stopping when xk+2 = 0 or xk+2 = 1. If xk+2 = 1, then x1 and x2 are relatively

prime.

Proof. Suppose we use the Euclidean Algorithm and obtain:

x1 − n1 · x2 = x3

x2 − n2 · x3 = x4

...

xk − nk · xk+1 = 1

but x1 and x2 are not relatively prime. It follows that x1 and x2 possess a common

factor other than 1. Suppose t > 1 is the common factor where x1 = ty1 and x2 = ty2.

It follows that

ty1 − n1 · ty2 = x3

t (y1 − n1 · y2) = x3

or t is a factor of x3; that is, x3 = ty3. Similarly, we can show that all xk possess a

factor of t.

But by hypothesis, xk − nk · xk+1 = xk+2 = 1. By the above, xk+2 = tyk+2, and so

1 = tyk+2. Hence, t = 1 = yk+2. But t > 1 by the above, a contradiction. Thus, x1

and x2 are relatively prime.
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Corollary. [7.1.1] If xk+2 = 0 in the final step of the Euclidean Algorithm, then x1

and x2 share a common factor.

Proof. Suppose we use the Euclidean Algorithm to obtain:

x1 − n1 · x2 = x3

x2 − n2 · x3 = x4

...

xk − nk · xk+1 = 0

Notice that xk = nk · xk+1, and so xk+1 is a factor of xk. Similarly, we can show that

xk+1 is also a factor of xk−1, ..., x2, x1. This completes the proof.

Remark. See also [10.2].

Example. [7.1.1]: Are 363 and 19600 relatively prime?

Let x1 = 19600 and x2 = 363. Then x1 > x2 and:

19600− (53)(363) = 361

where n1 = 53. To justify our choice of 53 for n1, notice that

19600− (52)(363) = 724

19600− (54)(363) = −2

We continue:

19600− (53)(363) = 361

363− (1)(361) = 2

361− (180)(2) = 1

where n2 = 1 and n3 = 180. Since we have continued the algorithm until the RHS

equals 1, by [7.1], 363 and 19600 are relatively prime.2

Example. [7.1.2]: Are 350 and 19600 relatively prime?

Let x1 = 19600 and x2 = 350. Then x1 > x2 and 19600− (56)(350) = 0. Clearly, no

choice of n1 will produce a RHS equaling 1. By [Cor. 7.1.1], 350 and 19600 are not

relatively prime.

2Recall that RHS stands for the right-hand side of an equation and LHS stands for the left-hand side

of an equation.
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Remark. [10.2] states a condition under which the Euclidean Algorithm does not

terminate.

Proposition 7.2. THE GREATEST COMMON FACTOR (GREATEST COMMON

DIVISOR).

Given two natural numbers, there exists a largest common factor. We may call this

positive integer the greatest common divisor (GCD) or the greatest common factor

(GCF).

Proof. Let x1 > x2 be whole numbers. We wish to find the greatest common factor

of x1 and x2.

Suppose we use the Euclidean Algorithm and obtain:

x1 − n1 · x2 = x3

x2 − n2 · x3 = x4

...

xk−1 − nk−1 · xk = xk+1

If the final equation terminates the algorithm, either xk+1 = 1 or xk+1 = 0 [7.1],

[Cor. 7.1.1]; that is, if xk+1 > 1, we may continue the algorithm until xk+1 equals

either 1 or 0.

If xk+1 = 1, then x1, x2 are relatively prime and their GCD equals 1.

If xk+1 = 0, then xk is a common factor of x1, x2. Suppose xk ≤ t and t divides x1, x2.

Since x2 = r2 ·xk and x1 = r1 · r2 ·xk, we find that t divides xk, and so t ≤ xk. Hence,

t = xk, and so xk is the GCD of x1, x2. This completes the proof.

Example. [7.2.1]: What is the greatest common factor (GCF) of 19600 and 42?

Let x1 = 19600 and x2 = 42 (fulfilling the assumption that x1 > x2). Then

19600− (466)(42) = 28

42− (1)(28) = 14

28− (2)(14) = 0

By [Cor. 7.1.1], 19600 and 42 have a GCF. Since the final equation of the algorithm

equals 0, by [7.2], 14 is the GCF of 19600 and 42.
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Example. [7.2.2]: What is the greatest common factor (GCF) of 18792 and 36?

Let x1 = 18792 and x2 = 36 (fulfilling the assumption that x1 > x2). Then

18792− (522)(36) = 0

By [Cor. 7.1.1], 18792 and 36 have a GCF. Since the final equation of the algorithm

equals 0, by [7.2], 36 is the GCF of 18792 and 36.

Corollary. 7.2.1. If k divides both x1 and x2, then k also divides the GCF of x1, x2.

Exercises.

1. Prove [Cor. 7.2.1].

Remark. David E. Joyce lists some of the assumptions Euclid makes about whole

numbers:

http://aleph0.larku.edu/~djoye/java/elements/bookVII/propVII2.html

Remark. Online Euclidean Algorithm calculator:

https://www.alulatorsoup.om/alulators/math/gf-eulids-algorithm.php

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
https://www.calculatorsoup.com/calculators/math/gcf-euclids-algorithm.php
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Proposition 7.3. THE GREATEST COMMON FACTOR OF THREE RELATIVELY

COMPOSITE NUMBERS.

Proof. We claim a GCF exists for relatively composite numbers x1, x2, and x3.

By [7.2], the GCF for x1 and x2 exists; denote it as y. Similarly, the GCF for y and

x3 exists; denote it as z. We claim that z is the GCF for x1, x2, and x3.

Since z|y, y|x1, and y|x2, it follows that z|x1 and z|x2. Since z|x3 by the above, we

have proven our claim.

Remark. The result of [7.3] is identical to the result of [10.4].

Example. [7.3.1]: What is the greatest common factor (GCF) of 19600, 672, and 42?

First, we find the GCF of 19600 and 672:

19600− (29)(672) = 112

672− (5)(112) = 112

112− (1)(112) = 0

The GCF of 19600 and 672 is 112.

Next, we find the GCF of 112 and 42:

112− (2)(42) = 28

42− (1)(28) = 14

28− (2)(14) = 0

By [7.3], the GCF of 19600, 672, and 42 is 14.
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Proposition 7.4. FRACTIONS.

If x1 > x2 are natural numbers, then there exists a proper fraction a
b such that

x2 =
a

b
· x1

Proof. Let x1 > x2 be natural numbers. Notice that

0 <
x2

x1
< 1

and so x2

x1

is a proper fraction. Also notice that x2 = x2

x1

·x1. Write x2

x1

= a
b where a

b is

written in lowest terms. Since x2

x1

is a proper fraction, a
b is a proper fraction. Then

x2 =
a

b
· x1

This completes the proof.

Proposition 7.5. DISTRIBUTION I.

x

b
+

y

b
=

1

b
(x+ y)

Proof. Let each xi for i = 1, 2, 3, 4 be a positive integer, and let x1 = 1
b · x2 and

x3 = 1
b · x4 (by applications of [7.4]). Then

x1 + x3 =
1

b
· x2 +

1

b
· x4

=
x2

b
+

x4

b

=
1

b
(x2 + x4)

Corollary. 7.5.1. [7.5] holds for any finite number of terms.
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Proposition 7.6. DISTRIBUTION II.

a

b
· x+

a

b
· y =

a

b
(x+ y)

Proof. Let each xi for i = 1, 2, 3, 4 be a positive integer, and let x1 = a
b · x2 and

x3 = a
b · x4 (by applications of [7.4]). Then

x1 + x3 =
a

b
· x2 +

a

b
· x4

=
a

b
(x2 + x4)

Corollary. 7.6.1. [7.6] holds for any finite number of terms.

Proposition 7.7. DISTRIBUTION III.

x2

b
− x4

b
=

1

b
(x2 − x4)

Proof. The proof is similar to that of [7.5] and is left as an exercise to the reader.

Corollary. 7.7.1. [7.7] holds for any finite number of terms.

Proposition 7.8. DISTRIBUTION IV.

a

b
· x− a

b
· y =

a

b
(x− y)

Proof. The proof is similar to that of [7.6] and is left as an exercise to the reader.

Corollary. 7.8.1. [7.8] holds for any finite number of terms.

Proposition 7.9. MULTIPLICATION OF CERTAIN FRACTIONS I.
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Proof. Let a, b, c, d, g, h, and n be natural numbers such that a = b
n , d = c

n , and

a = g
h · d. It follows that

b

n
=

g

h
· d

b

n
=

g

h
· c
n

b =
g · c
h

b =
g

h
· c

Proposition 7.10. MULTIPLICATION OF CERTAIN FRACTIONS II.

Proof. Let a, b, c, d, g, h, and n be natural numbers such that a = b
c · d, e = b

c · f , and

a = g
h · e. It follows that

b

c
· d =

g

h
· e

d =
c

b
· g
h
· e

d =
g

h
· c
b
· e

Since f = c
b · e, we find that

d =
g

h
· f
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Proposition 7.11. MANIPULATION OF RATIOS I.

a

b
=

c

d
⇒ a− c

b − d
=

a

b

Proof. Let a, b, c, d, n, m, r, s, u, and v be natural numbers such that n < m, r < s,

u < v and a = n
m · b, c = r

s · a, d = u
v · b. Notice that a− c = s−r

s · a.

Suppose a : b = c : d. Then

a

b
=

c

d

n

m
· b
b

=
r

s
· a · v

ub

n

m
=

r

s
· n
m
· b · v

ub

n

m
=

r

s
· n
m
· v
u

u

v
=

r

s

It follows that d = r
s · b and so b− d = s−r

s · b. Then

a

b
=

a

b

s−r
s

s−r
s

· a
b

=
a

b

a− c

b− d
=

a

b

which completes the proof.

Example. [7.11]: since
4

16
=

1

4

it follows that
4− 1

16− 4
=

3

12
=

1

4
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Proposition 7.12. MANIPULATION OF RATIOS II.

a

b
=

c

d
⇒ a+ c

b + d
=

a

b

Proof. The proof is similar to that of [7.11] and is left as an exercise to the reader.

Example. [7.12]: since
4

16
=

1

4

then
4 + 1

16 + 4
=

5

20
=

1

4

Proposition 7.13. MANIPULATION OF RATIOS III.

a

b
=

c

d
⇒ a

c
=

b

d

Proof. Suppose a : b = c : d. Then

b

c
· a
b

=
b

c
· c
d

a

c
=

b

d

or a : c = b : d. This completes the proof.

Example. [7.13]: since
4

16
=

1

4

then
4

1
=

16

4
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Proposition 7.14. MANIPULATION OF RATIOS IV: TRANSITIVE PROPOR-

TIONS

If ai, bi are real numbers for i = 1, 2, ..., n, and

a1 : a2 = b1 : b2

a2 : a3 = b2 : b3

... = ...

an−1 : an = bn−1 : bn

then

a1 : an = b1 : bn

Proof. Our hypothesis and claim are stated above. By n − 1 applications of [7.13],

we obtain

a1 : b1 = a2 : b2

a2 : b2 = a3 : b3

... = ...

an−1 : bn−1 = an : bn

It follows that
a1
b1

=
an
bn

By a second application of [7.13],

a1
an

=
b1
bn

which completes the proof.

Example. [7.14.1]: Consider 1
2 = 2

4 , 2
5 = 4

10 , and 5
17 = 10

34 . By [7.14],

1

17
=

2

34

Example. [7.14.2]: Consider 1
7 = 2

14 , 7
10 = 14

20 , and 10
21 = 20

42 . By [7.14],

1

21
=

2

42
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Proposition 7.15. COMMUTATIVITY OF MULTIPLICATION I.

Let n be a real number. We claim that 1 · n = n · 1.

Proof. Case 1: Let n 6= 0 be a real number. Suppose that

1 · n = an · 1

where a is a real number. Dividing each side by n, we obtain 1 = a · 1, and so a = 1.

It follows 1 · n = n · 1.

Case 2: Let n = 0. Clearly, 1 · 0 = 0 = 0 · 1.

This completes the proof.

Proposition 7.16. COMMUTATIVITY OF MULTIPLICATION II.

Let m and n be real numbers. We claim that n ·m = m · n.

Proof. Suppose the above. By [7.15], m · 1 = 1 ·m, and so

n

m
=

n

m

(m · 1) n
m

= (1 ·m)
n

m

mn

m
= n

mn

m
(m · 1) = n(1 ·m)

mn = nm

which completes the proof.
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Proposition 7.17. MULTIPLYING BY ONE I.

a

b
=

ka

kb

Proof. Suppose a : b. It follows that

a

b
= 1 · a

b
=

k

k
· a
b
=

ka

kb

Proposition 7.18. MULTIPLYING BY ONE II.

a

b
=

ak

bk

Proof. The proof follows by applying [7.16] to [7.17].

Proposition 7.19. EQUIVALENCE OF PROPORTIONS.

a : b = c : d iff ad = bc

Proof. Suppose a : b = c : d for real numbers a, b, c, and d; equivalently, suppose

a

b
=

c

d

Then

a

b
· bd =

c

d
· bd

ad = cb

ad = bc

upon applying [7.16]. Starting with ad = bc and working backwards provides the

contrapositive case, completing the proof.
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Proposition 7.20. REDUCTION TO LOWEST TERMS.

If a : b reduces to c : e in lowest terms, then c is a factor of a.

Proof. If a : b reduces to c : e in lowest terms, then there exists some k such that

a

b
=

k

k
· c
e

a

b
=

c

e

a =
b

e
· c

By [Def. 7.3], c is a factor of a.

Corollary. 7.20.1 If a : b reduces to c : e in lowest terms, then e is a factor of b.

Exercises.

1. Prove [Cor. 7.20.1].

Proposition 7.21. RELATIVE PRIMES I.

If a is relatively prime to b, then the ratio a : b is reduced to lowest terms.

Proof. Our hypothesis and claim are stated above. Suppose instead that a
b is not

reduced to lowest terms. It follows that a
b = e

f for natural numbers e, f such that e
f

is reduced to lowest terms. Then a = b · ef ; this contradicts our hypothesis that a, b

are relatively prime. Hence, a : b is reduced to lowest terms.

Proposition 7.22. RELATIVE PRIMES II.

If the ratio a : b is reduced to lowest terms, then a is relatively prime to b.

Proof. Our hypothesis and claim are stated above. Suppose instead that a = mk

and b = nk for natural numbers k,m, n. Then

a

b
=

km

kn
=

m

n

where m < a and n < b. This contradicts our hypothesis that a
b is reduced to lowest

terms. Hence, a is relatively prime to b.
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Corollary. 7.22.1 [7.21] and [7.22] state that a : b is reduced to lowest terms iff a is

relatively prime to b.

Corollary. 7.22.2 TRANSITIVITY OF FACTORS. If x is a factor of y and y is a

factor of z, then x is a factor of z.

Proof. If y = kx and z = ry, then z = rk · x.

Proposition 7.23. RELATIVE PRIMES III.

If a and b are relatively prime and c > 1 is a factor of a, then b and c are also

relatively prime.

Proof. Suppose a and b are relatively prime such that c > 1 is a factor of a where

ck = a. We claim that b and c are relatively prime.

Suppose instead that b and c are not relatively prime; specifically, that b = tr and

c = ts.

It follows that a = ck = tks and b = tr; hence, a and b are not relatively prime,

contrary to our hypothesis. Thus, b and c are relatively prime.

Proposition 7.24. RELATIVE PRIMES IV.

If x and y are relatively prime to z, then xy is also relatively prime to z.

Proof. Our hypothesis and claim are stated above. Since x is relatively prime to z,

any list of prime factors of x will not contain any prime factors of z. Similarly, any

list of prime factors of y will not contain any prime factors of z.

Since any list of prime factors of xy can only contain prime factors of x and y, such

a list will not contain any prime factors of z, which proves our claim.
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Proposition 7.25. RELATIVE PRIMES V.

If x and y are relatively prime, then x2 is relatively prime to y.

Proof. Apply [7.24]: if x and x are relatively prime to y, then x · x = x2 is also

relatively prime to y.

Proposition 7.26. RELATIVE PRIMES VI.

If x is relatively prime to s and t, and if y is also relatively prime to s and t, then xy

is relatively prime to st.

Proof. Our hypothesis and claim are stated above. Since x and y are each relatively

prime to s, xy is also relatively prime to s [7.24]. Similarly, xy is relatively prime to

t.

Since s and t are each relatively prime to xy, by a final application of [7.24], st is

relatively prime to xy . This proves our claim.

Proposition 7.27. RELATIVE PRIMES VII.

If x and y are relatively prime, then x2 and y2 are relatively prime.

Proof. Our hypothesis and claim are stated above. Since x and y are relatively

prime, by [7.25] x2 and y are relatively prime. Since y and x2 are relatively prime,

again by [7.25], y2 and x2 are relatively prime, which proves our claim.

Corollary. 7.27.1 If x and y are relatively prime, then x and yn are relatively prime.

Proof. This proof requires induction.3 Suppose x and y are relatively prime. By

[7.25], x and y2 are relatively prime. Suppose that x and yk are relatively prime;

we wish to show x and yk+1 are also relatively prime.

Notice that yk+1 = y ·yk. If x and yk+1 share a common factor, then x and y ·yk share

a common factor. But x is neither a factor of y nor yk by hypothesis, a contradiction.

Hence, x and yk+1 are relatively prime. The completes the proof.

Corollary. 7.27.2 If x and y are relatively prime, then xn and yn are relatively

prime.

3
https://en.wikipedia.org/wiki/Mathematial_indution

https://en.wikipedia.org/wiki/Mathematical_induction
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Exercises.

1. If x and y are relatively prime, then x3 and y3 are relatively prime.

2. Prove [Cor. 7.27.2].

Proposition 7.28. RELATIVE PRIMES VIII.

Let x and y be natural numbers.

(1) If x and y are relatively prime, then x+ y is relatively prime to both x and y.

(2) If x+y is relatively prime to either x or to y, then x and y are relatively prime.

Proof. We prove each claim separately.

Claim 1: if x and y are relatively prime, then x+ y is relatively prime to both x and

y.

If x + y and x are not relatively prime, then there exists some n > 1 such that x+y
n

and x
n are integers. Since x+y

n > x
n

x+ y

n
− x

n
=

y

n

where y
n is also a positive integer. Since x

n and y
n are natural numbers, x and y

are not relatively prime. A similar argument follows if we assume x + y and y are

not relatively prime. Since this is the contrapositive statement of claim 1, we have

completed this part of the proof.

Claim 2: if x+ y is relatively prime to x or to y, then x and y are relatively prime.

If x and y are not relatively prime, then there exists some n > 1 such that x
n and y

n

are integers. It follows that x+y
n is also an integer, and so x+ y is neither relatively

prime to x nor to y. Since this is the contrapositive statement of claim 2, we have

completed the proof.

Remark. Notice that [7.28] cannot be written using an “if and only if” statement

without discarding part of the result.

Proposition 7.29. PRIME NUMBERS I.

If p is prime and p ∤ y, then p, y are relatively prime.

Proof. Our hypothesis and claim are stated above. Assume instead there exists

some positive integer n > 1 such that n|p and n|y.

Since n|y and p ∤ y, n 6= p. But since n|p where n > 1 and p is a prime number, n = p,

a contradiction. This proves our claim.
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Proposition 7.30. PRIME NUMBERS II.

Suppose x and y are natural numbers and p is a prime number. If p is a factor of

xy, then p is a factor of either x or y.

Proof. Our hypothesis and claim are stated above. Since p is a factor of xy, there

exists some positive integer n > 1 such that np = xy. By [7.19],

p

x
=

y

n

Suppose that p is not a factor of x; by [7.29], p and x are relatively prime. By [7.21],
p
x is written in lowest terms; by [7.20], p is a factor of y.

Similarly, we can show that if p is not a factor of y, then p is a factor of x. This

proves our claim.

Lemma. 7.30.0 If S is any nonempty subset of natural numbers, then the subset

contains a minimum element.

Proposition 7.31. PRIME NUMBERS III.

Let x be any composite number. There exists some prime number p such that p is a

factor of x.

Proof. Our hypothesis and claim are stated above. Since x is composite, there exists

some number y1 < x which is a factor of x. If y1 is prime, then the proof is complete.

Otherwise, suppose y2 < y1 is a factor of y1. Clearly, y2 is also a factor of x; if y2 is

prime, then the proof is complete. Otherwise, we continue this algorithm an obtain

the set Y = {x, y1, y2, y3, ...} where x > y1 > y2 > ....

Suppose there is no prime p which is a factor of x. It follows that Y is a set of

natural numbers which contains no minimum element; this contradicts [Lemma

7.30.0].

Hence, p exists and is a factor of x.
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Proposition 7.32. PRIME NUMBERS IV.

Any positive integer greater than 1 is either a prime number or a composite of

primes.

Proof. Suppose x > 1 is a positive integer that is neither prime nor a composite of

primes. Consider the factors of x: if x = 1 · x is the only possible factoring, then x is

prime, a contradiction. Otherwise x = a · b where a and b are primes [7.31], also a

contradiction.

Therefore, x is either prime or a composite of primes, which completes the proof.

Remark. See also The Sieve of Eratosthenes4.

Proposition 7.33. FINDING RATIOS IN LOWEST TERMS.

Given natural numbers a, b, c and the ratio a : b : c, we may find the ratio d : e : f

such that a : b : c = d : e : f where no smaller integers exist that make this equality

true.5

Proof. Our hypothesis and claim are stated above. If a, b, and c are relatively prime,

then let a = d, b = e, and c = f , and our claim is proven [7.21].

Otherwise, by [7.3] a, b, and c have a greatest common factor g. Let gd = a, ge = b,

and gf = c. Hence, a : b : c = d : e : f .

We now wish to show that no smaller natural numbers exist which make this equal-

ity true.

Suppose d, e, and f are not the least such natural numbers; instead, suppose h, j,

and k are respectively less than d, e, and f such that a : b : c = h : j : k. Hence there

exists positive integer m such that mh = a, mj = b, and mk = c.

Suppose m = g; since gd = a = mh, h = d, contradicting our hypothesis that h < d.

Now suppose m < g; since gd = a = mh, it follows that h > d, also a contradiction.

Finally, suppose m > g; then g is not the greatest common factor of a, b, and c, a

contradiction.

It follows that d, e, and f are the least such natural numbers, completing the proof.

4
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

5Recall that a : b : c = d : e : f iff a : d = b : e = c : f .

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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Proposition 7.34. LEAST COMMON MULTIPLE I.

Given x and y, we claim that a smallest positive integer exists which has x and y

as factors. This is number is the Least Common Multiple (LCM) of x and y.

Proof. Our hypothesis and claim are stated above. We shall prove our claim in two

cases.

Case 1: x and y are relatively prime.

Since x and y each divide xy, we claim that xy is the smallest positive integer which

has x and y as a factor.

If not, suppose that x and y divide some integer d < xy, and there exist natural

numbers e > 1 and f > 1 such that ex = d and fy = d. It follows that ex = fy and
x
y = f

e .

Since x and y are relatively prime, x
y is written in lowest terms by [7.21]; since

x
y = f

e , by [7.20] x is a factor of f , and by [7.20.1] y is a factor of e. And so there

exist natural numbers m > 1 and n > 1 such that mx = f and ny = e; thus,

mxy = fy = d. Since d < xy and xy = d
m , we obtain d < d

m when m > 1, a

contradiction. Therefore, xy is the Least Common Multiple (LCM) of x and y.

Case 2: x and y are not relatively prime.

Let e > 1 and f > 1 be natural numbers such that x
y = f

e where f
e is written in

lowest terms. It follows that xe = yf . We claim that xe is the the smallest positive

integer which has x and y as a factor.

Otherwise, x and y divide some d < xe, and there exists some positive integer g > 1

such that xg = d and some positive integer h > 1 such that yh = d. It follows that

xg = yh, and so x
y = h

g .

Notice that f
e = h

g . Since f
e are written in least terms of all fractions equaling x

y ,

we obtain e divides g [7.20.1]. Hence, e < g.

Since xg = d, it follows that xe
e = xg

g = d
g , and so xe

d = e
g . Since e < g, xe < d. But

d < xe above, a contradiction. Thus, xe = yf is the LCM of x and y.

Example. [7.34.1]: consider 6 and 14. Numbers which have 6 and 14 as factors

include 42, 82, 168, and so on. Notice that

6

14
=

3

7

By [7.34], the LCM of 6 and 14 is

6 · 7 = 14 · 3 = 2 · 3 · 7 = 42
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Proposition 7.35. LEAST COMMON MULTIPLE II.

Let a be the least common multiple of x and y. If x and y divide z, then a also

divides z.

Proof. Suppose that x and y divide z, and let x = p1 · p2 · ... · pn and y = p′1 · p′2 · ... · p′m
where each pi and p′j is prime [7.31].

Notice that z contains each pi and p′j as factors; otherwise, x and y would not divide

z. Since the factors of a can only be members of the set {p1, ..., pn, p′1, ..., p′m}, it

follows that a divides z. This completes the proof.

Example. [7.35]: 6 and 14 are each factors of 168. Therefore, 42 is also a factor of

168.

Proposition 7.36. LEAST COMMON MULTIPLE III.

If x, y, and z are natural numbers, then the least common multiple of x, y, and z

exists.

Proof. Let x, y, and z be natural numbers. We wish to find their least common

multiple.

Let d be the least common multiple of x and y. Either z divides d or it does not.

Claim 1: if z|d, then d is the least common multiple of x, y, and z.

Suppose instead that x, y, and z divide e < d where e is a positive integer. By [7.35],

the least common multiple of x and y divides e. But d is the least common multiple

of x and y by hypothesis, and so d|e. Hence d < e and e < d, a contradiction.

This proves our claim that d is the least common multiple of x, y, and z.

Claim 2: if z ∤ d and if e is the smallest positive integer such that both d and z are

factors, then e is the least common multiple of x, y, and z.

Let e be the smallest positive integer such that both d and z are factors.

Since x and y divide d, and d divides e, it follows that x and y also divide e. But z

also divides e, and therefore e is a common multiple of x, y, and z.

If e is not the least common multiple of x, y, and z, then x, y, and z divide some

positive integer f < e. Since x, y, and z divide f , it follows that the least common

multiple of x and y also divides f . Since d is the least common multiple divided by

x and y, d|f .

But z|f , and so d and z divide f . Therefore the smallest positive integer divided by

d and z also divides f . Since e is the smallest positive integer divided by z and d,

e|f ; it follows that e < f and f < e, a contradiction.
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Hence, e is the least common multiple of x, y, and z, which completes the proof of

our claim.

Corollary. 7.36.1 The least common multiple of any finite set of numbers exists.

Proposition 7.37. FACTORING I.

Let x, y, and z be natural numbers. If x is a factor of y, then there exists a positive

integer z such that y/x = z.

Proof. Let x, y, and z be natural numbers, and suppose x is a factor of y. Then

there exists a positive integer k such that xk = y. It follows that

k =
y

x

Let k = z, and the proof is complete.

Proposition 7.38. FACTORING II.

Let x, y, and z be natural numbers where y/x = z; then x is a factor of y.

Proof. Let x, y, and z be natural numbers. Suppose that

y

x
= z

It follows that y = xz, and so x is a factor of y. This completes the proof.

Corollary. 7.38.1 Let x, y, and z be natural numbers. [7.37] and [7.38] state that

y/x = z iff x is a factor of y.

Proposition 7.39. FACTORING III.

Suppose x, y, and z are natural numbers. We claim a smallest positive integer a

exists such that a
x , a

y , and a
z are natural numbers.

Proof. Suppose x, y, and z are natural numbers. Let g be the smallest positive

integer that has x, y, and z as factors. It follows that g
x , g

y , and g
z are natural

numbers. We claim that g = a.
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If this is not the case, there exists a positive integer h < g such that h
x , h

y , and h
z are

natural numbers. It follows that h has x, y, and z as factors. But g is the smallest

positive integer that has x, y, and z as factors, and so h > g, a contradiction.

Therefore, g = a, which completes the proof.

Chapter 7 exercises.

1. Prove [Cor. 7.2.1].

2. Prove [7.7].

3. Prove [7.8].

4. Prove [7.12].

5. Prove [Cor. 7.20.1].

6. If x and y are relatively prime, then x3 and y3 are relatively prime.

7. Prove [Cor. 7.27.2].

8. Prove [Cor. 7.36.1].



Chapter 8

Proportions & Geometric

Sequences

In this chapter, all variables a, b, c, etc., are assumed to be natural numbers unless

otherwise noted.

8.1 Definitions

1. A continued proportion may be written as:

1 : 2 = 2 : 4 = 4 : 8 = 8 : 16

or

1

2
=

2

4
=

4

8
=

8

16

When simplified, each term equals 1
2 , but we refrain from simplifying the ratios

because that would eliminate the continued proportion (which works as if opposing

denominators and numerators are links in a chain).

Continued proportions such as the example above may be said to be written in

lowest possible terms. This is different from being written in lowest terms: the

equations above written in lowest terms become

1 : 2 = 1 : 2 = 1 : 2 = 1 : 2

but are no longer a continued proportion.

A continued proportion is equivalent to a geometric progression (any theorem re-

garding one also applies to the other). A continued proportion with a constant ratio

will be an important topic in this chapter.

342
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The equivalent geometric progression to the continued proportion

1

2
=

2

4
=

4

8
=

8

16

is:

1, 2, 4, 8, 16

2. A geometric progression1, also known as a geometric sequence, is a sequence of

numbers where each term after the first is found by multiplying the previous one

by a fixed, non-zero number called the common ratio. For example, the sequence 2,

6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 40, 20, 10,

5, ... is a geometric sequence with common ratio 1/2.

Examples of a geometric sequence are powers rk of a fixed number r, such as 2k

and 3k. The general form of a geometric sequence is:

a, ar, ar2, ar3, ar4, ...

where r 6= 0 is the common ratio and a is a scale factor, equal to the sequence’s

starting value. In many of Euclid’s propositions, a = 1.

3. Suppose a = b · c and d = e · f where b : c = e : f (equivalently, b
c = e

f ). We say

that a and d are similar or write a ∼ d. (Euclid describes a and d as similar plane

numbers.)

4. Similarly, if g = h · i · j and k = l · m · n where h : i : j = l : m : n (where

h : i : j = l : m : n is equivalent to h : l = i : m = j : n). We say that g and k are

similar or write g ∼ k. (Euclid describes g and k as similar solid numbers.)

5. When three numbers can be written as continued proportions, the first is said to

have to the third the duplicate ratio of that which it has to the second.

Algebraically,

x

y
=

y

z
(

x

y

)2

=
x

y
· y
z

(

x

y

)2

=
x

z

Example: 1 : 16 is the duplicate ratio of 1 : 4 since

1

4
=

4

16

1https://en.wikipedia.org/wiki/Geometric_progression
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and

(

1

4

)2

=
1

16

6. When four numbers can be written as continual proportions, the first is said to

have to the fourth the triplicate ratio of that which it has to the second.

Algebraically,
u

v
=

v

w
=

w

x

so

(u

v

)3

=
u

v
· v
w
· w
x

(u

v

)3

=
u

x

Example: 1 : 125 is the duplicate ratio of 1 : 5 since

1

5
=

5

25
=

25

125

and

(

1

5

)3

=
1

125
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8.2 Propositions from Book VIII

Proposition 8.1. CONTINUED PROPORTIONS I.

Suppose we have a continued proportion of natural numbers such that

x1 : x2 = x2 : x3 = . . . = xn−1 : xn (8.2.1)

and where x1 and xn are relatively prime, and where each fraction equals some

rational number s
t > 0. Then for 2 ≤ i ≤ n, each xi−1 : xi is written in lowest

possible terms.

Proof. Our hypothesis is stated above. We claim that each
xi−1

xi
for 2 ≤ i ≤ n is

written in the lowest possible terms.

Assume otherwise: let

y1 : y2 = y2 : y3 = . . . = yn−1 : yn (8.2.2)

be a set of ratios such that each term equals s
t and is written in lower terms than

in equation (8.2.1). It follows that y1 < x1.

By [7.14], it follows that x1

xn
= y1

yn
. Recall that x1 and xn are relatively prime; by

[7.21], x1

xn
is written in least terms. And by [7.20], x1 is a factor of y1, and so x1 < y1.

But y1 < x1, a contradiction. Thus (8.2.1) is written in lower terms than (8.2.2).

Since (8.2.2) was chosen arbitrarily, (8.2.1) is written in lowest possible terms. This

completes the proof.

Example. 8.1.1. Consider the continued proportion

16 : 40 = 40 : 100 = 100 : 250 = 250 : 625

[8.1] guarantees that since 16 and 625 are relatively prime, each ratio is written in

lowest possible terms. (If each ratio were written in lowest terms, they would equal

2 : 5.)
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Proposition 8.2. CONTINUED PROPORTIONS II.

If x
y is written in lowest terms, then there exists a continued proportion written in

lowest possible terms where each term equals x
y .

Proof. Our hypothesis and claim are stated above. Notice that for any positive

integer n ≥ 2 each term in the following continued proportion equals x
y :

xn

xn−1 · y =
xn−1 · y
xn−2 · y2 = . . . =

x2 · yn−2

x · yn−1
=

x · yn−1

yn
(8.2.3)

We claim that the ratios in (8.2.3) are written in the lowest possible terms.

Since x
y is written in least terms, by [Cor. 7.22.1] x and y are relatively prime. By

[Cor. 7.27.1], xn and yn are relatively prime. Notice that we may write (8.2.3) as

xn : xn−1 · y = ... = x · yn−1 : yn

By [8.1], each term in (8.2.3) is written in the lowest possible terms. This completes

the proof.

Remark. Euclid’s original proof of [8.2] only covers the cases where n = 2 and n = 3.

Corollary. 8.2.1 If we write the continued proportion (8.2.3) as a list of numbers,

we obtain a1, a2, ..., an−1, an where a1 = xn−1 and an = yn−1 for natural numbers x

and y.

Example. 8.2.1. Using equation (8.2.3) where x = 2, y = 5, and n = 4, we obtain

16 : 40 = 40 : 100 = 100 : 250 = 250 : 625

The details are left as an exercise to the reader. This continued proportion can be

written as the geometric progression 16, 40, 100, 250, 625.
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Proposition 8.3. CONTINUED PROPORTIONS III.

Suppose we have a continued proportion of natural numbers

x1 : x2 = x2 : x3 = . . . = xn−1 : xn

where each ratio is written in lowest possible terms. Then x1 and xn are relatively

prime.

Proof. Suppose z1/z2 is written in lowest terms. By [9.2], there exists the continued

proportion

zn1
zn−1
1 · z2

=
zn−1
1 · z2
zn−2
1 · z22

= . . . =
z21 · zn−2

2

z1 · zn−1
2

=
z1 · zn−1

2

zn2
(8.2.4)

written in lowest possible terms.

By [Cor. 7.27.2], zn1 and zn2 are relatively prime. Let x1 = zn1 , each xi = zn−i+1
1 · zi−1

2

for 2 ≤ i ≤ n− 1, and xn = zn2 , and our proof is complete.

Example. 8.3.1. Consider the continued proportion

16 : 40 = 40 : 100 = 100 : 250 = 250 : 625

Each ratio is written in lowest possible terms, and so 16 and 625 are relatively

prime.

Corollary. 8.3.1. Suppose we have a continued proportion of natural numbers such

that

x1 : x2 = x2 : x3 = . . . = xn−1 : xn

By [8.1] and [8.3], we find that x1 and xn are relatively prime iff each
xi−1

xi
is written

in lowest possible terms (for 2 ≤ i ≤ n).
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Proposition 8.4. CONTINUED RATIOS I.

Write a : b, c : d, and e : f in lowest terms. There exists a continued ratio x1 : x2 :

x3 : x4 written in lowest possible terms where x1

x2

= a
b , x2

x3

= c
d , and x3

x4

= e
f .

Proof. Suppose a : b, c : d, and e : f are written in lowest terms.

Let l1 = mb = nc be the least common multiple of b and c. Then write

a

b
=

ma

mb
and

c

d
=

nc

nd

Let l2 = pnd = qe be the least common multiple of nd and e. Then write

a

b
=

pma

pmb
,
c

d
=

pnc

pnd
, and

e

f
=

qe

qf

Notice that pmb = pnc. We claim that pma : pmb : qe : qf is the required continued

ratio.

If it is not, there exists a continued ratio x : y : z : u written in least possible terms

exists such that
x1

x2
=

x

y
,
x2

x3
=

y

z
, and

x3

x4
=

z

u

Since a
b is in lowest terms and a

b = x
y , b is a factor of y [7.21]. Similarly, c

d is in

lowest terms and c
d = y

z , and so c is a factor of y.

By [7.35], l1, the least common multiple of b and c, is also a factor of y.

Notice that
x2

x3
=

y

z
=

c

d
=

nc

nd
=

l1
nd

Since l1 is a factor of y, nd is a factor of z. And since

e

f
=

z

u

e is also a factor of z. Again by [7.35], l2, the least common multiple of nd and e,

is also a factor of z; or, l2 < z. But l2 = pnd and l2 = pnd < z since x : y : z : u is

written in least possible terms.

Thus, pma : pmb : qe : qf is the required continued ratio, which completes the

proof.

Example. 8.4.1. Suppose we have the ratios 1 : 2, 2 : 5, and 3 : 4. The required

continued ratio is 3 : 6 : 15 : 20 since 3 : 6 = 1 : 2, 6 : 15 = 2 : 5, and 15 : 20 = 3 : 4.
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Proposition 8.5. COMPOUND RATIOS I.

If a = cd and b = ef , then a
b = c

e · df .

Proof. If a = cd and b = ef , then

a

b
=

cd

ef
=

c

e
· d
f

Proposition 8.6. CONTINUED PROPORTIONS IV.

Let x1 : x2 = x2 : x3 = . . . = xn−1 : xn be a continued proportion. If x1 does not

divide x2, then xj does not divide xk whenever j < k ≤ n.

Proof. We shall prove the contrapositive statement of the above: if xj divides xk

whenever j < k ≤ n, then x1 divides x2.

Suppose that xj divides xk whenever j < k ≤ n. Since 1 < 2 ≤ n, x1 divides x2,

which completes the proof.

Proposition 8.7. CONTINUED PROPORTIONS V.

Let x1 : x2 = x2 : x3 = . . . = xn−1 : xn be a continued proportion. If x1 divides xn,

then x1 divides x2.

Proof. Consider the contrapositive statement of [8.6]: if xj divides xk whenever

j < k ≤ n, then x1 divides x2. Since 1 < n ≤ n, [8.6] implies: if x1 divides xn, then

x1 divides x2. This completes the proof.
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Proposition 8.8. CONTINUED PROPORTIONS VI.

Let a : b = e : f , and construct a continued proportion

a : a1 = a1 : a2 = . . . = an−1 : b

(with n− 1 middle terms) where each term equals a
b . Then there exists a continued

proportion

e : e1 = e1 : e2 = . . . = en−1 : f

(also with n− 1 middle terms) where each term equals e
f .

Proof. Our hypothesis and claim are stated above. Let

c : c1 = c1 : c2 = ... = cn−1 : d

be the continued proportion

a : a1 = a1 : a2 = . . . = an−1 : b

written in the lowest possible terms.

By [8.3], c and d are relatively prime. By [7.21], c : d is written in lowest terms.

Notice that a : b = c : d. By hypothesis, a : b = e : f , and so c : d = e : f . By [7.20], it

follows that e = mc, f = md where m > 0 is an integer. Then

mc : mc1 = mc1 : mc2 = ... = mcn−1 : md

is a continued proportion with n − 1 middle terms where each term equals mc :

md = e : f . Let e = mc, e1 = mc1, ..., and f = md, and the proof is complete.

Remark. David E. Joyce points out that [8.8] and [10.9] can be used to prove that√
2 is not a rational number.2

Proposition 8.9. CONTINUED PROPORTIONS VII.

Let a and b be relatively prime, and suppose there exists n geometric means be-

tween a and b; then there exist n geometric means between 1 and a and between 1

and b.

Proof. Our hypothesis and claim are stated above. Suppose that a1, a2, . . ., an−2 are

the geometric means between a and b; equivalently, suppose we have the continued

proportion

a : a1 = a1 : a2 = . . . = an−2 : b

2
http://aleph0.larku.edu/~djoye/java/elements/bookVIII/propVIII8.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookVIII/propVIII8.html
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Since a and b are relatively prime by hypothesis, by [8.1] each ai−1 : ai for 2 ≤ i ≤
n− 2 is written in lowest possible terms.

By [Cor 8.2.1], the terms of this continued proportion are respectively equal to the

terms cn+1, cn ·d, cn−1 ·d2, . . ., c ·dn, dn+1 where c and d are written in lowest terms.

Then a = cn+1 and b = dn+1 and the continued proportions

1 : c = c : c2 = c2 : c3 = . . . = cn : cn+1

1 : d = d : d2 = d2 : d3 = . . . = dn : dn+1

exist with n geometric terms between 1 and c and between 1 and d. This completes

the proof.

Example. 8.9.1. Using equation (8.2.3)

xn

xn−1 · y =
xn−1 · y
xn−2 · y2 = . . . =

x2 · yn−2

x · yn−1
=

x · yn−1

yn

where x = 2, y = 5, and n = 4, we obtain

16 : 40 = 40 : 100 = 100 : 250 = 250 : 625

By [8.9], we obtain

1 : 2 = 2 : 4 = 4 : 8 = 8 : 16

and

1 : 5 = 5 : 25 = 25 : 125 = 125 : 625

Proposition 8.10. CONTINUED PROPORTIONS VIII.

Suppose there exists n geometric means between 1 and a and between 1 and b; then

there exists n geometric means between a and b.

Proof. Suppose the following continued proportions exist:

1 : c = c : c2 = c2 : c3 = . . . = cn : cn+1

1 : d = d : d2 = d2 : d3 = . . . = dn : dn+1

We claim that a continued proportion beginning with a = cn+1 and ending with

b = dn+1 exists with n terms in-between.

Multiply term n+1 in the first proportion by term 1 in the second proportion. Then

multiply term n in the first proportion by term 2 in the second proportion. Repeat

this algorithm until we have a total of n+ 1 products, giving us:

cn+1, cn · d, cn−1 · d2, . . . , c · dn, dn+1
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Clearly, we may write a continued proportion with these terms; notice that this

proportion has n means between a = cn+1 and b = dn+1, which completes the

proof.

Remark. [2.10] is only a partial converse of [2.9]: [2.9] requires that a and b be

relatively prime, but [2.10] does not.

Example. 8.10.1. Let c = 2, d = 3, and n = 3. Writing our ratios as fractions, we

obtain
1

2
=

2

4
=

4

8
=

8

16

1

3
=

3

9
=

9

27
=

27

81

By [8.10], we obtain
16

24
=

24

36
=

36

54
=

54

81

Proposition 8.11. CONTINUED PROPORTIONS IX.

Let a and b be natural numbers. Then a2 and b2 have one and only one geometric

mean (ab).

Proof. Our hypothesis and claim are stated above. Notice that if

a2

x
=

x

b2

then

(ab)2 = x2

ab = x

since a, b, x are natural numbers. It follows that ab is a geometric mean of a2 and

b2.

Suppose that c and d are natural numbers such that cd is also a geometric mean of

a2 and b2. Then ab = cd, and so ab is unique. This completes the proof.

Proposition 8.12. CONTINUED PROPORTIONS X.

If a and b are natural numbers, then a3, a2b, ab2, and b3 are in continued proportion.
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Proof. If a and b are natural numbers, then

a

b
=

a3

a2b
=

a2b

ab2
=

ab2

b3

Corollary. 8.12.1 Let an and bn be natural numbers for any positive integer n ≥ 1.

Then there exist a set of geometric means to an and bn such that

an

an−1 · b =
an−1 · b
an−2 · b2 = . . . =

a · bn−1

bn
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Proposition 8.13. CONTINUED PROPORTIONS XI.

Suppose that a1 : a2 = a2 : a3 = . . . = an−1 : an. Then ak1 : ak2 = ak2 : ak3 = . . . = akn−1 :

akn for any positive integer k > 1.

Proof. If a1 : a2 = a2 : a3 = . . . = an−1 : an, then

a1
a2

=
a2
a3

= ... =
an−1

an

(

a1
a2

)

· a1
a2

=

(

a1
a2

)

· a2
a3

= ... =

(

a1
a2

)

· an−1

an

(

a1
a2

)

· a1
a2

=

(

a2
a3

)

· a2
a3

= ... =

(

an−1

an

)

· an−1

an

(

a1
a2

)2

=

(

a2
a3

)2

= ... =

(

an−1

an

)2

We may continue this procedure finitely many times until we obtain

(

a1
a2

)k

=

(

a2
a3

)k

= ... =

(

an−1

an

)k

or

ak1 : ak2 = ak2 : ak3 = . . . = akn−1 : akn

This completes our proof.
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Proposition 8.14. FACTORS OF POWERS I.

1. If a2 is a factor of b2, then a is a factor of b.

2. If a is a factor of b, then a2 is a factor of b2.

Proof. Suppose a2 is a factor of b2. Then b2 = k2 · a2 where k is a positive real

number. Hence, b = ka; or, a is a factor of b.

Now suppose that a is a factor of b. Then b = k · a where k is a positive real number,

and

b2 = (k · a)2 = k2 · a2

Therefore, a2 is a factor of b2.

Remark. Euclid proves this hypothesis using [8.7]. However, it can be more easily

demonstrated via algebra.

Proposition 8.15. FACTORS OF POWERS II.

1. If a3 is a factor of b3, then a is a factor of b.

2. If a is a factor of b, then a3 is a factor of b3.

Proof. The proof is similar to that of [8.14] and is left as an exercise to the reader.

Corollary. 8.15.1 For any positive integer n, an is a factor of bn iff a is a factor of b.

Proposition 8.16. FACTORS OF POWERS III.

1. If a2 is not a factor of b2, then a is not a factor of b.

2. If a is not a factor of b, then a2 is not a factor of b2.

Proof. Claim 1 is the contrapositive statement of [8.14], claim 2.

Claim 2 is the contrapositive statement of [8.14], claim 1.
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Proposition 8.17. FACTORS OF POWERS IV.

1. If a3 is not a factor of b3, then a is not a factor of b.

2. If a is not a factor of b, then a3 is not a factor of b3.

Proof. Claim 1 is the the contrapositive statement of [8.15], claim 2.

Claim 2 is the contrapositive statement of [8.15], claim 1.

Corollary. 8.17.1 For any positive integer n, an is not a factor of bn iff a is not a

factor of b. This is the contrapositive statement of [Cor. 8.15.1].

Proposition 8.18. GEOMETRIC MEANS I.

If ab and cd are “similar plane numbers”, i.e., products of factors a, b, c, and d such

that a : b = c : d, then there exists one mean proportional between ab and cd. Also,

ab is to cd in the duplicate ratio of a to c or of b to d.

Proof. Our hypothesis and claim are stated above. By [7.13],

a

b
=

c

d
⇒ a

c
=

b

d

Furthermore,
ab

bc
=

bc

cd

Hence, bc is a geometric mean between ab and cd. If x is also a geometric mean

between ab and cd, then x2 = (bc)2 = abcd, and so x = bc; hence, bc is unique.

And since a
c = b

d ,
(a

c

)2

=
ab

cd
=

(

b

d

)2

By [Def. 8.5], ab is to cd in the duplicate ratio of a to c or of b to d. This completes

the proof.
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Proposition 8.19. GEOMETRIC MEANS II.

If a : b : c = d : e : f , then there exist two geometric means between abc and def

(specifically, bcd and cde). Also, abc is to def in the triplicate ratio of a : d.

Proof. Our hypothesis and claim are stated above. Recall that a : b : c = d : e : f iff

a : d = b : e = c : f .

Notice that a : d = abc : bcd, that b : e = bcd : cde, and that c : f = cde : def . Hence,

abc

bcd
=

bcd

cde
=

cde

def

and so two geometric means, bcd and cde, exist between abc and def .

Since a
d = b

e = c
f ,

a

d
· b
e
· c
f
=
(a

d

)3

=
abc

def

By [Def. 8.6], this completes the proof.

Proposition 8.20. GEOMETRIC MEANS III.

If a, c, and b are in geometrical progression, then a and b each have two factors and

are similar.

Proof. Suppose
a

c
=

c

b

We claim that a and b are similar and that each have two factors.

Let α : γ be the ratios a : c and c : b reduced to lowest terms. By [7.20], a = mα,

c = mγ = nα, and b = nγ where m > 0 and n > 0. Hence, a and b each have two

factors.

Finally, notice that
α

γ
=

a

c
=

c

b
=

mγ

nγ
=

m

n

By [7.13], m : α = n : γ. By [Def 8.3], a = mα and b = nγ are similar.
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Proposition 8.21. GEOMETRIC MEANS IV.

If a, c, d, and b are in geometrical progression, then a and b each have three factors

and are similar.

Proof. Suppose
a

c
=

c

d
=

d

b

We claim that a and b each have three factors and are similar.

By [7.33] or [8.2], let α : β : γ be the progression a : c : d written in lowest possible

terms. By [8.3], α and γ are relatively prime; by [8.20], α and γ are similar and

each have two factors. Let α = mn and γ = pq where m : n = p : q. It follows that

β = mq = np.

Notice that
α

β
=

mn

np
=

m

p
=

mn

mq
=

n

q

Since a
c = c

d = α
β = β

γ , we obtain
a

d
=

α

γ

Since α and γ are relatively prime, a = rα and d = rγ. But α = mn and γ = pq, and

so a = rmn.

Since c
d = d

b = α
β = β

γ , we obtain
c

b
=

α

γ

and so c = sα and b = sγ; or, c = smn and b = spq. Hence, a = rmn and b = spq have

three factors. Notice that

α

β
=

a

c
=

rmn

smn
=

r

s

Taken with the above, we obtain

α

β
=

r

s
=

m

p
=

n

q

Hence, a and b are similar, completing the proof.
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Proposition 8.22. CONTINUED PROPORTIONS XII.

If a
b = b

c and a = k2 for some k > 0, then c = n2.

Proof. Our hypothesis and claim are stated above. By [8.20], a and c are each the

product of two factors, and a is similar to c. Let a = kk and c = ns. Then we may

obtain

k : n = k : s

For this equality to occur, n = s. It follows that c = n2 for some integer s.

Proposition 8.23. CONTINUED PROPORTIONS XIII.

If a
b = b

c = c
d and a = n3 for some n > 0, then d = s3.

Proof. Our hypothesis and claim are stated above. By [8.21], a and d are each the

product of three factors, and a is similar to d. Let a = nnn and d = spq. Then

n : s = n : p = n : q

For this equality to occur, s = p = q. It follows that d = s3 for some integer s.

Proposition 8.24. CONTINUED PROPORTIONS XIV.

If a : b = c2 : d2 and a = s2 for some s > 0, then b = t2.

Proof. Our hypothesis and claim are stated above. By [8.18],

c2

x
=

x

d2

gives us x = cd as the unique geometric mean between c2 and d2. By [8.8], there

exists a unique geometric mean between a and b. But a = s2, and so

s2

y
=

y

b

where y is the geometric mean. By [8.22], b = t2, which completes the proof.
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Proposition 8.25. CONTINUED PROPORTIONS XV.

If a : b = c3 : d3 and a = s3 for some s > 0, then b = t3.

Proof. Our hypothesis and claim are stated above. By [8.19], c3 : d3 has two mean

proportionals. By [8.8], a : b also has two mean proportionals. By [8.23], since

a = s3 for some s > 0, then b = t3 for some t > 0.

Proposition 8.26. RATIOS OF SQUARE NUMBERS.

Similar numbers which each have two factors have the same ratio to each other as

a square number has to a square number.

Proof. If a and b are similar numbers each with two factors, let c be the mean

proportional between them [8.18].

Take α, β, and γ as the smallest terms in the ratio of a, c, and b by either [7.33] or

[8.2].

By [Cor. 8.2.1], α and γ are square numbers. It follows that a and b have a ratio to

each other as a square number has to a square number.

Corollary. 8.26.1 If two numbers have a ratio to each other as a square number to

a square number, then the numbers are similar plane numbers.

Proposition 8.27. RATIOS OF CUBED NUMBERS.

Similar numbers which each have three factors have a ratio to each other as a

cubed number has to a cubed number.

Proof. The proof to [8.27] is similar to the proof to [8.26] except that [8.19] is cited

instead of [8.18].

Corollary. 8.27.1 If two numbers have to one another the ratio of a cubed number

to a cubed number, the numbers are similar cubed numbers.
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Chapter 8 exercises.

1. Prove [Cor. 8.2.1].

2. Prove [Cor. 8.4.1].

3. Use [8.8] and [10.9] to prove that
√
2 is not a rational number.

4. Prove [Cor. 8.12.1].

5. Prove [8.15].

6. Prove [Cor. 8.15.1].

7. Prove [Cor. 8.26.1].

8. Fill in the details for the proof of [8.27].

9. Prove [Cor. 8.27.1].



Chapter 9

Applied Number Theory

In this chapter, all variables a, b, c, etc., are assumed to be natural numbers unless

otherwise noted.

9.1 Definitions

1. The sigma function of a positive integer n is the sum of the positive factors of n.

This function is denoted σ(n). If the prime factorization of n = xs
1 · xt

2 · ... · xz
m, then

σ(n) and can be calculated in this way:

σ(n) = σ(xs
1 · xt

2 · ... · xz
m)

= σ(xs
1) · σ(xt

2) · ... · σ(xz
m)

=

(

xs+1
1 − 1

x1 − 1

)

·
(

xt+1
2 − 1

x2 − 1

)

· ... ·
(

xz+1
m − 1

xm − 1

)

Example: 45 = 1 · 45 = 3 · 15 = 5 · 9, and so

σ(45) = σ(32) · σ(5)

=

(

33 − 1

3− 1

)

·
(

52 − 1

5− 1

)

=

(

26

2

)

·
(

24

4

)

= 13 · 6
= 78

= 1 + 3 + 5 + 9 + 15 + 45

362
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For any prime number p, σ(p) = p+ 1.

Example: 7 = 7 · 1, and so

σ(7) = σ(71)

=

(

72 − 1

7− 1

)

=
48

6

= 8

= 7 + 1

For any perfect number m, σ(m) = 2m.

Example: 6 = 1 · 6 = 2 · 3 is a perfect number, and so

σ(6) = σ(2) · σ(3)

=

(

22 − 1

2− 1

)

·
(

32 − 1

3− 1

)

=

(

3

1

)

·
(

8

2

)

= 3 · 4
= 12

= 1 + 2 + 3 + 6

= 2(6)

The sigma function is also multiplicative; that is, f(nm) = f(n) · f(m) whenever m

and n are relatively prime. This function used in the proof to [9.36].
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9.2 Propositions from Book IX

Proposition 9.1. PRODUCT OF SIMILAR PLANE NUMBERS.

If two similar plane numbers are multiplied, their product will be a square number.

Proof. Suppose a ∼ b are plane numbers. We claim that ab is a square number.

Notice that
a

b
=

a2

ab

By [8.18], there exists one mean proportional between a and b. By [8.8], there exists

one mean proportional between a2 and ab. By [8.22], ab is a square number.

Example. [10.1.1] Let a = 6 and b = 1350. Since a = 3 · 2, b = 45 · 30, and

3

2
=

45

30

a and b are similar numbers. [9.1] states that ab = 8100 is a square number. Specif-

ically, ab = 8100 = 902.

Remark. Why [9.1] works algebraically: suppose a = x · y and b = kx · ky. Since

x

y
=

kx

ky

a and b are similar numbers. Then ab = x · y · kx · ky = k2x2y2, and so
√
ab = kxy.
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Proposition 9.2. CONVERSE OF PROPOSITION 9.1

If the product of two natural numbers is a square number, then the numbers are

similar plane numbers.

Proof. Let a and b be natural numbers such that ab = c2. We claim that a and b are

similar plane numbers.

Clearly, a2 is a square number, and

a

b
=

a2

ab

Since ab = c2 by hypothesis, notice that

a

ab
=

a

ab

a

a
=

ab

ab

a

a
=

c

c

and so a2 ∼ c2. By [8.18], one mean proportional exists between a2 and ab = c2. By

[8.8], one mean proportional exists between a and b.

By [8.20], if one mean proportional exists between a and b, then a and b are similar

plane numbers. This proves our claim.

Example. 9.2.1. Since 10 · 40 = 400 and 400 = 202, it follows that 10 and 40 are

similar plane numbers: 10 = 2 · 5, 40 = 4 · 10, and

2

5
=

4

10

Corollary. 9.2.1. Given that a, b, and c are natural numbers, a and b are similar

plane numbers iff a · b = c2.
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Proposition 9.3. EXPONENTS I.

The product of a cubic number with itself is also a cubic number.

Proof. Using the standard properties of exponents, we obtain

(x3)(x3) = (x3)2 = (x2)3

Proposition 9.4. EXPONENTS II.

If k = a3b3, then k is a cubic number.

Proof. Since a3b3 = (ab)
3
, we find that k = (ab)

3
is a cubic number.

Proposition 9.5. EXPONENTS III.

If a3b = r3, then b = k3.

Proof. Suppose a3b = r3. By [9.3], a3 · a3 = t3 for some t, and so

a3 · a3
a3b

=
a3

b

t3

r3
=

a3

b

Applying [8.19], there exist two geometric means between t3 and r3. By [8.8], there

exist two geometric means between a3 and b. By [8.23], b = k3 for some k.

Corollary. 9.5.1. Suppose a3b = c. By [9.4] and [9.5], b is a cubic number if and

only if c is a cubic number.
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Proposition 9.6. EXPONENTS IV.

If a2 = t3 for some t, than a = k3 for some k.

Proof. Suppose a2 = t3 for some t. Notice that

1

a
=

a

a2
=

a2

a3
=

t3

a3

By [8.19], there exist two mean proportionals between t3 and a3. By [8.8], there

exist two mean proportionals between a and a2. By [8.23], since a2 = t3 for some t,

a = k3 for some k.

Example. 9.6.1. If x2 = 64 = 43, then x = 23 = 8.

Proposition 9.7. SOLID NUMBERS.

Euclid refers to natural numbers with two factors as “plane numbers” and natural

numbers with three factors as “solid numbers”. This proposition states that by

multiplying ab (a plane number) by c, we obtain abc (a solid number). Algebraically,

the proposition is self-evident.

Proposition 9.8. EXPONENTS OF GEOMETRICAL SEQUENCES I.

If 1, a1, a2, a3, . . ., ak is a geometrical sequence, then the a2n terms have exponents

which are multiples of 2, the a3n terms have exponents which are multiples of 3,

and the a6n terms have exponents which are multiples of 6.

Proof. Suppose that 1 : a1 = a1 : a2 = a2 : a3 = . . . = ak−1 : ak is a geometrical

sequence. It follows that a1 = r, a2 = r2, a3 = r3, a4 = r4, ..., ak = rk. Clearly,

a2n = r2n, a3n = r3n, and a6n = r6n.

This result holds when the continued proportion is multiplied by a constant scale

factor [Def 8.2], which completes the proof.
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Proposition 9.9. EXPONENTS OF GEOMETRICAL SEQUENCES II.

If 1, a1, a2, a3, . . ., an is a geometrical sequence where:

(1) a1 = k2 for some natural number k, then a2, ..., an are also square numbers.

(2) a1 = k3 for some natural number k, then a2, ..., an are also cubic numbers.

Proof. Let 1, a1, a2, a3, . . ., an be a geometrical sequence.

(1) By hypothesis and [9.8], a1 = r = k2. Hence for m ≥ 2,

am = rm = (k2)m = (km)2

(2) By hypothesis and [9.8], a1 = r = k3. Hence for m ≥ 2,

am = rm = (k3)m = (km)3

This completes the proof.

Proposition 9.10. EXPONENTS OF GEOMETRICAL SEQUENCES III.

If 1, a1, a2, a3, . . ., an is a geometrical sequence where:

(1) a1 6= k2 for some natural number k, then a2s are square numbers and all other

terms of the sequence are not square numbers.

(2) a1 6= k3 for some natural number k, then a3m are cubic numbers and all other

terms of the sequence are not cubic numbers.

Proof. Let 1, a1, a2, a3, . . ., an be a geometrical sequence.

(1) Suppose a1 6= x2 for any x and that a3 = k2 for some k. Since a2 = (a1)
2
, a2 = s2

for some natural number s. Notice that

a1
a2

=
a2
a3

=
s2

k2

We may rewrite the above as
s2

a1
=

k2

s2

By [8.24], a1 = x2 for some x, contradicting our hypothesis. By a similar argument,

all other terms of the sequence are not square numbers.

(2) The proof is similar to that of case (1) and is left as an exercise to the reader.

Proposition 9.11. EXPONENTS OF GEOMETRICAL SEQUENCES IV.
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Let s < t. Euclid’s original proposition and its corollary state that as is a factor of

at a total of at−s times. Equivalently, this may be written as

as · at−s = at

If we take the rules of exponents as axiomatic1, [9.11] becomes self-evident.

Proposition 9.12. PRIMES AND GEOMETRICAL SEQUENCES I.

Let 1, a1, a2, . . ., an be terms in a geometrical progression, and let p be a prime

number. If p is a factor of an, then p is also a factor of a1.

Proof. A proof by contradiction: assume that prime number p is a factor of an but p

is not a factor of a1.

By [7.29], a1 and p are relatively prime. By hypothesis, an = mp. Since 1, a1, a2, . . .,

an is a geometrical progression, by [9.11], an = a1 · an−1. So

mp = a1 · an−1 or
a1
p

=
m

an−1

Since a1 and p are relatively prime, by [7.21] and [7.20] p is a factor of an−1. Re-

peating this algorithm a finite number of times, we can show that p is a factor of

a1, contradicting our hypothesis. This completes the proof.

Proposition 9.13. PRIMES AND GEOMETRICAL SEQUENCES II.

Let 1, a1, a2, . . ., an be a geometrical progression. If a1 is prime, the only factors of

an (besides 1) are the preceding terms in the progression.

Proof. Our hypothesis and claim are stated above. By [9.11] and the fact that 1, a1,

a2, . . ., an is a geometrical progression, a1, a2, ..., an−1 are factors of an. Suppose

that a1 is prime and that an is divisible by b where b does not equal a1, a2, ..., an−1.

By [9.12], if b is prime and a factor of an, then b is a factor of a1. Since a1 is prime,

a1 = b, contradicting our assumption that b 6= a1. Hence, b is a composite number.

By [7.31], since b is composite, b = mp where p is prime. Again by [9.12], p is a

factor of a1. But a1 is prime, and so a1 = p. It follows that an = (a1)
n
. Since an is

divisible by b = ma1, it follows that m = 1. But then b is not composite.

It follows that b = 1, and so the only factors of an (besides 1) are a1, a2, ..., an−1.

1Proof of these rules: http://www.andrusia.om/math/preliminaries/ExponentiationTheorems.

pdf

http://www.andrusia.com/math/preliminaries/ExponentiationTheorems.pdf
http://www.andrusia.com/math/preliminaries/ExponentiationTheorems.pdf
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Proposition 9.14. UNIQUENESS OF PRIME FACTORING.

Let x = p1 · p2 · . . . · pn where each pi is a prime factor and p1 ≤ p2 ≤ ... ≤ pn such

that x is the smallest number to have p1, p2, . . ., pn as factors. We claim that p1, p2,

. . ., pn are unique prime factors of x.

Proof. Our hypothesis and claim are stated above. A proof by contradiction: sup-

pose that x has a prime factor q such that q 6= pi for 1 ≤ i ≤ n. Let x = q ·m.

Since x = p1 · p2 · . . . · pn, by [7.30] each prime p1, p2, . . ., pn much divide either q or

m; since q is prime and q 6= pi, we find that each p1, p2, . . ., pn divides m. Because

m is a factor of x, m < x. Hence, x is not the smallest number to have p1, p2, . . ., pn

as factors, contradicting our hypothesis.

Thus, p1, p2, . . ., pn are unique prime factors of x.

Proposition 9.15. RELATIVE PRIMES IN CONTINUED PROPORTIONS.

If a, b, and c are a continued proportion in lowest possible terms such that

a

b
=

b

c

then:

1) c is relatively prime to a+ b.

2) a is relatively prime to b+ c.

3) b is relatively prime to a+ c.

Proof. By [8.2], a = d2, b = de, and c = e2. Notice that a, c are relatively prime. It

follows that d, e are relatively prime.

By [7.28], d + e is relatively prime to both d and e. Since d + e and d are relatively

prime to e, by [7.24] d2+de is relatively prime to e. It follows that d2+de is relatively

prime to e2, or a+ b is relatively prime to c (claim 1).

Similarly, b+ c is relatively prime to a (claim 2).

Since d + e is relatively prime to both d and e, de is relatively prime to d + e [7.24].

By [7.25], (d+ e)2 is relatively prime to de. It follows that d2 + 2de+ e2 is relatively

prime to de; that is for natural numbers r, s where s 6= 1,

d2 + 2de+ e2

de
=

r

s

d2 + e2

de
=

r − 2s

s

Since the RHS is not a natural number, d2 + e2 is relatively prime to de, or a+ c is

relatively prime to b (claim 3).
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Proposition 9.16. PRIMES AND GEOMETRICAL SEQUENCES III.

If a and b are relatively prime natural numbers and in a continued proportion, then

the third proportional is not an integer.

Proof. Our hypothesis and claim are stated above. If a
b = b

c where c is an integer,

then c is the third proportional to a and b, and

c

1
=

b2

a

By [7.25], b2 and a are relatively prime; by [7.21], b2

a is in lowest terms. Since c
1

is also in lowest terms, a = 1. But a is a prime number, so a 6= 1, a contradiction.

Hence, c is not an integer, which completes the proof.

Proposition 9.17. PRIMES AND GEOMETRICAL SEQUENCES IV.

Let 1, a1, a2, . . ., an be a geometrical progression. If a1 is relatively prime to an,

then the geometrical progression cannot be extended.

Proof. Suppose 1, a1, a2, . . ., an is a geometrical progression where a1 is relatively

prime to an. If the sequence can be extended, there is some natural number x is

such that

a1
a2

=
an
x

a1
an

=
a2
x

By [7.21], the LHS is reduced to lowest terms, and so a1 is a factor of a2. Since 1,

a1, a2, . . ., an is a geometrical progression, a1 is also a factor of an, contradicting our

hypothesis. This completes the proof.

Proposition 9.18. EXISTENCE OF A THIRD PROPORTIONAL WHICH IS AN

INTEGER.

Given two natural numbers a and b, we claim that the conditions under which a

and b have an integral third proportional are:

(1) a is a factor of b2.

(2) a is a factor of b.
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Proof. Suppose a, b, and c are in continuous proportion:

a

b
=

b

c

That is, ac = b2. It follows that a is a factor of b2.

If a and b are relatively prime, then by [7.20], a
b is reduced to lowest terms, and by

[7.21], a is a factor of b, a contradiction. Hence, a is a factor of b. This completes the

proof.

Proposition 9.19. EXISTENCE OF A FOURTH PROPORTIONAL WHICH IS

AN INTEGER.

The Greek text of part of this proposition is hopelessly corrupt. However, the propo-

sition and proof are believed to be the following:

Given natural numbers a, b, c, and d, under what conditions can we write:

a

b
=

c

d

If this equality exists, then clearly d = bc
a . Or, if a divides bc, then d is a natural

number.

Proposition 9.20. INFINITE PRIMES.

Any finite list of prime numbers is incomplete.

Proof. Suppose we obtain a finite and complete list of prime numbers: p1, p2, . . ., pr

(where p1 < p2 < ... < pr). Let P = p1 · p2 · ... · pr + 1.

If P is prime, then our list is incomplete, a contradiction.

Hence P is composite and can be written P = qx where q is prime and x is a natural

number. It follows that

x =
P

q
=

p1 · p2 · ... · pr + 1

q
=

p1 · p2 · ... · pr
q

+
1

q

Since our list of primes is completes, q = pi for some 1 ≤ i ≤ r, and so

x = m+
1

q

where m = p1·p2·...·pr

q is a natural number. Since x −m is a natural number, q = 1,

a contradiction since q is prime [Def. 7.9]. This completes the proof.
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Proposition 9.21. ADDITION OF EVEN NUMBERS.

If each xi is even for 1 ≤ i ≤ n, then
∑

xi is also even.

Proof. Suppose that each xi is even for 1 ≤ i ≤ n. Then xi = 2ki for some positive

integer ki, and
∑

xi =
∑

2(ki) = 2 ·
∑

ki

Hence,
∑

xi is also even. This completes the proof.

Proposition 9.22. ADDITION OF ODD NUMBERS I.

If each xi is odd for 1 ≤ i ≤ n where n is even, then
∑

xi is even.

Proof. Suppose that each xi is odd for 1 ≤ i ≤ n where n = 2t for some natural

number t. Then xi = 2ki + 1 for some positive integer ki, and

x1 + x2 + ...+ x2t−1 + x2t = (x1 + x2) + ...+ (x2t−1 + x2t)

=
∑

(xi + xi+1)

=
∑

(2ki + 1 + 2ki+1 + 1)

= 2 ·
∑

(ki + ki+1 + 1)

Hence,
∑

xi is even. This completes the proof.

Proposition 9.23. ADDITION OF ODD NUMBERS II.

If each xi is odd for 1 ≤ i ≤ n where n is odd, then
∑

xi is odd.

Proof. Suppose that each xi is odd for 1 ≤ i ≤ n where n = 2t+ 1 for some natural

number t. Then xi = 2ki + 1 for some positive integer ki, and

x1 + x2 + ...+ x2t + x2t+1 = (x1 + x2) + ...+ (x2t−1 + x2t) + x2t+1

=
∑

(xi + xi+1) + x2t+1

=
∑

(2ki + 1 + 2ki+1 + 1) + 2k2t+1 + 1

= 2 ·
(

∑

(ki + ki+1 + 1) + k2t+1

)

+ 1
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Hence,
∑

xi is odd. This completes the proof.

Proposition 9.24. SUBTRACTION OF EVEN NUMBERS.

If x < y where x and y are even, then y − x is also even.

Proof. Suppose that x < y where x and y are even. Then x = 2k1 and y = 2k2 where

k1 and k2 are natural numbers where k1 < k2. Then

y − x = 2k2 − 2k1 = 2(k2 − k1) > 0

and so y − x is also even. This completes the proof.

Proposition 9.25. SUBTRACTION OF EVEN AND ODD NUMBERS I.

If x is even, y is odd, and y < x, then x− y is odd.

Proof. Our hypothesis and claim are written above. Since x is even, x = 2ki for

some positive integer ki. Since y is odd, y = 2kj + 1 for some positive integer kj .

Then

x− y = (2ki)− (2kj + 1) = 2(kj − ki)− 1

By [Def. 7.5], x− y is odd. This completes the proof.

Proposition 9.26. SUBTRACTION OF ODD NUMBERS.

If x and y are odd and x < y, then y − x is even.

Proof. Suppose that x and y are odd and x < y. Then x = 2ki + 1 and y = 2kj + 1

where ki and kj are natural numbers. Then

y − x = (2kj + 1)− (2ki + 1) = 2(kj − ki)

Hence, y − x is even. This completes the proof.

Proposition 9.27. SUBTRACTION OF EVEN AND ODD NUMBERS II.

Suppose that x is even, y is odd, and x < y. Then y − x is odd.
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Proof. Suppose that x is even, y is odd, and x < y. Since x is even, x = 2ki for some

positive integer ki. Since y is odd, y = 2kj + 1 for some positive integer kj .

Then

y − x = (2kj + 1)− (2ki) = 2(kj − ki) + 1

Hence, y − x is odd. This completes the proof.

Proposition 9.28. MULTIPLICATION OF ODD AND EVEN NUMBERS.

If x is even and y is odd, then xy is even.

Proof. Suppose that x is even and y is odd. Then x = 2ki and y = 2kj + 1 for some

natural numbers ki and kj . Then

xy = 2ki · (2kj + 1) = 4ki · kj + 2ki = 2(2ki · kj + ki)

Hence, xy is even. This completes the proof.

Corollary. 9.28.1. If xy is even, then either x and y are even or x is even and y is

odd.

Proposition 9.29. MULTIPLICATION OF ODD NUMBERS.

If x and y are odd, then xy is odd.

Proof. Suppose that x and y are odd. Then x = 2ki + 1 and y = 2kj + 1 for natural

numbers ki and kj . Then

xy = (2k1 + 1)(2kj + 1)

= 4kikj + 2k1 + 2kj + 1

= 2(2kikj + k1 + kj) + 1

Hence, xy is odd. This completes the proof.

Corollary. 9.29.1. If xy is odd, then x and y are odd. That is, xy is odd iff x and y

are odd.
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Proposition 9.30. ODD FACTORS OF EVEN NUMBERS.

If x is odd, y is even, and x is a factor of y, then x is also a factor of y
2 .

Proof. Our hypothesis and claim are stated above. Suppose that xt = y where t is

even. By [9.28], y is even.

Let t = 2ki and y = 2kj where kj and km are natural numbers. Then

xt = y

x · (2ki) = 2kj

x · (ki) = kj

The final equality can also be written

x · ki =
y

2

which proves our claim.

Proposition 9.31. ODD RELATIVE PRIMES.

If x is odd and relatively prime to y, then x is also relatively prime to 2y.

Proof. Suppose x is odd and relatively prime to y, but x shares a common factor of

2y. Let rs = x and rk = 2y where r is the common factor. By [Cor. 9.29.1], r is odd.

By [9.30], r is also a factor of y. Then x and y share a common factor, contradicting

our hypothesis. This completes the proof.

Corollary. 9.31.1 If x is odd and relatively prime to y, then x is also relatively prime

to 2ky where k ≥ 1 is a natural number.

Proposition 9.32. MULTIPLES OF 2.

If y = 2k for some natural number k, and if y = s · t for natural numbers s > 1 and

t > 1, then s and t are even numbers.

Proof. Our hypothesis and claim are stated above. Notice that

2k = st

t = 2k/s



CHAPTER 9. APPLIED NUMBER THEORY 377

Since t is a natural number and s > 1, it follows that s = 2k−m where m is a natural

number such that m < k [9.11]. It also follows that t = 2m. Thus both s and t are

even numbers, which proves our claim.

Proposition 9.33. WHEN HALF OF A NUMBER IS ODD.

If x is a natural number such that x/2 is odd, then x is the product of an even

number times an odd number and not the product of an even number times an

even number.

Proof. Our hypothesis and claim are stated above. If x = e · f where e is an even

natural number and f is an odd natural number, the proof follows.

But if x = e ·E where both e and E are even natural numbers, then e = 2k for some

natural number k and E = 2m for some natural number m. Then

x

2
=

e · E
2

=
2k · 2m

2
= 2km

which contradicts the assumption that x/2 is an odd number. This proves our claim.

Proposition 9.34. SPECIAL EVEN NUMBERS.

Let x be an even number which is not a power of 2 and where x
2 is not an odd factor.

Then x may be factored into two even numbers as well as into an even number and

an odd number.

Proof. Let x = 2m such that x 6= 2k and x
2 = 2n for some k, m, and n. Notice that

x = 4n = 2 · 2n, and so x can be factored into two even numbers.

Since x 6= 2k, there exists some t ≥ 1 where x
2t = 2r + 1. That is, x = (2t) (2r + 1),

which completes the proof.

Proposition 9.35. CONTINUED PROPORTIONS XVI.

If a1 6= 1 and

a1 : a2 = a2 : a3 = ... = an : an+1

then

(a2–a1) : a1 = (an+1–a1) : (a1 + a2 + ...+ an)
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Proof. Our hypothesis and claim are stated above.2 Notice that

a1
a2

=
a2
a3
⇒ a3

a2
=

a2
a1

In fact, for 2 ≤ i ≤ n we have
ai+1

ai
=

ai
ai−1

Applying [7.11], we also have

ai+1 − ai
ai − ai−1

=
ai

ai−1
⇒ ai+1 − ai

ai
=

ai − ai−1

ai−1

This gives us
an+1 − an

an
=

an − an−1

an−1
= . . . =

a2 − a1
a1

By a finite number of applications of [7.12], we obtain

an+1 − an + an − an−1 + . . .+ a2 − a1
an + an−1 + . . .+ a2 + a1

=
a2 − a1

a1

This simplifies to
an+1 − a1

an + an−1 + . . .+ a2 + a1
=

a2 − a1
a1

which completes the proof.

Example. 9.35.1. Consider the continued proportion 2, 4, 8, 16, 32. Since there

are five terms, n = 4, and [9.35] states that

4− 2

2
=

32− 2

2 + 4 + 8 + 16
⇒ 1

1
=

30

30

Corollary. 9.35.1 The ratio above can be written in another form. Let an+1 = arn,

a1 = a, a2 = ar, and an + an−1 + . . .+ a2 + a1 = Sn, and we obtain

arn − a

Sn
=

ar − a

a

or

Sn =
a(rn − 1)

r − 1

Proposition 9.36. PERFECT NUMBERS.

2This proof is based on David E. Joyce’s summary of Euclid’s proof:

http://aleph0.larku.edu/~djoye/java/elements/bookIX/propIX35.html

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX35.html
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If 2k−1 is a prime number, then 2k−1(2k−1) is a perfect number. Every even perfect

number has this form.

Proof. Suppose3 that p = 2k − 1 is a prime number, and let

n = 2k−1 · p
= 2k−1(2k − 1)

We claim that n is a perfect number and that every even perfect number has this

form.

To prove our claim, we use the sigma function to show that σ(n) = 2n [Def. 9.1].

Since the sigma function is multiplicative, and since σ(p) = p+1 = 2k, we find that

σ(n) = σ(2k−1 · p)
= σ(2k−1) · σ(p)

=

(

2k − 1

2− 1

)

· 2k

= (2k − 1) · 2k

= 2n

Hence, n is a perfect number.

Now suppose that n is an even perfect number where n = 2k−1m such that m is an

odd integer and k ≥ 2. We wish to show that m = 2k − 1.

Notice that

σ(n) = σ(2k−1m)

= σ(2k−1) · σ(m)

= (2k − 1) · σ(m)

Since n is perfect,

σ(n) = 2n

= 2km

Hence

2km = (2k − 1) · σ(m)

Since σ(m) is a natural number,

3This proof is based on Chris K. Caldwell’s proof:

http://primes.utm.edu/notes/proofs/EvenPerfet.html

http://primes.utm.edu/notes/proofs/EvenPerfect.html
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2km

2k − 1

is also a natural number. Since 2k − 1 is a prime number greater than 2, we must

have that 2k − 1 is a factor of m. Let m = (2k − 1)q. Then

2k(2k − 1)q = (2k − 1) · σ(m)

2kq = σ(m)

Recall that the sigma function adds all positive factors of a natural number. Then

since m and q are both positive factors of m, it follows that σ(m) ≥ m+ q. But

2kq = σ(m)

≥ m+ q

= (2k − 1)q + q

= 2kq − q + q

= 2kq

Hence, σ(m) = m + q. Since m is one of its own divisors, m is prime. Since m is

prime, σ(m) = m+ 1; or, q = 1. Since

σ(m) = 2kq = 2k = m+ 1

we find that m = 2k − 1.

Thus, n = 2k−1m = 2k−1(2k − 1), which completes the proof.

Chapter 9 exercises.

1. Provide three examples of [Cor. 9.2.1].

2. Finish the proof of [9.10].

3. Provide the details to the proof of [9.11].

4. Prove [9.19].

5. Prove [Cor. 9.28.1].

6. Prove [Cor. 9.29.1].

7. Prove [Cor. 9.31.1].

8. Rewrite [9.35] using the result from [Cor. 9.35.1].



Chapter 10

Irrational Numbers

In this chapter, all variables a, b, c, etc., are assumed to be positive real numbers

unless otherwise stated.

10.1 Definitions

0. The Whole Numbers are the set of numbers containing 0, 1, 2, 3, ... . The Natural

Numbers (the positive integers) are a subset of the Whole numbers, containing 1, 2,

3, ... . Rational Numbers are the set of numbers that can be written p
q where both

p and q are whole numbers where q 6= 0. (Notice that the rational numbers include

the whole numbers.) The Real Numbers consist of the rational numbers and the

irrational numbers. We do not require the use of negative numbers.

1. That a
b is a rational number is a necessary and sufficient condition for the exis-

tence of natural numbers m and n and some real number c such that a = mc and

b = nc.1 Numbers which cannot be expressed in the form a
b are irrational numbers.

If ab is rational, then
√
ab is rationally expressible. (Notice that

√
ab may either

be rational or irrational.) In the case of a = b, we have: if a2 is rational, then a is

rationally expressible.

2. x1 and x2 are said to be commensurable if x1 = a
b · c and x2 = d

e · c where a, b, d, e

are natural numbers and c is either an irrational number or 1. Otherwise a and b

are incommensurable.

3. A medial number x = p · k1/4 is a number where p is rationally expressible, x4 is

rational, and x, x2 are irrational. They proven to exist in [10.21].

• 21/4 is a medial number since
(

21/4
)4

= 2 is rational, while 21/4 and
√
2 are

irrational.

1
https://en.wikipedia.org/wiki/Commensurability_(mathematis)

381

https://en.wikipedia.org/wiki/Commensurability_(mathematics)
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•
√

2 ·
√
3 is a medial number since it is irrational, 2 ·

√
3 is irrational, and 12 is

rational.

• 3 · 71/4 is a medial number since it is irrational, 9 ·
√
7 is irrational, and 567 is

rational.

If x is a medial number, then x2 = p2 ·
√
k is a second medial number.

• Since 31/4 is a medial number,
√
3 is a second medial number.

• Since
√

3
√
7 is a medial number, 3

√
7 is a second medial number.

• Since 5 · 31/4 is a medial number, 25·
√
3 is a second medial number.

4. A first bimedial number a + b is defined where a and b are medial, a and b are

incommensurable, a2 and b2 are commensurable, and ab is rational.

An alternate definition of a first bimedial number is a + b where a = p · k1/4 and

b = p ·k3/4 where p is rationally expressible and
4
√
k and

√
k are irrational numbers.

The terms of a first bimedial number are a and b.

5. A second bimedial number a+ b is defined where a and b are medial, a and b are

incommensurable, a2 and b2 are commensurable, and ab is a second medial number.

An alternate definition of a second bimedial number is a+ b where a = p · k1/4 and

b = p · λ1/2 · k−1/4 where p is rationally expressible and both
√
k,
√
λ are rationally

expressible.

The terms of a second bimedial number are a and b.

6. Let a > b be rationally expressible such that a and b are incommensurable but

a2 and b2 are commensurable. We define n = a+ b as a binomial number.

Remark. Binomial numbers, like apotome numbers, are roots of the equation

x4 − 2 · (1 + k) · p2 · x3 + (1 − k)2 · p4 = 0

7. We define a major number n = a+ b where a and b are incommensurable, a2 and

b2 are incommensurable, a2 + b2 is rational, and ab is a second medial number.

Alternatively, we may define a major number n = a + b where p is rationally ex-

pressible, k is a rational number such that
√
k is irrational, and

a =
p

2

√

1 +
k√

1 + k2

b =
p

2

√

1− k√
1 + k2
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[10.39] proves that a major number is irrational.

8. We define a+ b as the root of the sum of two second medial numbers (or a RSSM

number) when a and b are incommensurable, a2 and b2 are incommensurable, a2+b2

and ab are each a second medial numbers, and ab is incommensurable with a2 + b2.

Alternatively, we may define a+ b as

a =
pλ1/4

√
2
·
√

1 +
k√

1 + k2

b =
pλ1/4

√
2
·
√

1− k√
1 + k2

where p is rationally expressible, where
√
k is irrational but k is rational, and where

4
√
λ and

√
λ are irrational but λ is rational.

[10.41] proves that the root of a RSSM number is irrational.

9. Let a and b exist where a2 and b2 are incommensurable, a2+b2 is a second medial

number, and ab is rational. Then n = a+ b is defined as the root of a rational plus a

second medial number (or a RPSM number).

Alternatively, we may define a+ b as

a =
p√
2
·

√

k +
√
1 + k2

1 + k2

b =
p√
2
·

√

−k +
√
1 + k2

1 + k2

[10.40] proves that the root of a RPSM number is irrational.
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10.2 Book X, Propositions 1-47

Proposition 10.1. THE ARCHIMEDEAN PROPERTY.

Let x and y be real numbers. If 0 < x < y, then there exists some natural number

n such that n · x > y.

Proof. Our hypothesis and claim are stated above. Suppose instead that there does

not exist a natural number n such that n · x > y; equivalently, suppose that for any

natural number n we obtain n ≤ y
x .

Since y
x < ∞, it follows that there exists a largest natural number n′ such that

n ≤ n′; otherwise, there would exist some n′ + k such that n′ + k > y. But by [9.20],

there exists a prime number p such that n′ < p. Since p is a natural number, we

obtain a contradiction.

Hence, no largest n′ exists, contradicting our hypothesis that n ≤ y
x for all n. Thus,

there exists some natural number n such that n · x > y.

Remark. Although this property is named for Archimedes, Archimedes attributed

the property to Eudoxus of Cnidus.

Proposition 10.2. THE MODIFIED EUCLIDEAN ALGORITHM TO DETERMINE

IF TWO NUMBERS ARE INCOMMENSURABLE.

Let x1 > x2 be positive real numbers. There exists some positive integer n such

that

x1 − n · x2 > 0

and

x1 − (n+ 1) · x2 < 0

We begin the algorithm with x1 − n1 · x2 = x3 where n1 is chosen as above and

continue:

x1 − n1 · x2 = x3

x2 − n2 · x3 = x4

...

xk − nk · xk+1 = xk+2

...

If xi+1 does not divide xi for i = 3, 4, ... no matter how many times the algorithm is

repeated, then x1 and x2 are incommensurable.
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Proof. Let x1 > x2 be real numbers we input into Euclid’s Algorithm, and consider

the contrapositive statement of the above: if x1 and x2 are commensurable, then

after k <∞ repetitions of the algorithm, xk+2 and xk+1 will share a common factor.

We shall use a proof by contradiction on the contrapositive argument: suppose x1

and x2 are commensurable and that xi+1 does not divide xi for i = 3, 4, ... no matter

how many times the algorithm is repeated.

Since x1 and x2 are commensurable, then either x1 and x2 are natural numbers or

they are not. If they are, we continue.

By [7.1], x1 > x2 > x3 > ... > xk+2 > ... where each xi is a natural number. If

set S is the set of all xi, by [Lemma 7.30.0], S contains a minimum element. This

contradicts our hypothesis that the algorithm may be repeated indefinitely.

If x1 and x2 are not natural numbers, then x1 = a
b · c and x2 = d

e · c where a, b, d, e

are natural numbers and c is either an irrational number or 1. Let f = the least

common multiple of b and e; g = the multiplicative inverse of c; and let x1 = x1 · fg,

x2 = x2 · fg. It follows that x1, x2 are natural numbers. Following the argument

above, we reach the same contradiction.

This completes the proof.

Remark. See also [7.1].

Example. [10.2.1] Let x1 = π and x2 = 3, and so x1 > x2. If xi+1 does not divide

xi for i = 3, 4, ... no matter how many times the algorithm is repeated, by [10.2], π

and 3 are incommensurable (which they are).

Example. [10.2.2] Let x1 = 5
7 · 21/3 and x2 = 3

5 · 21/3. Then x1 > x2 and x1, x2 are

commensurable. Using the proof of [10.2], x1 = 50 and x2 = 42, and after k < ∞
repetitions of the Euclidean Algorithm, xk+2 and xk+1 will share a common factor.

(In fact, k = 2. Details are left as an exercise to the reader.)

Proposition 10.3. THE GREATEST COMMON FACTOR OF TWO COMMEN-

SURABLE NUMBERS.

Let x1 and x2 be commensurable real numbers. There exists a greatest common

factor of x1 and x2 which is greater than 1.

Proof. The proof follows that of [7.2], mutatis mutandis.

Corollary. 10.3.1. If k divides both x1 and x2, then k also divides the GCF of x1,

x2.
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Proposition 10.4. THE GREATEST COMMON FACTOR OF THREE COMMEN-

SURABLE NUMBERS.

Let x1, x2, and x3 be commensurable real numbers. There exists a greatest common

factor of x1, x2, and x3 which is greater than 1.

Proof. The proof follows that of [7.3], mutatis mutandis.

Corollary. 10.4.1. If k divides both x1, x2, and x3, then k also divides the GCF of

x1, x2, and x3.

Proposition 10.5. COMMENSURABILITY & RATIONAL NUMBERS I.

If x1 and x2 are commensurable, then x1

x2

= q where q is a rational number.

Proof. Suppose x1 and x2 are commensurable. It follows that x1 = a
b ·c and x2 = d

e ·c
where a, b, d, e are natural numbers and c is either an irrational number or 1. Then

x1

x2
=

a

b
· e
d
· c
c
=

ae

bd

Let q = ae
bd , and the proof is complete.

Proposition 10.6. COMMENSURABILITY & RATIONAL NUMBERS II.

If x1

x2

= q where q is a rational number, then x1 and x2 are commensurable.

Proof. Suppose x1

x2
= q where q is a rational number. Then x1 = x2 · q. If x2 = d

e · c ,

then x1 = q · de · c. If q · de = a
b , then x1 = a

b · c, which completes the proof.

Corollary. [10.6.1] By [10.5] and [10.6], x1 and x2 are commensurable if and only

if x1

x2
= q where q is rational.

Proposition 10.7. INCOMMENSURABILITY & IRRATIONAL NUMBERS I.

If x1 and x2 are incommensurable, then x1

x2

6= q for any rational q.

Proof. This is the contrapositive statement of [10.6]
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Proposition 10.8. INCOMMENSURABILITY & IRRATIONAL NUMBERS II.

If x1

x2
6= q for any rational q, then x1 and x2 are incommensurable.

Proof. This is the contrapositive statement of [10.5]

Proposition 10.9. COMMENSURABILITY OF SQUARES.

1) a and b are commensurable iff there exists natural numbers c and d such that
(

a
b

)2
=
(

c
d

)2
.

2) a and b are incommensurable iff there does not exist natural numbers c and d

such that such that
(

a
b

)2
=
(

c
d

)2
.

Proof. 1) Suppose a and b are commensurable. By [Cor. 10.6.1], a
b = q where q is

rational. If q = c
d for natural numbers c, d, then

(

a
b

)2
=
(

c
d

)2
.

Suppose
(

a
b

)2
=
(

c
d

)2
. Then a

b = q where q = c
d . By [Cor. 10.6.1], a and b are

commensurable.

2) This statement is the contrapositive of statement 1, which completes the proof.

Remark. If a is commensurable with b, then a2 is commensurable with b2. How-

ever, if a2 is commensurable with b2, it does not necessarily follow that a and b are

commensurable (e.g., 4 is commensurable with 2, but 2 is incommensurable with√
2).

Corollary. 10.9.1. Two numbers have a ratio which a square number has to a

square number iff they are similar plane numbers. (And numbers which are not

similar plane numbers do not have a ratio which a square number has to a square

number.)

Lemma. 10.10.0 If a
b and c

d are rational, then ac
bd is also rational.

Proof. Since a
b and c

d are rational, a, b, c, d are natural numbers. It follows that ab

and bd are also natural numbers, completing the proof.

Lemma. 10.10.1 If a
b is rational and c

d is irrational, then ac
bd is irrational.
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Proof. Suppose a
b is rational, c

d is irrational, and ac
bd is rational. Since c

d is irrational,

either c or d is irrational. Wlog, let c be irrational. If ac
bd is rational, then ac

bd = x
y

where x and y are natural numbers. Since c = xbd
ay where a, b, d, x, y are natural

numbers, c is rational, a contradiction. Thus, ac
bd is irrational.

Proposition 10.10. CONSTRUCTION OF INCOMMENSURABLE NUMBERS.

We wish to find real numbers a, b, c such that a, b are incommensurable, a2, b2 are

commensurable, and both a, c and a2, c2 are incommensurable.

Proof. Let

a2

b2
=

m

n

where m,n are natural numbers but
√
m,
√
n are not natural numbers. By [Cor.

10.6.1], a and b are incommensurable while a2 and b2 are commensurable.

Choose real number x such that x and x2 are irrational. If n is a natural number, by

[Lemma 10.10.1], x
n is irrational. By [Cor. 10.6.1], x and n are incommensurable.

Suppose
a

c
=

x

n

By [10.11], a and c are incommensurable. Since x2 is irrational, a2 and c2 are

incommensurable by the same reasoning. This completes the proof.

Proposition 10.11. COMMENSURABILITY OF FRACTIONS.

Given a
b = x

y , a and b are commensurable if and only if x and y are commensurable.

Proof. Our hypothesis and claim are stated above. Suppose that a and b are com-

mensurable. Notice that a = bq where q is rational. Since a
b = x

y , x = yq. Then
x
y = q, and so x and y are commensurable.

If we assume that x and y are commensurable, the proof is similar.

Remark. The contrapositive statement of [10.11]: given a
b = x

y , a and b are incom-

mensurable if and only if x and y are incommensurable.

Proposition 10.12. TRANSITIVITY OF COMMENSURABLE NUMBERS.

If a and b are commensurable and b and c are commensurable, then a and c are

commensurable.
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Proof. Our hypothesis and claim are stated above. Notice that a = bq and b = cr

where q, r are rational. Then a = rq · c and a
c = rq. By [Lemma 10.10.0], a and c are

commensurable.

Proposition 10.13. COMMENSURABLE & INCOMMENSURABLE NUMBERS.

If a is commensurable with b but b is incommensurable with c, then a is incommen-

surable with c.

Proof. Our hypothesis and claim are stated above. Notice that a = bq where q is

rational and that b = cx where x is irrational. Then a = qx · c and a
c = qx. By

[Lemma 10.10.1], the RHS is irrational, and so a and c are incommensurable.

Proposition 10.14. COMMENSURABILITY OF SQUARES.

Let a
b = c

d . If
√
a2 − b2 is commensurable with a, then

√
c2 − d2 is commensurable

with c.

Proof. Let a
b = c

d . It follows that

a2

b2
=

c2

d2

By [5.17],

a2 − b2

b2
=

c2 − d2

d2

And since
a2

b2
=

c2

d2
⇒ b2

a2
=

d2

c2

we have

a2 − b2

b2
· b

2

a2
=

c2 − d2

d2
· d

2

c2

a2 − b2

a2
=

c2 − d2

c2

√
a2 − b2

a
=

√
c2 − d2

c

If
√
a2 − b2 is commensurable with a, by [10.11]

√
c2 − d2 is commensurable with

c.
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Corollary. 10.14.1. Suppose x > y. Then x2 > y2, and there exists a real number z

such that x2 − y2 = z2, or x2 = y2 + z2.

Lemma. 10.15.0 If a and b are rational, then a+ b is rational.

Proof. Suppose a and b are rational. Then a = c
d and b = e

f where c, d, e, f are

natural number. It follows that a+ b = cf+ed
df , and so a+ b is rational.

Proposition 10.15. COMMENSURABILITY OF THE SUM OF COMMENSU-

RABLE NUMBERS.

(1) If x1 and x2 are commensurable, then x1 ± x2 is commensurable with x1 and

with x2.

(2) If x1 ± x2 is commensurable with either x1 or x2, then x1 and x2 are commensu-

rable.

Proof. (1) Since x1 and x2 are commensurable, x1 = x2 · q where q is rational. Then

x1 + x2 = x2 · (1 + q), and

x1 + x2

x2
= 1 + q

x1 + x2

x1
=

q + 1

q

Since each RHS is rational, x1+x2 is commensurable with both x1 and x2. A similar

proof follows for x1 − x2.

(2) Wlog, suppose x1 + x2 = qx1 where q is rational. Then x2 = x1 · (q − 1), and so
x2

x1

= q− 1 is rational. Hence, x1 and x2 are commensurable. A similar proof follows

for x1 − x2.

Remark. [10.15] cannot be rewritten as an “if and only if” statement without losing

part of the result.

Proposition 10.16. INCOMMENSURABILITY OF THE SUM OF INCOMMEN-

SURABLE MAGNITUDES.

(1) If x1 and x2 are incommensurable, then x1 ± x2 is incommensurable with both

x1 and x2.

(2) If a ± b is incommensurable with either x1 or x2, then x1 is incommensurable

with x2.
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Proof. Statement (1) is the contrapositive statement of [10.15] (2).

Statement (2) is the contrapositive statement of [10.15] (1).

Proposition 10.17. CONDITION FOR COMMENSURABILITY OF ROOTS OF

THE QUADRATIC EQUATION.2

Let x2 = bx− a2

4 where a < b. The following three statements are equivalent:

1. x is commensurable with b

2. b is commensurable with
√
b2 − a2

3. b is commensurable with h where b2 = a2 + h2

Proof. Notice that

x2 = bx− a2

4

x2 − bx = −a2

4

x2 − bx+
b2

4
=

b2 − a2

4

(

x− b

2

)2

=
b2 − a2

4

x− b

2
= ±

√
b2 − a2

2

x =
b±
√
b2 − a2

2

x

b
=

b±
√
b2 − a2

2b

(where we are only interested in positive values of x). If x is commensurable with

b, then by [10.11], b±
√
b2 − a2 is commensurable with 2b. That is,

b±
√
b2 − a2

2b
= q

where q is rational. But this is equivalent to

√
b2 − a2

b
= 2q ∓ 1

2The formulation of this proposition and the outline of its proof comes from David E. Joyce’s edition

of Euclid’s Elements: http://aleph0.larku.edu/~djoye/java/elements/bookX/propX17.html.

http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX17.html
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By [Lemma 10.15.0], 2q∓1 is a rational number, and so
√
b2 − a2 is commensurable

with b.

Suppose
√
b2 − a2 is commensurable with b and let h =

√
b2 − a2. Then h is com-

mensurable with b where b2 = a2 + h2.

Finally, suppose h is commensurable with b where b2 = a2 + h2. Since h =
√
b2 − a2,

we find that
√
b2 − a2 is also commensurable with 2b, or

√
b2−a2

2b = r where r is a

rational number.

By the above,

x

b
=

b±
√
b2 − a2

2b
=

1

2
± r

By [Lemma 10.15.0], 1
2 ± r is a rational number, and so x and b are commensurable.

This completes the proof.

Proposition 10.18. CONDITION FOR INCOMMENSURABILITY OF ROOTS

OF THE QUADRATIC EQUATION.

Let x2 = bx− a2

4 where a < b. Then the following three statements are equivalent:

1. x is incommensurable with b

2. b is incommensurable with
√
b2 − a2

3. b is incommensurable with h where b2 = a2 + h2

Proof. This is the contrapositive statement to [10.17] and so follows immediately.

Proposition 10.19. THE PRODUCT OF COMMENSURABLE RATIONALLY EX-

PRESSIBLE NUMBERS.

If x1 and x2 are rationally expressible and commensurable, then x1 · x2 is rational.

Proof. Our hypothesis and claim are stated above. Since x1 and x2 are commensu-

rable, x1 = q · x2 where q is rational. Then

x1 · x2 = q · x2
2

Since x2 is rationally expressible, by [Lemma 10.10.0] x1 · x2 is rational.
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Proposition 10.20. THE QUOTIENT OF COMMENSURABLE RATIONALLY

EXPRESSIBLE NUMBERS.

If x1 is rationally expressible and x1 ·x2 is rational, then x2 is rationally expressible

and commensurable with x1.

Proof. Our hypothesis and claim are stated above. Notice that x1 · x2 = q where q

is rational. Hence, x1 = q
x2

. Since x1 is rationally expressible and q is rational, x2

is rationally expressible.

Also notice that
x1

x2
=

q

x2
2

Since x2 is rationally expressible, the RHS is rational. Thus, x1 and x2 are com-

mensurable. This completes the proof.

Lemma. 10.21.0 The square root of an irrational number is irrational.

Proof. Suppose q is irrational and
√
q is rational. Then there exists natural num-

bers a and b such that
√
q =

a

b

But then a2

b2 = q, and q is rational, a contradiction. Therefore
√
q is irrational.

Proposition 10.21. EXISTENCE OF MEDIAL NUMBERS.

Suppose p and p ·
√
k are rationally expressible and incommensurable but p2 and

p2k are commensurable. Then p · k1/4 is a medial number and p2 ·
√
k is a second

medial number.

Proof. Our hypothesis is stated above. Notice that

p

a
=

a

p ·
√
k

a2 = p2 ·
√
k

a = p · k1/4

We claim that p · k1/4 is a medial number and p2 ·
√
k is a second medial number.

Since p and p ·
√
k are incommensurable and p

p·
√
k
= p2

p2·
√
k

, by [10.11] p2 and p2 ·
√
k

are also incommensurable. Since p2 is rational, it follows that p2 ·
√
k is irrational;

by [Lemma 10.21.0], p · k1/4 is also irrational.
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Since p and p ·
√
k are rationally expressible, p2 and p2k are rational. By [Lemma

10.10.0], p4k is also rational. By [Def. 10.3], p · k1/4 is a medial number.

Also by [Def. 10.3],
(

p · k1/4
)2

= p2 ·
√
k is a second medial number, which completes

the proof.

Proposition 10.22. FACTORS OF THE SQUARE OF A MEDIAL NUMBER.

Let a be a medial number and b be rationally expressible. Then c = a2

b is rationally

expressible and incommensurable to b.

Proof. Suppose a = p ·k1/4 is a medial number and b is rationally expressible. Then

c2 =
a4

b2
=

p4k

b2

Since c2 is rational, c is rationally expressible. Since

c

b
=

p2 ·
√
k

b2

where p2

b2 is rational [Def. 10.3] and
√
k is irrational by hypothesis, by applying

[Lemma 10.10.1], we find that b and c are incommensurable.

Proposition 10.23. A NUMBER COMMENSURABLE WITH A MEDIAL NUM-

BER IS MEDIAL.

If a and b are commensurable where b is a medial number, then a is a medial num-

ber.

Proof. Suppose a and b = p · k1/4 are commensurable. Then

a

p · k1/4 = q

where q is rational. It follows that a = q · p · k1/4. Since q is rational and p is

rationally expressible, it follows that qp is rationally expressible. By [Def. 10.3], a

is a medial number.

Corollary. 10.23.1 If a and b are commensurable where b is a second medial num-

ber, then a is a second medial number.
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Proof. Suppose a and b = p2 ·
√
k are commensurable. Then

a

p2 ·
√
k
= q

where q is rational. It follows that a = q · p2 ·
√
k. Since q and p2 are rational, by

[Lemma 10.10.0], qp2 is also rational. By [Def. 10.3], a is a second medial number.

Proposition 10.24. PRODUCT OF COMMENSURABLE MEDIAL NUMBERS I.

If a and b are medial numbers where a is commensurable with b, then ab is a second

medial number.

Proof. Our hypothesis and claim are stated above. Notice that a = bq where q is

rational. Then ab = q · b2. Since b is medial, b = p · k1/4 where p is rationally

expressible and where k1/4,
√
k are irrational but k is rational. Then ab = qp2 ·

√
k.

Since q, p2 are rational, qp2 are rational [Lemma 10.10.0]. By [Def. 10.3], ab is a

second medial number.

Proposition 10.25. PRODUCT OF COMMENSURABLE MEDIAL NUMBERS II.

If a and b are medial numbers where a2 and b2 are commensurable but a and b are

incommensurable, then (ab)2 is rational.

Proof. Let a = pk1/4 and b = pk1/4
√
m where

√
m is irrational but m is a rational.

Then a, b are medial such that a2, b2 are commensurable but a, b are incommensu-

rable. Notice that (ab)
2
= p4km is rational by [Lemma 10.10.0]. This completes the

proof.

Proposition 10.26. DIFFERENCES OF MEDIAL NUMBERS.

If a and b are second medial numbers where a > b, then a− b is irrational.

Proof. Suppose a = p2 ·
√
k and b = q2 · √m are second medial numbers such that

a > b. We claim that a− b is irrational.3

3The formulation of this proposition and the outline of its proof comes from David E. Joyce’s edition

of Euclid’s Elements:

https://maths.larku.edu/~djoye/java/elements/bookX/propX26.html

https://mathcs.clarku.edu/~djoyce/java/elements/bookX/propX26.html
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If a− b is rational, then (a− b)
2

is also rational. Furthermore,

(a− b)2 = a2 − 2ab+ b2

= p4k − 2p2q2 ·
√
km+ q4m

= r

where r is rational. Or,
1

2
·
(

p4k + q4m− r
)

= ab

Since the LHS is rational, ab is rational; that is, ab = t for some rational t. It follows

that a
b = t

b2 . Since b is a second medial number, b2 is rational, and so a
b is rational.

Notice that (a− b) = b ·
(

a
b − 1

)

. Then a− b is rational while b ·
(

a
b − 1

)

is irrational

by [Lemma 10.10.1], a contradiction. Thus, a− b is irrational.

Lemma. 10.27.0 If x is irrational, 1
x is irrational.

Proof. Suppose that x is irrational but 1
x is rational. Then 1

x = r
s where r, s are

natural numbers. It follows that x = s
r , and so x is rational, a contradiction. Thus,

1
x is irrational.

Proposition 10.27. COMPONENTS OF A FIRST BIMEDIAL NUMBER.

We wish to construct medial numbers a and b such that a and b are incommensu-

rable, a2 and b2 are commensurable, and ab is rational. ([Def. 10.4 defines a+ b as

a first bimedial number.)

Proof. Using [10.21], construct medial number a = p · k1/4. Notice that

p

p ·
√
k

=
p · k1/4

b

b = p · k3/4

We claim that a and b are the required numbers. Notice that b2 = p2k ·
√
k. Since p2k

is rational and
√
k is irrational by hypothesis, b2 is irrational by [Lemma 10.10.1].

By [Lemma 10.21.0], b is irrational. Since b4 = p4 · k3 is rational, b is medial.

Also notice that a
b = 1√

k
. Since

√
k is irrational by hypothesis, applying [Lemma

10.27.0], we find that a and b are incommensurable. Since k is rational by hypoth-

esis, a2 and b2 are commensurable.

Also notice that ab = p2k. Since p is rationally expressible [10.21], ab is rational,

which completes the construction.



CHAPTER 10. IRRATIONAL NUMBERS 397

Lemma. 10.28.0 Let q be a rational number.
√
q is rational if and only if q = r2

s2 for

natural numbers r, s.

Proof. Suppose
√
q is rational. Then

√
q = r

s for natural numbers r, s and so q = r2

s2 .

Suppose q = r2

s2 . Then
√
q = r

s , and so
√
q is rational.

Remark. In the proof of [Lemma 10.28.0], let s = 1. Then for all natural numbers

n:
√
n is a natural number if and only of n = k2 for some natural number k.

Proposition 10.28. COMPONENTS OF A SECOND BIMEDIAL NUMBER.

We wish to find medial numbers a and b such that a and b are incommensurable, a2

and b2 are commensurable, and ab is a second medial number. ([Def. 10.5 defines

a+ b as a second bimedial number.)

Proof. Suppose p, p·
√
k, and p·√m are rationally expressible and incommensurable

such that k
m 6= r2

s2 for any natural numbers r, s. Let

p

a
=

a

p ·
√
k

a = p · k1/4

and

p ·
√
k

p · √m =
p · k1/4

b

b =
p · √m
k1/4

We claim that a and b are the required numbers. By [10.21], a, b are medial.

Notice that
a2

b2
=

p2k

p2m

and so a2, b2 are commensurable. Since k
m 6= r2

s2 for any natural numbers r, s, by

[Lemma 10.28.0],
√

k
m is irrational, and so a, b are incommensurable.

Finally, notice that ab = p2 · √m, and so ab is a second medial number. This com-

pletes the construction.
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Lemma. 10.29.0 We wish to find two square numbers such that their sum is square.

Take similar planes numbers mnp2 and mnq2 which are either both even or both odd

(so their difference is divisible by 2). We claim that

(mnpq)2 +

(

mnp2 −mnq2

2

)2

=

(

mnp2 +mnq2

2

)2

so that the sum and the difference of mnpq and 1
2 (mnp2 − mnq2) are each square

numbers.

Corollary. The above Lemma provides a way to generate Pythagorean Triples: if n

and m are natural numbers and m < n, then Pythagorean Triples follow the ratio

mn :
n2 −m2

2
:
n2 +m2

2

Example. If n = 3 and m = 1, we have the triple 3 : 4 : 5. If n = 30 and m = 10, we

have the triple 300 : 400 : 500 (a multiple of the triple 3 : 4 : 5).

Lemma. 10.29.1 We wish to find two square numbers such that their sum is not

square. (Recall that [Lemma 10.29.0] states that there exist natural numbers a, b, c

such that a2 + b2 = c2 and how to construct them.) Suppose we have

mp2 ·mq2 +

(

mp2 −mq2

2

)2

=

(

mp2 +mq2

2

)2

where mp2 and mpq2 are both odd or even. Using a proof by contradiction, it can be

shown that

mp2 ·mq2 +

(

mp2 −mq2

2
− 1

)2

is not a square number.

Consequently, if mp2 ·mq2 >
(

mp2−mq2

2 − 1
)2

, then mp2 ·mq2 −
(

mp2−mq2

2 − 1
)2

is a

positive, non-square number.

Proposition 10.29. CONSTRUCTION I.

We wish to construct rationally expressible numbers a and b such that a and b are

incommensurable, a2 and b2 are commensurable, and a2 = b2 + f2 where a and f

are commensurable.
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Proof. Let p be rationally expressible and choose natural numbers m > n such that

m2 − n2 is not a square number. Let

m2

m2 − n2
=

p2

b2

b2 =
p2
(

m2 − n2
)

m2

b = p ·
√

1− k2

where k = n
m . We claim that a = p and b = p ·

√
1− k2 are the required numbers.

Notice that b
a =
√
1− k2. Since 1− k2 is not a square number, by applying [Lemma

10.28.0] we find that a, b are incommensurable. Since 1 − k2 is rational, a2, b2 are

commensurable.

Let f =
√
a2 − b2. Then a2 = b2 + f2. Notice that

a2 − b2 = p2 − p2 ·
(

1− k2
)

= p2 ˙(1− (1− k2))

= p2k2

and so f = pk. Then
a

f
=

p

pk
=

1

k

and so a and f are commensurable.

Proposition 10.30. CONSTRUCTION II.

We wish to construct rationally expressible numbers a and b such that a and b are

incommensurable, a2 and b2 are commensurable, and a2 = b2 + f2 where a and f

are incommensurable.

Proof. Let p be rationally expressible and choose natural numbers m > n such that

m2 + n2 is not a square number. Let

m2 + n2

m2
=

p2

b2

b2 =
p2m2

m2 + n2

b =
p√

1 + k2

where k = n
m . We claim that a = p and b = p√

1+k2
are the required numbers.
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Since a
b =
√
1 + k2 and 1 + k2 is not a square number, by applying [Lemma 10.28.0]

we find that a, b are incommensurable. Since 1 + k2 is rational, a2, b2 are commen-

surable.

Let f =
√
a2 − b2. Then a2 = b2 + f2. Notice that

a2 − b2 = p2 − p2

1 + k2

=
p2 + p2k2 − p2

1 + k2

=
p2k2

1 + k2

Then f = pk√
1+k2

. Notice that

a

f
=

√
1 + k2

k

Applying [Lemma 10.10.1], we find that a, f are incommensurable.

Proposition 10.31. CONSTRUCTION III.

Let c be a medial number. We wish to find medial number d such that c and d are

incommensurable, c2 and d2 are commensurable, cd is rational, and c2 = d2 + t2

such that c and t are commensurable.

Proof. Using [10.29], construct rationally expressible numbers a and b = a ·
√
1− k2

where 0 < k < 1 is rational and 1− k2 is rational but not a square number. Let

a

c
=

c

a ·
√
1− k2

c2 = a2 ·
√

1− k2

c = a ·
(

1− k2
)1/4

and

a ·
(

1− k2
)1/4

a ·
√
1− k2

=
a ·
√
1− k2

d

d =
a2 ·

(

1− k2
)

a · (1− k2)1/4

d = a ·
(

1− k2
)3/4

We claim that c and d are the required medial numbers.
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Since 1− k2 is not a square number, by [Lemma 10.28.0],
√
1− k2 is irrational. By

[Lemma 10.21.0],
(

1− k2
)1/4

is also irrational. Since a is rationally expressible, by

[10.21], c = a ·
(

1− k2
)1/4

is a medial number. Similarly, d is a medial number.

Notice that d
c =

√
1− k2. By [Lemma 10.28.0], c, d are incommensurable. Since

1− k2 is rational, c2, d2 are commensurable.

Notice that cd = a2 ·
(

1− k2
)

. By [Lemma 10.10.0], cd is rational.

Let t =
√
c2 − d2. Then c2 = d2 + t2. Notice that

c2 − d2 = a2 ·
(

1− k2
)1/2 − a2 ·

(

1− k2
)3/2

= a2 ·
[

(

1− k2
)1/2 −

(

1− k2
)3/2

]

= a2 ·
[(

(

1− k2
)1/2

)

(

1−
(

1− k2
))

]

= a2k2 ·
√

1− k2

and so t = ak ·
(

1− k2
)1/4

. Finally,

c

t
=

a ·
(

1− k2
)1/4

ak · (1− k2)
1/4

=
1

k

Since k is rational, c and t are commensurable. This completes the construction.

Corollary. [10.31.1] Let c be a medial number. We wish to find medial number d

such that c and d are incommensurable, c2 and d2 are commensurable, cd is rational,

and c2 = d2 + t2 such that c and t are incommensurable.

Proof. Using [10.30], construct rationally expressible numbers a and b = a√
1+k2

from [10.30] where 0 < k < 1 is rational where 1 + k2 is rational but not a square

number. Let

a

c
=

c

a
·
√

1 + k2

c2 =
a2√
1 + k2

c =
a

(1 + k2)
1/4
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and

a

(1 + k2)
1/4
·
√
1 + k2

a
=

a

d ·
√
1 + k2

(

1 + k2
)1/4

=
a

d ·
√
1 + k2

d =
a

(1 + k2)
3/4

We claim that c and d are the required numbers. We leave as an exercise to the

student to show that c, d are medial numbers. Notice that

c

d
=

a

(1 + k2)
1/4
·
(

1 + k2
)3/4

a

=
√

1 + k2

By the proof of [10.30], c, d are incommensurable; also, c2, d2 are commensurable.

Also notice that cd = a2

1+k2 is rational.

Let t =
√
c2 − d2; then c2 = d2 + t2. First, notice that

c2 − d2 =
a2

(1 + k2)
1/2
− a2

(1 + k2)
3/2

=
a2 ·

(

1 + k2
)

− a2

(1 + k2)
3/2

= a2 ·
(

(

1 + k2
)

− 1

(1 + k2)
3/2

)

=
a2k2

(1 + k2)
3/2

Then t = ak
(1+k2)3/4

. Finally,

c

t
=

a

(1 + k2)
1/4
·
(

1 + k2
)3/4

ak

=
1

k
·
√

1 + k2

Since
√
1 + k2 is irrational by the above,

√
1+k2

k is irrational [Lemma 10.10.1]. Hence,

c and t are incommensurable.

Proposition 10.32. CONSTRUCTION IV.
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Let d be a medial number. We wish to find a medial number e such that d and e

are incommensurable, d2 and e2 are commensurable, de is a second medial number,

and d2 = e2 + t2 such that d and t are commensurable.

Proof. Construct rationally expressible numbers p, p
√
m, p

√
1− k2 such that m is

rational,
√
m is irrational,

√
1− k2 is irrational, 1− k2 is rational, and k = n

m . Let

p

d
=

d

p
√
m

d = p ·m1/4

and

p ·m1/4

p · √m =
p ·
√
1− k2

e

e = p ·m1/4 ·
√

1− k2

We claim that d and e are the required medial numbers. By hypothesis, d is medial.

Since e2 = p2 ·
(

1− k2
)

· √m where p2 ·
(

1− k2
)

is rational and
√
m is irrational, by

[Lemma 10.10.1] e2 is irrational. By [Lemma 10.21.0], e is also irrational. Since

e4 = p4m ·
(

1− k2
)2

is rational by [Lemma 10.01.0], e is a medial number.

Notice that e
d =

√
1− k2. Applying [Lemma 10.28.0], we find that e, d are incom-

mensurable. Since 1− k2 is rational, e2, d2 are commensurable.

Notice that de = p2 ·
√
m−mk2. Since m −mk2 is rational, de is a second medial

number.

Let t =
√
d2 − e2. Then d2 = e2 + t2. Notice that

d2 − e2 = p2 ·
√
m− p2 ·

√
m ·

(

1− k2
)

= p2 ·
√
m ·

(

1−
(

1− k2
))

= k2p2 ·
√
m

and so t = kp ·m1/4. It follows that t
d = k. Hence, d and t are commensurable.

Lemma. 10.32.1 Let d be a medial number. We wish to find a medial number

e such that d and e are incommensurable, d2 and e2 are commensurable, de is a

second medial number, and d2 = e2 + t2 such that d and t are incommensurable.

Proof. Construct rationally expressible numbers p, p
√
m, p√

1+k2
such that 1 + k2 is
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rational but not a square number. Let

p

d
=

d

p
√
m

d = p ·m1/4

and

p ·m1/4

p · √m =
p

e ·
√
1 + k2

e =
p ·m1/4

√
1 + k2

We claim that d, e are the required numbers. The remainder of the proof is left as

an exercise to the reader.

Lemma. 10.33.0 If x is irrational and y is rational, then x+ y is irrational.

Proof. Suppose x + y is rational, or x + y = q where q is rational. It follows that

x = q − y. Since the RHS is rational, x is rational, a contradiction. Hence, x + y is

irrational.

Proposition 10.33. CONSTRUCTION V.

We wish to find numbers r and s where r2 and s2 are incommensurable, r2 + s2 is

rational, and rs is a second medial number.

Proof. Using [10.30], construct rationally expressible numbers a = p and b = p√
1+k2

and let x+ y = p and xy = b2

4 for real numbers x, y.

Notice that y = p2

4x·(1+k2) , and so

x+
p2

4x · (1 + k2)
= p

x2 +
p2

4 · (1 + k2)
= px

x2 − px = − p2

4 · (1 + k2)

x2 − px+
p2

4
=

p2

4
− p2

4 · (1 + k2)
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(

x− p

2

)2

=
p2 ·

(

1 + k2
)

− p2

4 (1 + k2)

(

x− p

2

)2

=
p2k2

4 (1 + k2)

x− p

2
= ± pk

2 ·
√
1 + k2

Since p > 0 and k > 0, the RHS is positive. Then

x =
p

2
+

pk

2 ·
√
1 + k2

x =
p

2
·
(

1 +
k√

1 + k2

)

x =
p ·
(√

1 + k2 + k
)

2 ·
√
1 + k2

Then y = p− x, or

y = p− p ·
(√

1 + k2 + k
)

2 ·
√
1 + k2

=
2p ·
√
1 + k2 − p ·

√
1 + k2 − p · k

2 ·
√
1 + k2

=
p ·
(√

1 + k2 − k
)

2 ·
√
1 + k2

Let r2 = px and s2 = py. We claim that r, s are the required numbers.

Notice that r2

s2 = x
y . Since

y

x
=

p

2
·
(

1− k√
1 + k2

)

· 2
p
·
(

1

1 + k√
1+k2

)

=

(

−k +
√
1 + k2√

1 + k2

)

·
( √

1 + k2

k +
√
1 + k2

)

=
−k +

√
1 + k2

k +
√
1 + k2

where
√
1 + k2 is irrational and k is rational. Let z =

√
1 + k2. By [Lemma 10.33.0],

z − k and z + k are irrational. If y
x is rational, then z − k = q · (z + k) for some
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rational q. Solving for z, we obtain

z − k = qz + qk

z − qz = k + qk

z(1− q) = k(1 + q)

z = k · 1 + q

1− q

Since k, q are rational, z is rational. But z =
√
1 + k2 is also irrational, a contradic-

tion. Hence, r2 and s2 are incommensurable.

Notice that

r2 + s2 = p · p
2
·
(

1 +
k√

1 + k2

)

+ p · p
2
·
(

1− k√
1 + k2

)

= p2

and so r2 + s2 is rational.

Finally, notice that

rs = p · √xy

= p ·
√

p

2
·
(

1 +
k√

1 + k2

)

· p
2
·
(

1− k√
1 + k2

)

=
p2

2
·
√

(

1 +
k√

1 + k2

)

·
(

1− k√
1 + k2

)

=
p2

2
·
√

1− k2

1 + k2

=
p2

2
·
√

1 + k2 − k2

1 + k2

=
p2

2
· 1√

1 + k2

Let t2 = p2

2 and w = 1
k2+1 . Then rs = t2 · √w. Since t2 is rational and

√
w is irra-

tional, by [Lemma 10.10.1] rs is irrational. By [Lemma 10.21.0],
√
rs is irrational.

Lastly, (rs)
2
= t4w is rational, and so rs is a second medial number. This completes

the construction.

Proposition 10.34. CONSTRUCTION VI.
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We wish to find numbers r and s such that r2 and s2 are incommensurable, where

r2 + s2 is a second medial number, and where rs is rational.

Proof. Using [Cor. 10.31.1], construct medial numbers p

(1+k2)1/4
and p

(1+k2)3/4
, and

let

x+ y =
p

(1 + k2)1/4

xy =
p2

4 · (1 + k2)
3/2

for real numbers x, y. If

r2 =
px

(1 + k2)1/4

s2 =
py

(1 + k2)
1/4

we claim that r, s are the required numbers.

Notice that r2

s2 = x
y . By [10.11], r2 and s2 are incommensurable if and only if x and

y are incommensurable. Notice that

x+
p2

4x · (1 + k2)
3/2

=
p

(1 + k2)
1/4

x2 +
p2

4 · (1 + k2)
3/2

=
px

(1 + k2)
1/4

x2 − px

(1 + k2)1/4
= − p2

4 · (1 + k2)3/2

x2 − px

(1 + k2)
1/4

+
p2

4 ·
√
1 + k2

=
p2

4 ·
√
1 + k2

− p2

4 · (1 + k2)
3/2

(

x− p

2 · (1 + k2)
1/4

)2

=
p2 ·

(

1 + k2
)

− p2

4 · (1 + k2)
3/2

(

x− p

2 · (1 + k2)
1/4

)2

=
p2k2

4 · (1 + k2)
3/2

x− p

2 · (1 + k2)
1/4

= ± pk

2 · (1 + k2)
3/4
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Since p > 0 and k > 0, the RHS is positive. Then

x− p

2 · (1 + k2)1/4
=

pk

2 · (1 + k2)3/4

x =
pk

2 · (1 + k2)
3/4

+
p

2 · (1 + k2)
1/4

=
pk

2 · (1 + k2)
3/4

+
p ·
√
1 + k2

2 · (1 + k2)
3/4

=
p ·
(

k +
√
1 + k2

)

2 · (1 + k2)
3/4

x =
p

2
·
(

k +
√
1 + k2

(1 + k2)
3/4

)

Since xy = p2

4·(1+k2)3/2
, we have

y =
p2

4 · (1 + k2)3/2
· 2 ·

(

1 + k2
)3/4

p ·
(

k +
√
1 + k2

)

=
p

2
· 1

(1 + k2)
3/4
· 1
(

k +
√
1 + k2

)

=
p

2
· 1

(1 + k2)
3/4 ·

(

k +
√
1 + k2

)

And so

x

y
=

(

k +
√
1 + k2

(1 + k2)
3/4

)

·
(

1 + k2
)3/4 ·

(

k +
√
1 + k2

)

1

=
(

k +
√

1 + k2
)2

= 2k2 + 1 + 2k ·
√

1 + k2

Since 2k2+1 is rational but 2k ·
√
1 + k2 is irrational, by applying [Lemma 10.33.0],

we find that x
y is irrational, and so r2 and s2 are incommensurable.

Notice that

xy =
p2

4
·
(

k +
√
1 + k2

(1 + k2)
3/4

)

·
(

· 1

(1 + k2)
3/4 ·

(

k +
√
1 + k2

)

)

=
p2

4 · (1 + k2)
3/2



CHAPTER 10. IRRATIONAL NUMBERS 409

Then

(rs)2 =
px

(1 + k2)
1/4
· py

(1 + k2)
1/4

=
p2√
1 + k2

· xy

=
p4

4 · (1 + k2)
2

and so rs = p2

2·(1+k2) . Hence, rs is rational.

Finally, notice that

r2 + s2 =
p

(1 + k2)1/4
· (x+ y)

=

(

p

(1 + k2)1/4

)2

=
p2√
1 + k2

Let q = 1
1+k2 . Then r2 + s2 = p2 · √q is a second medial number.

Proposition 10.35. CONSTRUCTION VII.

We wish to construct r and s where r2 and s2 are incommensurable, r2 + s2 is a sec-

ond medial number, rs is a second medial number, and r2 + s2 is incommensurable

with rs.

Proof. Let

x+ y = p ·m1/4

xy =
p2 · √m

4 · (1 + k2)

for real numbers x, y. If

r2 = p ·m1/4 · x
s2 = p ·m1/4 · y

we claim that r, s are the required numbers.
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Notice that

x =
p ·m1/4

2
·
(

1 +
k√

1 + k2

)

y =
p ·m1/4

2
·
(

1− k√
1 + k2

)

(we leave all verification steps to the student). Also notice that r2

s2 = x
y and that

x

y
= 2k2 + 1 + 2k ·

√

k2 + 1

By the proof of [10.34], x and y are incommensurable. By [10.11], r2 and s2 are

incommensurable if and only if x and y are incommensurable.

Notice that r2 + s2 = p2 · √m, and so r2 + s2 is a second medial number.

Also notice that

rs =
p2 · √m

2 ·
√
k2 + 1

Let t2 = p2

2 and w = m
k2+1 . Then rs = t2 · √w, and rs is a second medial number.

Finally, notice that
r2 + s2

rs
= 2 ·

√

k2 + 1

Since
√
k2 + 1 is irrational, r2+s2 and rs are incommensurable. This completes the

construction.

Proposition 10.36. A BINOMIAL NUMBER IS IRRATIONAL.

Let a and b be rationally expressible numbers such that a and b are incommensu-

rable and a2 and b2 are commensurable. Then a+ b, defined as a binomial number

[Def. 10.6], is irrational.

Proof. Let a = p and b = p ·
√
k as in [10.21]. It follows that a

b = 1√
k
. Apply-

ing [Lemma 10.27.0], a and b are incommensurable. Since a2

b2 = 1
k , a2 and b2 are

commensurable.

Notice that

(

p+ p ·
√
k
)2

= p2 + 2p2 ·
√
k + p2k

Since p2 + p2k is rational and 2p2 ·
√
k is irrational by [Lemma 10.10.1], by [Lemma

10.33.0] (a+ b)
2

is irrational. By [10.21.0], a+ b is irrational.
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Proposition 10.37. THE FIRST BIMEDIAL NUMBER IS IRRATIONAL.

Suppose a and b are medial numbers where a and b are incommensurable, a2 and b2

are commensurable, and ab is rational [10.27]. Then a+b, defined as a first bimedial

number [Def. 10.4], is irrational.

Proof. Let a = p · k1/4 and b = p · k3/4 as in [10.27]. Since ab = p2k, ab is rational.

Notice that
a

b
=

a2

ab
=

1√
k

where 1√
k

is irrational. Clearly, a2, b2 are commensurable. Notice that

a2 + b2

ab
=

p2
√
k + p2k ·

√
k

p2k

=

√
k + k ·

√
k√

k ·
√
k

=

√
k · (1 + k)

k

and so

a2 + 2ab+ b2

ab
=

2k +
√
k · (1 + k)

k

(a+ b)
2

2ab
=

2k +
√
k · (1 + k)

k

By [Lemma 10.33.0], the RHS is incommensurable. Since 2ab is rational, (a+ b)
2

is

irrational. By [Lemma 10.21.0], a+ b is irrational.
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Proposition 10.38. THE SECOND BIMEDIAL NUMBER IS IRRATIONAL.

Suppose a and b are medial numbers where a and b are incommensurable, a2 and

b2 are commensurable, and ab is a second medial number. Then a + b, defined as a

second bimedial number [Def. 10.5], is irrational.

Proof. Let a = p · k1/4 and b = p·
√
m

k1/4 as in [10.28]. Since ab = p2 · √m, ab is second

medial number.

Notice that
a

b
=

a2

ab
=

√
k√
m

where
√
k√
m

is irrational and k
m is rational. Hence, a, b are incommensurable but

a2, b2 are commensurable.

Finally,

a+ b = p · k1/4 + p · √m
k1/4

=
p ·
√
k + p · √m√

k

If the RHS is rational, then p ·
√
k + p · √m = q ·

√
k where q is rational. Hence

p2k + 2p2
√
km+ p2m = q2k

√
km =

q2k − p2k − p2m

2p2

Since the RHS is rational,
√
km is rational for all choices of km, a contradiction.

Thus, a+ b is irrational, which completes the proof.

Proposition 10.39. A MAJOR NUMBER IS IRRATIONAL.

Let r2 and s2 be incommensurable such that r2 + s2 is rational and rs is a second

medial number. We claim that r + s, defined as a major number [Def. 10.7], is

irrational.

Proof. Let

r2 =
p2

2
·
(

1 +
k√

1 + k2

)

s2 =
p2

2
·
(

1− k√
1 + k2

)

from [10.33]. It follows that r2 + s2 is rational and rs is a second medial number.
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Notice that

r2

s2
=

√
1 + k2 + k√
1 + k2 − k

= 2k2 + 1 + 2k ·
√

k2 + 1

By the proof of [10.34], r2 and s2 are incommensurable.

Also notice that

(r + s)
2

= r2 + s2 + 2rs

= p2 +
p2√
1 + k2

By [Lemma 10.33.0], the RHS is irrational; hence, (r + s)
2

is irrational. By [Lemma

10.21.0], r + s is also irrational.

Proposition 10.40. CONSTRUCTION OF A “ROOT OF A RATIONAL PLUS A

SECOND MEDIAL NUMBER” [RPSM] NUMBER.

Let r2 and s2 be incommensurable such that r2 + s2 is a second medial number and

where rs is rational. We claim that r + s, defined as a RPSM number [Def. 10.9], is

irrational.

Proof. Let

r2 =
p2

2
·
(

k +
√
1 + k2

1 + k2

)

s2 =
p2

2
·
(

−k +
√
1 + k2

1 + k2

)

from [10.34]. By the proof of [10.34], r2 and s2 are incommensurable. Notice that

r2 + s2 =
p2

1 + k2
·
√

1 + k2

rs =
p2

2 · (1 + k2)

and so r2 + s2 is a second medial number and rs is rational.

Also notice that

(r + s)
2

= r2 + s2 + 2rs
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By [Lemma 10.33.0], the RHS is irrational; hence, (r + s)
2

is irrational. By [Lemma

10.21.0], r + s is also irrational.

Proposition 10.41. CONSTRUCTION OF A “ROOT OF THE SUM OF TWO SEC-

OND MEDIAL NUMBERS” [RSSM] NUMBER.

Let r2 and s2 be incommensurable such that r2 + s2 and rs are each second medial

numbers, and where r2+s2 is incommensurable with rs. We claim that r+s, defined

as a RSSM number [Def. 10.8], is irrational.

Proof. Using [10.35], let

r2 =
p2 · √m

2
·
(

1 +
k√

1 + k2

)

s2 =
p2 · √m

2
·
(

1− k√
1 + k2

)

By the proof of [10.35], r2 and s2 are incommensurable. Notice that

r2 + s2 = p2 ·
√
m

rs =
p2
√
m

2 ·
√
1 + k2

and so r2 + s2 and rs are each second medial numbers. Also,

r2 + s2

rs
= 2 ·

√

1 + k2

and so r2 + s2 is incommensurable with rs. Finally,

r2 + 2rs+ s2

rs
= 2 + 2 ·

√

1 + k2

(r + s)
2

= 2 + 2 ·
√

1 + k2

Since the RHS is irrational, (r + s)
2

is irrational. By [10.21.0], r+s is irrational.
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Proposition 10.42. THE TERMS OF A BINOMIAL NUMBER ARE UNIQUE.

Let n be a binomial number. If n = a+ b = c+ d and a 6= d, then a = c and b = d.

Proof. Suppose n is a binomial number such that n = a+ b = c+ d where a 6= d and

a > c. Notice that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2

and so

(

a2 − c2
)

+
(

b2 − d2
)

= 2 · (cd− ab)

1

2
·
((

a2 − c2
)

+
(

b2 − d2
))

= cd− ab

By [10.36], a, b, c, d are rationally expressible, and so the LHS is rational. Also from

[10.36] a = p, b = p
√
k, c = r, and d = r

√
m, and so cd = r2

√
m and ab = p2

√
k. By

[10.26], the RHS is irrational, a contradiction. A similar contradiction arises if we

assume a < c.

Therefore, a = c. To prevent a similar contradiction, we must also have b = d. Thus,

the terms of a binomial number are unique.

Lemma. 10.43.0 If a and b are medial numbers such that a and b are commensu-

rable, then a± b is also a medial number.

Proof. Since a and b are commensurable, a = bq where q is rational. Then a ± b =

b · (q ± 1). Since b and b · (q ± 1) are commensurable, by [10.23] b · (q ± 1) is a medial

number.

Lemma. 10.43.1 If a and b are second medial numbers such that a and b are com-

mensurable, then a± b is also a second medial number.

Proof. The proof is identical to the above except that [Cor. 10.23.1] is cited instead.

Proposition 10.43. THE TERMS OF A FIRST BIMEDIAL NUMBER ARE UNIQUE.

Let n be a bimedial number. If n = a+ b = c+ d and a 6= d, then a = c and b = d.



CHAPTER 10. IRRATIONAL NUMBERS 416

Proof. Suppose n is a bimedial number such that n = a+ b = c+d and a > c. Notice

that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2

and so

(

a2 + c2
)

−
(

b2 + d2
)

= 2 · (cd− ab)

By [10.37], ab, cd are rational; by [Lemma 10.10.0], the RHS is rational. Also by

[10.37], a2, b2, c2, d2 are second medial numbers. By [Lemma 10.43.1], a2 + c2 and

b2 + d2 are also second medial numbers. By [10.26], the LHS is irrational, a contra-

diction. A similar contradiction arises if we assume a < c.

Therefore, a = c. To prevent a similar contradiction, we must also have b = d. Thus,

the terms of a first bimedial number are unique.

Proposition 10.44. THE TERMS OF A SECOND BIMEDIAL NUMBER ARE

UNIQUE.

Let n be a second bimedial number. If n = a+ b = c + d and a 6= d, then a = c and

b = d.

Proof. Suppose n is a second bimedial number such that n = a+b = c+d and a > c.

Notice that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2

By [10.38], a and b are medial numbers where a and b are incommensurable. It

follows that a2 and ab are incommensurable. Since a2 and b2 are commensurable,

a2 + b2 and a2 are commensurable [10.38]. Clearly, ab and 2ab are commensurable.

It follows that a2 + b2 and 2ab are incommensurable [10.13]. Let u = a2 + b2 and

v = 2ab; notice that u, v are incommensurable.

Since
u2

v2
=

(k + 1)2

4k

u2, v2 are commensurable and u, v are incommensurable.

By [Def. 10.5], a2, b2 are commensurable, and so let a2 = k · b2 where k is rational.
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Since u2 = a4 + 2a2b2 + b4 and v2 = 4a2b2, we obtain

u2 = k2 · b4 + 2k · b4 + b4

= b4 ·
(

k2 + 2k + 1
)

= b4 · (k + 1)
2

and v2 = b4 · 4k. Notice that u, v are rationally expressible.

By [10.36], u + v is a binomial number. By [10.42], u, v are unique. Thus, if a 6= d,

then a = c and b = d.

Proposition 10.45. A MAJOR NUMBER HAS UNIQUE TERMS.

Let n be a major number. If n = a+ b = c+ d and a 6= d, then a = c and b = d.

Proof. Suppose n is a major number such that n = a + b = c + d and a > c. Notice

that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2

and so

(

a2 + c2
)

−
(

b2 + d2
)

= 2 · (cd− ab)

By [10.39], the LHS is rational while cd and ab are second medial numbers. By

[10.26], the RHS is irrational, a contradiction. Then if a 6= d, a = c. To prevent a

similar contradiction, we must also have b = d. Thus, the terms of a major number

are unique.

Proposition 10.46. TERMS OF A “ROOT OF A RATIONAL PLUS A SECOND

MEDIAL NUMBER” [RPSM] NUMBER ARE UNIQUE.

Let n be a RPSM number. If n = a+ b = c+ d and a 6= d, then a = c and b = d.

Proof. Suppose n is a RPSM number such that n = a+ b = c+ d and a > c. Notice

that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2
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and so

(

a2 + c2
)

−
(

b2 + d2
)

= 2 · (cd− ab)

By [10.40] and [Lemma 10.43.1], the LHS is a second medial number, and hence is

irrational.

By [10.40], the RHS is rational, a contradiction. Then if a 6= d, a = c. To prevent a

similar contradiction, we must also have b = d. Thus, the terms of a RPSM number

are unique.

Proposition 10.47. TERMS OF A “ROOT OF THE SUM OF TWO SECOND ME-

DIAL NUMBERS” [RSSM] NUMBER ARE UNIQUE.

Let n be a RSSM. If n = a+ b = c+ d and a 6= d, then a = c and b = d.

Proof. Suppose n is a RSSM such that n = a+ b = c+ d and a > c. Notice that

n2 = a2 + 2ab+ b2

= c2 + 2cd+ d2

Let u = a2+b2 and v = 2ab. By [10.41], a2+b2 and ab are incommensurable. Clearly,

ab and 2ab are commensurable, and so a2+b2 and 2ab are incommensurable [10.13].

Hence, u and v are incommensurable.

By [10.41], a2 + b2 and ab are second medial numbers, and so
(

a2 + b2
)2

and (ab)
2

are rational. Since u2 = a4 + 2a2b2 + b4 and v2 = 4a2b2, we have

u2 = k2 · b4 + 2k · b4 + b4

= b4 ·
(

k2 + 2k + 1
)

= b4 · (k + 1)2

and v2 = b4 · 4k. Notice that u, v are rationally expressible, and since

u2

v2
=

(k + 1)
2

4k

we find that u2, v2 are commensurable.

By [10.36], u + v is a binomial number. By [10.42], u, v are unique. Thus, if a 6= d,

then a = c and b = d. Thus, the terms of a RSSM number are unique.

10.3 Book X, Propositions 48-84

Definitions.
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Let n = a+ b be a binomial number. Euclidean number theory constructs six types

of binomial numbers. Let p be rationally expressible.

(6a) n is a first binomial number when a and p are commensurable and a2 =

b2 + h2 where h is commensurable with a.

(6b) n is a second binomial number when b and p are commensurable and a2 =

b2 + h2 where h is commensurable with a.

(6c) n is a third binomial number when both a and b are incommensurable with

p, and a2 = b2 + h2 where h is commensurable with a.

(6d) n is a fourth binomial number when a and p are commensurable and a2 =

b2 + h2 where h is incommensurable with a.

(6e) n is a fifth binomial number when b and p are commensurable and a2 =

b2 + h2 where h is incommensurable with a.

(6f) n is a sixth binomial number when both a and b are incommensurable with

p, and a2 = b2 + h2 where h is incommensurable with a.

10. Let a and b be rationally expressible such that a and b are incommensurable

but a2 and b2 are commensurable. We define a− b as an apotome number (or simply

an apotome).

Remark. Apotome is Greek for "portion cut off", i.e., instead of propositions about

irrational sums, we have propositions about irrational differences.

[10.73] proves that both a− b and (a− b)2 are irrational.

Euclidean number theory constructs six types of apotome numbers. Let p be ratio-

nally expressible, and assume a > b.

(a) a−b is a first apotome iff a and p are commensurable, and a2 = b2+h2 where

h is commensurable with a.

(b) a − b is a second apotome iff b and p are commensurable, and a2 = b2 + h2

where h is commensurable with a.

(c) a − b is a third apotome iff both a and b are incommensurable with p, and

a2 = b2 + h2 where h is commensurable with a.

(d) a − b is a fourth apotome iff a and p are commensurable, and a2 = b2 + h2

where h is incommensurable with a.

(e) a−b is a fifth apotome iff b and p are commensurable, and a2 = b2+h2 where

h is incommensurable with a.

(f) a − b is a sixth apotome iff both a and b are incommensurable with p, and

a2 = b2 + h2 where h is incommensurable with a.

Let a − b be an apotome and let z be rationally expressible. By [10.73], a − b + z

and z are each rationally expressible, a − b + z and z are incommensurable, and

(a− b+ z)
2

and z2 are commensurable. By [10.79], z is unique. We sometimes refer

to z as an “annex” of a− b.
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Remark. Binomial numbers, like apotome numbers, are roots of the equation

x4 − 2 · (1 + k) · p2 · x3 + (1 − k)2 · p4 = 0

11. Let a and b be medial numbers such that a > b where a and b are incommensu-

rable but a2 and b2 are commensurable, and where ab is rational. We define a− b as

a first apotome of a medial.

[10.74] proves that a− b is irrational.

12. Let a and b be medial numbers such that a > b where a and b are incommensu-

rable but a2 and b2 are commensurable, and where ab is second medial number. We

define a− b as a second apotome of a medial.

[10.75] proves that a− b is irrational.

13. Let a > b where a and b are incommensurable, a2 and b2 are incommensurable,

a2 + b2 is rational, and ab is a second medial number. We define a − b as a minor

number.

[10.76] proves that a− b is irrational.

14. Let a > b where a and b are incommensurable, a2 and b2 are incommensurable,

a2 + b2 is a second medial number, and where 2ab is a rational number. We define

a− b as a WR-medial. (WR stands for “with rational”.)

[10.77] proves that a− b is irrational.

15. Suppose a and b exist such that a > b where a and b are incommensurable,

a2 and b2 are incommensurable, a2 + b2 is a second medial number, where 2ab is a

second medial number, and where a2 + b2 and 2ab are incommensurable. We define

a− b as a WM-medial. (WM stands for “with medial”.)

[10.78] proves that a− b is irrational.

Lemma. 10.48.0 If d is rationally expressible, and d and e be commensurable, then

e is also rationally expressible. Let

d

e
= k

where k is rational. Then
(

d

k

)2

= e2

By the above, the LHS is rational, and so e2 is rational. Thus, e is rationally ex-

pressible.
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Proposition 10.48. CONSTRUCTING A FIRST BINOMIAL NUMBER.

If p is rationally expressible, then n = a+ b is a first binomial number when a and

p are commensurable and a2 = b2 + h2 where h is commensurable with a.

Proof. Let p be rationally expressible and construct kp such that p and kp are com-

mensurable. By [Lemma 10.48.0], kp is rationally expressible. Also construct pn2

and p ·
(

m2 − n2
)

where m,n are natural numbers such that m2−n2 is not a square

number. Notice that

pm2

p · (m2 − n2)
=

k2p2

b2

b2 =
k2p2 ·

(

m2 − n2
)

m2

b =
kp ·
√
m2 − n2

m

b = kp ·
√

1− c2

where c = n
m . Let a = kp (and so a and p are commensurable). We claim that

n = a+ b is a first binomial number.

Notice that that a and b are rationally expressible, that a and b are incommensu-

rable [Lemma 10.28.0], and that a2 and b2 are commensurable. By [10.36], a+ b is

a binomial number.

Suppose a2 − b2 = h2 for some real h. Notice that a2 = b2 + h2, and

pm2

p · (m2 − n2)
=

a2

b2

m2 − n2

m2
=

b2

a2

m2 − n2 −m2

m2
=

b2 − a2

a2

n2

m2
=

a2 − b2

a2

n2

m2
=

h2

a2

n

m
=

h

a

Hence, a and h are commensurable, which completes the construction.
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Remark. A first binomial number can be written in the form

a+ b = kp+ kp ·
√

1− c2

A first apotome will be written

a− b = kp− kp ·
√

1− c2

Both are roots of the equation

x2 − 2kp · x+ c2k2p2 = 0

Proposition 10.49. CONSTRUCTING A SECOND BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a second binomial number when b

and p are commensurable and a2 = b2 + h2 where h is commensurable with a.

Proof. Let p be rationally expressible and k be rational. Then p and kp are com-

mensurable. By [Lemma 10.48.0], kp is rationally expressible. Also construct pn2

and p ·
(

m2 − n2
)

where m,n are natural numbers such that m2−n2 is not a square

number. Notice that

p ·
(

m2 − n2
)

pm2
=

k2p2

a2

a2 =
k2p2m2

(m2 − n2)

a =
kpm√
m2 − n2

a =
kp√
1− c2

where c = m
n . Let b = kp (and so b and p are commensurable). We claim that

n = a+ b is a second binomial number.

Notice that that a and b are rationally expressible, that a and b are incommensu-

rable [Lemma 10.28.0], and that a2 and b2 are commensurable. By [10.36], a+ b is

a binomial number.
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Let a2 − b2 = h2. Notice that a2 = b2 + h2, and

p ·
(

m2 − n2
)

pm2
=

b2

a2

m2 − n2

m2
=

b2

a2

m2 − n2 −m2

m2
=

b2 − a2

a2

n2

m2
=

h2

a2

n

m
=

h

a

and so a and h are commensurable. This completes the construction.

Remark. A second binomial number can be written in the form

a+ b = kp+
kp√
1− c2

A second apotome will be written as

a− b = kp− kp√
1− c2

Both are roots of the equation

x2 − 2kp√
1− c2

· x+
c2

1− c2
· k2p2 = 0

Proposition 10.50. CONSTRUCTING A THIRD BINOMIAL NUMBER.

If p be rationally expressible, then n = a+ b is a third binomial number when both

a and b are incommensurable with p, and a2 = b2 + h2 where h is commensurable

with a.

Proof. Let p be rationally expressible. Construct q ·
(

m2 − n2
)

and qn2 where m,n

are natural numbers such that m2 − n2 is not a square number and where q is
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rational. Also construct t such that q
t is rational but

√

q
t is irrational. Notice that

t

qm2
=

p2

a2

a2

p2
=

m2q

t

a

p
= m ·

√

q

t

a = pm ·
√

q

t

It follows that a, p are incommensurable and that a is rationally expressible. Also

notice that

qm2

q · (m2 − n2)
=

a2

b2

b2 =
a2 ·

(

m2 − n2
)

m2

b = a ·
√

1− c2

where c = n
m . It follows that b, p are incommensurable.

Since a is rationally expressible, b is rationally expressible. Notice that a, b are

incommensurable but a2, b2 are commensurable. By [10.36], a + b is a binomial

number.

Suppose a2 − b2 = h2. Then a2 = b2 + h2, and

m2 − n2

m2
=

b2

a2

m2 − n2 −m2

m2
=

b2 − a2

a2

n2

m2
=

a2 − b2

a2

n2

m2
=

h2

a2

n

m
=

h

a

Then a and h are commensurable, which completes the construction.
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Remark. A third binomial number can be written in the form

a+ b = pm ·
√
k + pm ·

√
k ·
√

1− c2

A third apotome will be written as

a− b = pm ·
√
k − pm ·

√
k ·
√

1− c2

Both are roots of the equation

x2 − 2mpx
√
k + kc2m2p2 = 0

Proposition 10.51. CONSTRUCTING A FOURTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a fourth binomial number when a

and p are commensurable and a2 = b2 + h2 where h is incommensurable with a.

Proof. Let m,n be natural numbers such that m+n
m 6= r2

s2 and m+n
n 6= r2

s2 for any

natural numbers r, s. Consider

m+ n

m
=

k2p2

b2

b2 =
k2p2m

m+ n

b = kp ·
√
1 + c

where c = n
m . Let a = kp. Notice that a = kp and b = a·

√
1 + c are incommensurable

but a2 and b2 are commensurable. Since a2 and b2 are rational, a and b are rationally

expressible. By [10.36], a+ b is a binomial number.

Clearly, a, p are commensurable. Suppose a2 − b2 = h2. Then a2 = b2 + h2 and

m

m+ n
=

b2

a2

m−m− n

m+ n
=

b2 − a2

a2

n

m+ n
=

a2 − b2

a2

n

m+ n
=

h2

a2

√

n

m+ n
=

h

a
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and so a and h are incommensurable, which completes the construction.

Remark. A fourth binomial number can be written in the form

a+ b = kp+
kp√
1 + c

A fourth apotome will be written as

a− b = kp− kp√
1 + c

Both are roots of the equation

x2 − 2kp · x+
c

1 + c
k2p2 = 0

Proposition 10.52. CONSTRUCTING A FIFTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a+ b is a fifth binomial number when b and

p are commensurable and a2 = b2 + h2 where h is incommensurable with a.

Proof. Let m,n be natural numbers such that m+n
m 6= r2

s2 and m+n
n 6= r2

s2 for any

natural numbers r, s. Consider

m

m+ n
=

k2p2

a2

a2 =
k2p2 · (m+ n)

m

a = kp ·
√
1 + c

where c = n
m . Let b = kp. Clearly, b, p are commensurable. Notice that a = b ·

√
1 + c

and b = kp are incommensurable but a2, b2 are commensurable. Since a2 and b2 are

rational, a and b are rationally expressible. By [10.36], a+ b is a binomial number.

Suppose a2 − b2 = h2. Then a2 = b2 + h2 and

m

m+ n
=

b2

a2

m−m− n

m+ n
=

b2 − a2

a2

n

m+ n
=

h2

a2

√

n

m+ n

h

a
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and so a and h are incommensurable, which completes the construction.

Remark. A fifth binomial number can be written in the form

a+ b = kp+ kp ·
√
1 + c

A fifth apotome will be written as

a− b = kp− kp ·
√
1 + c

Both are roots of the equation

x2 − 2kp
√
1 + c · x+ ck2p2 = 0
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Proposition 10.53. CONSTRUCTING A SIXTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a+ b is a sixth binomial number when both

a and b are incommensurable with p, and a2 = b2 + h2 where h is incommensurable

with a.

Proof. Let p be rationally expressible. Construct natural numbers m,n such that
m+n
n 6= r2

s2 and m+n
m 6= r2

s2 for any natural numbers r, s. Construct t such that
m+n

t 6= r2

s2 for any natural r, s. Consider

t

m+ n
=

p2

a2

a2 =
p2t

m+ n

a = p ·
√

t

m+ n

and

m+ n

m
=

a2

b2

b2 =
a2m

m+ n

b = a ·
√

m

m+ n

b = a ·
√
1 + c

where c = m
n . Notice that a2, b2 are commensurable and a, b are incommensurable.

Since b
a =
√
1 + c , a, b are incommensurable. By [10.36], a+b is a binomial number.

Clearly, both a, p and b, p are incommensurable.

Suppose a2 − b2 = h2. Then a2 = b2 + h2, and

m+ n

m
=

a2

b2

m

m+ n
=

b2

a2

−n
m+ n

=
b2 − a2

a2

n

m+ n
=

h2

a2

√

n

m+ n
=

h

a
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Since n
m+n 6= s2

r2 by hypothesis, applying [Lemma 10.28.0], we find that a and h are

incommensurable.

Remark. A sixth binomial number can be written in the form

a+ b = p
√
k + p

√
m

A sixth apotome will be written as

a− b = p
√
k − p

√
m

Both are roots of the equation

x2 − 2px
√
k + (k −m)

2
p2 = 0

Proposition 10.54. ROOT OF A FIRST BINOMIAL.

Given a rationally expressible number p and first binomial number

n = kp+ kp ·
√

1− c2

√
pn is a binomial number.

Proof. Construct u + v = kp and uv = 1
4 · k2p2 ·

(

1− c2
)

where k is rational, kp is

rationally expressible, and 1−c2 6= r2

s2 for any natural r, s. Solving for u, v, we obtain

u =
1

2
· kp · (1 + c)

v =
1

2
· kp · (1− c)

If x2 = pu and y2 = pv, we claim that x+ y =
√
pn.

Notice that

x = p ·
√

k

2
· (1 + c)

y = p ·
√

k

2
· (1− c)

and so

x+ y = p ·
(

√

k

2
· (1 + c) +

√

k

2
· (1− c)

)



CHAPTER 10. IRRATIONAL NUMBERS 430

Also notice that x, y are rationally expressible, that x2, y2 are commensurable, and

that x and y are incommensurable. By [10.36], x+ y is a binomial number.

Since

x2 + y2 = p2k

2xy = p2k ·
√

1− c2

it follows that

(x+ y)
2

= p2k + p2k ·
√

1− c2

= p ·
(

kp+ kp ·
√

1− c2
)

= pn

Hence, x+ y =
√
pn is a binomial number.

Corollary. 10.54.1 [10.60] iff [10.54].

Proposition 10.55. ROOT OF A SECOND BINOMIAL NUMBER.

Given a rationally expressible number p and second binomial number

n = kp+
kp√
1− c2

√
pn is a first bimedial number.

Proof. Construct u+v = kp√
1−c2

and uv = 1
4 ·k2p2 where k is rational, kp is rationally

expressible, and 1− c2 6= r2

s2 for any natural r, s. Solving for u, v, we obtain

u =
kp

2
· 1 + c√

1− c2

v =
kp

2
· 1− c√

1− c2

If x2 = pu and y2 = pv, we claim that x+ y =
√
pn.

Notice that

x2 =
kp2

2
· (1 + c)√

1− c2

y2 =
kp2

2
· (1− c)√

1− c2
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Since

x2

y2
=

1 + c

1− c

x, y are incommensurable and x2, y2 are commensurable.

Notice that u = kp
2 ·
√

(1+c)2

1−c2 and v = kp
2 ·
√

(1−c)2

1−c2 are second medial numbers; since

x2 = pu and y2 = pv, it follows that x, y are medial numbers. Finally, xy = kp2

2 , and

so xy is rational. By [10.37], x+ y is a first bimedial number.

Notice that

x2 + y2 =
kp2√
1− c2

2xy = kp2

Then

(x+ y)2 = x2 + y2 + 2xy

= kp2 +
kp2√
1− c2

= p ·
(

kp+
kp√
1− c2

)

= np

and so x+ y =
√
np, which completes the proof.

Corollary. 10.55.1 [10.61] iff [10.55].

Proposition 10.56. ROOT OF A THIRD BINOMIAL NUMBER.

Given a rationally expressible number p and third binomial number

n = p ·
√
k ·
(

1 +
√

1−m2
)

√
pn is a second bimedial number.

Proof. Construct

u+ v = p ·
√
k

uv =
1

4
· kp2 ·

(

1−m2
)
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where k is rational such that k 6= r2 for any natural r and where kp is rationally

expressible. Solving for u, v, we obtain

u =
p
√
k

2
· (1 +m)

v =
p
√
k

2
· (1−m)

If x2 = pu and y2 = pv, we claim that x+ y =
√
pn.

Notice that x, y are medial numbers where x, y are incommensurable and x2, y2 are

commensurable. Also notice that xy = p2

2 ·
√

k · (1−m2), and so xy is a second

medial number. By [10.38], x+ y is a second bimedial number.

Since

x2 + y2 = p2
√
k

2xy = p2k ·
√

1−m2

we obtain

(x+ y)
2

= p2
√
k + p2k ·

√

1−m2

= p ·
(

p ·
√
k ·
(

1 +
√

1−m2
))

= np

and so x+ y =
√
np. This completes the proof.

Corollary. 10.56.1 [10.62] iff [10.56].

Proposition 10.57. ROOT OF A FOURTH BINOMIAL NUMBER.

Given a rationally expressible number p and fourth binomial number

n = kp+
kp√
1 +m

√
pn is a major number.

Proof. Construct u + v = kp and uv = 1
4 ·

k2p2

1+m where k is rational such that k 6= r2

for any natural r and where kp is rationally expressible. Solving for u, v, we obtain

u =
pk

2
·
(

1 +

√
m√

m+ 1

)

v =
pk

2
·
(

1−
√
m√

m+ 1

)
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If x2 = pu and y2 = pv, then we claim that x+ y =
√
pn.

Notice that x2 and y2 are incommensurable and that x2+ y2 = p2k is rational. Also,

xy = p2k
2 · 1√

m+1
. Since p is rationally expressible and k is rational, q = p2k

2 is

rational. Since n is a fourth binomial number,
√
m+ 1 is irrational, and so xy =

q ·
√

1
m+1 is a second medial number. By [10.39], x+ y is a major number.

Since

x2 + y2 = p2k

2xy =
p2k√
m+ 1

we obtain

(x+ y)2 = p2k +
p2k√
m+ 1

= np

and so x+ y =
√
np, which completes the construction.

Corollary. 10.57.1 [10.63] iff [10.57].

Proposition 10.58. ROOT OF A FIFTH BINOMIAL NUMBER.

Given a rationally expressible number p and fifth binomial number

n = kp+ kp ·
√
1 + c

√
pn is a RPSM number.

Proof. Construct u+ v = kp ·
√
1 + c and uv = 1

4 · k2p2 where k is rational such that

k 6= r2 for any natural r and where kp is rationally expressible. Solving for u, v, we

obtain

u =
pk

2
·
(√

c+
√
c+ 1

)

v =
pk

2
·
(√

c−
√
c+ 1

)

If x2 = pu and y2 = pv, then we claim that x+ y =
√
pn.

Clearly, x2 and y2 are incommensurable. Notice that x2 + y2 = p2k ·
√
c+ 1. Since n

is fifth binomial number,
√
c+ 1 is rationally expressible. Hence, x2+ y2 is a second

medial number. Also, xy = p2k
2 is rational. By [10.40], x+ y is a RPSM number.
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Since

x2 + y2 = p2k ·
√
c+ 1

2xy = p2k

we obtain

(x+ y)
2

= p2k + p2k ·
√
c+ 1

= np

and so x+ y =
√
np, which completes the construction.

Corollary. 10.58.1 [10.64] iff [10.58].

Proposition 10.59. ROOT OF A SIXTH BINOMIAL NUMBER.

Given a rationally expressible number p and sixth binomial number

n = p
√
k + p

√
t

√
pn is a RSSM number.

Proof. Construct u + v = p ·
√
k and uv = p2m

4 where k is rational such that k 6= r2

for any natural r and where kp is rationally expressible. Solving for u, v, we obtain

u =
p

2
·
(√

k +
√
k −m

)

v =
p

2
·
(√

k −
√
k −m

)

If x2 = pu and y2 = pv, then we claim that x+ y =
√
pn.

Clearly, x2 and y2 are incommensurable. Notice that x2 + y2 = p2
√
k and that

xy = p2

2 ·
√
1−m, and so x2 + y2 and xy are second medial numbers. Finally notice

that x2 + y2 and xy are incommensurable; by [10.41], x+ y is an RSSM number.

Notice that

x2 + y2 = p2
√
k

2xy = p2 ·
√
1−m
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If t = 1−m, then

(x+ y)2 = p2
√
k + p2

√
1−m

= p2
√
k + p2

√
t

= np

and so x+ y =
√
np, which completes the construction.

Corollary. 10.59.1 [10.65] iff [10.59].

Proposition 10.60. FACTORS OF A SQUARE I.

If n = p+ p
√
k is a binomial number, then a first binomial number is a factor of n2.

Proof. Let n = p+ p
√
k be a binomial number. Also let x, y, z be real numbers such

that sx = p2, sy = p2k, and 2sz = 2p2
√
k such that p, s are rationally expressible,√

k is irrational, k is rational, and where x+ y > 2z. Notice that

(x+ y) + 2z =

(

p+ p
√
k
)2

s

=
n2

s

We claim that (x+ y) + 2z is a first binomial number where its terms are x+ y and

2z.

Since x + y = p2 ·
(

1+k
s

)

where p, s are rationally expressible and k is rational, it

follows that x + y is rationally expressible. Since 2z = 2p2
√
k

s , 2z is also rationally

expressible. Notice that

(x+ y)
2

(2z)
2 = p2 · (1 + k)

2

s2
· s2

4p4k

=
(1 + k)

2

4p2k

and so (x+ y)
2

and (2z)
2

are commensurable while x + y and 2z are incommensu-

rable. By [10.36], (x+ y) + 2z is a binomial number.

By hypothesis s is rationally expressible, and

x+ y

s
=

p2

s2
· (1 + k)

where p2, s2 and 1 + k are rational. Hence, x+ y and s are commensurable.
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Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2.

Notice that (2z)2 =
(

2p2
√
k

s

)2

= 4p4k
s2 . Also notice that

(x+ y)
2 − 4z2 =

p4

s2
+

2p4k

s2
− 4p4k

s2
+

p4k2

s2

=
p4

s2
− 2p4k

s2
+

p4k2

s2

=
p4

s2
· (k − 1)

2

and so h = p2

s · (k − 1). Finally,

x+ y

h
=

p2

s
· (k + 1) · s

p2 · (k − 1)

=
k + 1

k − 1

Since k is rational, x+ y and h are commensurable. By [10.48], (x+ y)+2z is a first

binomial number and a factor of n2.

Remark. [10.54] iff [10.60].

Proposition 10.61. FACTORS OF A SQUARE II.

If n = p · k1/4 + p · k3/4 is a first bimedial number, then a second binomial number is

a factor of n2.

Proof. Let n = p · k1/4 + p · k3/4 be a first bimedial number. Also let x, y, z be real

numbers such that sx = p2
√
k, sy = p2k3/2, and 2sz = 2p2k such that p, s are

rationally expressible,
√
k is irrational, k is rational, and x+ y > 2z. Notice that

(x+ y) + 2z =
p2
√
k + 2p2k + p2k3/2

s

=
n2

s

We claim that (x+ y)+2z is a second binomial number such that its terms are x+y

and 2z.

Since x + y = p2
√
k · (k

3+1)
s where p, s are rationally expressible and k is rational,

it follows that x + y is rationally expressible. Since 2z = 2p2k
s , 2z is also rationally
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expressible. Notice that (x+ y) = p2
√
k + p2k3/2, and so

(x+ y)2 = p4k + 2p4k2 + p4k3

= p4k ·
(

k2 + 2k + 1
)

= p4k · (k + 1)
2

Hence

(x+ y)2

(2z)
2 =

p4k · (k + 1)2

s2
· s2

4p4k2

=
(k + 1)2

4k

and so (x+ y)
2

and (2z)
2

are commensurable while x + y and 2z are incommensu-

rable. By [10.36], (x+ y) + 2z is a binomial number.

By hypothesis, s is rationally expressible, and

2z

s
=

2p2k

s2

where p2, s2 and k are rational. Hence, 2z and s are commensurable.

Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2.

Notice that (2z)2 =
(

2p2k
s

)2

= 4p4k2

s2 . Since (x+ y)2 = p4k·(k+1)2

s2 ,

(x+ y)2 − (2z)2 =
p4k ·

(

k2 + 2k + 1
)

− p4k · (4k)
s2

=
p4k ·

(

k2 − 2k + 1
)

s2

=
p4k · (k − 1)

2

s2

it follows that h = p2
√
k·(k−1)
s . Then

h

x+ y
=

p2
√
k · (k − 1)

s
· s

p2
√
k · (k + 1)

=
k − 1

k + 1

and so x+ y and h are commensurable. By [10.49], (x+ y)+ 2z is a second binomial

number and a factor of n2.
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Remark. [10.55] iff [10.61].

Proposition 10.62. FACTORS OF A SQUARE III.

If n = pk1/4+pk−1/4
√
m is a second bimedial number, then a third binomial number

is a factor of n2.

Proof. Let n = pk1/4 + pk−1/4
√
m be a second bimedial number. Also let x, y, z be

real numbers such that sx = p2
√
k, sy = mp2k−1/2, and 2sz = 2p2

√
m such that p, s

are rationally expressible,
√
k is irrational, k is rational, and x+y > 2z. Notice that

(x+ y) + 2z =
p2
√
k +mp2k−1/2 + 2p2

√
m

s

=
n2

s

We claim that (x+ y) + 2z is a third binomial number such that its terms are x+ y

and 2z.

Notice that (x+ y)
2
= p4k+m2p4k−1+2mp4

s2 and (2z)
2
= 4p4m

s2 where p, s are rationally

expressible and k,m are rational. Hence, x+ y and 2z are rationally expressible.

Notice that

(x+ y)
2

(2z)2
=

p4k +m2p4k−1 + 2mp4

s2
· s2

4p4m

=
k

4m
+

m

k
+

1

2

=
k2 + 4m2 + 2km

4km

It follows that (x+ y)
2

and (2z)
2

are commensurable but x + y and 2z are incom-

mensurable. By [10.36], (x+ y) + 2z is a binomial number.

Now notice that

x+ y

s
=

p2
√
k +mp2k−1/2

s

2z

s
=

2p2
√
m

s2

and so s is incommensurable with both x+ y and 2z.
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Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

p4k +m2p4k−1 + 2p4m− 4p4m

s2

=
p4k +m2p4k−1 − 2p4m

s2

=
p4

s2
·
(

k +
m2

k
− 2m

)

=
p4

ks2
·
(

k2 − 2mk +m2
)

=
p4

ks2
· (k −m)

2

and so h = p2

s
√
k
· (k −m). Finally, notice that

h

x+ y
=

sp2 · (k −m)
(

s
√
k
)(

p2
√
k +mp2k−1/2

)

=
k −m

k +m

and so h and x + y are commensurable. By [10.50], (x+ y) + 2z is a third binomial

number and a factor of n2.

Remark. [10.56] iff [10.62].

Proposition 10.63. FACTORS OF A SQUARE IV.

Let u = p√
2
·
√

1 + k√
1+k2

and v = p√
2
·
√

1− k√
1+k2

where p is rationally expressible,

k is rational, and
√
k is irrational.

If n = u+ v is a major number, then a fourth binomial number is a factor of n2.

Proof. Let n = u + v is a major number, and let s be rationally expressible. By

[10.39], u2 and v2 are incommensurable,
(

u2 + v2
)

is rational, and uv is medial.

Also let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv. Notice

that

(x+ y) + 2z =
u2 + 2uv + v2

s

=
n2

s
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We claim that (x+ y)+2z is a fourth binomial number such that its terms are x+ y

and 2z.

Notice that x + y = u2+v2

s . Since u2 + v2 is rational and s is rationally expressible,

x + y is rationally expressible. Also notice that 2z = p2

2s·
√
1+k2

, and so 2z is also

rationally expressible.

Notice that

(

x+ y

2z

)2

=

(

u2 + v2

s
· s

2uv

)2

=

(

u2 + v2

2uv

)2

=

(

p2

1
· 2 ·
√
1 + k2

p2

)2

= 4 ·
(

1 + k2
)

and so (x+ y)
2

and (2z)
2

are commensurable. Since k may be any rational number,

x+ y and 2z are incommensurable. By [10.36], (x+ y) + 2z is a binomial number.

Notice that

x+ y

s
=

u2 + v2

s2

=
p2

2s2
·
(

1 +
k√

1 + k2
+ 1− k√

1 + k2

)

=
p2

s2

Since p, s are rationally expressible, x+ y and s are commensurable.

Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

p4

s2
− p4

4s2 · (1 + k2)

=
4p4 ·

(

1 + k2
)

− p4

4s2 · (1 + k2)

=
p4

s2
· k2

1 + k2
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and so h = p2

s · k√
1+k2

. Therefore,

h

x+ y
=

p2

s
· k√

1 + k2
· s
p2

=
k√

1 + k2

Hence, x+y and h are incommensurable. By [10.51], (x+ y)+2z is a fourth binomial

number and a factor of n2.

Remark. [10.57] iff [10.63].

Proposition 10.64. FACTORS OF A SQUARE V.

Let

u =
p ·
√√

1 + k2 + k
√

2 · (1 + k2)

v =
p ·
√√

1 + k2 − k
√

2 · (1 + k2)

where p is rationally expressible, k is rational,
√
k is irrational, and 1 + k2 is not a

square number.

If n = u+ v is a RPSM number, then a fifth binomial number is a factor of n2.

Proof. By [Def. 10.9], n = u+ v is a RPSM number when u2 and v2 are incommen-

surable, u2 + v2 is a second medial number, and uv is rational. First, we wish to

show that n is a RPSM number.

Notice that

u2 =
p ·
(√

1 + k2 + k
)

2 · (1 + k2)

v2 =
p ·
(√

1 + k2 − k
)

2 · (1 + k2)

and so

u2

v2
=

p ·
(√

1 + k2 + k
)

2 · (1 + k2)
· 2 ·

(

1 + k2
)

p ·
(√

1 + k2 − k
)

=

√
1 + k2 + k√
1 + k2 − k
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If u2, v2 are commensurable, then

√

1 + k2 + k = q ·
(

√

1 + k2 − k
)

where q is rational. It follows that

√

1 + k2 − q ·
√

1 + k2 = −k − qk
√

1 + k2 · (1− q) = −k · (1 + q)

√

1 + k2 =
−k · (1 + q)

(1− q)

Since k, q are rational, the RHS is rational. But the LHS is irrational by hypothesis,

a contradiction. Hence, u2, v2 are incommensurable.

Also notice that

u2 + v2 =
p ·
(√

1 + k2 + k
)

+ p ·
(√

1 + k2 − k
)

2 · (1 + k2)

=
2p ·
√
1 + k2

2 · (1 + k2)

= p ·
√

1

1 + k2

and so u2 + v2 is a second medial number. Finally, notice that

uv =
p2 ·

(

√√
1 + k2 + k

)

·
(

√√
1 + k2 − k

)

2 · (1 + k2)

=
p2 ·
√
1 + k2 − k2

2 · (1 + k2)

=
p2

2 · (1 + k2)

and so uv is rational. It follows that n = u+ v is a RPSM number [10.40].

Let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv. Notice that

(x+ y) + 2z =
u2 + 2uv + v2

s

=
n2

s

We claim that (x+ y) + 2z is a fifth binomial number such that its terms are x + y

and 2z.

Notice that x+ y = u2+v2

s where s is rationally expressible. By the above, u2 + v2 =
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m2 where m2 is a second medial number. Hence, (x+ y)2 = m4

s2 , and so x + y is

rationally expressible. Since uv is rational, 2z = uv
s is rationally expressible.

Notice that

x+ y

2z
=

u2 + v2

uv

= p ·
√

1

1 + k2
· 2 ·

(

1 + k2
)

p2

=
2 ·
√
1 + k2

p

Since 1+ k2 is not a square number, x+ y and 2z are incommensurable. Also notice

that (x+ y)
2

and (2z)
2

are commensurable. By [10.36], (x+ y) + 2z is a binomial

number.

Notice that 2z
s = uv

s2 is rational, and so 2z and s are commensurable.

Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)2 − (2z)2 =

(

u2 + v2

s

)2

−
(uv

s

)2

=
u4 + 2u2v2 + v4 − u2v2

s2

=
u4 + u2v2 + v4

s2

or h =
√
u4+u2v2+v4

s . Then

h

x+ y
=

√
u4 + u2v2 + v4

s
· s

u2 + v2

=

√
u4 + u2v2 + v4

u2 + v2

=

√
4k2 + 3

2 ·
√
k2 + 1

If h and x + y are commensurable, then
√

4k2+3
k2+1 is rational for all k. But if k =

√
2,

then
√

4k2+3
k2+1 =

√
33
6 , a contradiction. Thus, h and x + y are incommensurable. By

[10.52], (x+ y) + 2z is a fifth binomial number and a factor of n2.

Remark. [10.58] iff [10.64].
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Proposition 10.65. FACTORS OF A SQUARE VI.

Let

u =
pm1/4

√
2
·
√

1 +
k√

1 + k2

v =
pm1/4

√
2
·
√

1− k√
1 + k2

where p is rationally expressible, k is rational,
√
k is irrational, 1+k2 is not a square

number, m1/4,
√
m are irrational but m is rational.

If n = u+ v is a RSSM number, then a sixth binomial number is a factor of n2.

Proof. By [Def. 10.8], n = u + v is a RSSM number when u and v are incommen-

surable, u2 and v2 are incommensurable, u2 + v2 and uv are each a second medial

numbers, and uv is incommensurable with u2 + v2.

We wish to show n is a RSSM number. Notice that

u2

v2
=

√
1 + k2 + k√
1 + k2 − k

By the proof of [10.64], u2, v2 are incommensurable. Notice that

u2 + v2 =
p2
√
m

2

uv =
p2

2
·
√

m

1 + k2

and so u2 + v2 and uv are second medial numbers.

Finally,
u2 + v2

uv
=
√

1 + k2

and so uv is incommensurable with u2 + v2. It follows that n = u + v is a RSSM

number [10.41].

Let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv. Notice that

(x+ y) + 2z =
u2 + 2uv + v2

s

=
n2

s

We claim that (x+ y) + 2z is a sixth binomial number such that its terms are x+ y

and 2z.

Notice that x + y = p2
√
m

2s and 2z = p2

2s ·
√

m
1+k2 , and so x + y and 2z are rationally

expressible. Since x+y
2z =

√
1 + k2, we find that x + y and 2z are incommensurable
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but (x+ y)
2

and (2z)
2

are commensurable. By [10.36], (x+ y) + 2z is a binomial

number.

Recall that p is rationally expressible. Notice that

x+ y

p
=

p
√
m

2s

2z

p
=

p

2s
·
√

m

1 + k2

and so p is incommensurable to both x+ y and 2z.

Let h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

p4m

4s2
− p4m

4s2 · (1 + k2)

=
p4m ·

(

1 + k2
)

− p4m

4s2 · (1 + k2)

=
p4k2m

4s2 · (1 + k2)

and so h = p2k
2s ·

√

m
1+k2 . Finally,

h

x+ y
=

p2k

2s
·
√

m

1 + k2
· 2s

p
√
m

=
pk√
1 + k2

and so h and x+y are incommensurable. By [10.53], (x+ y)+2z is a sixth binomial

number and a factor of n2.

Remark. [10.59] iff [10.65].

Remark. We may summarize the previous six propositions as: let v2 = pr where p

is rationally expressible. Then:

(1) If v is a medial number (and hence v2 is a second medial number), then r is a

first binomial.

(2) If v is a first bimedial number, then r is a second binomial.

(3) If v is a second bimedial number, then r is a third binomial.

(4) If v is a major number, then r is a fourth binomial.

(5) If v is a RPSM number, then r is a fifth binomial.

(6) If v is a RSSM number, then r is a sixth binomial.
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Proposition 10.66. NUMBERS COMMENSURABLE WITH BINOMIAL NUM-

BERS ARE BINOMIAL.

Suppose a = m + n is a binomial number where a is a first, second, third, fourth,

fifth, or sixth binomial number. Also suppose that a and c are commensurable. We

claim that c is a binomial number of the same type as a.

Proof. Our hypothesis and claim are stated above. Since a and c are commen-

surable, c = qa where q is rational. Since a is a binomial number, by [10.36] a

contains a rationally expressible term p. Since q is rational, qp is rationally ex-

pressible. Since q has no effect on any other component of a, c is a binomial number

of the same type as a.

Proposition 10.67. NUMBERS COMMENSURABLE WITH BIMEDIAL NUM-

BERS ARE BIMEDIAL.

Suppose a = m+n is a bimedial number where a is a first or second bimedial num-

ber. Also suppose that a and c are commensurable. We claim that c is a bimedial

number of the same type as a.

Proof. The proof is similar to [10.66] as is left as an exercise to the reader.

Proposition 10.68. NUMBERS COMMENSURABLE WITH MAJOR NUMBERS

ARE MAJOR.

Suppose a = m+n is a major number. Also suppose that a and c are commensurable.

We claim that c is a major number.

Proof. The proof is similar to [10.66] as is left as an exercise to the reader.

Proposition 10.69. NUMBERS COMMENSURABLE WITH RPSM NUMBERS

ARE RPSM.

Suppose a = m + n is a RPSM number. Also suppose that a and c are commensu-

rable. We claim that c is a RPSM number.

Proof. The proof is similar to [10.66] as is left as an exercise to the reader.
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Proposition 10.70. NUMBERS COMMENSURABLE WITH RSSM NUMBERS

ARE RSSM.

Suppose a = m + n is a RSSM number. Also suppose that a and c are commensu-

rable. We claim that c is a RSSM number.

Proof. The proof is similar to [10.66] as is left as an exercise to the reader.

Proposition 10.71. SQUARE ROOT OF THE SUM OF A RATIONAL AND A

SECOND MEDIAL NUMBER.

If kp2 is rational and p2
√
m is a second medial number, then p ·

√

k +
√
m is either

a bimedial number, a binomial number, a major number, or a RPSM number.

Proof. Let su = kp2 and sv = p2
√
m where s is rationally expressible. Notice that

u2 = k2p4

s2 and v2 = p4m
s2 are rational, and so u, v are rationally expressible. Since

u

v
=

k√
m

u, v are incommensurable but u2, v2 are commensurable. By [10.36], u + v is a

binomial number.

First case: v < u. Since u
s = kp2

s2 , u and s are commensurable. If
√
u2 − v2 and u are

commensurable, then u+ v is a first binomial number. Otherwise, u+ v is a fourth

binomial number.

Hence,
√

s · (u+ v) is a binomial number [10.54] or a major number [10.57].

Second case: u < v. As above, u and s are commensurable. If
√
v2 − u2 and u are

commensurable, then u+ v is a second binomial number. Otherwise, u+ v is a fifth

binomial number.

Hence,
√

s · (u+ v) is a first bimedial number [10.55] or a RPSM number [10.58].

Proposition 10.72. SQUARE ROOT OF THE SUM OF TWO INCOMMENSU-

RABLE SECOND MEDIAL NUMBERS.

If p2
√
k and p2

√
m are incommensurable second medial numbers, then p·

√√
k +
√
m

is either a second bimedial number or a RSSM number.
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Proof. Let u = p2
√
k and v = p2

√
m. Notice that u, v are rationally expressible and

incommensurable and that u2, v2 are commensurable. By [10.36], u+v is a binomial

number.

Suppose that
√
u2 − v2 is commensurable with u. Then u + v is a third binomial

number, and by [10.56]
√

s · (u+ v) is a second bimedial number.

Otherwise, u+ v is a sixth binomial number, and by [10.59],
√

s · (u+ v) is a RSSM

number.

Proposition 10.73. APOTOME NUMBERS I.

Let x > y be rationally expressible such that x and y are incommensurable but x2

and y2 are commensurable. By [Def. 10.10], x− y is an apotome number. Both x− y

and (x− y)
2

are irrational.

Proof. Let x = p
√
k and y = q

√
m such that k,m, p, q are rational,

√
k,
√
m,
√

k
m ,

and
√
km are irrational. Since

x2

y2
=

p2k

q2m

x2, y2 are commensurable but x, y are incommensurable and rationally expressible.

Since x2, y2 are commensurable, x2 = qy2 where q is rational. It follows that x2 +

y2 = y2 · (q + 1). Since y is rationally expressible, x2 + y2 is rational.

We claim that x− y and (x− y)2 are irrational.

Notice that

x2 + y2

2xy
=

p2k + p2m

2pq
√
km

x2 − 2xy + y2

2xy
=

p2k + p2m− 2pq
√
km

2pq
√
km

(x− y)
2

2xy
=

p2k + p2m− 2pq
√
km

2pq
√
km

(x− y)
2

=
xy ·

(

p2k + p2m− 2pq
√
km
)

pq
√
km

Since
√
km is irrational, (x− y)

2
is irrational. By [Lemma 10.21.0], x − y is also

irrational, which completes the proof.
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Proposition 10.74. FIRST APOTOME OF A MEDIAL NUMBER.

If x = pk1/4 and y = pk3/4 where p is rationally expressible, k1/4,
√
k are irrational,

and k is rational, then x− y, the first apotome of a medial number, is irrational.

Proof. Clearly, x, y are medial numbers. If 0 < k < 1, then x > y. Since y
x =
√
k, we

find that x, y are incommensurable but x2, y2 are commensurable. Also, xy = p2k is

rational. By [Def. 10.13], x− y is a first apotome of a medial.

Consider x2 + y2 = p2
√
k · (1 + k). Since p2 · (1 + k) is rational and

√
k is irrational,

x2 + y2 is irrational by [Lemma 10.10.1]. Since 2xy is rational, x2 + y2 and 2xy are

incommensurable. That is

x2 + y2

2xy
=

t

1

where t is irrational. It follows that

x2 − 2xy + y2

2xy
=

t− 1

1

The RHS remains irrational, and so (x− y)
2

and 2xy are incommensurable. Since

2xy is rational, (x− y)
2

is irrational. By [Lemma 10.21.0], x− y is irrational, which

completes the proof.

Proposition 10.75. SECOND APOTOME OF A MEDIAL NUMBER.

If

x = pk1/4

y =
p
√
m

k1/4

where p is rationally expressible, k1/4,
√
k,
√
m,
√
km are irrational, k

m 6= r2

s2 for nat-

ural numbers r, s, and k,m are rational, then x− y, the second apotome of a medial

number, is irrational.

Proof. Clearly, x, y are medial numbers. We choose m such that m > k. Since x
y =

√

k
m , x, y are incommensurable but x2, y2 are commensurable. Finally, xy = p2

√
m

is a second medial number. By [Def. 10.14], a− b is a second apotome of a medial.

Let s be rationally expressible where su = x2 + y2 and sv = 2xy. Then su = p2k+p2m√
k

and sv = 2p2
√
m; notice that each are second medial numbers.

Since 2xy = 2p2
√
m and x2 + y2 = p2k+p2m√

k
,

x2 + y2

2xy
=

k +m

2
√
km
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Since
√
km is irrational by hypothesis, x2+y2, 2xy are incommensurable. Therefore,

u, v are also incommensurable. Notice that

u2

v2
=

(k +m)
2

4km

and so u2, v2 are commensurable. Since u2 =
(p2k+p2m)2

k and v2 = 4p4m are rational,

u, v are rationally expressible. By [10.73], u − v is an apotome number and hence

irrational.

It follows that s · (u− v) = (x− y)
2

is irrational, and by [Lemma 10.21.0], x − y is

also irrational.

Proposition 10.76. CONSTRUCTION OF A MINOR NUMBER.

If

x =
p√
2
·
√

1 +
k√

1 + k2

y =
p√
2
·
√

1− k√
1 + k2

then x− y is a minor number and is irrational.

Proof. Notice that x, y are constructed using [10.33]. Since

(

x

y

)2

=

√
1 + k2 + k√
1 + k2 − k

By the proof of [10.64], x2, y2 are incommensurable. But x2+ y2 = p2, and so x2+ y2

is rational. Finally,

xy =
p2

2
· 1√

1 + k2

and so xy is a second medial number. By [Def. 10.15], x− y is a minor number.

Since x2 + y2 is rational and xy is a second medial number,

(x− y)
2

= x2 + y2 − 2xy

where the RHS is irrational, and so (x− y)2 is irrational. By [Lemma 10.21.0], x−y
is irrational, which completes the proof.
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Proposition 10.77. CONSTRUCTION OF A WR-MEDIAL.

If

x =
p ·
√√

1 + k2 + k
√

2 · (1 + k2)

y =
p ·
√√

1 + k2 − k
√

2 · (1 + k2)

then x− y is a WR-medial and is irrational.

Proof. Notice that x, y are constructed using [10.34]. Since

(

x

y

)2

=

√
1 + k2 + k√
1 + k2 − k

By the proof of [10.64], x2, y2 are incommensurable. But x2 + y2 = p2 · 1√
1+k2

, and

so x2 + y2 is a second medial number. Finally, since

2xy =
p2

1 + k2

2xy is rational. By [Def. 10.16], a− b is a WR-medial.

Since x2 + y2 is a second medial and xy is rational, x2 + y2 and 2xy are incommen-

surable. That is

x2 + y2

2xy
=

t

1

where t is irrational. It follows that

x2 − 2xy + y2

2xy
=

t− 1

1

The RHS remains irrational, and so (x− y)2 and 2xy are incommensurable. Since

2xy is rational, (x− y)
2

is irrational. By [Lemma 10.21.0], x− y is irrational, which

completes the proof.



CHAPTER 10. IRRATIONAL NUMBERS 452

Proposition 10.78. CONSTRUCTION OF A WM-MEDIAL.

If

x =
pm1/4

√
2
·
√

1 +
k√

1 + k2

y =
pm1/4

√
2
·
√

1− k√
1 + k2

then x− y is a WM-medial and is irrational.

Proof. Notice that x, y are constructed using [10.34]. Since

(

x

y

)2

=

√
1 + k2 + k√
1 + k2 − k

By the proof of [10.64], x2, y2 are incommensurable. Notice that x2 + y2 = p2
√
m

and

2xy = p2 ·
√

m

1 + k2

Hence, both x2 + y2 and 2xy are second medial numbers. Finally, notice that

x2 + y2

2xy
=

√

1 + k2

and so x2+y2 and 2xy are incommensurable. By [Def. 10.17], x−y is a WM-medial.

Suppose su = x2 + y2 and sv = 2xy where s is rationally expressible. Then

u2 =
p4m

s

v2 =
p4m

s · (1 + k2)

It follows that u, v are rationally expressible and u2, v2 are commensurable. How-

ever,

v

u
=

1√
1 + k2

and so u, v are incommensurable. By [10.73], u − v is an apotome and irrational.

Since s (u− v) = (x− y)2, we find that (x− y)2 is irrational. By [Lemma 10.21.0],

x− y is irrational, which completes the proof.

Proposition 10.79. APOTOMES ARE UNIQUE.



CHAPTER 10. IRRATIONAL NUMBERS 453

Let x− y be an apotome. If x− y = a− b, then x = a and y = b.

Proof. Suppose x− y = a− b but x > a. Then

x− y = a− b

(x− y)
2

= (a− b)
2

x2 − 2xy + y2 = a2 − 2ab+ b2

(

x2 + y2
)

−
(

a2 + b2
)

= 2xy − 2ab

By the proof of [10.73], the LHS is rational. By [10.26], the RHS is irrational, a

contradiction. A similar contradiction follows if we assume x < a. Thus, x = a. The

case of y = b follows mutatis mutandis.

Proposition 10.80. FIRST APOTOMES OF A MEDIAL NUMBER ARE UNIQUE.

Let x − y be a first apotome of a medial number. If x − y = a − b, then x = a and

y = b.

Proof. The proof is similar to [10.79] as is left as an exercise to the reader.

Proposition 10.81. SECOND APOTOMES OF A MEDIAL NUMBER ARE UNIQUE.

Let x− y be a second apotome of a medial number. If x− y = a− b, then x = a and

y = b.

Proof. Our hypothesis and claim are stated above. Suppose x− y = a− b but x > a.

Let su = x2 + y2, sv = 2xy, su′ = a2 + b2, and sv′ = 2ab.

By [10.75], u, v are incommensurable and rationally expressible but u2, v2 are com-

mensurable. By [10.73], u− v is an apotome number.

Similarly, u′ − v′ is an apotome number such that u− v = u′ − v′. By [10.79], u = u′

and v = v′; this contradicts our hypothesis that x > a.

A similar contradiction occurs if we assume x < a. Thus, x = a, and so y = b.
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Proposition 10.82. MINOR NUMBERS ARE UNIQUE.

Let x− y be a minor number. If x− y = a− b, then x = a and y = b.

Proof. The proof is similar to [10.79] as is left as an exercise to the reader.

Proposition 10.83. WR-MEDIALS ARE UNIQUE.

Let x− y be a WR-medial number. If x− y = a− b, then x = a and y = b.

Proof. The proof is similar to [10.79] as is left as an exercise to the reader.

Proposition 10.84. WM-MEDIALS ARE UNIQUE.

Let x− y be a WM-medial number. If x− y = a− b, then x = a and y = b.

Proof. The proof is similar to [10.81] as is left as an exercise to the reader.

10.4 Book X, Propositions 85-115

Proposition 10.85. CONSTRUCTION OF A FIRST APOTOME.

Let p be rationally expressible and a > b. Then n = a− b is a first apotome number

when a and p are commensurable and a2 = b2 + h2 where h is commensurable with

a.

Proof. Construct kp such that k is rational (and so p, kp are commensurable). Also

construct m2, n2 such that m,n are natural numbers but m2 − n2 6= d2 for any

natural d. Let

m2

m2 − n2
=

k2p2

b2

b = kp ·
√

m2 − n2

m2

b = kp ·
√

1− c2

where c = n
m . We claim that n = a− b is a first apotome number where a = kp and

b = kp ·
√
1− c2.
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Clearly, a, b are incommensurable and rationally expressible while a2, b2 are com-

mensurable. By [10.73], a− b is an apotome number.

Notice that a, p are commensurable by hypothesis.

Let h2 = a2 − b2. Then h =
√
a2 − b2 and

m2 − n2

m2
=

b2

a2

−n2

m2
=

b2 − a2

a2

m2

n2
=

a2

a2 − b2

m

n
=

a

h

and so a, h are commensurable. This completes the construction.

Proposition 10.86. CONSTRUCTION OF A SECOND APOTOME.

Let p be rationally expressible and a > b. Then n = a− b is a second apotome when

b and p are commensurable, and a2 = b2 + h2 where h is commensurable with a.

Proof. Let p be rationally expressible and a > b. Construct kp such that k is rational

(and so p, kp are commensurable). Also construct m2, n2 such that m,n are natural

numbers but m2 − n2 6= d2 for any natural d. Let

m2 − n2

m2
=

k2p2

a2

a = kp ·
√

m2

m2 − n2

a =
kp√
1− c2

where c = n
m . We claim that n = a − b is a first apotome number where a = kp√

1−c2

and b = kp.

Clearly, a, b are incommensurable and rationally expressible but a2, b2 are commen-

surable. By [10.73], a− b is an apotome number.

Notice that b, p are commensurable by hypothesis.
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Let h2 = a2 − b2. Then h =
√
a2 − b2. Notice that

m2 − n2

m2
=

b2

a2

−n2

m2
=

b2 − a2

a2

m2

n2
=

a2

h2

m

n
=

a

h

and so a, h are commensurable. This completes the construction.

Proposition 10.87. CONSTRUCTION OF A THIRD APOTOME.

Let p be rationally expressible and a > b. Then n = a − b is a third apotome when

both a and b are incommensurable with p, and a2 = b2 + h2 where h is commensu-

rable with a.

Proof. Construct qm2 and q ·
(

m2 − n2
)

such that, if divided, neither p, qm2, nor

q ·
(

m2 − n2
)

have a ratio which equals r2

s2 where r, s are natural numbers. Let

p

qm2
=

p2

a2

a2 = pqm2

a = m · √pq

and

qm2

q · (m2 − n2)
=

a2

b2

b2 =
qa ·

(

m2 − n2
)

m2

b =

√

qa · (m2 − n2)

m

We claim that n = a − b is a third apotome number where a = m · √pq and b =√
qa·(m2−n2)

m .

Clearly, a, b are incommensurable and rationally expressible but a2, b2 are commen-

surable. By [10.73], a− b is an apotome number.

Also notice that a, p and b, p are incommensurable.
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Let h2 = a2 − b2. Then h =
√
a2 − b2. Notice that

m2

m2 − n2
=

a2

b2

m2 − n2

m2
=

b2

a2

−n2

m2
=

b2 − a2

a2

n2

m2
=

h2

a2

n

m
=

h

a

and so a, h are commensurable. This completes the construction.

Remark. We may also write a third apotome as n = mp
√
k ·
(

1−
√
1− c2

)

.

Proposition 10.88. CONSTRUCTION OF A FOURTH APOTOME.

Let p be rationally expressible and a > b. Then n = a− b is a fourth apotome when

a and p are commensurable, and a2 = b2 + h2 where h is incommensurable with a.

Proof. Construct kp such that k is rational (and so p, kp are commensurable). Also

construct m,n such that neither m, n, nor m+n have a ratio which equals r2

s2 where

r, s are natural numbers. Let

m+ n

n
=

k2p2

b2

b2 =
nk2p2

m+ n

b =
kp√
1 + c2

where c = m
n . We claim that n = a − b is a fourth apotome number where a = kp

and b = kp√
1+c2

.

Clearly, a, b are incommensurable and rationally expressible but a2, b2 are commen-

surable. By [10.73], a− b is an apotome number. Also, a, p are commensurable.
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Let h2 = a2 − b2. Then h =
√
a2 − b2. Notice that

m+ n

n
=

a2

b2

n

m+ n
=

b2

a2

−m
m+ n

=
b2 − a2

a2

m

m+ n
=

h2

a2

√

m

m+ n
=

h

a

By hypothesis, we find that a, h are incommensurable. This completes the construc-

tion.

Proposition 10.89. CONSTRUCTION OF A FIFTH APOTOME.

Let p be rationally expressible and a > b. Then n = a− b is a fifth apotome when b

and p are commensurable, and a2 = b2 + h2 where h is incommensurable with a.

Proof. Construct kp such that k is rational (and so p, kp are commensurable). Also

construct m,n such that neither m, n, nor m+n have a ratio which equals r2

s2 where

r, s are natural numbers. Let

n

m+ n
=

k2p2

a2

a = kp ·
√

m+ n

n

a = kp ·
√
1 + c

where c = m
n . We claim that n = a−b is a fifth apotome number where a = kp·

√
1 + c

and b = kp.

Clearly, a, b are incommensurable and rationally expressible but a2, b2 are commen-

surable. By [10.73], a− b is an apotome number. Also, b, p are commensurable.

Let h2 = a2 − b2. Then h =
√
a2 − b2. Notice that

n

m+ n
=

b2

a2

−m
m+ n

=
b2 − a2

a2
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m

m+ n
=

h2

a2

√

m

m+ n
=

h

a

By hypothesis, we find that a, h are incommensurable. This completes the construc-

tion.

Proposition 10.90. CONSTRUCTION OF A SIXTH APOTOME.

Let p be rationally expressible and a > b. Then n = a − b is a sixth apotome when

both a and b are incommensurable with p, and a2 = b2 + h2 where h is incommen-

surable with a.

Proof. Construct m+ n and n such that m+n
n 6= r2

s2 for any natural r, s. Let

p

m+ n
=

p2

a2

a2 = p · (m+ n)

a =
√

p · (m+ n)

and

m+ n

n
=

a2

b2

b2 =
a2n

m+ n

b = a ·
√

n

m+ n

b =
a√
1 + c

where c = m
n . We claim that n = a − b is a sixth apotome number where a =

√

p · (m+ n) and b = a√
1+c

.

Clearly, a, b are incommensurable and rationally expressible but a2, b2 are com-

mensurable. By [10.73], a − b is an apotome number. Also, both a, p and b, p are

incommensurable.
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Let h2 = a2 − b2. Then h =
√
a2 − b2. Notice that

m+ n

n
=

a2

b2

n

m+ n
=

b2

a2

−m
m+ n

=
b2 − a2

a2

m

m+ n
=

h2

a2

√

m

m+ n
=

h

a

By hypothesis, we find that a, h are incommensurable. This completes the construc-

tion.

Remark. We may also write n = p
√
k − p

√
m.

Proposition 10.91. ROOT OF A FIRST APOTOME.

Given a rationally expressible p and first apotome

n = kp− kp ·
√

1− c2

√
pn is an apotome.

Proof. Let

u+ v = kp

uv =
1

4
· k2p2 ·

(

1− c2
)

where c, k is rational. Then u = kp
2 · (1− c) and v = kp

2 · (1 + c). Let a2 = pu and

b2 = pv; we claim that a− b =
√
pn is an apotome number.

Since uv = 1
4 · k2p2 ·

(

1− c2
)

,

u
1
2kp
√
1− c2

=
1
2kp
√
1− c2

v

a2

1
2kp

2
√
1− c2

=
1
2kp

2
√
1− c2

b2
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and so ab = 1
2kp

2
√
1− c2. It follows that

(a− b)2 = a2 + b2 − 2ab

= p · (u+ v)− 1

2
kp2
√

1− c2

= kp2 − kp2
√

1− c2

It follows that a− b =
√
np.

Notice that a2 = kp2

2 · (1− c) and b2 = kp2

2 · (1 + c) are rational, and so a, b are ratio-

nally expressible. Clearly, a2, b2 are commensurable but a, b are incommensurable.

By [10.73], a− b is an apotome. Therefore,

n = p ·
(

√

k

2
· (1− c)−

√

k

2
· (1 + c)

)

which completes the construction.

Remark. n = p ·
(

√

k
2 · (1− c)−

√

k
2 · (1 + c)

)

is a root of the equation

x4 − 2kp2 · x2 + c2k2p4 = 0

Proposition 10.92. ROOT OF A SECOND APOTOME.

Given a rationally expressible p and second apotome

n =
kp√
1− c2

− kp

√
pn is a first apotome of a medial.

Proof. Let

u+ v =
kp√
1− c2

uv =
1

4
· k2p2

where c, k is rational. Then u = kp·(1+c)

2·
√
1−c2

and v = kp·(1−c)

2·
√
1−c2

. Let a2 = pu and b2 = pv;

we claim that
√
pn = a− b is a first apotome of a medial.

Since uv = 1
4 · k2p2,

u
1
2kp

=
1
2kp

v

a2

1
2kp

2
=

1
2kp

2

b2



CHAPTER 10. IRRATIONAL NUMBERS 462

and so ab = 1
2kp

2. It follows that

(a− b)2 = a2 + b2 − 2ab

= p · (u+ v)− 1

2
kp2

= p ·
(

kp√
1− c2

− kp

)

and so a− b =
√
np.

By the above, a, b are medial numbers where a, b are incommensurable but a2, b2

are commensurable. Also notice that

ab = p ·
√
uv

=
kp2

2

and so ab is rational. By [Def. 10.11], a − b is a first apotome of a medial. This

completes the construction.

Remark. We may also write the above as

n = p ·

√

k

2
·
(

1 + c

1− c

)1/2

− p ·

√

k

2
·
(

1− c

1 + c

)1/2

which is a root of the equation

x4 − 2kp2√
1− c2

· x2 +
c2

1− c2
· k2p4 = 0

Proposition 10.93. ROOT OF A THIRD APOTOME.

Given a rationally expressible p and third apotome

n = p
√
k − p

√
k ·
√

1− c2

√
pn is a second apotome of a medial.

Proof. Let

u+ v = p
√
k

uv =
1

4
kp2 ·

(

1− c2
)

where c, k is rational. Then u = p
√
k

2 · (1 + c) and v = p
√
k

2 · (1− c). Let a2 = pu and

b2 = pv. We claim that a− b =
√
pn is a second apotome of a medial.



CHAPTER 10. IRRATIONAL NUMBERS 463

Since uv = 1
4kp

2 ·
(

1− c2
)

,

u
1
2p
√

k · (1− c2)
=

1
2p
√

k · (1− c2)

v

a2

1
2p

2
√

k · (1− c2)
=

1
2p

2
√

k · (1− c2)

b2

and so ab = 1
2p

2
√

k · (1− c2). It follows that

(a− b)2 = a2 + b2 − 2ab

= pu+ pv − p2
√

k · (1− c2)

=
p2
√
k

2
· (1 + c) +

p2
√
k

2
· (1− c)− p2

√

k · (1− c2)

= p2
√
k − p2

√
k ·
√

1− c2

or (a− b)2 = np. It follows that a− b =
√
np.

Notice that u, v are second medial numbers. It follows that a, b are medial numbers

where a > b. Since u, v are commensurable, a2, b2 are commensurable. It also

follows that a, b are incommensurable. Finally, ab is a second medial number. By

[Def. 10.12], a− b is a second apotome of a medial.

Remark. We may also write n = p ·
√√

k
2 · (1 + c) − p ·

√√
k
2 · (1− c) which is a root

of the equation

x4 − 2p2
√
k · x2 + kc2p4 = 0

Proposition 10.94. ROOT OF A FOURTH APOTOME.

Given a rationally expressible p and fourth apotome

n = kp− kp√
1 + c

√
pn is a minor number.

Proof. Let

u+ v = kp

uv =
1

4
· k

2p2

1 + c

where c, k is rational. Then u = kp
2 ·
(

1 +
√
c√

1+c

)

and v = kp
2 ·
(

1−
√
c√

1+c

)

. Let a2 = pu

and b2 = pv. We claim that a− b =
√
np is a minor number.
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Since uv = 1
4 ·

k2p2

1+c ,

u
1
2 ·

kp√
1+c

=

1
2 ·

kp√
1+c

v

a2

1
2 ·

kp2

√
1+c

=

1
2 ·

kp2

√
1+c

b2

and so ab = 1
2 ·

kp2

√
1+c

. It follows that

(a− b)
2

= a2 + b2 − 2ab

=
kp2

2
·
(

1 +

√
c√

1 + c

)

+
kp2

2
·
(

1−
√
c√

1 + c

)

− kp2√
1 + c

= kp2 − kp2√
1 + c

= p ·
(

kp− kp√
1 + c

)

and so (a− b)
2
= np, or a− b =

√
np.

Notice that
u

v
=

√
1 + c+

√
c√

1 + c−√c =
a2

b2

and so a2, b2 are incommensurable. By [Lemma 10.21.0], a, b are incommensurable.

Since ab = 1
2 ·

kp2

√
1+c

, ab is a second medial number. Finally, a2 + b2 = kp2, and so

a2 + b2 is rational. By [Def. 10.13], a− b is a minor number.

Remark. We may also write n = p ·
√

k
2 ·
(

1 + c
1+c

)

− p ·
√

k
2 ·
(

1− c
1+c

)

which is a

root of the equation

x4 − 2kp2 · x2 +
c

1 + c
· k2p4 = 0

Proposition 10.95. ROOT OF A FIFTH APOTOME.

Given a rationally expressible p and fifth apotome

n = kp ·
√
1 + c− kp

√
pn is a WR-medial.

Proof. Let

u+ v = kp ·
√
1 + c

uv =
1

4
· k2p2
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where c, k is rational. Then u = kp
2 ·
(√

1 + c+
√
c
)

and v = kp
2 ·
(√

1 + c−√c
)

. Let

a2 = pu and b2 = pv. We claim that a− b =
√
np is a WR-medial.

Since uv = 1
4 · k2p2,

u
1
2 · kp

=
1
2 · kp
v

a2

1
2 · kp2

=
1
2 · kp2
b2

and so ab = 1
2 · kp2. It follows that

(a− b)
2

= a2 + b2 − 2ab

=
kp2

2
·
(√

1 + c+
√
c
)

+
kp2

2
·
(√

1 + c−
√
c
)

− kp2

= kp2 ·
√
1 + c− kp2

= p ·
(

kp ·
√
1 + c− kp

)

and so (a− b)
2
= np, or a− b =

√
np.

Since u, v are incommensurable, a2, b2 are incommensurable. By [Lemma 10.21.0],

a, b are incommensurable. Since a2 + b2 = kp2 ·
√
1 + c, a2 + b2 is a second medial

number. Finally, 2ab = kp2 is rational. By [Def. 10.14], a− b is a WR-medial.

Remark. We may also write n = p·
√

k
2 ·
(√

1 + c+
√
c
)

−p·
√

k
2 ·
(√

1 + c−√c
)

which

is a root of the equation

x4 − 2kp2 ·
√
1 + c · x2 + ck2p4 = 0

Proposition 10.96. ROOT OF A SIXTH APOTOME.

Given a rationally expressible p and sixth apotome

n = p
√
k − p

√
m

√
pn is a WM-medial.

Proof. Let

u+ v = p
√
k

uv =
1

4
mp2
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where c, k,m are rational such that k
m 6= r2

s2 for natural numbers r, s. Then u =
p
2 ·
(√

k +
√
k −m

)

and v = p
2 ·
(√

k −
√
k −m

)

. Let a2 = pu and b2 = pv. We claim

that a− b =
√
np is a WM-medial.

Since uv = 1
4mp2,

u
1
2 · p
√
m

=
1
2 · p
√
m

v

a2

1
2 · p2

√
m

=
1
2 · p2

√
m

b2

and so ab = 1
2 · p2

√
m. It follows that

(a− b)
2

= a2 + b2 − 2ab

=
p2

2
·
(√

k +
√
k −m

)

+
p2

2
·
(√

k −
√
k −m

)

− p2
√
m

= p2
√
k − p2

√
m

= p ·
(

p
√
k − p

√
m
)

and so (a− b)
2
= np. It follows that a− b =

√
np.

Since u > v, a > b. Since u, v are incommensurable, a2, b2 are incommensurable. By

[Lemma 10.21.0], a, b are incommensurable. Since a2+b2 = p2
√
k, a2+b2 is a second

medial number. Similarly, 2ab = p2
√
m is also a second medial number. Finally,

a2 + b2

2ab
=

√

k

m

By hypothesis, a2 + b2 and 2ab are incommensurable. By [Def. 10.15], a − b is a

WM-medial.

Remark. We may also write n = p ·
√

1
2 ·
(√

k +
√
k −m

)

− p ·
√

1
2 ·
(√

k −
√
k −m

)

which is a root of the equation

x4 − 2p2
√
k · x2 + (k −m) p4 = 0

Proposition 10.97. ROOTS OF THE SQUARE OF AN APOTOME.

If s is rationally expressible and p− p
√
k is an apotome, then

(

p− p
√
k
)2

s

is a first apotome.
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Proof. Let x, y, z be real numbers such that sx = p2, sy = kp2, 2sz = 2p2
√
k where√

k is irrational but k is rational. Hence

(x+ y)− 2z =

(

p− p
√
k
)2

s

We claim that (x+ y)− 2z is a first apotome.

Notice that (x+ y)
2
= p4·(1+k)2

s2 , and so x + y is rationally expressible. Since 4z2 =
4p4k
s2 , 2z is also rationally expressible. Also

x+ y

2z
=

(1 + k)

2
√
k

Hence, x + y and 2z are incommensurable while (x+ y)
2

and (2z)
2

are commensu-

rable. By [Def. 10.11], (x+ y)− 2z is an apotome.

Since x+y
s = p2·(1+k)

s2 , x+ y and s are commensurable.

Suppose h =

√

(x+ y)2 − (2z)2. Then (x+ y)2 = (2z)2 + h2. Notice that

(x+ y)
2 − (2z)

2
=

p4 · (1 + k)2 − 4p4k

s2

=
p4 · (k − 1)2

s2

and so h = p2·(k−1)
s . Then

x+ y

h
=

k + 1

k − 1

and so x + y and h are commensurable. By [Def. 10.10], (x+ y) − 2z is a first

apotome.

Remark. (x+ y)− 2z = p2

s ·
(

(1 + k)− 2
√
k
)

Proposition 10.98. ROOTS OF THE SQUARE OF A FIRST APOTOME OF A

MEDIAL.

If s is rationally expressible and pk1/4 − pk3/4 is a first apotome of a medial, then

(

pk1/4 − pk3/4
)2

s

is a second apotome.
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Proof. Let x, y, z be real numbers such that sx = p2
√
k, sy = p2k3/2, and 2sz = 2p2k

where
√
k is irrational but k is rational and p is rationally expressible. Hence

(x+ y)− 2z =

(

pk1/4 − pk3/4
)2

s

We claim that (x+ y)− 2z is a second apotome.

Notice that (x+ y)2 = p4k·(k+1)2

s2 and (2z)2 = 4k2p4

s2 ; it follows that x + y and 2z are

rationally expressible. Also
x+ y

2z
=

k + 1

2
√
k

and so x + y, 2z are incommensurable but (x+ y)2, (2z)2 are commensurable. By

[Def. 10.11], (x+ y)− 2z is an apotome.

Notice that 2z
s = 2p2k

s2 and so 2z and s are commensurable.

Suppose h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

p4k · (k + 1)
2 − 4k2p4

s2

=
p4k · (k − 1)

2

s2

and so h = p2
√
k·(k−1)
s . Then

x+ y

h
=

p2
√
k · (1 + k)

p2
√
k · (k − 1)

=
k + 1

k − 1

and so x+ y, h are commensurable. By [Def. 10.10], x− y is a second apotome.

Remark. (x+ y)− 2z = p2

s ·
(√

k · (1 + k)− 2k
)
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Proposition 10.99. ROOTS OF THE SQUARE OF A SECOND APOTOME OF A

MEDIAL.

If s is rationally expressible and pk1/4 − p
√
m

k1/4 is a second apotome of a medial, then

(

pk1/4 − p
√
m

k1/4

)2

s

is a third apotome.

Proof. Let x, y, z be real numbers such that sx = p2
√
k, sy = p2 · m√

k
, and 2sz =

2p2
√
m where

√
k is irrational but k is rational and p is rationally expressible.

Hence

(x+ y)− 2z =

(

pk1/4 − p
√
m

k1/4

)2

s

We claim that (x+ y)− 2z is a third apotome.

Notice that (x+ y)2 = p4·(k+m)2

ks2 and (2z)2 = 4mp4

s2 ; it follows that x + y and 2z are

rationally expressible. Also
x+ y

2z
=

k +m

2
√
km

and so x + y, 2z are incommensurable but (x+ y)
2
, (2z)

2
are commensurable. By

[Def. 10.11], (x+ y)− 2z is an apotome.

Notice that

x+ y

s
=

p2 · (k +m)

s2
√
k

2z

s
=

2p2
√
m

s2

and so x+ y and 2z are each incommensurable with s.

Suppose h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

p4 ·
(

k2 − 2km+m2
)

ks2

=
p4 · (k −m)

2

ks2

and so h = p2 · k−m
s
√
k

. Then

x+ y

h
=

p2 · (k +m)

s
√
k

· s
√
k

p2 · (k −m)

=
k +m

k −m

and so x, h are commensurable. By [Def. 10.10], x− y is a third apotome.
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Remark. (x+ y)− 2z = p2

s ·
(

k+m√
k
− 2
√
m
)

.

Proposition 10.100. ROOTS OF THE SQUARE OF A SECOND APOTOME OF

A MEDIAL.

If s is rationally expressible and p√
2
·
√

1 + k√
1+k2

− p√
2
·
√

1− k√
1+k2

is a minor

number, then
(

p√
2
·
√

1 + k√
1+k2

− p√
2
·
√

1− k√
1+k2

)2

s

is a fourth apotome.

Proof. Let

u =
p√
2
·
√

1 +
k√

1 + k2

v =
p√
2
·
√

1− k√
1 + k2

Also let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv where
√
k

is irrational but k is rational and p is rationally expressible.

Hence

(x+ y)− 2z =
(u− v)

2

s

We claim that (x+ y)− 2z is a fourth apotome.

Notice that (x+ y)2 = p4

s2 and (2z)2 = p4

s2·(1+k2) ; it follows that x + y and 2z are

rationally expressible. Also
(

x+ y

2z

)2

= k2 + 1

and so (x+ y)2, (2z)2 are commensurable but x + y, 2z are incommensurable. By

[Def. 10.11], (x+ y)− 2z is an apotome.

Notice that x+y
s = p2

s2 , and so x+ y and s are commensurable.

Suppose h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

k2p4

k2s2 + s2

and so h = p2k√
k2s2+s2

. Finally,

x+ y

h
=

p2

s
·
√
k2s2 + s2

p2k

=

√
k2s2 + s2

ks
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and so x+ y and h are incommensurable. By [Def. 10.10], a− b is a fourth apotome.

Remark. (x+ y)− 2z = p2

s ·
(

1− 1√
1+k2

)

Proposition 10.101. ROOTS OF THE SQUARE OF A WR-MEDIAL.

If s is rationally expressible and

(

p√
2(1+k2)

·
√√

1 + k2 + k − p√
2(1+k2)

·
√√

1 + k2 − k

)

is a WR-medial, then

(

p√
2(1+k2)

·
√√

1 + k2 + k − p√
2(1+k2)

·
√√

1 + k2 − k

)2

s

is a fifth apotome.

Proof. Let

u =
p

√

2 (1 + k2)
·
√

√

1 + k2 + k

v =
p

√

2 (1 + k2)
·
√

√

1 + k2 − k

Also let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv where
√
k

is irrational but k is rational and p is rationally expressible. Hence

(x+ y)− 2z =
(u− v)2

s

We claim that (x+ y)− 2z is a fifth apotome.

Notice that (x+ y)
2
= p4

s2·(1+k2) and (2z)
2
= p4

s2·(1+k2)2
; it follows that x + y and 2z

are rationally expressible. Also

(

x+ y

2z

)2

= k2 + 1

and so (x+ y)2, (2z)2 are commensurable but x + y, 2z are incommensurable. By

[Def. 10.11], (x+ y)− 2z is an apotome.

Notice that 2z
s = p2

s2·(1+k2) , and so 2z and s are commensurable.

Suppose h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

k2p4

s2 · (k2 + 1)
2
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and so h = p2k
s·(k2+1) . Finally,

x+ y

h
=

p2

s ·
√
k2 + 1

· s ·
(

k2 + 1
)

p2k

=

√
k2 + 1

k

and so x+y and h are incommensurable. By [Def. 10.10], x−y is a fifth apotome.

Remark. (x+ y)− 2z = p2

s ·
(

1√
1+k2

− 1
1+k2

)

Proposition 10.102. ROOTS OF THE SQUARE OF A WM-MEDIAL.

If s is rationally expressible and
(

pm1/4

√
2
·
√

1 + k√
1+k2

− pm1/4

√
2
·
√

1− k√
1+k2

)

is a

WM-medial, then

(

pm1/4

√
2
·
√

1 + k√
1+k2

− pm1/4

√
2
·
√

1− k√
1+k2

)2

s

is a sixth apotome.

Proof. Let

u =
pm1/4

√
2
·
√

1 +
k√

1 + k2

v =
pm1/4

√
2
·
√

1− k√
1 + k2

Also let x, y, z be real numbers such that sx = u2, sy = v2, and 2sz = 2uv where
√
k

is irrational but k is rational and p is rationally expressible. Hence

(x+ y)− 2z =
(u− v)2

s

We claim that (x+ y)− 2z is a sixth apotome.

Notice that (x+ y)
2
= mp4

s2 and (2z)
2
= mp4

s2·(1+k2)2
; it follows that x + y and 2z are

rationally expressible. Also
(

x+ y

2z

)2

= k2 + 1

and so (x+ y)
2
, (2z)

2
are commensurable but x + y, 2z are incommensurable. By

[Def. 10.11], (x+ y)− 2z is an apotome.

Notice that x+y
s = p2

s2 ·
√
m and 2z

s = p2

s2·(1+k2) ·
√
m, and so both x + y and 2z are

incommensurable with s.
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Suppose h =

√

(x+ y)
2 − (2z)

2
. Then (x+ y)

2
= (2z)

2
+ h2. Notice that

(x+ y)
2 − (2z)

2
=

mk2p4

s2 · (k2 + 1)

and so h = p2k·
√
m

s·
√
k2+1

. Then

x+ y

h
=

p2
√
m

s2
· s ·
√
k2 + 1

p2k · √m

=

√
k2 + 1

ks

and so x+y and h are incommensurable. By [Def. 10.10], a−b is a sixth apotome.

Remark. (x+ y)− 2z = p2

s ·
(√

m−
√
m√

1+k2

)

Proposition 10.103. NUMBERS COMMENSURABLE WITH APOTOME NUM-

BERS ARE APOTOME.

Suppose a = x − y is an apotome number where a is a first, second, third, fourth,

fifth, or sixth apotome number. Also suppose that a and c are commensurable. We

claim that c is an apotome number of the same type as a.

Proof. Our hypothesis and claim are stated above. Since a, c are commensurable,

c = qa where q is rational. If a contains the rationally expressible term p, then qp is

rationally expressible. Since q has no other effect on the remaining terms, c is an

apotome of the same type as a.

Proposition 10.104. NUMBERS COMMENSURABLE WITH APOTOMES OF

THE MEDIAL ARE APOTOMES OF THE MEDIAL.

Proof. The proof is similar to [10.103] as is left as an exercise to the reader.

Proposition 10.105. NUMBERS COMMENSURABLE WITH MINOR NUMBERS

ARE MINOR NUMBERS.

Proof. The proof is similar to [10.103] as is left as an exercise to the reader.
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Proposition 10.106. NUMBERS COMMENSURABLE WITH WR-MEDIALS ARE

WR-MEDIALS.

Proof. The proof is similar to [10.103] as is left as an exercise to the reader.

Proposition 10.107. NUMBERS COMMENSURABLE WITH WM-MEDIALS ARE

WM-MEDIALS.

Proof. The proof is similar to [10.103] as is left as an exercise to the reader.

Proposition 10.108. SQUARE ROOTS I.

If kp2 is rational and p2
√
m is a second medial number, then

√

kp2 − p2
√
m

is either an apotome or a minor number.

Proof. Suppose k,m are rational and p is rationally expressible. Also suppose that

su = kp2 and sv = p2
√
m. It follows that su is rational and sv is a second medial

number. Notice that s · (u− v) = kp2 − p2
√
m. Also

u

v
=

kp2

p2
√
m

=
k√
m

and so u, v are incommensurable but u2, v2 are commensurable. Also notice that

u, v are rationally expressible. By [Def. 10.11], u− v is an apotome.

Suppose
√
u2 − v2 and u are commensurable. Then u − v is a first apotome, and so

√

s · (u− v) is an apotome [10.91].

Otherwise, u−v is a fourth apotome, and so
√

s · (u− v) is an minor number [10.94].

Proposition 10.109. SQUARE ROOTS II.
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If kp2 is rational and p2
√
m is a second medial number, then

√

p2
√
m− kp2

is either a first apotome of the medial or a WR-medial.

Proof. Suppose k,m are rational and p is rationally expressible. Also suppose that

su = p2
√
m and sv = kp2. It follows that su is a second medial number and sv is

rational. Notice that s · (u− v) = p2
√
m− kp2. Also

u

v
=

p2
√
m

kp2

=

√
m

k

and so u, v are incommensurable but u2, v2 are commensurable. Also notice that

u, v are rationally expressible. By [Def. 10.11], u− v is an apotome.

Suppose
√
u2 − v2 and u are commensurable. Then u − v is a second apotome, and

so
√

s · (u− v) is a first apotome of the medial [10.92].

Otherwise, u− v is a fifth apotome, and so
√

s · (u− v) is a WR-medial [10.95].

Proposition 10.110. SQUARE ROOTS III.

If p2
√
k and p2

√
m are second medial numbers, then

√

p2
√
k − p2

√
m

is either a second apotome of the medial or a WM-medial.

Proof. Suppose k,m are rational, k
m 6= r2

s2 for any natural r, s, and p is rationally

expressible. Also suppose that su = p2
√
k and sv = p2

√
k. It follows that su and sv

are second medial numbers. Notice that s · (u− v) = p2
√
m− p2

√
k. Also

u

v
=

√
k√
m

and so u, v are incommensurable but u2, v2 are commensurable. Also notice that

u, v are rationally expressible. By [Def. 10.11], u− v is an apotome.

Suppose
√
u2 − v2 and u are commensurable. Then u− v is a third apotome, and so

√

s · (u− v) is a second apotome of the medial [10.93].

Otherwise, u− v is a sixth apotome, and so
√

s · (u− v) is a WM-medial [10.96].



CHAPTER 10. IRRATIONAL NUMBERS 476

Proposition 10.111. BINOMIAL NUMBERS ARE DISTINCT FROM APOTOMES.

Proof. Let p+p
√
k be a binomial number and s−s

√
m be an apotome where p, s are

rationally expressible,
√
k,
√
m are irrational, and k,m are rational. We claim that

p+ p
√
k 6= s− s

√
m.

Assume instead that

(

p+ p
√
k
)2

=
(

s− s
√
m
)2

p2 ·
(

1 + 2
√
k + k

)

= s2 ·
(

1− 2
√
m+m

)

p2 · (1 + k)− s2 · (1 +m) = −
(

s2 · 2
√
m+ p2 · 2

√
k
)

s2 · (1 +m)− p2 · (1 + k) = s2 · 2
√
m+ p2 · 2

√
k

Clearly, the LHS is rational. If we square both sides, the RHS becomes

s2 · 4m+ 8ps ·
√
km+ p2 · 4k

and must be rational for all choices of k,m. But k,m may be chosen arbitrarily, a

contradiction. Thus, p+ p
√
k 6= s− s

√
m.

Proposition 10.112. COMMON DENOMINATORS I.

Let p+ p
√
k be a binomial number, and let s be rationally expressible. Then

s2

p+ p
√
k
= mp−mp

√
k

where m = s2

p2−p2k .

Proof. Our hypothesis and claim are stated above. Notice that

s2

p+ p
√
k

=
s2

p+ p
√
k
· p− p

√
k

p− p
√
k

=
s2p− s2p

√
k

p2 − p2k

=
s2

p2 − p2k
·
(

p− p
√
k
)

If m = s2

p2−p2k , then s2

p+p
√
k
= mp−mp

√
k.

Proposition 10.113. COMMON DENOMINATORS II.
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Let p− p
√
k be an apotome, and let s be rationally expressible. Then

s2

p− p
√
k
= mp+mp

√
k

where m = s2

p2−p2k .

Proof. The proof is similar to [10.112] as is left as an exercise to the reader.

Proposition 10.114. SPECIAL PRODUCTS.

√

(√
x−√y

) (

m
√
x+m

√
y
)

=
√

m (x− y)

√

(x−√y) (mx+m
√
y) =

√

m (x2 − y)

Proof. The proof is left as an exercise to the reader.

Proposition 10.115. A PROOF OF INFINITE IRRATIONALS.

Let pk1/4 be a medial number and s be a rationally expressible. Infinitely many

irrational numbers may be constructed from pk1/4 and s.

Proof. Clearly, pk1/4 is irrational. Notice that

pk1/4

x
=

x

s

x2 = spk1/4

x =
(

spk1/4
)1/2

Suppose spk1/4 is rational. Then s2p2
√
k is rational and also irrational by [Lemma

10.10.1] since
√
k is irrational. This contradiction demonstrates that spk1/4 is irra-

tional. By [Lemma 10.21.0], x is also irrational.

Suppose we find that
(

spk1/4
)1/2k

is rational for some natural number k. By ap-

plying [Lemma 10.10.0] a finite number of times, we find that spk1/4 is rational, a

contradiction. This completes the proof.
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Chapter 10 exercises.

1. Provide the details of [Example 10.2.2].

2. Prove [10.3].

3. Prove [10.4].

4. Prove [Cor. 10.14.1].

5. Complete the proof of [Cor. 10.31.1].

6. Complete the proof of [Cor. 10.32.1].

7. Provide the verification steps from [10.35].

8. Is 10 + 5
√
3 is a first binomial number? (See [10.48])

9. Is 3
√
5 + 5 is a second binomial number? (See [10.49])

10. Is 5
√
7 + 7

√
3 is a third binomial number? (See [10.50])

11. Is 5 +
√
2 is a fourth binomial number? (See [10.51])

12. Is 3
√
2 + 2 is a fifth binomial number? (See [10.52])

13. Is 3
√
2 + 2

√
3 is a sixth binomial number? (See [10.53])

14. Prove [10.67].

15. Prove [10.68].

16. Prove [10.69].

17. Prove [10.70].

18. Prove [10.80].

19. Prove [10.82].

20. Prove [10.83].

21. Prove [10.84].

22. Write a new proof which shows that [10.91] iff [10.97], simplifying the existing

proofs as much as possible.

23. Write a new proof which shows that [10.92] iff [10.98], simplifying the existing

proofs as much as possible.

24. Write a new proof which shows that [10.93] iff [10.99], simplifying the existing

proofs as much as possible.

25. Write a new proof which shows that [10.94] iff [10.100], simplifying the exist-

ing proofs as much as possible.
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26. Write a new proof which shows that [10.95] iff [10.101], simplifying the exist-

ing proofs as much as possible.

27. Write a new proof which shows that [10.96] iff [10.102], simplifying the exist-

ing proofs as much as possible.

28. Prove [10.104].

29. Prove [10.105].

30. Prove [10.106].

31. Prove [10.107].

32. Prove that the irrational numbers constructed in this chapter are distinct:

Medial

Binomial

First bimedial

Second bimedial

Major number

RSSM number

RPSM number

Apotome

First apotome of a medial

Second apotome of a medial

Minor number

WR-medial

WM-medial

33. Prove [10.113].

34. Prove [10.114].



Chapter 14

Solutions

14.1 Solutions for Chapter 1

[1.1] Exercises

1. If the segments AF and BF are constructed, prove that the figure ⊡ACBF is a

rhombus.

Figure 14.1.1: [1.1, #1]

Proof. Construct AF and BF . By an argument similar to the proof of [1.1], AB =

AF = BF . Since AC = AB = BC from [1.1],

AC = BC = BF = AF

and so ACBF is equilateral.

By [1.8],△ABC ∼= △ABF and since each are equilateral, ∠CAB = ∠FBA. By [Cor.

1.29.1], AC ‖ BF . Similarly, AF ‖ BC, and so ACBF is a parallelogram. Since it is

also equilateral, by [Def 1.29] ⊡ACBF is a rhombus.

480
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[1.1] Exercises

2. If CF is constructed and AB is extended to the circumferences of the circles (at

points D and E), prove that the triangles △CDF and △CEF are equilateral.

Proof. Construct CF , and extend AB to
←→
AB where

←→
AB intersects #A at D and #B

at E. Finally, construct △CDF and △CEF . We wish to show that △CDF and

△CEF are equilateral.

Figure 14.1.2: [1.1, #2]

By [1.1],△ABC is equilateral. By the proof of [1.1, #1]1, △AFB is also equilateral.

Since AC = AF , by [1.8] △ABC ∼= △AFB. Since AB is a radius of #A and #B, it

follows that the radii of #A are equal in length to radii of #B, and so

AB = AC = AD = AF = BC = BE = BF

Since △ABC is equilateral, ∠BAC = ∠ABC. Since DE is a segment, ∠BAC +

∠CAD = two right angles = ∠ABC + ∠CBE. It follows that ∠CAD = ∠CBE.

Similarly, we can show that ∠FAD = ∠FBE.

1Notice that it is permissible and encouraged to cite the results of previous exercises. This is the

opposite of most K-12 math courses, where students can be punished for treating problems as parts

of an interconnected whole. Students should unlearn this “lesson” as soon as possible; math and the

sciences are not about isolated pieces, but connections.
What is not permissible is circular reasoning: to cite the result of problem #1 in the proof of problem

#2 and also cite the result of problem #2 in the proof of problem #1.

That said, some problems in this chapter will be solved without referring to previous solutions if only

to prevent this document from becoming more frustrating than it already is.
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Figure 14.1.3: [1.1, #2]

Since △ABC ∼= △AFB, ∠BAC = ∠BAF , and so ∠DAF = ∠CAD. That is,

∠FAD = ∠FBE = ∠DAC = ∠EBC

Consider △ADC, △ADF : AF = AD = AC by the above and ∠FAD = ∠DAC. By

[1.4], △ADC ∼= △ADF .

Consider △ADC, △BEC: AC = AD = BC = BE by the above and ∠CAD =

∠CBE. By [1.4], △ADC ∼= △BEC.

Similarly, we can show that △BEC ∼= △BEF , and so

△ADC ∼= △ADF ∼= △BEF ∼= △BEC

Hence, DF = DC = CE = EF .

By [1.32], the sum of the three interior angles of a triangle equals two right angles.

To make our calculation easier, define the measure of two right angles to equal π

radians.

Let α = each interior angle of △ABC. By [1.5.1], △ABC is equiangular, and so

3α = π, or α = π/3.

By [1.13], ∠CAL + ∠CAD = π. Since ∠CAL = π/3, ∠CAD = 2π/3. Similarly,

∠FAL = π/3.

Consider △CAF , △CAD: AD = AC = AF since each are radii of #A, ∠CAD =

2π/3, and ∠CAF = ∠CAL + ∠FAL = 2π/3. By [1.4], △CAF ∼= △CAD, and so

CD = CF .

Hence, CD = CF = DF , or△CDF is equilateral. By the above and [1.8],△CDF ∼=
△CEF , which completes the proof.



CHAPTER 14. SOLUTIONS 483

Corollary. [1.1, #1.1] ⊡CDFE IS A RHOMBUS.

Applying [1.1, #1] to ⊡CDFE, we find that ⊡CDFE is a rhombus.

[1.2] Exercises

1. Prove [1.2] when A is a point on BC.

Given a point on an arbitrary segment, it is possible to construct a segment with:

(1) one endpoint being the previously given point

(2) its length is equal to that of the arbitrary segment.

Proof. Let BC be an arbitrary segment where A is a point on BC. We claim that

we can construct a segment with A as an endpoint such that its length is equal to

that of BC.

If A = B or A = C, the proof is trivial.2

Suppose that A is not an endpoint of BC. Construct the equilateral triangle△ABD

[1.1]. Also construct the circle #A with radius equal in length to AC. Extend side

DA to
−−→
DA where

−−→
DA intersects #A at E.

Figure 14.1.4: [1.2, #1]

Construct the equilateral triangle△EGH where G is also a point on
−−→
DA and EG =

AD [1.2]. So AE ⊕ EG = AG and

AG = AE + EG

= AC +AD

= AC +AB

= BC

which completes the proof.

2A trivial proof is one that is immediately obvious. In this case, if A = B or A = C, then BC itself

is the segment we require. Since it already exists, there is nothing to do but acknowledge that the proof

took no effort on our part, i.e., it is trivial.
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[1.4] Exercises

Prove the following:

1. The line that bisects the vertical angle of an isosceles triangle also bisects the

base perpendicularly.

Proof. Suppose △ABC is an isosceles triangle where AB = AC. Further suppose

that the ray AD bisects ∠BAC.3 We claim that BD = CD and AD ⊥ BC.

Figure 14.1.5: [1.4, #1]

Consider△ABD,△ACD: the triangles share side AD, and by hypothesis AB = AC

and ∠DAB = ∠DAC. By [1.4],△ABD ∼= △ACD. Hence, BD = CD. Also, ∠ADB =

∠ADC; since they are supplements, they stand at right angles [Def. 1.14], and so,

AD ⊥ BC.

2. If two adjacent sides of a quadrilateral are equal in length and the diagonal

bisects the angle between them, then their remaining sides are also equal in length.

Proof. Suppose that ABCD is a quadrilateral where AB = AC and where the di-

agonal AD bisects ∠BAC. We claim that BD = CD.

Consider △ACD, △ABD: since AC = AB, each shares side AD, and ∠DAC =

∠DAB by hypothesis, by [1.4] △ACD ∼= △ABD. Therefore, BD = CD.

3A line or a segment of appropriate size may be substituted, mutatis mutandis.
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Figure 14.1.6: [1.4, #2]

3. If two segments stand perpendicularly and each bisects the other, then any point

on one segment is equally distant from the endpoints of the other segment.

Proof. Suppose AB ⊥ CD and that AB and CD bisect each other at E. Wlog, let F

be a point on AB. We claim that F is equidistant from C and D.

Figure 14.1.7: [1.4, #3]

Construct △CEF and △DEF . Since AB ⊥ CD and AB and CD bisect each other

at E by hypothesis, ∠CEF = ∠DEF and CE = DE. Since △CEF and △DEF

share side FE, by [1.4] we find that △CEF ∼= △DEF Hence, CF = DF .

The proof for any point on CD is similar to the above, mutatis mutandis. Therefore,

we have proven our claim.

Corollary. to [1.4, #3]:
←→
AB is the Axis of Symmetry of △CFD.
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[1.5] Exercises

2. Prove that
←→
AH is an Axis of Symmetry of △ABC.

Proof. Construct the figure from [1.5], construct
←→
AH , and let I be the intersection

of BC and
←→
AH . We claim that

←→
AH is the Axis of Symmetry of △ABC.

Figure 14.1.8: [1.5, #2]

Consider△BHF and △CHG: by the proof of [1.5] ∠BFH = ∠CGH and BF = CG.

By [1.15] ∠BHF = ∠CHG, and so by [1.26], △BHF ∼= △CHG. It follows that

BH = CH .

Consider △ABH and △ACH : by the above, BH = CH ; by the proof of [1.5] AB =

AC; finally, the triangles share side AH . By [1.8],△ABH ∼= △ACH . It follows that

∠BAH = ∠CAH .

Consider △ABI and △ACI: by the above ∠BAI = ∠CAI, AB = AC, and the

triangles share side AI. By [1.4], △ABI ∼= △ACI. It follows that △ABI = △ACI.

Since△ABC = △ABI⊕△ACI, we find that
←→
AH is the Axis of Symmetry of△ABC

by [Def 1.35]. This proves our claim.
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[1.5] Exercises

4. Take the midpoint on each side of an equilateral triangle; the segments joining

them form a second equilateral triangle.

Proof. Suppose that △ABC is equilateral. Construct the midpoints I, J , and K on

sides BC, AB, and AC, respectively. We claim that △IJK is equilateral.

Figure 14.1.9: [1.5, #4]

Since I is the midpoint of side BC, IB = IC. Similarly, JA = JB. Since △ABC is

equilateral, IB = JB. Continuing in this way, we can show that

IB = JB = JA = AK = KC = IC

And by [1.5, Cor. 1] we also have that

∠ABC = ∠ACB = ∠BAC

Hence by multiple applications of [1.4],

△JBI ∼= △KCI ∼= △JAK

It follows that IJ = JK = KI, and so △IJK is equilateral. This proves our claim.
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[1.9] Exercises

2. Prove that AF ⊥ DE.

Figure 14.1.10: [1.9, #2]

Proof. Consider △ADH , △AEH : by construction in [1.9], ∠DAH = ∠EAH and

AD = AE, and each triangle shares side AH . By [1.4],△ADH ∼= △AEH . It follows

that DH = HE. Also, ∠DHA = ∠EHA. Since these are adjacent angles, they are

right angles [Def. 1.14]. By [1.15], ∠DHF and ∠EHF are also right angles. Thus,

AF ⊥ DE, which concludes the proof.

3. Prove that any point on AF is equally distant from points D and E.

Proof. Construct K on AF . We claim that DK = KE.

Consider △DHK and △EHK: by [1.9, #2], DH = HE, the triangles share HK,

and ∠DHK = ∠EHK. By [1.4], △DHK ∼= △EHK. It follows that DK = KE, and

which proves our claim.
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[1.10] Exercises

1. Bisect a segment by constructing two circles.

Proof. Construct the figure from [1.1, #2]. We claim that CF bisects AB.

Figure 14.1.11: [1.1, #2]

Since ⊡DCEF = △CDF ⊕ △CEF and △CDF ∼= △CEF , we find that CF is an

axis of symmetry of ⊡DCEF [Def. 1.35]. It follows that DL = LE. Since DA = BE

by the proof of [1.1, #2], AL = LB, which completes the proof.
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[1.10] Exercises

2. Extend CD to
←→
CD. Prove that every point equally distant from the points A and

B are points on
←→
CD.

Proof. Extend CD to
←→
CD and construct E on

←→
CD. We claim that E is equally distant

from A and B.

Figure 14.1.12: [1.10, #2]

By the proof of [1.10], △ACB is isosceles. By [Cor. 1.9.1],
←→
CD is an Axis of Sym-

metry to △ACB. It follows that
←→
CD is an Axis of Symmetry to any triangle with

vertices A, B, and E, where E is any point on
←→
CD except D itself. Hence, AE = EB

for any point E on
←→
CD. Since AD = DB by [1.10], we have proven that every point

on
←→
CD is equally distant from A and B.

Suppose point K exists where AK = BK but K is not on
←→
CD. It follows that

△ABE is distinct from △ABK where the triangles share side AB, AE = AK, and

BE = BK. But this construction contradicts [1.7]. Hence, no such K exists, which

completes the proof.
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[1.11] Exercises

1. Prove that the diagonals of a rhombus bisect each other perpendicularly.

Proof. Construct the figure from [1.11], and also construct the equilateral triangle

△DEG where G lies on the opposite side of AB from F . By the proof of [1.11],

△DFE is equilateral. By [1.8], △DFE ∼= △DGE.

Construct GC; by the proof of [1.11], GC ⊥ AB. We claim that ⊡FEGD is a rhom-

bus, GF and DE are its diagonals, and GF and DE bisect each other.

Figure 14.1.13: [1.11, #1]

Consider △DCF and △DCG: since △DEF ∼= △DEG, DF = DG and ∠CDG =

∠CDF ; the triangles also share side DC. By [1.4], △DCF ∼= △DCG. Similarly, we

can show that △ECF ∼= △ECG.

By the proof to [1.11], △DCF ∼= △ECF . By the above, it can be shown that

△DCF ∼= △DCG ∼= △ECF ∼= △ECG

Hence, FD = FE = GD = GE, and so FEGD is a equilateral.

Since ∠DGF = ∠EFG by the above, DG ‖ EF ; since ∠EGF = ∠DFG, EG ‖
FD. Hence, ⊡FEGD is an equilateral parallelogram. By [Def. 1.29], ⊡FEGD is a

rhombus. Clearly, DE and GF are the diagonals of ⊡FEGD.

By the above, DC = CE and FC = CG, so the diagonals of ⊡FEGD bisect each

other. By [1.11], ∠DCF is a right angle, and so DE ⊥ GF , which completes the

proof.
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[1.11] Exercises

3. Find a point on a given line that is equally distant from two given points.

Proof. Let
←→
AB be a given line, and let C, D be points not on

←→
AB. We wish to find a

point F on
←→
AB such that FC = FD.

Figure 14.1.14: [1.11, #3]

Construct CD; by [1.10], locate its midpoint, E. Construct
←→
FE such that CD ⊥ ←→FE

and F is a point on
←→
AB. We claim that F is equally distant from C and D.

Consider △CEF and △DEF : CE = DE by construction, ∠CEF = ∠DEF by con-

struction, and the triangles share side EF . By [1.4], △CEF ∼= △DEF . Hence,

CF = DF , which completes the proof.
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[1.12] Exercises

1. Prove that circle #C cannot intersect
←→
AB at more than two points.

Figure 14.1.15: [1.12, #1]

Proof. Suppose #C intersects
←→
AB at more than two points. If the third point lies

between points F and G, then the radius of #C must decrease in length; this con-

tradicts the definition of a radius (that it must have a fixed length).

Similarly, if the third point lies to the left of F or to the right of G, the radius of #C

must increase in length, resulting in a similar contradiction.

Hence, #C cannot intersect
←→
AB at more than two points.

[1.19] Exercises

3. Prove that three equal and distinct segments cannot be constructed from the

same point to the same line.

Proof. Suppose such a construction were possible. Consider the common point to

be the center of a circle and the three equal yet distinct segments to be radii of

that circle. Then we could construct a line such that the circumference of the circle

intersects the line at three points. This contradicts [1.12, #1], which completes the

proof.
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[1.19] Exercises

5. If△ABC is a triangle such that AB ≤ AC, then a segment AG, constructed from

A to any point G on side BC, is less than AC.

Proof. Construct△ABC where AB < AC. Construct AG where G is a point on side

BC (other than B and C). We claim that AG < AC.

Figure 14.1.16: [1.19, #5]

If AB = AC, then by [1.19, #3], AG < AC.

If AB < AC, extend AB to AH such that AH = AC and construct CH . Extend AG

to AJ where J is on CH . Clearly, AG ≤ AJ .

Since AH = AC, by [1.19, #3], AJ < AC. Since AG ≤ AJ , AG < AC, which

completes the proof.
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[1.20] Exercises

5. The perimeter of a quadrilateral is greater than the sum of its diagonals.

Proof. Suppose that ABCD is a quadrilateral with diagonals AC and BD. We claim

that

AB +BC + CD +DA > AC +BD

Figure 14.1.17: [1.20, #5]

By [1.20], we have

AD + CD > AC

AB +BC > AC

AD +AB > BD

BC + CD > BD

Or,

2 · (AB +BC + CD +DA) > 2 · (AC +BD)

=⇒
AB +BC + CD +DA > AC +BD

which proves our claim.
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[1.20] Exercises

6. The sum of the lengths of the three medians of a triangle is less than 3
2 times its

perimeter.

Proof. Construct △ABC with medians AF , BE, and CD. We claim that

AF +BE + CD <
3

2
· (AB +BC +AC)

Figure 14.1.18: [1.20, #6]

Consider △ABE: by [1.20], we have

AE +AB > BE

Similarly, in △DBC, we have

BD +BC > CD

and in △ACF , we have

AC + CF > AF

Recall that AE = 1
2AC, BD = 1

2AB, and CF = 1
2BC. Adding each inequality, we

find that

AB +BC +AC +AE +BD + CF > AF +BE + CD

AB +BC +AC + 1
2AB + 1

2BC + 1
2AC > AF +BE + CD

3
2 (AB +BC +AC) > AF +BE + CD

which proves our claim.
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[1.23] Exercises

1. Construct a triangle given two sides and the angle between them.

Proof. Suppose we have arbitrary segments AB and CD and an arbitrary angle

∠EFG. We claim that we can construct △HMN from AB, CD, and ∠EFG.

Figure 14.1.19: [1.23, #1]

By [1.23], construct rays
−−→
HJ and

−−→
HK such that ∠JHK = ∠EFG. Construct HM

on
−−→
HJ and HN on

−−→
HK such that AB = HM and CD = HN . Construct MN . Notice

that △MNH has sides equal in length to segments AB and CD and contains an

angle equal in measure to ∠EFG. This proves our claim.
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[1.29] Exercises

2. Construct
←→
AB containing the point C and

←→
EF containing the point D such that

←→
AB ‖ ←→EF . Construct CH and CJ such that CJ bisects ∠ACD and CH bisects

∠BCD. Prove that DH = DJ .

Proof. Our hypothesis and claim are stated above. Construct the above as well as
←→
JK and

←→
HL such that

←→
JK ‖ CD and CD ‖ ←→HL. By [1.30],

←→
JK ‖ ←→HL.

Figure 14.1.20: [1.29, #2]

Since CH is a bisector of ∠BCD, ∠BCH = ∠DCH . Since CD ‖ ←→HL, ∠DCH =

∠CHL. And since
←→
AB ‖ ←→EF , ∠BCH = ∠DHC. This gives us

∠BCH = ∠DCH = ∠DHC = ∠CHL

Consider △CDH . Since ∠DCH = ∠DHC, by [1.6] DC = DH.

Similarly, it can be shown that

∠JCD = ∠JCK = ∠DJC = ∠DCJ

and so DJ = DC.

Thus, DJ = DH , which completes the proof.
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[1.29] Exercises

5. Two lines passing through a point which is equidistant from two parallel lines

intercept equal segments on the parallels.

Proof. Construct
←→
AB and

←→
CD such that

←→
AB ‖ ←→CD. Construct

←→
LM such that

←→
AB ⊥

←→
LM and bisect

←→
LM at G [1.10]. Construct arbitrary lines

←→
HJ and

←→
IK such that

each passes through G. We claim that HI = JK.

Figure 14.1.21: [1.29, #5]

Consider△GLI and△GMK: ∠LGI = ∠MGK by [1.15]; GL = GM by construction;

∠GMK = ∠GLI by construction. By [1.26], △GLI ∼= △GMK, and so GI = GK.

Now consider △GHI and △GJK: by the above, GI = GK. ∠HGI = ∠JGK by

[1.15], and since AB ‖ CD, ∠GIH = ∠GKJ by [1.29, Cor. 1]. By [1.26], we find

that △GHI ∼= △GJK. Therefore, HI = JK, which proves our claim.
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[1.31] Exercises

1. Given the altitude of a triangle and the base angles, construct the triangle.

Proof. We propose to construct the triangle with altitude h and base angles α and

β.

Figure 14.1.22: [1.31, #1]

Let AB = h. Extend AB to
←→
AB, and construct

←→
BC such that

←→
AB ⊥ ←→BC [Cor. 1.11.1].

Since
←→
AB ⊥ ←→BC, ∠DBA = π/2 radians (a right angle). Construct

−−→
AD such that D

is a point on
←→
BC and ∠DAB = π

2 − α. Then ∠BDA = α [1.32].

Similarly, construct
−→
CA so that ∠BAC = π

2 − β. Then ∠BCA = β.

This constructs △ACD with altitude h and interior angles α and β.
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[1.32] Exercises.

3. If the line which bisects an external vertical angle of a triangle is parallel to the

base of the triangle, then the triangle is isosceles.

Proof. Construct △ABC with external vertical angle ∠ACE such that
←→
CD bisects

∠ACE and
←→
CD ‖ ←→AB. We claim that △ABC is isosceles.

Figure 14.1.23: [1.32, #3]

By [1.29, Cor. 1], ∠DCE = ∠ABC. Also by By [1.29, Cor. 1], ∠DCA = ∠BAC.

But ∠DCE = ∠DCA by hypothesis, and so ∠ABC = ∠BAC. By [1.6], △ABC is

isosceles.
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[1.32] Exercises

5. Prove that the three altitudes of a triangle are concurrent. [Note: We are proving

the existence of the orthocenter of a triangle: the point where the three altitudes

intersect, and one of a triangle’s points of concurrency.]

Proof. Construct the following: △ABC, altitudes AG and CF , and also BD where

D is the intersection of AG and CF . Extend BD to BE where E is a point on AC.

We claim that BE is an altitude of △ABC.

Figure 14.1.24: [1.32, #5]

By the construction of ∠BDA, we have ∠EDB = ∠BDA+∠EDA. Consider△AED:

by [1.32] ∠BDA = ∠DEA+ ∠EAD. Applying [1.32] again, we obtain

∠EDB = ∠BDA+ ∠EDA

= ∠DEA+ ∠EAD + ∠EDA

= π radians

since ∠DEA, ∠EAD, and ∠EDA are the interior angles of △EDA. Hence, BE =

BD ⊕DE. It remains to be shown that ∠BEA is a right angle.

Suppose ∠BEA < ∠BEC. It follows that AC is not a straight segment, which

contradicts its construction as a side of △ABC. We obtain a similar result if

∠BEA > ∠BEC. Hence, ∠BEA = ∠BEC. Since the angles are adjacent, each

are right angles.

Thus, EB is an altitude of△ABC, and the three altitudes of△ABC are concurrent.

This completes the proof.
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[1.32] Exercises

6. The bisectors of the adjacent angles of a parallelogram stand at right angles.

Proof. Construct ⊡ABDC. Also construct ∠CBD such that it bisects ∠ABD as well

as ∠CAD such that it bisects ∠CAB. We wish to show that CB ⊥ AD.

Figure 14.1.25: [1.32], #6

By [Cor. 1.29.1], ∠DCB = ∠CBA. By hypothesis, ∠CBA = ∠CBD, and so

∠DCB = ∠CBD. We may continue this line of reasoning until we obtain

∠CBA = ∠CBD = ∠DCB = ∠ACB

and

∠ADC = ∠ADB = ∠DAC = ∠DAB

Consider △CED, △CEA: ∠ECD = ∠ECA (since ∠DCB = ∠ACB), ∠EDC =

∠EAC (since ∠ADC = ∠DAC), and each shares side CE. By [1.26], △CED ∼=
△CEA. Hence, ∠CED = ∠CEA. Since ∠CED, ∠CEA are adjacent, they are right

angles. It follows that CB ⊥ AD, which completes the proof.
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[1.33] Exercises

1. Prove that if two segments AB, BC are respectively equal and parallel to two

other segments DE, EF , then the segment AC joining the endpoints of the former

pair is equal in length to the segment DF joining the endpoints of the latter pair.

Proof. Construct segments AB, DE, BC, and EF such that AB = DE, BC = EF ,

AB ‖ DE, and BC ‖ EF . Construct segments AC and DF . We wish to show

AC = DF .

Figure 14.1.26: [1.33, #1]

Construct
←→
IC such that

←→
IC ‖ AB and

←→
JF such that

←→
JF ‖ DE. Also construct AI

such that AI ‖ BC and DJ such that DJ ‖ EF .

Suppose ∠ABC < ∠DEF . It follows that
←→
BC and

←→
EF intersect at a point; this con-

tradicts the construction that BC ‖ EF . A similar contradiction arises if ∠ABC >

∠DEF . Hence, ∠ABC = ∠DEF .

Consider △ABC, △DEF : AB = DE, ∠ABC = ∠DEF , and BC = EF . By [1.4],

△ABC ∼= △DEF , and so AC = DF .
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[1.34] Exercises

1. Show that the diagonals of a parallelogram bisect each other.

Proof. Consider ⊡ABCD and diagonals AD, BC. Let point E be the intersection of

AD and BC. We claim that AE = ED and CE = EB.

Figure 14.1.27: [1.34], #1

Since AB ‖ CD, ∠BCD = ∠CBA. Similarly, we find that ∠CDA = ∠DAB. Con-

sider △ECD and △AEB: since ∠ECD = ∠EBA, ∠EDC = ∠EAB, and CD = AB,

by [1.26] we find that △ECD ∼= △AEB. Hence, AE = ED.

A similar argument shows that CE = EB, mutatis mutandis, which proves our

claim.
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[1.34] Exercises

2. If the diagonals of a parallelogram are equal, each of its angles are right angles.

Proof. Construct ⊡ABCD and suppose that AD = BC. We wish to show that each

interior angle of ⊡ABCD is a right angle.

Figure 14.1.28: [1.34], #2

By [1.34], AC = BD and AB = CD. By [1.34, #1], E bisects both AD and BC. Since

AD = BC by hypothesis,

AE = ED = CE = EB

By [1.32, #6], ∠CED = ∠DEB = ∠BEA = ∠AEC = π
2 radians in measure. By

[1.4],

△ECD ∼= △EDB ∼= △EBA ∼= △EAC

and so

AB = BD = DC = CA

Consider △ACD, △BAC: AD = BC by hypothesis and their sides are equal by

the above. By [1.8], △ACD ∼= △BAC. It follows that ∠ACD = ∠BAC. By [1.34],

∠ACD = ∠ABD. Clearly,

∠ACD = ∠ABD = ∠BAC = ∠BDC

By [1.29], we find that the sum of the interior angles of ⊡ABCD = 2π radians (four

right angles). Since each angle equals ∠ACD in measure, ∠ACD = π/2 radians;

or, each interior angle of ⊡ABCD is a right angle, which completes the proof.
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[1.37] Exercises

1. If two triangles of equal area stand on the same base but on opposite sides of the

base, the segment connecting their vertices is bisected by the base or its extension.

Proof. Suppose △ABG and △ABI share base AB such that G stands on the oppo-

site side of AB than I. Also suppose △ABG = △ABI. We claim that GI is bisected

by
←→
AB.

Figure 14.1.29: [1.37, #1]

Extend AB to
←→
AB, and let J be the point where GI intersects

←→
AB. Construct

←→
GK

and
←→
LI such that

←→
GK ‖ ←→AB and

←→
LI ‖ ←→AB. By [1.30],

←→
GK ‖ ←→LI . Also construct

←→
GB

and
←→
KI such that

←→
GB ‖ ←→KI. Hence, ⊡GKIL is a parallelogram.

Construct JL and JK. If ∠LJK = π radians in measure, then LK is a segment.

Since GI is a segment, ∠GJL + ∠LJI = π radians. By [1.15], ∠KJI = ∠GJL, and

so ∠LJK = ∠KJI + ∠LJI = π radians. Hence, LK = JL ⊕ JK. Furthermore, LK

and GJ are diagonals of ⊡GKIL.

By [1.34, #1], GJ = JI. Since GI = GJ ⊕ JI, GI is bisected by
←→
AB at J , which

completes the proof.
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[1.38] Exercises

1. Every median of a triangle bisects the triangle.

Proof. Construct△ABC where AF is the median of side BC. We claim that△ABF =

△ACF .

Figure 14.1.30: [1.38, #1]

Construct
←→
AE such that

←→
AE ‖ BC. Clearly, △ABF and △ACF stand between the

same parallels. Since BF = FC by hypothesis, by [1.38] we find that △ABF =

△ACF . This completes the proof.

Remark. We do not claim that the triangles are congruent, merely equal in area.
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[1.38] Exercises

5. One diagonal of a quadrilateral bisects the other if and only if the diagonal also

bisects the quadrilateral.

Proof. Construct quadrilateral ABCD and diagonals AC and BD.

Claim 1: If BD bisects AC, then BD bisects ABCD.

Figure 14.1.31: [1.38, #5]

Extend AC to
←→
AC and construct

←→
DY and

←→
BZ such that

←→
DY ‖ ←→AC and

←→
BZ ‖ ←→AC; by

[1.30],
←→
DY ‖ ←→BZ.

Since AE = EC by hypothesis, by [1.38] △ABE = △CBE and △ADE = △CDE.

Since △ADB = △ABE ⊕ △ADE and △CDB = △CBE ⊕ △CDE, it follows that

△ADB = △CDB. Since ABCD = △ADB ⊕△CDB, BD bisects ABCD.

Claim 2: If ABCD is bisected by BD, then BD bisects AC.

Consider △ADB and △CDB: the triangles stand on the same base (BD) but on

opposite sides, and AC connects their vertices. By [1.37, #1], BD bisects AC.

This completes the proof.
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[1.40] Exercises

1. Triangles with equal bases and altitudes are equal in area.

Proof. Suppose we have two triangles with equal bases and with equal altitudes.

Since the altitude of a triangle is the distance between the parallels which contain

it, equal altitudes imply that the triangles stand between parallels which are equal

distances apart. Therefore [1.37], [1.38], [1.39], and [1.40] prove the claim.

[1.40] Exercises

2. The segment joining the midpoints of two sides of a triangle is parallel to the

base, and the medians from the endpoints of the base to these midpoints each bisect

the original triangle. Hence, the two triangles whose base is the third side and

whose vertices are the points of bisection are equal in area.

Proof. Construct △ABC with midpoint D on side AB and midpoint E on side AC.

Construct DE, DC, and EB. We claim that DE ‖ BC and

△ADC = △BCD = △CBE = △ABE

Figure 14.1.32: [1.40, #2]

Construct EF = DE ⊕DF where DE = DF ; also construct FB. Consider △ADE

and △BDF : by [1.15], ∠ADE = ∠BDF ; by hypothesis, AD = BD; DE = DF by

construction. By [1.4],△ADE ∼= △BDF , and so ∠FBD = ∠DAE. By [1.29, Cor. 1],

FB ‖ AC.

Since △ADE ∼= △BDF , FB = AE. Because AE = EC by construction, FB = EC.

By the above, FB ‖ EC; by [1.33] EF = BC and EF ‖ BC. Hence, ⊡FECB is a

parallelogram, and so DE ‖ BC.

By [1.38, #1], BE bisects △ABC, and so △ABE = △CBE. Similarly, CD bisects

△ABC, and so △ADC = △BDC.



CHAPTER 14. SOLUTIONS 511

Figure 14.1.33: [1.40, #2]

By applying [1.38, #1] again,

△BDC =
1

2
· △ABC = △CBE

By the above, we obtain

△ADC = △BCD = △CBE = △ABE

which completes the proof.
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[1.40] Exercises

4. The segments which connect the midpoints of the sides of a triangle divide the

triangle into four congruent triangles.

Proof. Suppose △ABC has midpoints D on side BC, E on side AC, and F on side

AB. Construct segments DE, EF , and DF . We claim that

△AEF ∼= △ECD ∼= △FDB ∼= △DFE

Figure 14.1.34: [1.40, #4]

By [1.40, #2], we find that DE ‖ AB, DF ‖ AC, and EF ‖ BC. By [1.29, Cor. 1], we

find that:

∠EDC = ∠EFA = ∠DBF = ∠DEF

∠CED = ∠EAF = ∠DFB = ∠EDF

∠ECD = ∠AEF = ∠FDB = ∠EFD

Since ⊡EFCD is a parallelogram, EF = CD. Since ⊡EFBD is a parallelogram,

EF = BD, and so

EF = CD = DB

By multiple applications of [1.26],

△AEF ∼= △DEF ∼= △ECD ∼= DBF

which proves our claim.
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[1.46] Exercises

1. Two squares have equal side-lengths if and only if the squares are equal in area.

Figure 14.1.35: [1.46, #1]

Proof. Construct squares ⊡ABCD and ⊡EFGH as well as BD and FH .

Claim 1: If AB = EF , then ⊡ABCD = ⊡EFGH .

Consider △ADB, △EHF : AB = EF = AD = EH and ∠DAB = ∠HEF (since each

are right angles). By [1.4], △ABD ∼= △EFH . It follows that △ABD = △EFH .

By [1.41], ⊡ABCD = 1
2△ABD and ⊡EFGH = 1

2△EFH . By the above, we obtain

⊡ABCD = ⊡EFGH , which proves our claim.

Claim 2: If ⊡ABCD = ⊡EFGH , then AB = EF .

By [1.41], ⊡ABCD = 1
2△ABD and ⊡EFGH = 1

2△EFH , and so △ABD = △EFH .

Let b1 equal the base of △ABD, h1 equal the altitude of △ABD, b2 equal the base

of △EFH , and h2 equal the altitude of △EFH . Since the area of a triangle = 1
2bh,

we have
1

2
b1h1 =

1

2
b2h2

Since ⊡ABCD and ⊡EFGH are squares, b1 = h1 and b2 = h2. Hence, b21 = b22, or
(

AB
)2

=
(

EF
)2

. It follows that AB = EF , which completes the proof.
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[1.47] Exercises

4. Find a segment whose square is equal to the sum of the areas of two given

squares.

Proof. Let ⊡ABCD and ⊡EFGH be the given squares. We wish to construct BF

such that (BF )2 = ⊡ABCD + ⊡EFGH . Position ⊡ABCD and ⊡EFGH such that

C = E and BC ⊥ DF .

Figure 14.1.36: [1.47, #4]

Construct ⊡BFKI such that ⊡BFKI is a square with side-length BF . By [1.47],

(BC)2 + (CF )2 = (BF )2. Since (BC)2 = ⊡ABCD and (CF )2 = ⊡EFGH , BF is the

required segment.
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[1.47] Exercises

10. Prove that each of the triangles △AGK and △BEF formed by joining adjacent

corners of the squares in [1.47] is equal in area to △ABC.

Proof. Construct the polygons as in [1.47] as well as KG and EF . We claim that

△KAG = △ABC = △BEF

Figure 14.1.37: [1.47, #10]

Recall that the sum of the interior angles of a triangle is π radians in measure.

Consider △ABC: notice that if ∠ACB = π
2 radians and ∠BAC = γ radians, then

∠ABC = π
2 − γ radians. Since ∠KAC = ∠GAB = π

2 radians and

∠KAG+ ∠KAC + ∠BAC + ∠GAB = 2π radians

it follows that, in radians:

∠KAG = 2π − ∠KAC − ∠BAC − ∠GAB

= 2π − π

2
− γ − π

2
= π − γ

Similarly

∠FBE = 2π − 2 · π
2
−
(π

2
− γ
)

=
π

2
+ γ
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Recall that the general form of the equation of the area of a triangle is:

Area =
1

2
xy · sin θ

where θ is the interior angle to sides x and y. So

Area△KAG = 1
2AK ·AG · sin(∠KAG)

= 1
2AC ·AB · sin(π − γ)

= 1
2AC ·AB · sin(γ)

by the properties of the sine function. We also have

Area△ABC = 1
2AB · AC · sin(∠BAC)

= 1
2AC · AB · sin(γ)

= Area △KAG

Similarly,

Area △BEF = 1
2BE ·BF · sin(∠FBE)

= 1
2BC · AB · sin(π2 + γ)

= 1
2BC · AB · cos(γ)

and

Area△ABC = 1
2AB · BC · sin(π2 − γ)

= 1
2BC · AB · cos(γ)

= Area △BEF

Therefore△KAG = △ABC = △BEF which proves our claim.
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Chapter 1 exercises

1. Suppose △1 is constructed inside △2 such that each side of △2 passes through

one vertex of △1 and each side of △2 is parallel to its opposite side in △1. We claim

that △2 = 4 · △1 .

Proof. Construct △ABC,
←→
DF ‖ BC such that A is on

←→
DF ,

←→
EF ‖ AB such that C is

on
←→
EF , and

←→
DE ‖ AC such that B is on

←→
DE. We claim that △DEF = 4 · △ABC.

Figure 14.1.38: Chapter 1 exercises, #1

Since
←→
DF ‖ BC, by [1.41], △ABC = 1

2 · ⊡AFCB. Also by [1.41], △AFC = 1
2 ·

⊡AFCB, and so △ABC = △ACF . Similarly, △ABC = △ABD, or

△ABC = △ACF = △ABD

Also by [1.41], since
←→
EF ‖ AB, △ABC = △BEC, or

△ABC = △ACF = △ABD = △BEC

Since △DEF = △ABC ⊕△ACF ⊕△ABD ⊕△BEC, the proof is complete.
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Chapter 1 exercises

8. Construct a triangle given the three medians.

Proof. Suppose we are given the medians of a triangle: AE, BF , and CD. We shall

construct △ABC.

Figure 14.1.39: Chapter 1 exercise #8

Construct AB, AC, and BC. Since AE is a median, BE⊕EC = BC where BE+EC.

Similar statements can be made for the remaining sides, mutatis mutandis. Hence,

△ABC is constructed.
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Chapter 1 exercises

16. Inscribe a rhombus in a triangle having for an angle one angle of the triangle.

Proof. Construct △ABC. Let ∠DAB bisect ∠CAB where D is a point on the side

BC. Construct
−−→
AD as well as ∠ADF , ∠ADE such that

∠ADF = ∠DAB = ∠ADE

We claim that ⊡AEDF is the required rhombus.

Figure 14.1.40: [Ch. 1 Exercises, #16]

Consider △DFA and △DEA: AF = AE, ∠DAF = ∠DAE by construction, and the

triangles share side AD. By [1.4], △DFA ∼= △DEA.

Applying [1.6], we obtain

DF = FA = AE = ED

Since ∠ADE = ∠DAF , by [Cor. 1.29.1], FA ‖ DE. Similarly, we can show that

FD ‖ AE.

By [Def. 1.29], ⊡AEDF is a rhombus. Since ⊡AEDF is inscribed in △ABC and

△ABC shares ∠BAC with ⊡AEDF , our proof is complete.
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14.2 Solutions for Chapter 2

[2.4] Exercises

2. If from the right angle of a right triangle a perpendicular falls on the hypotenuse,

its square equals the area of the rectangle contained by the segments of the hy-

potenuse.

Proof. Construct right triangle △ABC where ∠BAC is a right angle. Construct

segment AD such that AD ⊥ BC. We claim that (AD)2 = DB ·DC.

Figure 14.2.1: [2.4, #2]

Construct rectangle ⊡DCHG where BD = DG. (Note: geometrically, we claim that

(AD)2 = ⊡DCHG.)

By [1.47], we find that

(AD)2 + (DC)2 = (AC)2

(AD)2 + (DB)2 = (AB)2

as well as
(AB)2 + (AC)2 = (DB +DC)2

= (DB)2 + 2 ·DB ·DC + (DC)2

Hence,

(AD)2 + (DC)2 + (AD)2 + (DB)2 = (AB)2 + (AC)2

2 · (AD)2 + (DC)2 + (DB)2 = (DB)2 + 2 ·DB ·DC + (DC)2

2 · (AD)2 = 2 ·DB ·DC

(AD)2 = DB ·DC

which completes the proof.
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[2.4] Exercises

9. Prove [Cor. 2.4.4]: The square on a segment is equal in area to four times the

square on its half.

Figure 14.2.2: [2.4, Cor. 3]

Proof. Suppose we have △ABD such that AB = 2 · AC, CD ⊥ AB, and CD = AC.

We claim that (AB)2 = 4 · (AC)2.

Let AC = x. Then AB = 2x. It follows that

(AB)2 = (2x)2 = 4x2 = 4 · (AC)2

This proves our claim.

[2.6] Exercises

7. Give a common statement which will include [2.5] and [2.6].

Proof. Construct
←→
AB and on AB, locate midpoint C. Choose a point D on

←→
AB such

that D is neither A, B, nor C. We have two cases:

1) D is between A and B. By [2.5], AD ·DB + (CD)2 = (CB)2

2) D is not between A and B. By [2.6], AD ·DB + (CB)2 = (CD)2

This completes the proof.



CHAPTER 14. SOLUTIONS 522

[2.11] Exercises

3. If AB is cut in “extreme and mean ratio” at H , prove that

(a) (AB)2 + (BH)2 = 3 · (AH)2

Figure 14.2.3: [2.11]

Proof. Using the construction from [2.11], x = −a
2 (1±

√
5). (We may ignore results

where x ≤ 0.) Since AB = a, BH = a− x, and AH = x, notice that x2 = a2

2

(

3±
√
5
)

and (a− x)2 = a2

2

(

7± 3
√
5
)

. Or,

(AB)2 + (BH)2 = a2 + (a− x)2

= a2 +
a2

2

(

7± 3
√
5
)

= a2
(

9

2
± 3

2

√
5

)

=
3a2

2

(

3±
√
5
)

= 3x2

= 3 · (AH)2

which completes the proof.
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Chapter 2 exercises

15. Any rectangle is equal in area to half the rectangle contained by the diagonals

of squares constructed on its adjacent sides.

Proof. Construct rectangle ⊡ADCB, squares ⊡GABH and ⊡BCFE, and diagonals

GB and BF . We claim that 1
2 ·GB ·BF = AB · BC.

Figure 14.2.4: [Ch. 2 Exercises, #15]

Let AB = x and BC = y. By [1.47], it follows that GB = x
√
2 and BF = y

√
2. Then

1
2 ·GB · BF = 1

2 · 2xy
= xy

= AB · BC

which completes the proof.
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14.3 Solutions for Chapter 3

[3.3] Exercises

5. Prove [3.3, Cor. 4]: The line joining the centers of two intersecting circles bisects

their common chord perpendicularly.

Proof. Construct the figures from [1.1, #2]. We claim that AB ⊥ CF and that AB

bisects CF .

Figure 14.3.1: [1.1, #2] and [3.3, #5]

From the proof of [1.1, #2], ∠ALC = ∠ALF . Since the angles are adjacent, they

are right angles; otherwise, CF would not be a side of △CDF and △CEF . Hence,

AB ⊥ CF .

Notice that△ACL and△AFL are right triangles. By [1.47],
(

AL
)2
+
(

LC
)2

=
(

AC
)2

and
(

AL
)2

+
(

LF
)2

=
(

AF
)2

.

Since AC and AF are radii of #A, AC = AF . Hence,
(

AL
)2

+
(

LC
)2

=
(

AL
)2

+
(

LF
)2

, which simplifies to LC = LF . Since CF = LC ⊕ LF , AB bisects CF , which

completes the proof.
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[3.5] Exercises

2. Two circles cannot have three points in common without coinciding.

Proof. Suppose instead that two circles (#C, #A) have three points in common (E,

F , and G) and do not coincide.

Figure 14.3.2: [3.5, #2]

By [3.3, Cor. 4], the line joining the centers of two intersecting circles (
←→
AC) bisects

their common chord perpendicularly; hence,
←→
AC ⊥ EF .

Similarly,
←→
AC bisects EG. But EG can be constructed so that EG and

←→
AC do not

intersect, a contradiction. Therefore, #C and #A coincide.
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[3.13] Exercises

3. Suppose two circles touch externally. If through the point of intersection any

secant is constructed cutting the circles again at two points, the radii constructed

to these points are parallel.

Proof. Suppose #A and #C touch at point B. By [3.13], these circles touch only at

B. Construct secant DBE. We claim that AD ‖ CE.

Figure 14.3.3: [3.13, #3]

Construct AC. By [3.12], AC intersects B.

Consider △ABD and △CBE: ∠ABD = ∠CBE by [1.15]; since each triangle is

isosceles, ∠ADB = ∠CEB. By [1.29, Cor. 1], AD ‖ CE. This proves our claim.

Corollary. If two circles touch externally and through the point of intersection any

secant is constructed cutting the circles again at two points, the diameters con-

structed to these points are parallel.
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[3.13] Exercises

4. Suppose two circles touch externally. If two diameters in these circles are par-

allel, the line from the point of intersection to the endpoint of one diameter passes

through the endpoint of the other.

Proof. Suppose #A and #C touch at point B. By [3.13], these circles touch only at

B. Construct AC, and construct diameters DE and FG such that DE ‖ FG and

DE ⊥ AC. It follows that AC ⊥ FG. We claim that
←→
DB intersects G.

Figure 14.3.4: [3.13, #4]

Suppose that
←→
DB does not intersect G. Extend FG to

←→
FG and suppose that

←→
DB

intersects
←→
FG at H .

Consider △ABD and △CBH : by hypothesis, ∠DAB = ∠HCB; by [1.15], ∠ABD =

∠CBH ; applying [1.32], we obtain ∠ADB = ∠CHB. That is, △ABD and △CBH

are equiangular.

However, △ABD is an isosceles triangle and △CBH is not since BC = CG and

CG < CH ; hence, the triangles are not equiangular, a contradiction.

An equivalent contradiction is obtained if DB intersects
←→
FG at any point other than

G, mutatis mutandis. This proves our claim.
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[3.16] Exercises

1. If two circles are concentric, all chords of the larger circle which touch the smaller

circle are equal in length.

Proof. Construct #A1 with radius AB and #A2 with radius AC. On #A2, construct

chord DE such that DE touches #A1 at B. Also on #A2, construct chord HJ such

that HJ touches #A1 at G. We claim that DE = HJ .

Figure 14.3.5: [3.16, #1]

Notice that AG = AB since each are radii of #A1. By [3.16], DE and HJ have no

other points of intersection with #A1. Hence, DE and HJ are equal distance from

A, the center of #A2. By [3.14], DE = HJ . This proves our claim.
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[3.30] Exercises

1. Suppose that ABCD is a semicircle with diameter AD and a chord BC. Extend

BC to
−−→
BC and AD to

−−→
AD, and suppose each ray intersects at E. Prove that if CE

is equal in length to the radius of ABCD, then arc AB = 3 · CD.

Proof. Our hypothesis and claim are stated above.

Figure 14.3.6: [3.30, #1]

Construct CD, CF , FB, and AB. Notice that

CE = DF = CF = BF = AF

By [1.5], we find that ∠CEF = ∠CFE, ∠FCB = ∠FBC, and ∠FBA = ∠FAB.

Define ∠CEF = a, ∠ECF = b, ∠FCB = c, ∠CFB = d, ∠FBA = e, and ∠BFA = f .

Using linear algebra, we obtain:

b+ c = 180

2a+ b = 180

2c+ d = 180

2e+ f = 180

a+ d+ f = 180

a+ c+ 2e = 180

where the RHS is in degrees. In matrix form:























0 1 1 0 0 0 180

2 1 0 0 0 0 180

0 0 2 1 0 0 180

0 0 0 0 2 1 180

1 0 0 1 0 1 180

1 0 1 0 2 0 180

























CHAPTER 14. SOLUTIONS 530

In reduced row echelon form, this becomes:























1 0 0 0 0 0 20

0 1 0 0 0 0 140

0 0 1 0 0 0 40

0 0 0 1 0 0 100

0 0 0 0 1 0 60

0 0 0 0 0 1 60























Or, ∠CEF = 20◦, ∠ECF = 140◦, ∠FCB = 40◦, ∠CFB = 100◦, ∠FBA = 60◦, and

∠BFA = 60◦.

Since △CEF is isosceles, ∠CFD = ∠CFE = 20◦, and so ∠BFA = 3 · ∠CFD = 60◦.

By [7.29, Cor. 1], it follows that AB = 3 · CD.
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14.4 Solutions for Chapter 4

[4.4] Exercises

Figure 14.4.1: [4.4, #1]

1. In [4.4]: if OC is constructed, prove that the angle ∠ACB is bisected. Hence, we

prove the existence of the incenter of a triangle.

Proof. Consider △OFC and △CDO: by the proof of [4.4], ∠OFC = ∠CDO since

each are right angles. By [1.47],

(

OF
)2

+
(

FC
)2

=
(

OC
)2

(

OD
)2

+
(

DC
)2

=
(

OC
)2

Since OF = OD (each are radii of #O), FC = DC. By [1.8], △OFC ∼= △CDO, and

so ∠OCF = ∠OCD.

It follows that OC bisects ∠ACB, and therefore O is the incenter of △ABC; that

is, O is the point of intersection of the bisectors of the three internal angles of

△ABC.
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[4.5] Exercises

1. Prove that the three altitudes of a triangle (△ABC) are concurrent. (This proves

the existence of the orthocenter of a triangle.)

Proof. Construct △ABC; also construct altitudes AE, BD, and CF . We wish to

show these altitudes are concurrent.

Figure 14.4.2: [4.5, #1]

Through vertex A, construct
←→
QR such that

←→
QR ‖ BC. Similarly, construct

←→
PQ ‖ AB

through C and
←→
PR ‖ AC through B. Notice that the segments QR, PQ, and PR

constitute △PQR.

We have also constructed ⊡RACB, ⊡QABC, and ⊡PBAC. It follows that AR = BC

and AQ = BC, or AR = AQ. Hence, A is the midpoint QR; similarly, B is the

midpoint PR and C is the midpoint of PQ.

Since AE ⊥ BC and BC ‖ QR, AE ⊥ QR; or, AE is the perpendicular bisector of

QR. Similarly, BD is the perpendicular bisector of RP , and CF is the perpendicular

bisector of PQ. All are concurrent at the circumcenter of △PRQ by [4.5].

Since these segments are also the altitudes of △ABC, the proof is complete.
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[4.7] Exercises

1. Prove [Cor. 4.7.1]: the circumscribed square, ⊡EHGF , has double the area of

the inscribed square, ⊡BCDA.

Figure 14.4.3: [4.7]

Proof. Consider ⊡BFCO: by [1.34], BC bisects ⊡BFCO, and so ⊡BFCO = 2 ·
△OBC.

Consider △OBA and △ODC: ∠AOB = ∠DOC by [1.15] and the adjacent sides to

these angles are equal since they are radii of #O. By [1.4], △OBA ∼= △ODC.

Consider △OBA and △OBC: ∠AOB = ∠COB since AC is a segment and the

adjacent sides to these angles are equal since each are radii of #O. Again by [1.4],

△OBA ∼= △OBC. It follows that△OBA ∼= △OBC ∼= △ODC ∼= △OAD, and so each

of these triangles is equal in area.

Consider △EBA and △OBA: EB = OA = AE = OB since ⊡EBOA is a square,

and each triangle shares AB. By [1.8], △EBA ∼= △OBA, and so △EBA = △OBA.

Since ⊡EBOA = △EBA⊕△OBA, ⊡EBOA = 2 · △EBA.

By the proof of [4.7], ⊡EBOA = ⊡BFCO = ⊡AODH = ⊡OCGD. Since

⊡EHGF = ⊡EBOA⊕⊡BFCO ⊕⊡AODH ⊕ ⊡OCGD

it follows that ⊡EHGF = 4 ·⊡EBOA = 8 · △EBA.

Notice that ⊡BCDA = 4 · △EBA, and so ⊡EHGF = 2 ·⊡BCDA, which completes

the proof.
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[4.10] Exercises

1. Prove that △ACD is an isosceles triangle whose vertical angle is equal to three

times each of the base angles.

Figure 14.4.4: [4.10]

Proof. We claim that △ACD is isosceles where

∠ACD = 3 · ∠DAC = 3 · ∠ADC

Since ∠BDA = ∠DBA = 2 · ∠DAB by the proof of [4.10], we must have that

∠DAB = 36◦

∠DBA = 72◦

∠BDA = 72◦

Notice that

∠DAB = ∠DAC = ∠ADC = 36◦

By [1.13], ∠ACD = 108◦, and since 36 · 3 = 108, the proof is complete.
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14.5 Solutions for Chapter 5

Chapter 5 Exercises

2. If four numbers are proportionals, their squares, cubes, etc., are proportionals.

Proof. Let a, b, x, and y be natural numbers such that

a

b
=

x

y

We claim that

(a

b

)n

=

(

x

y

)n

where n ≥ 1 is a positive integer.

The equality holds for n = 1 by assumption. Assume that the equality holds for

n = k:
(a

b

)k

=

(

x

y

)k

Then

(a

b

)

·
(a

b

)k

=
(a

b

)

·
(

x

y

)k

(a

b

)

·
(a

b

)k

=

(

x

y

)

·
(

x

y

)k

(a

b

)k+1

=

(

x

y

)k+1

And so the equality holds for n = k+ 1, and therefore it holds for n ≥ 1. The proves

our claim.
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14.6 Solutions for Chapter 6

[6.7] Exercises

3. Prove the Transitivity of Similar Triangles, i.e., if△ABC ∼ △DEF and△DEF ∼
△GHI, then △ABC ∼ △GHI.

Proof. Suppose △ABC ∼ △DEF and △DEF ∼ △GHI. We wish to show that

△ABC ∼ △GHI.

By [Cor. 6.4.1], △ABC and △DEF are equiangular; also, △DEF and △GHI are

equiangular. Clearly,△ABC and △GHI are equiangular.

Applying [Cor. 6.4.1] again, △ABC ∼ △GHI. This completes the proof.

Questions? Comments? Did you find an error?

Email me at: dpcallahan@protonmail.com

Make sure to include the version number, which can be found at the beginning of

this document.
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