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PREFACE

This book arose from a course of lectures given during the aca-
demic year 1954/°55 at the Mathematical Centre, Amsterdam,
repeated in 1956/°57 in a course at Eindhoven, organized by the
same institution. Its purpose is to teach asymptotic methods by
explaining a number of examples m every detail, so as to suit
beginners who seriously want to acquire some technique in attacking
asymptotic problems.

Although asymptotics is by no means a new field, only in recent
times have special courses and books been devoted to it. The
reason may be that today university courses in analysis are con-
densed in favour of modern mathematics. The effect is that analytic
techniques are not so widespread as they used to be. On the other
hand there are so many questions of an asymptotic nature both in pure
and applied mathematics, that we cannot afford to neglect the
subject. Therefore it seems desirable to give a separate training in
asymptotics to those who have only a general knowledge of analysis.

The reader will not find anything like a general theory in this
book. Many asymptotic methods are very flexible, and in such
cases it is not possible to formulate a single theorem covering all
applications. Any attempt at generalization would actually result
in a restriction.

Usually in mathematics one has to choose between saying more
and more about less and less on the one hand, and saying less and
less about more and more on the other. In a practical subject like
this, however, the proper attitude should be to say as much as
possible in a given situation. And as it is impossible to include all
situations in one book, it seems to be imperative to teaca by ex-
amples, stating generalities only when strictly necessary.

The choice of subjects in a book of this size is, of course, quite
arbitrary. The reader will find quite an extensive treatment of the
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saddle point method (Ch. 4, 5, 6), and a great deal of attention has
been paid to iteration (Ch. 8). On the other hand, with respect to
Tauberian thecrems (in Ch. 7), and the asymptotics of differential
equations (Ch. 9), this book presents only a very small part of what
the reader might expect. And what is worse, nothing of analytic
number theory is included because this would require too much
space. On the other hand, there are so many excellent books on
analytic number theory that there is no need for another text-book.
But no doubt anyone who wants to specialize in asymptotics, should
study analytic npumber theory, with its great variety of beautiful
asymptotic problems.

Many things in this book are not presented in the shortest
possible form, as an attempt has been made to reveal, to a certain
extent, the motives that lead to certain methods. Naturally one
cannot go too far in this respect; a mathematician cannot possibly
publish his waste-paper basket.

In some cases two or more different treatments of one and the
same problem are given, so as to enable the reader to com-
pare different methods. Several proofs for the Stirling theorem
are included; the problem of sec. 4.7 is attacked a second
time in Ch. 6; and the problem of the iterated sine is treated
twice in Ch. 8.

On the whole the author has tried to discuss original problems
and results, unless the inclusion of well-known things was strictly
necessary. In a field like this it is, of course, very difficult to say
whether something is new, especially when the ideas are certainly
well-known. The contents of the following parts have probably
never been published before: sec. 3.9, sec. 4.7, Ch. 6, Ch. 8 from sec.
8.4 onwards, and possibly even sec. 2.4, sec. 9.2 and sec. 9.3.

This book has not been written exclusively for mathematicians,
but also for those physicists and engineers who have a certain
maturity with respect to analysis, including some general knowledge
of complex function theory. On the whole it will not be easy reading
for dny class of readers, asymptotics being a difficult subject that
requires constant alertness and carefulness. For those who find the
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text occasionally too difficult it may be reassuring to know that the
chapters of this book can be studied practically independently. The
only exceptions are Chs. 5 and 6, which are based upon Ch. 4. And
the introduction is, of course, fundamental for the whole book.

Most chapters start with simple things and end in quite hard
examples, At the end of each chapter there are a few exercises.
Even when these are quite difficult, they do not require methods
beyond those treated in the text.

Hardly any references are given in this book, because the subject
is so old that it is very difficult to give the proper ones. For a short
bibliography of asymptotics we refer to A. ERDELYI, Asymplotic
Expansions, Dover Publ.,, 1956, which also contains a much more
extensive introduction to the asymptoties of differential equations
than Ch. 9 of this book.

One warning should be given to all readers: this is not an encyclo-
paedia on asymptotic results. Not even the asymptotic behaviour
of Bessel functions can be found in this book. Attention is focussed
mainly on methods. The problems themselves are not of primary
importance; their selection depends on instructiveness rather than
on importance.

October, 1957. N. G. pE Bruyn
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CHAPTER !
INTRODUCTION

1.1. What is asymptotics?

This question is about as difficult to answer as the quéstion
‘““What is mathematics?’”’ Nevertheless, we shall have to find some
explanation for the word asymptotics.

It often happens that we want to evaluate a certain number,
defined in a certain way, and that the evaluation involves a very
large number of operations so that the direct method is almost
prohibitive. In such cases we should be very happy to have an
entirely different method for finding information about the number,
giving at least some useful approximation to it. And usually this
new method gives (as remarked by Laplace) the better results in
proportion to its being more necessary: its accuracy improves when
the number of operations involved in the definition increases. A
situation like this is considered to belong to asymptotics.

This statement is very vague indeed. However, if we try to be
more precise, a definition of the word asymptotics either excludes
everything we are used to call asymptotics, or it includes almost the
whole of mathematical analysis. It is hard to phrase the definition in
such a way that Stirling’s formula (1.1.1) belongs to asymptotics,
and that a formula like /§° (1 4 #%)~1dx = 4x does not. The obvious
reason why the latter formula is not called an asymptotic formula is
that it belongs to a part of analysis that already has got a name:
the integral calculus. The safest and not the vaguest definition is
the following one: Asymptotics is that part of analysis which
considers problems of the type dealt with in this book.

A typical asymptotic result, and one of the oldest, is. Stirling’s
formula just mentioned:

Y

(1.1.1) lim n!/ (e~ 2nm) = 1.

- OO
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For each », the number 2! can be evaluated without any theoretical
difficulty, and the larger = is, the larger the number of necessary
operations becomes. But Stirling’s formula gives a decent approxi-

mation e~#n#V/2mm, and the larger # is, the smaller its relative
error becomes.

Several proofs of (1.1.1) and of its generahzatmns will be given
in this book (see secs. 3.7, 3.10, 4.5, 6.9).

We quote another famous asymptotic formula, much deeper than
the previous one and beyond the scope of this book. If x is a positive
number, we denote by #(x) the number of primes not exceeding x.
Then the so-called Prime Number Theorem states that 1)

= 1.

(1.1.2) lxi_’n;n(x)/ loxx

The above formulas are limit formulas, and therefore they have,
as they stand, litcle value for numerical purposes. For no single
special value of 7 can we draw any conclusion from (1.1.1) about n}.
It is a statement about infinitely many values of #, which, re-
markably enough, does not state anything about any speeial value
of n,

For the purpose of closer investigation of this feature, we ab-
breviate (1.1.1) to

(1.1.3) m f(n) =1, or f(n) >1 (% —>co).

This formula expresses the mere existence of a function N(g) with
the property that:

(1.1.4) for each & > 0: # > N{(g) implies |f(n) — 1| <.

When proving f(s#) — 1, one usually produces, hidden or not,
information of the form* (1.1.4) with explicit construction of a
suitable funcfion N(e). It is clear that the knowledge of_ N(e)
actually means numerical information aboutf However, when 1 using
the notation f(#) — 1, this informiation is suppressed. So if we
write (1.1.3), the knowledge of a function N(e) with the property
(1.1.4) 1s replaced by the knowledge of the existence of such a
function.

1} See A. E. IneHAM, The Distribution of Primes, Cambridge 1932.
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To a certain extent it is one of the reasons of the success of
analysis that a notation has been found which suppresses that much
information and still remains useful. Even with quite simple
theorems, for instance lim apb, = lim a,-1im by, it is easy to see
that the existence of the functions N(e) is easier to handle than the
functions N () themselves.

1.2. The O-symbol

A weaker form of suppression of information is given by the
Bachmann-Landau O-notation ). It does not suppress a function,
but only a number. That is to say, it replaces the knowledge of a
number with certain properties by the knowledge that such a
number exists. The O-notation suppresses much less information
than the limit notation, and yet it is easy enough to handle.

Assume that we have the following explicit information about the
sequence {f(n)}:

(1.2.1) ) — < 3nt  (n=1,23,...).
Then we clearly have a suitable function N(g) satisfying (1.1.4),

viz. N(g) = 3¢~1, Therefore, \

(1.2.2) fin) =1 (n — o0).

It often happens that (1.2.2) is useless, and that (1.2.1) is satis-
factory for some purpose on hand. And it often happens that (1.2.1)
would remain as useful if the number 3 would be replaced by 108
or any other constant. In such cases, we could do with

(1.2.3) {There exists a number A4 (independent of #) such that
fn) — 1] < An-t n=123...).
The logical connections are given by
H(1.2.1) = (1.2.3) = (1.2.2).
Now (1.2.3) is the statement expressedpby the symbolism
(124) " fm) —1=0@m"Y (n=123,...).

_There are some minor differences between the various definitions

1) See E. Lanpav, Vorlesungen iber Zahlentheorie, Leipzig 1927, vol. 2,
pP.3— 8.
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of the O-symbol that occur in the literature, but these differences
are unimportant. Usually the O-symbol is meant to represent the
words ‘“‘something that is in absolute value less than a constant
number times”. Instead, we shall use it in the sense of “something
that is, in absolute value, at most a constant multiple of the
absolute value of”’. So if S is any set, and if f and ¢ are real or
complex functions defined on S, then the formula

(1.2.5) f(s) = Olg(s)  (seS),
means that there is a p051t1ve number A, not depending on s, such
that
(1.2.6) f(s)] < Alp(s)] forallseS.
I, in particular, ¢(s) s O for all s € S, then (1.2.5) simply means

that f(s)/@(s) is bounded throughout S.
We quote some obvious examples:

#=0( . (5 <2
sin x = O(1) (— oo <x < o0),
sin x = O(x) (— oo <% < o0).

Quite often we are interested in results of the type (1.2.6) only
on part of the set S, especially on those parts of S where the inform-
ation is non-trivial. For example, with the formula sin x = O(x)
(— oo < x < o0) the only interest lies in small values of |x|. But
those uninteresting values of the variable sometimes give some
extra difficulties, although these are not essential in any respect.
An example is:

ez — 1 = Ofx) (—1l<x<l).

We are obviously interested in small vatues of x here, but it is
the fault of the large values of & that ¢% —1 ='0(x) (— co< x< o)
fails to be true. So a restriction to a finite interval is indicated, and
it is of little concern what interval is taken.

On the other hand, there are cases where one has some trouble to
find ,a suitable interval. Now in order to eliminate?these non-
essential minor inconveniences one uses a modified O-notation,
which again suppresses some information. We shall explain it for
the case where the interest lies in ldrge positive values of x (¥ — oo},
but by obvious modifications we get similar notations for cases like
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% -» — 00, |x] >0, x>, x T ¢ (i.e., x tends to ¢ from the left).
The formula

(1.2.7) fx) = O(p(x))  (x —o0)
means that there exists a real number a such that
fx) = O(p(x)) (@ <x < o0).

In other words, (1.2.7) means that there exist numbers ¢ and A
such that

(1.2.8) [f(®)| < Alp(x)| whenever 2 < x < oo.
Examples:
22 = O(x) (x —>0); x = O(x2) (x - o0);
e = 0(1) (x - o0); (log )8 = O(x?) (x — o0); -
(log )1 = O(1) (x — o0); (sin x71)~1 = O(x) (¥ - oo).

In many cases a formula of the type (1.2.7) can be replaced
immediately by an O-formula of the type (1.2.5). For if (1.2.7) is
given, and if f and ¢ are continuous in the interval 0 < x < oo,
and if moreover g(x) = O throughout this interval, then we have
f(x) = O(p(x)) (0 < x < oo). This follows from the fact that f/¢
is continuous{ and th%;:efore bounded, over 0 < x < a.

F3
4

The reader should notice that so far we did not define what
O(gp(s)) means; we onIy defined the meaning of some complete
formulas. Tt is obvious that the isolated expression O(gp(x)) cannot
be defined, at least not in such a way that (1.2.5) remains equivalent
to (1.2.6). For, f(s) = O(g(s)) obviously implies 2f(s) = O(g(s)). If °
O(p(s)) in itself were to denote anything, we would infer f(s) =
= O(p(s)) = 2f(s), whence f(s) = 2{(s). *

The trouble is, of course; due to abusing the equality sign =. A
similar situation arises if someone, because his typewriter lacks the
sign <, starts to write = L for the words “is less than”, and so
writes 3 = L(5). On being asked: “What does L(5) stand for?”,
he has to reply “Something that is less than 5”. Consequently, he
rapidly gets the habit of reading L as “something that is less than”,
thiis coming close to the actual words we used when-introducing
(1.2.5). After that, he writes L(3) = L(5) (something that is less
than 3 is something that is less thag 5), but certainly net L(5)=L(3).
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He will not see any harm in 4 = 2 + L(3), L(3) + L(2) = L(8).
The O-symbol is used in exactly the same manner as this person’s
L-symbol. We give a few examples:

Qx) + O@?) = O_(x) (x - 0).
This means: for any pair of functions f, g, such that
) =0(x) (5>0), gl&) = O (x—0),

we have
f®) +glx) = Ox) (v —>O0).
Analogously,
O(x) + O(x% = O(x3) (v —o0),
€0 = O(1) (— oo < % < o0),
g0($) a— 50(2’2) (x —> OO).
We also write things like

et =1+ x 4 O(x?) (x = 0),

which means that thereis a function f such that % = 1 + x + f(x),
and f(x) = O(s2) (x - 0). And we write things like

£710(1) = O(1) + O(x )~ (0 < % < o).

This means that for any function f(x) with f(x) = O(1) (0 < 2 < o)
we can split x~1/(x) into two parts g(x) and A(x), such that g(x)=0(1),
h(x).= O(x2) (0 < x < o). The proof is easy: take g(x) = O if
O<x<l, gx) =2(x) if x> 1, A(x) =x1(x) if 0 <x< 1,
h(x) = 0if x > 1.

The common interpretation of all these formulas can be ex-
pressed as follows. Any expression involving the O-symbol is to be
considered as a class of* functions. If the range 0 < % < oo is
considered, then O(1)+O(x?) denotes the class of all functions of
the form f(x) + g(x), with f(x) = O(1) (0 < x < o0}, g(x) O(x2)
(0 < x < o0). And 2#10(1) = O(1) 4 O(x—2) means that the slass
x710(1) is contained jn the class O(l) -+ O(x~2). Sometimes the
left-hand-side of a relation is not a class, but a single function, as
in (1.2.7). Then the relation means that the function on the left isa
member of the class on the right.

It is obvious that the sign = is really the wrong sign for such
relations, because it suggests symmetry, and there is’ no such
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symmetry. For example, O(x) = O(x?) (x - oo) is correct, but
O(2?) = O(x) (¥ — oo) is false. Once this warning has been given,
there is, however, not much harm in using the sign =, and we shall
maintain it, for no other reason than that it is customary.

Let ¢ and y be functions such that ¢(x) = Oy(x)) (x - o) is
true and y(x) = O(p(x)) (¥ — oo) is false. If a third function f
satisfies

(1.2.9) fw) =0Olp(®)  (x—>oc0),
then obviously it also satisfies
(1.2.10) fix) = O(yp(x)) (x = oo).

If (1.2.9) is true, it is called a refinement of (1.2.10). Formula
(1.2.9) is called best possible if it cannot be refined, that is, if there
are positive constants ¢ and 4 such that ale(x)| < [f(x)] < 4lp(x)
from a certain value of x onwards.

For example,

2x + xsin x = O(x) (x = o0)
is best possible, since the left-hand side lies between x and 3x. Also
log(e22 <08 = 4+ ¢7) = Ofs)  {x — oo)
is best possible. If » > 0, the logarithm is at most log(e?= + %),

and this is less than log(e?® - ¢2%) = log 2 + 2x. On the other hand
we have ¢2z cos 2 > 0, whence the logarithm is certainly not less

than log e% = x.
If m is a positive integer, then the estimate
(1.2.11) &% = O(xr) (x = 00)

holds (x#me—* has its maximum at x = 2, as far as positive values
of x are concerned). But for no value of s (1.2.11) is best possible,
since ¢-% = O{x 1) (x— oo) is always a refinement.

We shall now discuss the matter of uniformity. We start with an
example. Let S be a set of values of x, let & be a positive number,
and let f(x) and g(x) be arbitrary functions. Then we have

(1.2.12) (f(x) + g(x)® = O((ftx))*) + O((g(=))®)  (xeS).



8 ASYMPTOTIC METHODS IN ANALYSIS

For, we have
I(f + ¥ < (fl + lgh* < {Zmax (If], lgh}* <

< 2Fmax(/f|*, [gl¥) < 2¥(fI* + lgl¥).
Formuta (1.2.12) means that 4 and B can be found such that

[(f(x) + =)l < Alf(x)]¥ + Blg(x)*  (x€S),

and it should be noted that 4 and B depend on %, or rather, that we
have not shown the existence of suitable 4 and B not depending
on k.

On the other hand, in

(1.2.13) (—,ﬁ:ﬁk%(;}) (1 <x < o0)

the constant involved in the O-symbol can be chosen independently
of 2 (0< B< o0). For, we have x2 4 k2 = (x — k)2 + 2kx > 2%kx,
whence

(ie) =@
< .
w2 | k2 (2%)*
We have 2-% < | for all 2 > 0. It follows that there is a number 4,
not depending on % (viz. A = 1), such that

( k )kSA I k>0
PO '—x—’;' (1 <x<o0k>0).

This fact is expressed by saying that (1.2.13) holds uniformly with
respect to k.

We can also look upon (1.2.13) from a different point of view.
The function A¥(x2 + %2)~* is a function of the two variables x and
k, and therefore it can be considered as a function of a variable
point in the x-k-plane. Now the uniformity of (1.2.13) expresses
the same thing as

k k
— ) =0k
(x2+k2) O ¥  (1<x<oo, 0<k<o)

The set S referred to in (1.2.6) specializes to the subset of the
%-k-plane described by 1 < x < o0, 0 < £ < oo.
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Careful uniform estimates are often required in situations of the
following type. We want to have an O-formula for a function f. We
have some expression for f(x), which we split into two parts; the
way in which the splitting is made, depends on some parameter &.
Estimating both parts uniformly in x and ¢ we get, for example,

f(x) = O(x2) + O(x4-2) (x> 1,£> 1).

We now want to choose ¢ such that the right-hand-side is as small as
possible. As the formula holds uniformly, we may take ¢ equal to
some function of x. So the question is to minimize %2 4 x%-2, if x
is given. The minimum is attained at £ = (2x2)*s, and then both
terms have the same order, viz. "2, So f(x) = O(x*%) (x > 1).*

In order to obtain this result it is not necessary to determine
the exact minimum. We can argue as follows. Let £ be such that
x2 and x%—2 have the same order, #y = 2™, say. This gives the
optimal result, for by taking a larger value of ¢ we increase the first
term, and a smaller value of ¢ increases the second term. In both
cases the final result is worse (or at least not better) than the result
with .

In O-formulas involving conditions like ¥ — oo, there are two
constants involved (4 and & in (1.2.8)). We shall speak of uni-
formity with respect to a parameter % only if both 4 and a4 can be
chosen independent of %.

ExaMpPLE: For each individual £ > O we have

Rk2(1 4 Ax?)-1 = O(x1) (x = o0),
but this does not hold uniformly. If it did, there would be positive
numbers 4 and a, both independent of %, such that
R2(1 - Rx2)~1 < Ax1 (x >a, k>0).
If we put & = x2, we get A(1 + x4) > x5 whenever x > «, which is
impossible.

On the other hand, one of the two constants 4 and a can be
chosen independent of k. We can takea =%, 4 =1, as

Bl 4+ k2l < ka2 <zl  (x>k k> 0)
We can also take @ = 1, A = &, since
B2l + i)t < Bxt < hxl (x> 1,k > 0).
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1.3. The o~-symbol
The expression

(1.3.1) fx) = olplx)) (x> od)

means that f(x)/p(x) tends to O when x — co. This is a stronger
assertion than the corresponding O-formula: (1.3.1) implies (1.2.7),
as convergence implies boundedness from a certain point onwards.

Furthermore we adopt the same conventions we introduced for
the O-symbol: = is to be read as “is”, and “0” is to be read as
“something that tends to zero, multiplied by”. Some examples are

cos x = 1 + o(x) (x = 0),
@ = 1 + ofx) (x =),
n! = rﬂn”\/ﬁ(l + o(1)) (n > o0),
nl = gntotlyns/2ny (n > o0),
o(f(x) gx)) = o(f(x)) O(g(x)) (x > 0),
o(f(#) g(x)) = f(x) o(g(x)) (x — 0).

In asymptotics, o’s are less important than O’s, because they hide
so much information. If something tends to zero, we usually wish to
know how rapid the convergence is.

’

14. Asymptotic equivalence

We say that f(x) and g(») ave asymptotically equivalent as
x — oo, if the quotient f(x)/g(x) tends to unity. Our notation is

f(x) ~glx)  (x - o0).

The notation will also be used for all other ways of passing to a
limit {(e.g., x > — 00, 2 =0, x 0, |z} —0).

Properly speaking, the symbol ~ is superfluous, as f(x) ~ g(x)
can be conveniently written as f{x) = g(») (1 4+ o(1)), or as
f(x) = e*Vig(x).

Examples:
x4+ 1~z v (% - o),
sinh x ~ }e% (x = o0),

nl~eV2an (1 —oo) (ch(1.1.1)),

nf{x) ~x/{logx) . (x »>o00) (cf.(1.1.2).
When asking for the “‘asymptotic behaviour’ of 3 given function
f(x) as x — oo, say, one means to ask for asymptotic information of
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any kind. But usually it means asking for a simple function g(x)
which is asymptotically equivalent to f(x). Here “simple” means
that its explicit evaluation does #of become extremely hard if x is
very large. From a certain point of view #! is much simpler than
e-mnn(2mn)t, but from the asymptotic point of view the latter ex-
pression is the simpler.

The words “asymptotic formula for f(x)"” are, accordingly,
usually taken in the same restricted sense, viz. of an equivalence
formula f(x) ~ g(x).

1.5. Asymptotic series

We often have the situation that for a function f{x), as x —» oo,
say, we have an infinite sequence of O-formulas, each (# - 1)-th
formula being an improvement on the n-th. Frequently the sequence
of formulas is of the following type. There is a sequence of functions

@0, @1, P2, ..., satisfying
(15.1) gu(%) = o(po(x)) (x->00), galx) = olgr(x) (x—>00),...,

and there is a sequence of constants ¢, ¢y, €2, . . ., such that there is
the following sequence of O-formulas for f:

F()=0{go(x}) (x—>c0)
f(x)=copo(x) +O(pa(x)) (x—oc0)
(1.5.2)] H&)=copo(%)+c1p1(x) +O(p2(x)) (x—o0)

-----------------------

Obviously, the second formula improves the first one, as
copo(%) + O(pa(x)) = (co + o(1))@o(#) == Olgo(#)) {x— o0).

Accordingly, the third formula improves the second one, and so on.

. The following notation is used in order to represent the whole set
(1.5.2) by a single formula:

(1.5.3) f(x) ~ copo(x) + c1a(x) + capa(r) + ... (x — o).

The right-hand-side is called an asympiotic series for f(x), or an
asymptotic expansion for f(x). The notion is due to Poincaré.
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It is easy to see that the ¢’s are uniquely determined when the
p’s are given, assuming that such an asymptotic expansion exists.
For, assume that (1.5.3) holds, that

f(x) a do(po(x) + diga{x) + dgtpz(x) + ... (x—> oo)

is also true, and that % is the smallest number for which cx 7 dy.
Then we have, by subtraction

0 = (cx — dr)pr(x) + Olpr+1(x)).

Dividing by cx — dg we find that @i(x) = O(pr+1(¥)), which
contradicts the fact that gr+1(x) = o(pr(x)).

It can happen that, in (1.5.2), the coefficients ¢, ¢1, ¢g, - .. are all
equal to zero. Then it is conventional to write
f(x) ~ O-po(x) + O-@a(x) + O-p2(x) + ... (x —>o0).

It means that f(x) = O(pa(x)) (x — oo) for all # (but not necessarily
uniformly with respect to #). For example, since ¢% = O(x1)
(x — oo) for all #, we write

(154) e*2a~01402x14+0x24 ... (¥—>o00).

The series occurring in (1.5.3) need not be convergent. At first
sight it seems strange that such a sequence, producing sharper and
sharper approximations, does not automatically converge. The
answer is that convergence means something for some fixed xo,
whereas the O-formulas (1.8.2) are not concerned with x = xp, but
with x — oo. Convergence of the series, for all x > 0, say, means
that for every individual x there is a statement about the case
n —>oco. On the other hand, the statement that the_series is the
asymptaotic expansion of f(x) means that for every individual »
there is a statement about the case x - oo,

Moreover, if the sequence converges, its sum need not be equal to
f(x): formula (1.5.4) provides a counterexample. It is even possible
to construct functions f(x), @o(x), p1(x), ..., such that the series of
(1.5.3) converges for all x, but such that the sum df the series does
not have the series itself as its own asymptotic series.

A quite simple example of a divergent asymptotic series is the
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following one. We consider the function f, defined by
et
(1.5.5) f(x) = f—;— at

(apart from an additional constant this is the so called expenential
integral Ei #). Integrating by parts we obtain

(1.5.6 =[]+ f ‘a
1

where we use the notation [@(})]% = ¢(b) — ¢(a). The first term
in (1.5.6) is x~1e% — ¢, but the second one is of smaller order,
Splitting the integral into two parts, we obtain

iz iz

[ 2ttt < [ etdt < etz,

1 ' 1

x @

S t2%etdt < [ (dx)~2etdt < 4x—2e%.
iz iz

Since the — e, ¢} and 4x2¢% are all O(x—2¢7%), we obtain
f(x) = x~1e% 4 O(x~2%)  (x — oco).

We can improve the approximation by repeating the procedure.
Integrating the integral in (1.5.6) by parts, we get

=[]
Tl [] [2‘"]

and generally (n=1,2,3,.

x

f(x)'—--l:( +—'—+ 2l+ +£"t—:1—)!—)]:+n1f ¢ .
1

fntl

The last integral is O(x~7-1¢%) if ¥ — oo and if # is fixed. This can
again be verified by splitting the integration interval into two
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parts, viz. (1, ) and (¥, x). So for each #n, we have

1 -1 21 n— 1)1 1
e~%f(x) ==—;+ —E+ —;‘—5-+ +( o ) + O(xn+1) (% — o0),
and it follows that
e—“f(x)f§s-—l-—+-—!--—-}-2l +-§—!-+ (x — oo)
x %2 )

The series on the right converges for no single value of x.

A simple, though rather trivial, class of asymptotic series con-
sists of the class of convergent power series. Suppose f(z) is the sum
of a convergent power series, say

(1.5.7) Hz) = a0+ a1z + a2 + ...

when |z| < p, # being any positive number less than the radius of
convergence, Then we have

(1.5.8) . f(z) ~ a0 + @1z + agz? + ... {lz] — 0).

The proof is easy. The series converges at z = p, whence the
terms agp® are bounded, [@sp?| < 4, say, for all s
Now for each individual » we have, when {z| = ;;b,

| 3 ae¥] < A1+ 2+ 3+ .00,

k=n+1
and therefore
fz) = apg +mz + ... + anz® + Oz™2) (2| < #p)-

This implies (1.5.8).

It obviously does not matter whether in this discussion z re-
presents a complex variable, or a real variable, or a real positive
variable.

1.6. Elementary operations on asymptotic series “

For the sake of simplicity we shall restrict our discussion to
asymptotic series of the form
(1.6.1) ap + a1x + axx?2 4 ... x —0),

although similar things can be done for several other types.
The series (1.6.1) is a power series (in terms of powers of 1), and as
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long as there is no discussion about its representing anything, we
call it a formal power series.

1f for these formal power series addition and multiplication are
defined in the obvious way, then the set of all formal power series
becomes a commutative ring, with 1 4+ 0-x 4+ 0-x2 4- ... as its
unit element (to be denoted by I). If the series gg + 1% -+ ... and
bo 4 b1 x4 ... arerespresented by 4 and B, respectively, we define
sum and product by

A 4 B = (a0 + bo) + (a1 + b1)x + (a2 + ba)x® + ...,
AB = agbo + (aob1 + azbo)x + (aobz + a1b1 4 abe)x® + ... .

If ag # 0, then there is a vniquely determined series C such that
AC = I. Tts coefficients cq, c3, ¢3, ... can be evaluated recursively
from the equations

apto = 1, aoc1 + @1co =0, aocz + aicy + az60 =0, ...,

Furthermore we can define the formal power series that arises
from substituting the series B into the series 4, provided that
bo = 0. This new series will be denoted by 4(B) 1). It is defined as
follows: Let ¢y, be the coefficient of x* in the series @l + a1B +
+ a2B2% 4 ... 4 a,Bn. Then it is easily seen that cxx = cgx4+1 =
== C,k+2 = .." . Writing cxg == cg, we infer that

aol 4 a1B + ... + apBr =
=co+ 61x + ... + %P 4 Cpi1,2¥ 4 Cpao, a2 4 L.
We now define _
AB) =co+ c1x + .. + cax® + Cupaax?tt 4 Cpaox®te 4 L .

So A(B) arises from replacing x in the A-series by B, and com-
bining coefficients afterwards.

A further operation on formal power series is differentiation. The
derivative of A = aop 4+ a1x + ... is defined ”by

A’ = ay + 2asx + 3agx® + ...
that is, by formal term-by-term differentiation.
1) Note the difference between the notations 4(B) and 4B. A formula

A(B) = C refers to a formal identity 4{B{x)} = C(x), whereas 4B = D
simply means that D(x) is the formal product 4(x)B(x).
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It is well known that if 4 and B are power series with a positive
radius of convergence, these formal operations directly correspond
to the same operations on the sums A (x) and B(x) of those series.
For example, if 4(B) = C, then the series C has a positive radius of
convergence, and inside the circle of that radius we have
A{B(x)} = C(»).

When speaking about asymptotic series instead of power series,
we have a similar sitnation, apart from the fact that some extra
care is necessary in the case of differentiation. Assume that A(x)
and B(x) are functions defined in a neighbourhood of x = 0, having
asymptotic expansions

Alx) 4 (x>0}, B(x) ~B (¥ —=0),
Note that 4(x) stands for the function, and that 4 stands fc: the
formal series ag + @1x + .... It was already remarked in sec. 1.5
that the coefficients of the series 4 are uniquely determined by the
function A (x), provided that 4(x) has an asymptotic series.

Now it is not difficult to show that

(1.6.2) A@)+ Bz~ A+ B x —0),
(1.6.3) A(x)B(x) ~ AB (x ~0),
and if @9 £ 0,

(1.6.4) {Ax)) 1t~ 41 {x - 0)

{41 stands for the solution of 4~1.4 == I). Furthermore, if o = 0,
the composite function A4 (B(x)) is defined for all sufficiently small
values of x, and
(1.6.5) A{B(x)} ~ A(B) (x - 0).
Formula (1.6.2) is trivial. We shall prove (1.6.3). Writing AB=C,

we have, for each #,

A(x) = a0+ ... + anx® + O(x7) (x > 0),

B(x) = bp + ... + bax® + O(x7*) (x> 0).
and so
A(%)B(x) = (@0 + . .. + bux?) (bo + ..". + bpx®) + Oz} (x—0).
Now

(@o+ ... + anx®) (bo+ ... 4 bax") — (o + ... + cax®)
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is a linear combination of #m+1, x#+2, . .| x2% and so it is O(x#+1)
if x — 0. It follows that

A@x)B(x) = co + ... + cax® 4 O(xnt1) (x —0),
and this proves (1.6.3).

Similar proofs can be given for (1.6.4) and (1.6.5). Actually,
(1.6.4) can be considered as a special case of (1.6.5), as A-1 = P(Q),
with P = ap~}(1 4+ x + 22 4 ...), Q = ap~L(ap — A4).

Suppose that f(x) satisfies

fix) a0+ awx+ax®+ ... (x =0,
and that f§ f(f)d¢ exists for all sufficiently small values of x. Then
term-by-term integration is legitimate:
(1.6.6) [f{t)dt ~ aox + 4a1x% + 4agx® 4 ... (x = 0).
0
This is easily proved. If n is given, then there are constants 4 and a,
such that ‘
) — a0 — a1t — ... — apytl < Ar (] <a),

so if |x] < @, we have

x
1 A
— g% — Iaga® — .. e +1
ff(t)dt apx — haix® — ... a3 | < arag [ 2]+,
0

and (1.6.6) follows.

When we consider differentiation, the situation appears to be
different. If A4 (x) has the asymptotic development 4(x) ~ 4 (x—0),
then A’(x) does not necessarily exist. If it exists, it does not
necessarily have an asymptotic expansion.

For example, we have

eVUzsin(el/#) ~ 04 0-x +0-52 4 ... (x >0, x - 0),
but the derivative
x~2e~1/% sin(el/7) — x—2 cos(el/)

has no such asymptotic expansion.
Term-by-term differentiation of an asymptotic power series is
legitimate, however, if it can be shown that the derivative of the
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function also has an asymptotic expansion (in the form of a formal
power series). Assuming that

f(x) ~ ap + a1x + asx2 + ... (x = 0),
f'(®) ~ bo + b1x 4 bax? + ... (x —0),

we shall prove that by = (24 1)ax+1 (k =0,1,2, ...). Considering,
for somen = 1,

gnix) = fx) — (box + 30122 4+ ... + #~1 bpax®),

we have g,'(%) = O{zx") (¥ — 0). From the mean value theorem of
the differential calculus it follows that gu(x) — g.(0) = O(x»*1).
Since # is arbitrary, we infer that

f(x) & f(O) + box + $b1x? + Lbox® + ... (x —O).

The formula bz = (& + 1)ag+1 now follows from the fact that the
coefficients in an asymptotic series are uniquely determined.

1.7. Asymptotics and Numerical Analysis

The object of asymptotics is to derive O-formulas and o-formulas
for functions in cases where it is difficult to apply the definition of
the function for very large (or for very small) values of the variable.
Tt even occurs that the definition of a function is so difficult, even
for “normal’ values of the variable, that it is easier to find asympt-
otic information than any other type of information.

As was already stressed in sec.l.1, neither O-formulas nor o-
formulas have, as they stand, any direct value for numerical
purposes. However, in almost all cases where such formulas have
been derived, it is possible to retrace the proof, replacing all O-
formulas by definite estimates involving explicit numerical con-
stants.

That is, at every stage of the procedure we indicate definite
numbers or functions with certain properties, where the asyrmptotic
formulas only stated the existence of such numbers or functions.

In most cases, the final estimates obtained in this way are rather
weak, with constants a thousand times, say, greater than they
could be. The reason is, of course, that such estimates are obtained
by means of a considerable number of steps, and in each step a



INTRODUCTION 19

factor 2 or so is easily lost. Quite often it is possible to reduce such
errors by a more careful examination.

But even if the asymptotic result is presented in its best possible
explicit form, it need not be satisfactory from the numerical point
of view. The following dialogue between Miss N.A., a Numerical
Analyst, and Dr A.A., an Asymptotic Analyst, is typical in several
respects.

N.A.: T want to evaluate my function f(x) for large values of x,
with a relative error of at most 19.
AA f(x) =21 4 O(x2) (% — o0).
N.A.: I am scorry, but I don’t understand.
AA: Hx) — x 1 < 8x2 (x > 104).
N.A.: But my value of x is only 100. .
A.A.: Why did not you say so? My evaluations give
f(x) — x~1] < 57000z~2  (x > 100).

N.A.: This is no news to me. I know already that 0 < f(100) < 1.
A.A.: T can gain a little on some of my estimates. Now I find that
if(x) — 271} < 2052 {x > 100).

N.A.: I asked for 1%, not for 20%,.

A.A.: Tt is almost the best thing I possibly can get. Why don’t you
take larger values of x?

N.A.: 1. T think it’s better to ask my electronic computing
machine.

Machine: f(100) == 0.01137 42259 34008 67153.

A.A.: Haven'tI told you so? My estimate of 20%, was not very far
from the 149, of the real error.

N.A.: tH..L

Some days later, Miss N.A. wants to know the value of f(1000).
She now asks her machine first, and notices that it will require a
month, working at top speed. Therefore, she returns to her Asympt-
otic Colleague, and gets a fully satisfactory reply.

1.8. Exercises. 1. Show that
x
S (1 4+ t*0)4dt = ex — e log x + O(1) x> 1).
1

(Hint: First show that e-l(1 + £-3)¢ = 1 — }#~1 + O@-%) (2 1)
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2. Show that
-+ 14 O 1))2 = ex® + Ofx=—1) (® = o).
3. Prove that, foreach = (# = 1,2, 3, ...),

T
jo' (log y)ndy = Of{x(log #)7) (x > 0).
4, Show that
-] ©0 -
# [ e~st(log x)-tdx e X cn(log £)-n-1 t>0,¢t->0),
2 0

with the coefficients cq = — [f§° e~v(log y)7dy.
(Hint: Use f& e~¥(log y)ndy = O(/§ (log ¥)»dy). and apply the result of
the previous exercise to this integral).
5. Prove that
(vedtz—n)n — O(emﬁ+z) {x > 0)
holds uniformly with respect to » (mn = 1,2,3,...).
(Hint: Determine the maximum of {ze2(z-n))ng—2-2* for x > O, if » is fixed).
6. Prove the following uniform estimate:
w
X | [feftn-vidt] = O (log(l + ux)) + Ou) (x> 1L, %> 0, — oo <v<oo).
l<nsz 0

The summation runs over all integers # with 1 < % < x; 7 need not be
an integer.
(Hint: |/3* et7%dt] < min (%, 2 |p|~1) if p is real, and » > 0).



CHAPTER 2
IMPLICIT FUNCTIONS

2.1. Introduction
Let x be given as a function of ¢ by some equation
flx, ) =0,

where, if the equation has more than one root, it is somehow
indicated, for each value of #, which one of the roots has to be
chosen. Let this root be denoted by x=¢({). The problem is to
determine the asymptotic behaviour of ¢(f) as £ — oo.

We shall only discuss a few examples, since little can be said in
general. In general, the question is rather vague, for what we really
want is the asymptotic behaviour of @(f) expressed in terms of
elementary functions, or at least in terms of explicit functions. In
this respect it is, of course, essential what functions are considered as
elementary. If no one had ever introduced logarithms, the question
about the asymptotic behaviour of the positive solution of the
equation ¢z —{ =0 (as?-—+co) would have been a hopeless
problem. But as soon as one considers logarithms as useful functions,
the problem vanishes entirely.

In many cases occurring in practice, it is possible to express the
asymptotic behaviour of an implicit function in terms of element-
ary functions. For the sake of curiosity we mention one case where
it is quite unlikely that such an elementary expression exists,
although it may be difficult to show the contrary. If x is given by

z(log x)t — 1% =0, x > 1,

then we can easily verify that x = et®®, where @(f) is the solution
of pe?==¢. When ¢ - co we have for ¢ an asymptotic expansion
(see sec. 2.4), which involves errors of the type (log ¢)~%, for & arbi-
trary but fixed. This means that we have an asymptotic formula for
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log x, but not for x itself. That is, we do not posses an elementary
function ¢(¢) such that x/y(¥) tends to 1 as ¢ — oo. This would
require a formula for ¢(f) with an error term of off-1), and it is
unlikely that such a formula could ever be found.

In most cases ‘where asymptotic formulas can be obtained, it
turns out to be quite easy. Usually it depends on expansions in
terms of some small parameter, ordinarily in connection with the
Lagrange inversion formula. That formula belongs to complex
function theory, but the same results can often be obtained by real
function methods. Quite often iteration methods can be applied,
but sometimes they fail in a peculiar way (see sec. 2.7).

2.2. The Lagrange inversion formula 1)

Let the function f{z) be analytic in some neighbourhood of the
point z = 0 of the complex plane. Assuming that f(0) % 0, we con-
sider the equation :

(2.2.1) w = z/f(z),

where z is the unknown, Then there exist positive numbers 2 and 5,
such that for |w} < @ the equation has just one solution in the
demain |z{ << b, and this solution is an analytic function of w:

(2.2.2) z =Y cpwk (lw} < a),
k=1

where the coefficients ¢ are given by

(2.2.3) o = 7’,— {(%)H () )kLo.

A generalization gives the value of g(z), where g is any function
of z, analytic in a neighbourhood of 2 =0

(2.2.4) ) = 8(0) + X dut,
05 = (B)H&Id g @) (HE)Bhomo

Formula (2.2.2), usually quoted as the Lagrange inversion form-
ula, is a special case of a more general theorem on implicit func-

1) See E. T. WHITTAKER and G. N. Warsown, Modern Analysis, 4th ed ,
Cambridge 1946, § 7.32.
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tions 1): If f(z, w) is an analytic function of both z and w, in some
region |z} < a3, |w| < by, if f(0, 0) = O and if 8f/dz does not vanish
at the point z = w = 0, then there are positive numbers @ and b,
such that, for each w in the domain {w| < @, the equation f(z, w) = 0
has just one solution z in the domain |z| < &, and this solutmn can
be represented as a power series z = Y., cxwk.

We shall not reproduce proofs of these theorems here, although in
sec. 2.4 (see {2.4.6)) a special case of a slightly more general problem
will be treated in detail.

2.3. Applications

Some asymptotic problems on implicit functions admit a direct
application of the Lagrange formula. For example, consider the
positive solution of the equation

(2.3.1) xe% = -1,

when ¢ — oo, As -1 tends to zero, we apply the Lagrange formula
(2.2.2) to the equation ze# = », so that f(2) = e=. It results that
there are constants @ > 0 and & > O, such that for |w| < @ there is °
only one solution z satisfying |z| < b, viz.

2= 3 (— 1)E-1pk-Lipk/p]
k=1

(actually, the series converges if jw] < ¢~1). So it is clear that if
t > a1, there is one and only one solution in the circle {x| < &.
But as xe? increases from O to oo if x increases from 0 to co, the
equation (2.3.1) has a positive solution, and this one cannot exceed
b if ¢ is sufficiently large. So if ¢ is large enough, the positive
solution we are looking for, is given by

2.3.2) £ =3 (— 1)E-1RE-1k/p1,
k=1

and this power series also serves as asymptotic development (see
sec. 1.5).

Our second example considers the positive solution of
(2.3.3) xf = %

1) See L. BieBErBACH, Funktionentheorie, vol. 1, 3e Aufl,, Leipzig-Berlin
1930, Kap. VII § 8.
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when # — co. The function #* is increasing if ¥ > 0, and ¢2 is de-
creasing. We notice that x* is small in the interval 0 < x < [ unless
x is very close to 1, so that it is clear from the graphs of x¢ and e—=
that there is just one positive root, close to 1, and tending to 1 as
¢ — oo,

We now put x = 1 + z, £ = w», and try to get an equation of
the form (2.2.1). From ¢ = ¢~% we obtain the equation

z{f(z) = w, where f(z) = —z(1 + 2)/(log(l + 2)).

The function /(z) is analytic at z = 0: f(z) = —1 + c1z + ... . It
follows that '
x=1—ft3 w24 ...

solves the equation (2.3.3), if { is large enough. As in the previous
example, the fact that there is just one positive solution, tending to
unity if £~ oo, guarantees that the positive solution is represented
by the power series, if ¢ is sufficiently large.

Our third example is stated in a somewhat different form. Con-
sider the equation

(2.3.4) Cos ¥ = % sin #.

We observe from the graphs of the functions x and cotg x, that
there is just ome root in every interval nm <x < (# 4+ )=
(n=0,4+ 1,4+ 2, ...). Denoting this root by %, we ask for the
behaviour of %y as # — co. As cotg(xy — 7tn) = x5 ~ oo, we have
Zp — an — 0. Putting x =an + z, (7n)! = w, we find cosz =
= {w~1 4 2) sin z, and so

w == z{f(z), [(z) = z(cos z — zsin z)/sin z,

where £(z) is analytic at z = 0, and f(0) = 1. Therefore z is a power
series in terms of powers of ®», and we infer that z = w + cow® 4
+ cawd + . ... Consequently we have, if # is large enough,

Xp = an + (nn)t + colmn)~2 + ...

As a consequence of the fact that f(z) is an even function of z,
we notice that ¢pg = ¢4 = ¢cg== ... = 0.
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2.4. A more difficult case
We take the equation
(2.4.1) xe% = {

which has, when ¢ > 0, just one solution x > 0, as the function xe*
increases from 0 to co when # increases from 0 to co. This solution
being simply denoted by x, we ask for the behaviour of x as ¢ — oo.

It is now more difficult than in the previous examples to trans-
form the equation into the Lagrange type. We shall proceed by an
iterative method. We write (2.4.1) in the form

(2.4.2) x = log t — log x.

Once we have some approximation to x, we can substitute it on
the right-hand-side of (2.4.2), and we obtain a new approximation,
better than the former. Note that an error 4 in the value of x gives
an error of about A/x in the value of log x.

We must have something to start with. As £ tends to infinity, we
may assume ¢ > ¢, and then we have x > 1. For, 0 < # < 1 would
imply log ¢ — log ¥ > log ¢ > log e=1, whereas the left-hand-side
of (2.4.2) would be < 1.

From x > 1 it follows, by (2.4.2), that x = log? — log x < log ¢
So we start with

1 <x <logt.

It follows that log x = Of(log log #), and so, by (2.4.2},
x = log ¢ + O(log log ).
The formula refers to { — oo, and the same thing holds for all other

O-formulas in this section.
Taking logarithms, we infer that

log x = log log ¢ + log{l + Of(log log ¢/log #)} =
= log log ¢ + Oflog log {/log ¢).
Inserting this into (2.4.2), we get a second approximation
(2.4.3) x = log ¢ — log log ¢ +O (log log #/log #).

Again taking logarithms here, and inserting the result into (2.4.2),
we get the third approximation
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% == log ¢ — logf{log ¢ — log log ¢ + Oflog log #/log #)} =

og log ¢ 3 (log log t)2 0 (}gg_k)__gi)
log ¢ logt (log /2 /'

We shall carry out two further steps. Abbreviating

1
= logt — loglog ¢ +

logt = L, loglogt = L,
we obtain
logx = Lo + ].Og{l — Lol + Lol1—2 4 41520173 + O(L2L1’3)},
and so, the term O(LoL1~3) absorbing all terms L2PL,~2 with g > 3,
%=Ly — Lo —{— LaLy71 + LyL1™% + }L92L,73 + O(L2Ly3)} 4
+ ${— LoLy™t + Lol1732 — }(LaL71)3 =
=Ly — Lo+ LaLy 4 {3L2% — L2}Ly~% +
4 {— 3Ls3 — 3La? + O(La)}Ls~3.
The next step can be verified to give
(244 %=1>L; — Lo+ Lal171 + {%ng — Lg}Li-2 4
+ {— $L23 — $L2% + Lo}L17% +
+ {3Lat — LLo3 + 3La2 + O(Log)}L1~%

From these formulas we get the impression that there is an asymp-
totic series

(2.4.5) % ~ Ly — Ly + LoPo(Lg)Ly! +
+ L2Py(Lg)L172 4 LaPa(Lo)L173 + ...,

where Py(Ly) is a polynomial of degree 2 (4 = 0, 1, 2, ...). This can
be proved to be the case, by a careful investigation of the process
which led to (2.4.4) and to further approximations of that type. We
shall not do this here, as we can show, by a different methed, a
much stronger assertion: if ¢ is sufficiently large, x can be repre-
sented as the sum of a convergent series of this type.

We shall need Rouché’s theorem 1), which reads as follows. Let
the bounded domain D have as its boundary a closed Jordan curve
C. Let the functions f(z) and g(z) be analytic both in D and on C,
and assume that |f(z)| < |g(?)} on C (so automatically g(z) = 0 on C).

1) See- E. C TrrcuMarsH, Theory of Functions, 2nd ed. Oxford 1939,
§3.42.
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Then f(z) + g(z) has in D the same number of zeros as g(z), all zeros
counted according to their multiplicity. A proof can be given as
follows. It has to be shown that the argument of f + g increases by
the same multiple of 2x as the argument of g if z runs through C.
This follows from the fact that the real part of (f + g)/g is positive
on C (since |f] < |g}), whence the argument of (f + g)/g cannot
increase by any of the values 4 27, & 4=, ....

Our method for dealing with (2.4.2) is modelled after the usunal
proof of the Lagrange theorem. For abbreviation, we put

x =logt — loglogt + v,
(logt)"l = o, {loglogi)/logt ==

and we obtain from (2.4.2) that
(2.4.6) e?—1—ov+7=0

For the time being, we ignore the relation that exists between o
and 7, and we shall consider them as small independent complex
parameters. We shall show that there exist positive numbers 2 and
b, such that, if o] < 4, |7| < 4, the equation (2.4.6) has just one
solution in the domain [v] < 5, and that this solution is an analytic
function of both ¢ and 7 in the region lo] < 4, |7| < 4.

Let  be the lower bound of e~ — 1| on the circle [z] = n. Then
6 is positive, and ¢—% — 1 has just one root inside that cirele, viz.
z = 0. Now choose the positive number a equal to 8/2(z + 1). Then
we have

loz — 7] < $6 (o] < a, 7] < a, jz| = =).

A consequence is that |e2 — 1| > Joz — 7| on the circle |z| = x. So
by Rouché’s theorem, the equation £~% -~ 1 — g2 4 7 == 0 has just
one root inside the circle. Denoting this root by v, we have, in virtue
of the Cauchy theorem,

1 —eF — g
2.4.7 = f -zdz,
( ) ’= om e*F—1—~grt 7 o

where the integration path is the circle |z| = 7, taken in the po-
sitive direction.
For every z on the integration'i)ath |oz} + |7|is less than }|e—2—1{,
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so that we have the following development

(2.4.8) (0% —1 — oz 4+ 7L =
o @ (m 4+ B)!
— —2z_._ 1)~k ~1ok k. — L.

=Z 2 (=l (Sl iyl

converging absolutely and uniformly when [l ==z, [o] <a,
lr] < a. So in (2.4.7) we can integrate termwise, and v appears as
the sum of an absolutely convergent double power series (powers of
o and 7). We notice that all terms not containing = vanish. For, in
(2.4.8) the terms with m = 0 give rise to integrals

(2mi)=1 [ — (=2 + o) (e=2 — 1)F-1zk.z dy,

which vanish by virtue of the regularity of the integrand at z = O.
Our result is that, if |o] < a, |7| < , (2.4.6) has just one solution
v satisfying |v] < =, and this solution can be written as

[- -2 - -4

(2.4.9) v==1% 3 cpmo¥r,
k=0 m=0

where the cgy, are constants.

We now return to the special values of ¢ and », viz. ¢ = (log §)—1,
7 = log log #flog ¢. For £ sufficiently large, we have |0} < 4, |7| < a.
Moreover, the solution of (2.4.6) which we actually want to have, is
small: (2.4.3) shows that v = Of(log log ¢/log #). It follows that it
coincides with the solution {2.4.9) if ¢ is large. The final result is
that if £ is large enough,

(2.4.10) x=logt—log log ¢+

+2 X cem(loglog f)m+i{log )k,
k=0 m=0

and the series is absolutely convergent for all large values of ¢,

Needless to say, this series can be rearranged into the form (2.4.5).

2.5. Iteration methods

The previous section gave a typical example of the rdle of iter-
ation in asymptotics. In the next sections we shall discuss some
further aspects of asymptotic iteration. The subject does not
entirely fall under the heading “‘implicit functions”, and therefore
our reflections will be sornewhat more general.
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Let f(f) be a function whose asymptotic behaviour is required
as ! — oco. Usually it is quite important to have a reasonable con
jecture about this behaviour before we start proving anything. And
usually, the better the approximation we guess, the easier it is to
prove that it is an approximation indeed.

Let @o(t), ¢1(#), ... be a sequence of functions and assume that,
for each separate %, the asymptotic behaviour of gx(f) is known,
Assume that we have reasons to believe that the behaviour of @q(#)
is, in some sense, an approximation to the one of f(f). Moreover
assume that there is a procedure that transforms ¢g into @3, ¢; into
@2, etc., and that there are reasons to believe that this procedure
turns any good approximation into a better approximation. What
we hope for is this: it might happen that, for some &, gy is so close
to f, that we may be able to prove this fact, in some specified sense.
It may even happen that we are able to use the procedure itself
for proving things. Namely, if we are able to show that (i) if ¢ is an
approximation in some #-th sense, then automatically gp41 is an
approximation i some {# -+ 1)-th sense, and if moreover (i) for
some % it can be proved that ¢y Is an approximation in the %-th
sense. The process which led to (2.4.4) provides a simple example.
In section 2.4 we were so fortunate to have useful information right
from the start: 0 < x < log?, so that there was no need for guess-
work. But quite often there is no such easy first step. For example,
if we would again consider (2.4.1), but now with complex values
of ¢, the first step would already be more difficult. In order to be
specific, we assume that Im ¢ = 1, and that we want to have a so-
lution x with Re x — oo, Im x — 0. Now x == O(log #) would be a
conjecture, and so would be its consequences (2.4.3) and (2.4.4). But
at the moment we have reached x = log # — log log ¢ + of1), we
can put x — log ¢ 4 log log f = v, and the discussion of (2.4.6) can
be applied. Only then we get to definite results.

This example of iterating conjectures so as to reach a stage,
sooner or later, where things ca.n’be proved, is too simple to be very
fortunate. For, it is not very difficult to prove x = O(log #) right at
the start, using the Rouché theorem. On the other hand, it is easy
to imagine slightly more complicated examples, where the applica-
tion of the Rouché theorem would be very troublesome indeed.

The method of iteration of conjectures also occurs in numerical
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analysis. There the object to be approximated is not an asymptotic
behaviour, but just a number. We shall consider things of that type
in sec. 2.6, and compare them to asymptotic problems in sec. 2.7.

2.6. Roots of equations

We want to approximate a special root ¢ of some equation
J(x) = 0. To this end Newton’s method usually gives very good
results. It consists of taking a rough first approximation x¢ and
constructing the sequence x1, 3, #3, ... by the formula 1)

(2.6.1) Zni1 = %y — Hxn)/f (Xa).

Its meaning is, that xp41 is the root of the linear function whose
graph is the tangent at P, of the graph of }(x)}, where P, denotes
the point with coordinates (x,, f(xn)).

Usually the sitnation is as follows: There is an interval J, con-
taining £ as an inner point, having the property that if xo belongs
to J, then x3, %3, . .. all belong to J and the sequence converges to &.

A sufficient condition for the existence of 7 is, for instance, that
f{x) has a continuous second derivative throughout some necigh-
bourhood of £ and that f'{&) 5= 0. In that case the process converges
very rapidly, for then (2.6.1) guarantees that x,+1 — & is at most of
the order of the square of xp, — &.

Quite often very little is known about the function f{x), that is,
for every special x the value of f(x) can be found, but in larger x-
intervals there is not much information about lower and upper
bounds of f(x), f'(x), etc. Usually such information can be obtained
in very small intervals. In order to find a root of the equation
f(x) = 0, we then simply choose some number xg, more or less at
random, and we construct x;, #3, ... by Newton’s iteration process.
If this sequence shows the tendency to converge, nothing as yet has
been proved, as convergence cannot be deduced from a finite
number of observations. But it may happen that sooner or later we
arrive at a small interval J, where so much information can be ob-
tained about f(x), that it can be proved that the further xss remain
in / and converge to a point of J, that this limit is a root of f(x) = 0,

1} See C. Jorpan, Calculus of Finite Differences, 2nd ed., New York 1947,
§ 150.
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and that there are no other roots inside /. What we then have
achieved is not the exact value of a root, but a small interval in
which there is one; moreover we have a procedure to find smaller
and smaller intervals to which it belongs. Therefore it is a perfectly
happy situation from the point of view of the numerical analyst.

There are also less favourable possibilities, several of which we
mention here:

(i) The sequence xp, x1, ... diverges to infinity.
(i) It converges to a root, but not to the one we want to approxi-
mate. '

(iii) It keeps oscillating.
{iv) It converges to the root we have in mind, but we are unable to
prove it.

2.7. Asymptotic iteration

Now returning to asymptotic problems about implicit functions,
we notice that the Newton method works quite well in small-
parameter cases like those of sec. 2.3 or the one of (2.4.6). Needless
to say, the root is no longer a number, but a function of {, and we
are looking for asymptotic information about this function.

There are two different questions. The first one is whether the
Newton method gives a sequence of good approximations.

A far more difficult question is whether we can prove that these
approximations are approximations indeed. We shall not discuss
this second question, in fact we only discuss examples that have
been extensively studied before, so that the asymptotic behaviour
is precisely known.

First take the equation (2.3.1), viz. xe® = ¢~1. We consider go = 0
as the first rough approximation to the root. Applying the Newton
formula (2.6.1), with f(x) = xe® — {1, we obtain

Q1 = (pn® + t7167%3) (@n + )72,
and so, putting #! =7,
Y1 = &,
pr=ct—¢gle* — Ne*(l + et =e—e2 + 334 0(%) (¢6—0).
Hence g, differs from the true root x (see (2.3.2)) by an amount
O(e4). It is not difficult to show, in virtue of (2.3.2), that ¢i differs
from x only by O(e?¥).
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We next discuss the equation (2.4.1), and we shall apply Newton’s
method at a stage where we have not yet reached the small-para-
meter case. Then we shall notice phenomena that did not arise in
sec. 2.6,

Observing that the positive root of xe% = ¢ is small compared to ¢,
we might think pg == O to be a reasonable starting point. We have

Pn+1 = (Pa + te~®n) (‘Pn + 1)1,

whence
p1=1,
g =1 — 14 O{1) (£ - o0), ,
ps=1:—240(@1) (o)

and so on. It is clear that this leads us nowhere. None of the ¢g’s
have any asymptotic resemblance to the true root x, which is
log ¢t — log log ¢ + o(1).

The same thing happens if we start with @o = log ¢, which is
already a quite reasonable approximation, as x = log ¢ 4 o{log )
(¢ — oo) (see (2.4.3)). Then we again obtain ¢, = log ¢ — # + o(1).
It is not difficult to show that we always have g, = go — 7 -~ o(1),
as soon as we start with a function @¢ which is such that e/t
tends to infinity when ¢ — oo.

Next assume that we try ¢¢ = log¢ — log log ¢ -+ ap for some
constant @ (admittedly, this example is not very natural, as no
one would try this before trying gq = log¢ — log log #). Then we
easily ecalculate that

pn =1logt —loglog? + an + O((log?)~1), where ani1 = ay + ¢~0n—1.

It can be shown (see Ch. 8) that @, tends to zero quite rapidly.
However, not a single g of this sequence gives an approximation
essentially better than log ¢ — log log ¢ 4+ O(1).

In some sense Iog ¢ — log log ¢ is the limit of this sequence go,
@1, @2, . .. . If we now start the Newton method anew, with @o* =
=log i—log log ¢, we suddenly get much better approximations.
Actually it means that we consider the small-parameter case (2.4.6),
starting with zero as a first approximation to .

We leave it at these casual remnarks; our main aim was to stress
the fact that in many asymptotic problems it is of vital importance
to start with a good conjecture or a good first approximation.
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2.8. Exgrcises. 1. Show that the equation sin » = (log #)-! has just one
root ¥y in the interval 2zn < #p < 2mm + fx (=1, 2, 3, ...), and that
Xn = 2mn -+ (log 2an)~1 4 O((log 27n)-8) (% - oo).
2. Let f{2) be&posltive, and assume that
etrt) = f(f) + ¢ 4+ O(l) (0 <? < o).

Show that
1) = +logt 4+ O3 (t - o).

3. Show that the positive solution of e® + log » == ¢ equals, for large
valunes of ¢:

loglog ¢ p ( log log ¢ i loglog¢ )

7 =logt+— tlog? ' tlogt' ¢

where P(A, p, o) is a multiple power senes in the variables 4, u, 0, convergent
for all small values of |4|, |u], |g].



CHAPTER 3
SUMMATION

3.1. Introduction

We shall consider sums of the type Y., ax(n), where both the
terms and the humber of terms depend on n. We ask for asymptotic
information about the value of the sum for large values of #. In
many applications, ax(#n) is independent of %, and actually several
of our examples will be of this type, but the methods by which those
examples are tackled, are by no means restricted to this case.

It is of course difficult to say anything in general. The asymptotic
problem can be difficult, especially in cases where the a; are not all
of one sign, and where Y7 ax(») can be much smaller than 37 jax(#)!.
On the other hand, there is a class of routine problems arising in
many parts of analysis, and to which a large part of this chapter is
devoted: the cases where all ax(n) are of one sign and where more-
over the ax(#n) ‘‘behave smoothly”. We shall not attempt to define
what smoothness of behaviour is, but we merely give a number of
examples. These fall under four headings a, b, ¢, 4, according to the
location of the terms which give the main contribution to the sum.
The major contribution can come from:

a. a comparatively small number of terms at the end, or at the
beginning.

b. a single term at the end or at the beginning.

c. a comparatively small number of terms somewhere in the
middle.

There is also a case d, where there is not such a small group of
terms whose sum dominates the sum of all others.

3.2, Casea
Our first example concerns the behaviour of the sum s, =
= 3%_, k3. A first approximation to s, is the sum S = }{° 22 of
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the infinite series, and the error term is — ¥2°, ; k3. For this last
sum we easily obtain the estimate O(n-2), e.g. by

oo oo A -]

(3.2.1) Sk <Y [ = [t-3dt = In?,
n-+1 n+1 k-1 n

and therefore

(3.2.2) sn=S 402  (n—o0)

Results of this type are quite satisfactory for many analytical
purposes; it should be noted, however, that from the point of view of
numerical analysis nothing has been achieved by (3.2.2), unless we
know the value of S from other sources of information. The numerical
analyst would orefer to evaluate 37* 23 for some suitably chosen
value of m, and to estimate 3, ; & 3.

Formula (3.2.2) can be improved by refinement of the argument
used in (3.2.1), i.e. comparison of the sum with the integral. We
shall return to this technique in secs. 3.5 and 3.6.

Our next example is Y7 2% log &. In this sum there is a relatively
small number of terms at the end whose total contribution is large
compared to the sum of all others. If we omit the last [log »] terms
({log #] denotes the largest integer < log »), the sum of the remain-
ing terms is less than

a—{log n}
Z 2k log n < 2ﬂ+1—108 n log " o= 2n+1n—-10g 2 log 7,
1

and this is much smaller than the #-th term.

We notice that log % shows but little variation when % rums
through the indices of the [log #] significant terms. We therefore
expand log % in terms of powers of (# — )/, and in doing this we
can easily admit the range # < & < #. We shall be satisfied with

log k == log(n — k) = log n — hn~1 4 O(A?n~2) (n — c0)
which holds uniformly in % (0 < 2 < 3n). We now evaluate
3 2k log k = O(2in log n),

1<k <in

¥ 2¥ log n = 2%+l Jog n + O(2¥# log n),
n<k<n o0

3 2k bl = n~12n 5 2-bh + O(24%),
in<k<n h=1

3 9k O(htn—2) = O(2nn-2). 3, 2-¥A2.
n<k<n h=1
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The main error term is O(2%1-2); the terms involving 2i# are
much smaller than this one. Our result is

n oo
203 2klogk=2logn —n1 3} h-272 4 O(n2),
1 1

and it is not difficult to extend our argument in order to obtain
an asymptotic series in terms of powers of n-1:

n
2n N 2klogk —2logn ~ceml +cam2 4 ... (n - o0),
k=1
with ¢; = — j~1 302, Ai2-B,

3.3. Case b

‘We are often confronted with sums of positive terms, where each
term has at least the order of magnitude of the sum of all previous
terms. Our example is s, = Y}.; &!. Dividing by the last term,
we find that

-+

1
n! n n(n-—-l)+n(n—1)(n-——2)+'“ PR

If we stop after the Sth term, say, we neglect # — S terms, each
one of which is at most (» — 5)1/n!, and so the error is O(n—4). But
the 5th term itself is O{n—%), and therefore

1 1 1
2 mlt—t +
”n n

oy o) Tam—n g T O (r oo

If we so wish, we can expand these terms into powers of #—1;

Sp 1 1 2

2P = 4= -4
o l+n+n2+n3+0(n) (7 — oo).
Replacing the number 5 by an arbitrary integer, we easily find that
there is an asymptotic expansion

L(83.1) sp/n! ~vco + camt fcon2 4 L, (n — oo).

This series is not convergent, that is to say, the series ¢y + c1x +
~+ ¢c2x2 4 ... does not converge unless x = 0.
This can be shown as follows. The series cp + ¢33 + ¢g922 . ..
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arises as the formal sum of the power series for the functions

x2 %3 x4
T X l—m(—20 ' (I—m(l—20 (-3 "
and each one of these has non-negative coefficients. So if % is any
positive integer, the coefficients of ¢p + c1¥ + c2%® + ... exceed
those of the series for x¥+1/(1 — %) (1 — 2%)---(1 — kx). The latter
series diverges at x = k-1, and therefore cg + c1¥ + ca%% + ...
diverges at x = k1. Since % is arbitrary, we infer that the radius of
convergence of cp + ¢c1x + c2x% 4 ... is zero.

1

There is usually no reason to try to obtain an explicit formula
for the coefficients of a divergent asymptotic series. For practical
purposes only a few terms of the asymptotic series will be needed,
and for nearly all theoretical purposes the mere existence of an
asymptotic series is already a satisfactory result. So it is only for
the sake of curiosity that we mention that cgy1 = klde (=0, 1,
2, ...), where the di are the coefficients in

exp(e® — 1) = X dpzt.
(1]

We leave the proof to the reader [Hint: first prove, e.g. by induc-
tion, that

(e¥ — 1)¥ ¥+
~Y/ % av = 0< x< k-1 ;
f" Y S T Ak 05

)

then notice that the coefficient of #/+1 on the left equals 7! times the

coefficient of ¥4 in (e¥ — 1)¥/k1].

3.4. Casec
A typical example is

sn =X ax(n), ax(n) = 2¢{nlEI(n — K1},
ke=1

We have agy1(n)/ar(n) = {2(n — k)/(k 4 1)}2. Hence the maximal
term occurs at the first value of % for which 2(n — &) < ( + 1),
that is, at about & = 2s/3.

We notice that in this case, contrary to our previous examples,
the sum is large compared to the value of the maximal term. For, if
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we move & in either direction, starting from the maximal term, then
ax{n) decreases rather slowly (n is considered to be fixed). It can
be shown by various methods, e.g. by the Stirling formula for the
factorials, that the number of terms which exceed } max ax(n), is of
the order of n¥, If, however, |k — 2#r/3| is much greater than #?,
then a is very small compared to the maximum, and also the total
contribution of these terms is relatively small. Therefore we have
to focus our attention on regions of the type [k — 21/3| < And.

By application of the Stirling formula, ar(n} can be succesfully
approximated in this region, and then sums are obtained resembling
the one discussed in sec. 3.9. We leave it at these brief remarks. |

3.5. Case d

As a first example we take a; = %%. The ideal technique for dealing
with a case as smooth as this one is given by the Euler-Maclaurin
sum formula. Nevertheless we shall start with a more elementary
method, which can be applied in less regular cases as well.

There are two steps. First approximate ax by a sequence % which
is such that 377 ., wux is explicitly known; the approximation has to
be strong enough for Y5 (ax—ux) to converge. The second step
deals with 3?_; (ax — ux). The first approximation to this sum is,
as m sec. 3.2, the infinite sum S = X, (@x — %), and we have

{3.5.1} sn_Vak—Zuk-{-S-l-Z(uk—ak)

kE=n+1
In the last sum we try to approximate #; — a4 by-a sequence g,
such that 37, ; v is explicitly known, and such that the error term
T vt (#x — ag — vg) is known to be small. This procedure can be
continued.

The weak point in the procedure is that in general there is hardly
any information about the value of S. The situation is not as
serious as in (3.2.2), for in (3.5.1) the major contribution is not 5,
but the sum YT #;, whose value 1s known.

In our example a; = k* we can obtain a first approximation to
the sum s, by taking the integral f* fidf = §»°3. If we now try to
take #; such that Ez uy = $n*’t, we still fail. For

(3.5.2) — {5 — §(& — 1)}
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is not yvet the A-th termm of a convergent series. On expanding
(1 — E-Y)"2 inlo powers of £~ by the binomial series, we find that
the expression (3.5.2) is }&* + O(%~*s), and X &+ diverges. But
we can again approximate the partial sums of 3} 4~ by an integral,
viz, 2nt. If we now take new ug’s, viz.

wp = Ug — Ug-, Up = 34" + 348,
we easily obtain that
(3.5.3) #y — ap = k~'2/48 4 O(k~"7) (B ~> 0o},

(=]

whence ¥ (#x — ap) converges.
k=1
In the second step we have to approximate % — ar by a

sequence vg. We take vg == Vi3 — Vi, where

Vk == k—}/24, 2 Vg = V’Ib
n+1

as suggested by the integral
S hi48)dt = n—t[24.
We so obtain
Uy — A — Up == O(k"ﬁlz):
and, by (3.5.1),
(3.5.4) At ="t + it - S 4Lt L O(n) (1 —o0).
k=1
The term O(n~>%) can be replaced by an asymptotic series, for the
process can be carried on and we can gel as many terms as we please.
To this end it is, of course, necessary to refine (3.5.3). This is
easily done, for (ux — ar)k” can be expanded into powers of 271,
and the expansion converges if & > 1.
We next ask for the value of S. We obviously have

(3.5.5) S =X {B—3Rr—tR - J(h— 1)1+ 1(R— 1)1} =
k=1 n
a0 k=1
but it is possible to derive a simpler expression.
The method depends on analyticity properties, and therefore it
is not generally applicable.

Wao firet oanaraliza (R R A\ hyr intradumno a ramnlex naramater 2.
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Instead of (3.5.4) we obtain, by the same method,

1-z

n n
(3.5.6) S EZ=
o=l 1 —

+ $n—2 + S(z} + O(n—2-1) (n — o0,

if Rez> —1, z51. Here S(z) is the sum of a convergent series,
analogous to (3.5.5). Furthermore, it is not hard to show that this
sum is an analytic function of z in the region Rez > — 1, z 3£ 1,
If Rez > 1, it represents the Riemann zeta function?) {(z) =
= Y7 #7%, as can be seen from (3.5.6) by making # — co. Therefore
S(z) = £(2) in the whole region.

Especially, the value of (3.5.5) is

S(— 3 =— 1 = — (@4

The latter equality follows from the functional equation {{1 — s) =
== 21~87~8]"(s) cos xs {(s).

3.6. The Euler-Maclaurin sum formula

Our considerations of sec. 3.5 were meant to demonstrate a
method, rather than giving the shortest way to deal with ¥7 4.
It seems that the shortest and most efficient way of dealing with
such cases depends on the Euler-Maclaurin sum formula. It is
incorporated in many textbooks of advanced analysis 2), and there-
fore we omit its proof.

The basic formula is

g(0)+g(1 J’g(x)dx__
EED 1 = () — FO} 2L+ (1) — O} o+ .+
B
| + g — gm0 22— [y T2

Here m represents any integer > 1, and g is a function having 2m

1) See E. T. WHITTAKER and G. N. WarsoN, Modern Analysis, 4th ed.,
Cambridge 1946, ch. 13.

%) Ibid., § 7.21, Our notation for the Bernoulli numbers and polynomials
is slightly different, however.
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continuous derivatives in the interval 0 < x << 1. The B’s are the
Bernoulli numbers, defined by

zf(er — 1) = %‘Bﬂzﬂ/n! (2l < 2n),

whence
Bo=1,Bi=—%By=3%Bs=Bs=By=... =0,
B4=—§3:BG 42;BS=_.3_165-B].0=°_56;

7 3617
Biz = — 3 Bu =4 Bie=—TFg ---

Finally, the B,(f) denote the Bernoulli polynomials, defined by
zeet/(ez — 1) = T, By(t)an/nl.
¢

If we write down (3.6.1) for the functions g(x) = f(x + 1),
glx) =fx+2), ..., glx)=f(x+n—1), respectively, and if we add
the results, many terms cancel out, and we get the Euler-Maclaurin
sum formula. We write it in the form

(K0 + ... + ) ={"f(x>dx +C 4 bm) +

B
T

(3.6.2)
LB " Bom(x — [4)
(2 ) f(ﬂm 1)(” f(2m)( )__._.(7_)_!_._.___

L

The function f is assumed to have 2m continuous derivatives if
% = 1. The symbol [x] has the usual meaning of the largest integer
< . Bopm(x — [#]} is the value of the 2m-th Bernoulli polynomial
at x — [«]. The number C is independent of n:

C = (1) — Baf ()21 — ... — Baaf@m-0(1)/(2m)L.
It is known that 1)
Bom(x — [#]) = 2(2m) |(2n)-28(— 1ym+1 3 -2 cos(2knz)
#m=1, 2, 3, ..., whence it follows that =
Bans — ()1 < Ban] = 22m)! (22)3= 5 k.

1) See W. Rocosinsk1, Fourier Series, Chelsea, New York, ch. 2, § 4
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This gives a satisfactory esiimate for the remainder term in (3.6.1).
If f(x) is such that f§° |f@™(x)|dx converges, we immediately
have an asymptotic formula:

(363) 1)+ ... + f(n) ={"f(x>dx + S 4 i) +

+k§ Box =) (28)! + O fem()ldx)  (m —oo),

where m is a fixed positive integer, and

Bom{x — [x])

@)1 ax.

S=C —-ff&m)(x)
1

3.7. Example

Let z be a complex number, and f{x) = ¥#log x. Then (3.6.3)
can be applied if 2m > 1 — Re 2. It results that

n k.3
S k<logk = fx2log x dx + C(2) + jmw2logn + R(n; 2),
k=1 1

where C(z) depends on z only, and R(z;z) has an asymptotic ex-
pansion )

B
R(n;2) —%2— (n=log n)’ + —ﬁ— (nzlogn)’”’ + ... (#-—>o00).

The accents denote differentiation with respect to #, evaluated as
if » were a continuous variable.

Asin sec. 3.5, C(2) can be deterrnined by an analyticity argument;
we obtain C(z) = — (1 — 2)~2 — {’(2). The special case z = 0 gives
the Stirling formula for log n!, as1) {'(0) = — $log 2x. It should
be remarked, however, that there are many other methods for
determining the value of C(0) (see sec. 3.10).

3.8. A remark -

Roughly speaking, the Euler-Maclaurin method does not work if
the largest term, f(n), say, is #ot small compared to the sum £(1) -+

1) See E. T. Warrtaker and G. N. WarsoN, Modern Analyss, 4tk ed.,
Cambridge 1946, § 13.21.
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+ ... -+ f(»). In that case one cannot expect the order of f3mi(n)
to be lower than the one of f{#), and so the Euler-Maclaurin formula
does not give anything better than f(I) + ... + f(n) = O(f(#)).
One can illustrate this by the example X7 %! of sec. 3.3.

3.9. Another example

The Euler-Maclaurin method can also be applied to sums
32_, ax(n) where the terms depend both on % and #. There is,
however, no point in passing from (3.6.2) to (3.6.3) in that case, for
then S will depend on #. An unspecified constant may often be
tolerated in an asymptotic formula, but having an unspecified
tunction of # just means having no formula at all. There are some
cases, however, where

»n

J 1@ (x)Bam(x — [%])/(2m)ldx

1
raises no difficulties, e.g. when fJ* |f2m)(%)|dx is relatively small.

As an example we take
Sp = i e—k’a/n'
kE=—n

where a is a positive constant. The Euler-Maclaurin formula gives,
if f(x) = e2tn,

(3.9.1)_ s = [ H0)dx + (W) + H(— n) + Baff (n) — f(—m)}/21 +

bt £ 3

+ .. + Bon{/am-D(n) — fm-D(— m)}/(2m)! + R,

where
(3.9.2) Rp= — f Fam(z) Bz,f,((;cm ; [#]) iz,
. whence -
|Rm| < %21%‘{- f |Fem)(x)|dx.
We have

_Zf(x)dx = Zf(x)dx + en = (mfa)t + &n,
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where the error term ¢, is O(e~?7) with some positive constant 5.
Such errors are called exponentially small.

The other terms of (3.9.1), apart from R,, are all exponentialiy
small because of the fact that every derivative of f(x) is of the type
P(x)f(x), where P(x) is a polynomial. So everything depends on
how well R,, can be estimated.

On subs..tuting ¥ = y(n/2«)t we obtain

{3.9.3) ) fm! fem(x)|dx = (2a/n)m—_¥ fw [(d/dy)me—!ﬂ’{dy,

and it follows that |[Rp| < Cpnt—m, where Cp, is positive and in-
dependent of #. Hence we have, for every m,

(3.9.4) Sp = (anja)t 4 O(ni—m) (n — co).

In the case of s, we accidentally have direct information from
another source, viz. a theta function transformation formula, which
gives a very good estimate.-It is therefore interesting to compare
this one to the result of the Euler-Maclaurin method.

For convenience we discuss the infinite sum instead of the finite
one. (The difference between the two is exponentially small).
Writing down the analogue of (3.9.1) for 3~ e~%*/%, and making
N — oo, we obtain

(3.9.5) Sp= 3 e¥on =

k=—o00
= (anjat — [ 1) (x) Bom(x — [#])/(@m)! dx,

where again f(x) = e~=/n,

We denote the integral by R*; it follows from (3.9.5) than R*
does not depend on 7. What we shall call here the Euler-Maclaurin
method consists of estimating

f * ‘BZm' ) m
(3.9.6) |R* < @m)]1 f{f‘z Wx)|dx

and choosing m such that the right-hand-side is minimal.
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The theta transformation formula gives 1)

S e kn = (anja)t 3 eKrinie,
ke=-— oo k=—o0

and therefore
(3.9.7) —R* = 2(mnja)te—"n/* 4 O(nte~4""n/%) (1 ~ oco).

We shall now investigate whether (3.9.6) can give anything as
strong as this. It gives immediately that, for every m, we have
R* = O(nt—m). For m fixed, this is very much weaker than (3.9.7),
but by deriving uniform estimates and by taking m to be a suitable
function of #, we can obtain a better result. There is of course no
hope of proving (3.9.7), but it is interesting to see that the Euler-
Maclaurin method can still show that R* = O(ne—""#/%), restricting
the losses to the factor nt.

If we adopt the definition

Hily) = (— 1)¥eto(@jdy)beio®

for the Hermite polynomials, the integrand on the right-hand-side
of (3.9.3) equals e~#2*|Hap(y)|.
Using the integral representation

2 (-]
Hom{y) = (2m)Hets* (éiy—) mfe‘*”’“”ﬂ dv =

= (2n)~t f (w)Zme—iv’Hvyﬂy’dv = )’*f(y — z’u)zme—l“’ dn,

hadl -}

we infer that

fif‘zm’(x)ldx < (2u/n)ym—+(2x)—+ f f g—i'(y"+u’)(y2 + w2ymdudy.
Introducing polar coordinates in the u-y-plane we easily find
that the repeated integral equals 2%+1lam|.

The factor |Bom|/(2m)! occurring in (3.9.6) is equal to
2(2m)—2m{(2m) (see sec. 3.6), and therefore it is less than C(2n)—2m,

1) See E. T. WHITTAKER and G, N. Warson, Modern A.ua.lysxs 4th ed
Cambnidge 1946, § 21.51

A simple direct proof is abtained by taking f(#) = exp(— f2%), a =0
(B = a/n) in Poisson’s formula (3.12.1).
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where C is an absolute constant. It now follows from (3.9.6) that
1R¥ < C(2r)—2m(2c/n)ym—¥(257) 3 2m+1gm !

Using Stirling’s formula for m! we mnfer that there is an absolute
constant Cy such that for all m and »

(3.9.8) |R*| < Cy{amjnPne)m(nm/20)t.

It is now the right moment to fix the value of m. The mmimum
of (at/n2ne)? 1s easily seen to be attained at ¢ = #2n/a, and the value
15 em'n/, However, s has to be an integer, and so we shall take
m = mo = [n?n/a]. In order to analyse the difference it makes,
we put

w(p) = p log(ep/ne)

whose minimum is — #2/«, attained at p = pg = @2/a. We have
v'(po} = 0, and hence

v(mofn) = y{po + O(n~1)} = — a?/a + O(n~2).
If we now choose m = myq, (3.9.8) becomes

R* = O(ne—ni%) (n — o).

3.10. The Stirling formula for the I'-function in the complex
plane

In the followmg, the Euler-Maclaurin formula will play about the
same role as it did in (3.5.5). We shall have a sum containing a
parameter z. For « fixed value of z we shall increase the number of
terms indefinitely, and only atterwards we allow |z| to tend to
infinity (in (3.9.5) that parameter was #).

Let z be a real or complex number, not lying on the negative
part of the real axis, and not equal to zero. We shall apply the
Euler-Maclaurin formula to the sum

n
Sal2) =k2110g(z + k1),
where the logarithms are given their principal values (imaginary

parts of the logarithms absolutely less than ). With an arbitrary
integer m > 1 we obtain
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Splz) =3logz 4+ $loglzr+2n— 1)+ jlog(z + x — Ddx +
+ E {(z + n — 1)1-2k — ;1-28%} (2F) "1(2k — 1)"1Bg; +

k=l n

+f (z + x — 1)7™(2m)~1Bom(x — [x])dx.
With z fixed we easily get an asymptoﬂc formula with an error
term o(1):

(3.10.1) Sa(z) = (z — %) logn — (z — }) log z + n log n +-
+ 2z —n — p(z) + ofl) (n — o0),
where

(3.10.2) plz) = p> 21—2"(2.72)*1 (2% —1)1Bgx —
--Z(z + x)—2m(2m)-1Bgy(x — [x])dx.

As p(z) does not depend on #, it is obvious from (3.10.1) that it
does not depend on m either. This fact can also be shown from

(3.10.2), integrating by parts.
Taking the difference Spu(2) — Sx(1), we obtain, applying (3.10.1)
twice,

(3.103)  Sn(2)—Sa(l)=(z—1)log n—(z—F)log z -+ 7 — 1 +
+ p(1) — p(z) + (1)  (n - o0).

This difference is connected with Euler’s product formula for I'(z):
(3.104) I =lmastniflz+ 1) (z+2)---E+5—1).
N0
‘Taking logarithms; we find:
(3.10.5) log I'(z) == hm{\z — 1)10gﬁ + Sa(1) — Sa(2)}.

Now (3.10.3) produces a useful 1dent1ty
(3.10.6) log Plzy == (2 — })logz — 2 + p{z) + 1 — p{I)

It should be noted that log I'(z) does not necessarily represent
the principal value of the logarithm. As a matter of fact the right-
hand-side depends continuounsly on #, and is real if 2 > 0 (log z
s given its principal value). Therefore, (3.10.6) represents the
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analytic contination of log I'(z) throughout the region |arg z| < =,
starting froon resal waltzes on the positive real axis.

Itiseasy to derive an asymptotic formula from (3.10.6), when
|z} = 0. Letd be apeositive constant (8 < =), and let Ry denote
the part of £he comaplex plane which is defined by |arg 2| < 7z~ 4.
Let s be a givee mteger > 1. Then Bam(x — [x]) is bounded,
whence |

' &z —+ x) 27290~ Ban (s — [x))dx| < C 7]: + x|~y =
0
= Clal=#m+1/ Iy + (sl =2)|-2mdy,

C not depemndinng on 2. Now |y 4 (2]z[~1)| represents the distance
from the point ~ -yto a point of the unit circle, belonging to the
region Rg. It is exsyy to see geometrically that this distance is at least
ly + efr—¥ | Sines 7|y + &#7—|~2mdy converges, we infer that
the integral n (3. 10.2) is O(jz{1~2m). As m is arbitrary, we obtain
an asympietic sekes For p(z), and (3.10.6) gives

(3.10.7) logg [(2) — (z — Plog z + z Rl — () +
+ I 21 BkQ& 22k — 1)-1Bg, (larg z] <= — 8, [z] — o0).
Fe=1-

It rermeims to be _shown that the constant'1 — p(1) equals
Hog(2n) . We lknowy already that 1 — p(1) is real, so it suffices to
show that elt<l = (27)}t. We quote a number of possible methods.
(i) I sec. 3.7 At was done with the aid of the Riemann {-function,
but this is <ertanly mot the most elementary way. (i) We can use
the functiomnal equution I'(z)I(— 2) = — z(zsin 2)~1, and make z
tend to inFinity abng the imaginary axis. (ili) We can use the
functiomal eqratonl)

P Iz + §) = m21-221(22),
making z— 4 0. (iv) We can evaluate p(1) by evaluation of the

integral 7= (1 +=)!Ba(x — [#])dx. (v) We can use the beginning
of sec. 45, with = -+ 4 oo.

1) See E. T. "WaxmAKER and G. N. Watfon, Modern Analysis, 4th ed.,
Cambnd ge 296, {1 215,
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3.11. Alternating sums
An alternating sum is a sum of the type 3 (— 1)¥f(), where the
f(k) are positive. We usually expect such sums to be small, that is to )
say, much smaller than the sum of the absolute values of the terms.
We can of course write

S (= DEE) = T A28 — 32k + 1),
E=0 =0 =0

and investigate both sums on the right. Usually these sums will be
about equal, whence it is desirable to study them quite closely in
order to have sufficient information about their difference.
In most cases, however, the easiest thing to do, is to take pairs
of terms together:
2m +1

S (— DH(K) = 5 (f(28) — 2k + 1)},
k=0 k=0

and these terms f(2%) — f(2% + 1) will usually be small.
As an example we take the infinite sum

(3.11.1) S(2) =k§0(—— 1kf(k), [f(x) = (x2 + 18),

and we ask for the asymptotic behaviour of S(¢) as £ — oo. The
function f(x} is decreasing, and tends to zero as x — oco. Therefore
the series converges, and we have, by a well-known theorem on
alternating series, 0< S(f) < f(0). Thus a rough first result is that
S(t) = Of2).

We next write

S() = 3 {2k — 2k + 1.

We shall, of course, compare the difference f(2& + 1) — f(2k) with
f(2k), and after that, we shall compare the sum — 3§° f(2%) with
the integral — % /¢° f'(x)dx (the factor } arises because 2% only runs
through the even numbers). We can carry out these two operations
at the same time, comparing
2k +2
H2k) — f2k+ 1) with —} {; f (x)dx.
Using the Taylor series, we can express both in terms of f{(27),

f(2%),... . If we stop the Taylor developments at the terms in-



50 ASYMPTOTIC METRODS IN ANALVYSIS

volving f”, i.e. if we apply the formula

o(a + B) — pla) = he'(a) +:f+"(a + b — g ()i,
then we obtain
k41
2k + 1) — f28) = {28) +1 @k + 1 — 2 ()

2%+ % +2
i‘ii f'(x)dx = f'(2k) + i’{ 2k + 2 — x)f"(x)ax.

1

On subtraction we find
% +1 2%+

f(2k) — {2k + 1) + }/ fix)dz = i/ (1 — v = 2k — 1)"(2)dx,

and so
2642

(3.11.2) If(2k) — f(2k + 1) + %.f f(x)dxl < 3/ If"w)iex.

In our case we have f(x) — 0 when x — oo, and therefore
o 342

=L f(x)dx —-.f f'(x)dx = — £(0).

It follows that
(3.11.3) IS — O < /17"l
We have #/(x) = (222 — #2)/(s2 + #2)"s. We transform the integral,
substituting x = y¢: y

f i (x)idx = t‘"f 11— Zy2i/(1 + y%hdy,

and the latter integral is eas:ly seen to be convergent. Therefore,
(3.11,3) gives

@119 St) = # + 0% (> o).

The process which led to (3.11.2), can of course be contmued in
the next step we use the Taylor expansions up to the terms involving
f'(x). And in order to eliminate the term involving f”(2%), we sub-
tract a suitable multiple of /3¥*® f"(x)dz, in the same way as we
eliminated — f (2%} by subtracting — 3/2¥*3 flx}dx. This time we
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use the formula .
(p(a + h) = (p(a) + hg'(a) + -&hztp”(a) —[—-&[ *(u + 5~ x)”«p"’(x)dx
and we obtain

2k +3
G.AL5)  If2R) — f2k + 1) + i/ ajdx — %f+f"(x)dxl <
2k+2
< Cf It
As [ ' (x)dx=— {(0) = O we now obtain, in the same way as
above,
(3.11.6) SW) =41+ 0O@F3) (¢ — oo).

There is no term with £%, and in the next steps of the proceduce
it will turn out that the coefficients of -3, £4, ... vanish also. In
order to show this, it is easier to put the series in the fallowing form:

S =¥+ 3 % (~ k).

Applying (3.11.5) to X2, we obtain, as ¢ —» co,
S@) — ¥ i= — 3 [, f(@)dx — }f2, 1 (®)dx + O(f=, "(x)dx).

Since f(x) -0, f{x) >0, f'(x) =0, ... as x - 4 oo, we have
SPw)dr =/ P{x)dn = f"(x)dx = ... = 0.
Furthermore it is easily seen, by substitution of ¥ = y¢, that

f |fm(@)ldn = O(t—™) (¢ —>o0) "

for every fixed m > 0. Now it is sufficient to have only a general
idea about the continuation of the process whick led to (3.11.4) and
(3.11.6) in order to see that

GIL7)  SH L F 02404340854 ... (o0

It may be remarked that the general formula of which (3.11.2),
(3.11.5) are special cases,’s related in a trivial way to the Boole sum
formula 1), which we shall not discuss here.

1) See C. Jorpax, Calculus of Finite Differences, 2nd ed., New York 1947,
§ 112,
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A second remark is that (3.11.7) can also be derived by the
Euler-Maclaurin sum formula, applied separately to 3 /(2%) and to
X H2k + 1).

With (3.11.7) we have the same situation as in sec. 3.9. We ex-
pect S{f) — 31 to be exponentially small, and by a careful in-
spection of the above argument, including estimates holding uni-
formly in ¢ and #, we might be able to show this, although the
formulas become quite awkward. But even then we would have only
an upper estimate for S(f) — 41, and no asymptotic formula, like
the one we shall derive in sec. 3.12.

3.12. Application of the Poisson sum formula
The formula reads

(3.12.1) T fik + a) = 3, e?m™ie [ e-2mrivf(y)dy,
k=—00 -— 00
where 4 is a real number, f(x) is Riemann integrable over any finite
interval, and
N
Y: denotes im 3
Ne» oo p=—N
The following set of conditions is easily seen to be sufficient?):
(i) Xin_oo f(2 + %) converges uniformly for 0 < x < 1.

(i) The function ¢{x) = T2, /(¢ + x), which has period 1, satis-
fies the Fourier conditions (that is, ¢(x) is the sum of its
Fourier series), at least at x = a.

For, condition (i) enables us to carry out the following operation
with the Fourier coefficients of ¢(x). If » is any integer, then the

»-th Fourier coefficient of ¢ equals

(-

S cwaft )y = £ =

k= kn-—.go

1
[y = ]

k+1

= 3 [ ety = [y,

km—co

1) See for other sets of sufficient conditions: E. C. TITCHMARSH, Fourier
Integrals, 2nd ed., Oxford 1948, ch. 2. -
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The last step is legitimate, as (i) implies that
k+t
S e r™ify)dy >0
%

when k& — -4 oo, uniformly in 0 < ¢ < 1.

The following set of conditions can be shown to imply (i} and (ii):
(i) X2 f(k + a) converges,
(iv) f'(x) exists (— o0 < & < o0),
(v) X2 [f(%+ x) converges uniformly in 0 < x < 1.
For, (iii)+(v) imply (i) (apply the mean value theorem o finite
sums 3 f(k 4 %), with M and N either both positive and large or
both negative and large), and (v) shows that ¢(x) is differentiable
everywhere, whence it satisfies the Fourier conditions.

Another set of sufficient conditions is (iii)+ (vi)+-(vii), where
{vi) f(») has bounded variation 1) over — oo < x < oo,
(vii) Hm,, o {f(x + &) + f(x — B)} = 2f(x), at least for all x of the

form a 4 », where » is any integer.
We remark that from (iii)+(vi) one dan deduce (i)‘t 2), as well as the
fact that ¢(x) has bounded wvariation over 0 < x < 1; (vi)+(vii)
can be used to show that
limy o {¢(@ + %) + dla — A)} = 2¢(a).

This formula, in combination with the fact that ¢(x) bas bounded
variation, leads again to (ii).

As it is not our present aim to develop Fourier theory here, we

leave it at these brief remarks.
We shall apply the Poisson formula to the sum

(3122, S = S KR, f) = ema(zt 4 )+,

k== — 00
which is related to (3.11.1) by the formula
@123 S{t) = 1 + 3S1(9).

The number a occurring in (3.12.1) will be given the special value
0 here, and, in applying (3.12.1) to (3.12.2), £ is considered to be a
fixed positive number.

N 3
1) See for definition of bounded variation: E. C. TitcuMarsg, Theory of
Functions, 2nd ed., Oxford 1939, § 11.4.
2) Ibid., § 13.232.
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The condition (vi) is mot satisfied, but the-set (iii)4 (iv)+(v)
is. Condition (jii) was already checked in the beginning of sec. 3.11,
apd (iv) is trivial. In order to show (v), we write

F (%) = miem$a(x2 4 £2)—F — yemiz(x3 4 (2)-k,

We take two positive integers N, M, where f <N < M, and a
real number x in 0 < x < 1. Then we consider

M
Zflx+ k)=

k=N

= orts 3 (— Dil(s + B2 + BV — (o + B + B+ B,

The numbers {(x + %)2 + #2}+ form a decreasing sequence of
(M — N 4 1) positive numbers, and the same thing holds for
(x + &) {(x + )% + 3~ (The function y(y2 4 2)~*2 decreases
from y = 27 onward). We now use the following well-known
fact: If any sequence ay, ..., aa satisfies ay > anz > ... >
> aym > 0, thenswe have
|ZEly (— D¥ar| < an.
It follows that
ISE Pl + B < (V2 + )3 4+ N(N2 4 2% < 2N,

As this holds uniformly in x (0 < x < #), we infer that, for Z fixed,
X7 F'(x + &) converges uniformly in 0 < x < 1. The same thing

can be said about %, and so we have proved (v).
We can now apply (3.12.1) to (3.12.2); the result is that

(3.12.4) g S1(t) = _Z:’:_“ ffm e-2mtyiaiy(y2 L 13—y,
and so we have to study, for b = 4 «, 4+ 3%, + 5%, ..., the
integral

L N -

[ ebiu(y? + i)~idy,
On substitution of y = iz we ohserve that this integral is a function
of b, to be denoted by ¢:

(3.12.5) o) =/ edHr(z? 4+ 1)Hdz,

and by substitution of z = — w we infer that ¢ is an even function,
_ The integral is a Bessel function of zero order, of second kind and of
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imaginary argument, and in the standard notation 1)
o(bY) = 2K(be).

We shall, however, not explicitly use the theory of Bessel functions
here.

Using Cauchy’s theorem, the integral (3.12.5) can be transformed.
Assuming b > 0, we deform the integration path (— oo, oo) into a
new one, consisting of the following parts: (i} The line (— oo, — R),
where R is a large positive number; (ii) The circular arc z=Re#
(m = ¢ = 4n); (ii) The segment z =is (R = s > 1 + §), where §
is a small positive number; (iv) The circle z = § + d¢ (}n<d<$n);
(v) The segment z=1s (1 + 6 < s < R); (vi) The arc z = Re#
(= = # = 0); (vil) The interval (R, co). Along (iii), the function
(1 + z%~* has to be interpréted as (s2 — 1), where (s2— 1)t is
the positive root, and along (v) it has to be interpreted as —#{s2~1)—%.
Now making R — oo, 8 — 0 we infer that

o(b) = 2}“3-'”«(32 — 1)ds = 2g7b¢ [ c~biu{y? 1 2u)~ddu.
1 0 .

(Thelatter integral is obtained from the former by the substitution
s=u"41). Wehave,ift>1,b> =

Fedtu(u? 4 2y < [ emuu-tdu = 1,
S 6
and so |g(Bi}] < 2¢7 (b = n,t > 1). By (3.12.4) we now have

151() — 2¢(nd)] < [29(3nf) + 2p(5nt) + ...| < 26737(1 — e72F),
and therefore
(3.12.6) ~ Si(t) = 2p(mt) + Uie™=e) & — 00).

It remains to find the ‘asymptotic behaviour of ¢(nf). To this-end
we write, putting # = %%,

o(nt) = 2¢¢ fe—i-m(“z + Zu)’*du = 2e7t [ ﬁ——nm’(xz + 2)’*d‘x, ’
o -—O *
in order to be able to apply the method of sec. 4.1. The.result is

1) See G. N. WarsoN, Theory of Bessel Functions, 2nd ed., Cambridge
1952, §6.46. <
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(ct. the derivation of (4.1.10))
plat) ~ 26 (2nt) 3 3 dul'(n + 3yt (t = o0),
n=0
where the coefficients d, are those of

2+ »2)F = 2 5 dax?m (22| < 2).
n=0

For every M the term O(e~3¢) in (3.12.6) is O(e=¢—+-M), and
therefore Sy(f) has, apart form the factor 2, the same asymptotic
power series expansion as g{zf). So our final result is, as dy =
= (— 1)82-38(2n) {(n])—2:

S@E)—37t = 15:1¢) ~
et (— 1)aw-i2t-Snag—n{(2n) N2} (¢ — oo).

nw=0

3.13. Summation by parts

We often meet the question of the asymptotic behavmur, as
n — oo, of a sum 416(1) + ... + anb(n), where the behaviour of
a1+ ... + ay is known and where the function b(x) behaves
smoothly. Then we can usually apply the formula for summation
by parts:

(3.13.1) @b + ... + anbn = A1(b1 — b3) + Aa(ba—bg)+
+ e E An-—l’(bn—l - bn) + Anbm

where Agx =a; + a2+ ... + ax, and bz is an abbreviation for
b(k). It has some formal advantages to write the formula in terms
of integrals. We assume, for simplicity, that 4(x) has a continuous
derivative, and we put A(x) = Ti1<m<zam (le. Ax) =0if x < 1,
Ax)y=a1+ ... +ap if 2<x<k+1 (k=12 ...)). Then
(3.13.1) becomes

(3.13.2)  a1b(1)+. . . +anb(n)—=A (n)b{n)—f A(x)b'(x)dx.
1

As an example we consider the sum X7., sin(k¢)log 2, where ¢
is a real constant. We put sin % = ag, log x = b(x). For every # we
have

Z sin kf = Im 2 ekt = Im {(e"”"'l" — ebt)j(ett — 1)}.

k=1
Therefore, there is a number C > 0 not depending on #%, such that



SUMMATION 57

|Z% sin &2 < C. (If e — 1 = 0, our argument fails, but the result
still holds, for then sin & = O for all 2). Putting 4 (x) = Z1<z<sesin #,
we have, by (3.13.2),

Y sin(%2) log & = A(n) log n — f A(x)x1dx.

k=1 1
Since |A(x)] < C for all x, we now easily derive that -

n
Y sin(kt) log 2 = O(log 5} (¢ fixed, n = o0).
k=1

We shall "discuss a second example, taken from the theory of
primes. We take @, = log » if # is a prime number, and ¢4 = 0
otherwise. Then A (x) is the function usually denoted by #(x), and
we can write

8(x) = X log .

Pz

It is a fundamental and far from trivial result of the theory of
primes that, for each m (m = 1,2, 3, ...), we havel)

(3.13.3) P(x) = 2 + O(x(log x)™™) (x — o0).

Now many other sums involving primes, as Yp<z p™1, Tps<z 92,
Sp<z 1, can be dealt with. We consider ¥p<. 1, i.e. the number of
primes not exceeding x. This number is usually denoted by =(x).
We have, by (3.13.2), taking b(x) = (log )1,

aln) = azb(2) + ... + anb(n) =
= (log 7)~19(n) — [ S(x)d(log x)~1.

(We have replaced the lower limit 1 by 2, since (log x)-1 is singular
at x = 1; it makes no difference, as #(1) = 0). We compare this
with

n n
/ (log x)~1dx = [x(log 2)~1]; — [xd(log x)~1.
2 P)
On subtraction we obtain, using (3.13.3),
a(n) — ju(log x)~ldx = (log n)~10(n(log n)m) +
3
+ 70(x(log x)~m) (log x)~2x—1dx (» > o0).
2 i .

1) See A. E. INncHAM, The Distribution of Primes, Cambridge 1932, p. 12
and p. 63.
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The integral on the right can be written as
nl 3 .
JOQ1)dx + S Of(log ni)m—%dx = Ofn(log n)™-%)  (n - oo),
2 nd
and therefore
n
n(n) — [ (log x)~tdx = O(n(log n)-m-1) {n — oo).
2
The integral on the left can easily be expanded in the form of an
asymptotic series (cf. (1.5.5)), and we infer that
n(n) ~nlogin 4 nlog~2n + 2nlog3x 4
-+ 3nlog4n+ ... (7 — o).

Meanwhile we notice that (3.13.3) is an example of the situation
described in secs. 3.9 and 3.11. Again there is an asymptotic ex-
pansion with zero coefficients:

e 2(e*) — 1 m0-2 1+ 02240284 ... (x—o0),

but in this case the question as to whéther the left hand side is ex-
ponentially small, is still unsolved.

3.14, Exgrcises, 1. Show (e.g. by tuc woethod of summation by parts) that

Soalen— _jlogi+dy+O@) ©O<i<l)
n=l

where ¥ = — [¢° e~%log ¥ dv is Euler’s constant.
2, Show that

oo
Z log(l — be~m) muggt~l + oo+ c1f + ¥ + ... {t>0,¢t->0).

n=0
Hexe b is a constant, 0 < & < 1, and
cx = (— 1)k (Bsa/(k + t)x)ﬁﬁfvmk—x (h===1,012...).
3. Show that
}:: og(1 — e=n4) v — m¥/(64) — }log # +  og(2n) + &t +
+0-24+0-84 ... (t>0,¢—>0).
(Hint: Apply ihe Euler-Maclaurin formula to 2{{ (%), where
1) = Tog{(t — o==)/x).
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4. Let s» be defined by
1 1 1
= Togn  logln F 1) + log(n +2)
Show that -
sa == §(log #)~1 + O(n—1log—2 #n) (n - o).

5. Derive from (3.13.3) that

San

Dpe P — E log t)"“'l_;:—”(log yrdy © >0, t>0),
0

n=0

59

if the summation variable ¢ runs through all prime numbers (cf. sec. 1.8,

exerc. 4).



CHAPTER ¢4

THE LAPLACE METHOD FOR INTEGRALS

4.1. Introduction

We shall consider integrals over real intervals, where both the
integration interval and the integrand may depend on a parameter
¢, and we shall ask for the asymptotic behaviour of the integral as
t > oco. We can, of course, extend the interval to the whole line
(— o0, ), by defining the integrand to be zero in all points outside
the original interval. So we have to deal with

(4.1.1) Fl) = [ olr,ddx (- o0).

It often occurs that the graph of ¢(x, #), considered as a function
of x, has somewhere a sharp peak, and that the contribution of some
neighbourhood of the peak is almost equal to the whole integral,
when ¢ is large. Then we can try to approximate ¢ in that neigh-
bourhood by simpler functions, for which the integral can be
evaluated. This idea is due to Laplace. The advantage is that we
only need to approximate in a relatively small interval.

As an example of the method we roughly sketch how to deal
with the integral

(4.1.2) Flt) =/ et log(l + % + 2%)dx.

If ¢ is large, the integrand is very small unless x is very close
to zero. The function log(i + x 4 x2) can be successfully approxi-
mated by simpler functions if — } < x < 4, say, and therefore we
first try to prove that /=% and /;° are very small. Next we remark
that

3
log(1+ x + x2)=log :

L —xt 342 — $43+ O(xd) (—h<z<d).

] —
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So we are led to approximate F(f) by
ta
(4.1.3) [t (x 4 3x? — 3x3)dx.
|

It may be remarked that the terms x and — 2%3/3 give no con-
tribution at all to this integral, these functions being odd.

As e~t#* is very small if x > } or ¥ < — }, it is possible to show
that it does not make much difference if in (4.1.3) the integration
is taken over (— oo, oo) instead of over (— %, 3).

In the above argument the idea of comparing (— oo, co) with
(— % 3) occurred twice. It is, however, possible to present the
method in such a way that this cutting-off is suppressed entirely
(though it is not always practical to do so): Put

log(l 4« x + x2) — x — 322 4 %43 = R(x).
Then we can show that %, e~##*R(x)dx is small, by virtue of the
estimate :
' R(x) == O(x%) (— o0 < x < o0).

Putting #x2 = y, we infer that

JetPxidn =t f v "dy = O™ (0 <t < o).
0

As [ e-t02dn=t- [ ouyidy=}t-"ha} (¢ > 0), it follows that
14.1.4) " F(@) = }ed 4+ O (¢ — o).

The integrals of the type /=, e~##*v¥dx will occur quite often; for
future reference we give some formulas here. If % is an odd positive
integer the integral vanishes as the integrand is odd:

(4.1.5) J et@xkdx = 0 (8=1,3,5...).

If £ is even, the substitution fx2=y leads to a gamma integral:

< , 2m)!
@16 ] ettuinis = 3T ) =t

=012 ...).
These formwlas are valid if £ > 0, but also if { is a complex
nur oer with a positive real part.
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Sometimes we shall need the following estimate, both for % odd
and k even:

4.17) | |etkldx = Of(Re /=4*+1}  (Ret > 0).

This estimate is not uniform with respect to 2 (=0, 1, 2, ...).
The simpler formulas involving ¢~##x* will also be frequently
applied. If 2=0, 1,2, ..., we have

(4.1.8) [ etaxtiy = t%1k]  (Ret > 0),
[

419) [ |etoxkidx = Of(Re =1}  (Rei > 0),
[

and again the estimate does not hold uniformly with respect to &.

It is quite easy to replace (4.1.4) by an asymptotic series. To this
end we remark that

logl +x+28) =%+ 32+ 3234 ...) — (a3 4 264 ...) =
= c1% + cox2 + cgx3 4 ... (—l <z <)
So, if M is arbitrary but fixed, we have
log(l + x + %) — (e1x + ... + canr—132M-1) = Ofx2M)
(—3<x <,
and in the regions $ < # < co and ~— co <x < — } this formula
is still valid. Using (4.1.5) and (4.1.6) we infer that

‘ M~1
F(t) = 2‘,1 cant ™ H0(n + §) + O@F¥-) (¢ = o0),
and we have the asymptotic series

(4.110) - F(§) ~ 5102,;#""}11(” +3 o).

We started above by expressing the Laplace method in terms of
sharp peaks. It is, however, by no means essential that the peak be
sharp, nor thdt its localization on the wx-axis be independent of &
For, both width and localization of the peak can be controlled
simply by a substitution x = ay -+ b of the integration’ variable,
where both ¢ and b may depend on ¢. The only thing that matfers 4s
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that there is an interval J such that /3, — /s is small compared to
{7, and that the integrand can be approximated by simpler functions
throughout J.

In many simple cases the Laplace method can be replaced by the
following argument. It changes the general point of view, but usual-
ly it hardly changes the details to be carned out.

Assume that, after some substitution x =#(y), the integral (4.1.1)
becomes o{f) [, gly, §)dy, and that g(y)=lm,, ., gly, ) exists.
Furthermore assume that the approximation of gly,?) to g{y) is
strong enough to guarantee that /23, g(y, f)dy tends to f7%, g(3)dy.
Then we immediately have the asymptotic equivalence

Fl) ~ o)/ goMy (o)

and further approximations can often be obtained from a closer
study of the difference gy, # — g(y).

4.2. A general case
We shall consider

F{) = [ ethtargy,

where A(x) is a real and continuous function. We shall assume that
it has an absolute maximum at » = 0. Without loss of generality
we assume that A(0) = 0. Moreover, we require A{x) < 0 for all
% 5 0, and even that there exist positive numbers & and ¢ such that

Ry < — b if x>0
This condition will cerlainly be satisfied if, as happens in most
applications, A{x) tends to — oo if x — 4+ oo.

We require that the integral converges for all sufficiently large
values of Z. For simplicity we assume that it converges if I = I,
so that /73, e~*%)dx converges.

Finally, we assume that the derivative #'(x) exists in some
neighbourhood of x = 0, that A”'(0) exists, and that 4"(0) < 0.

As h is maximal at x = 0, we infer that 4'(0) = 0.

. It follows from our assumptions that there exists, to any § > 0,
a positive number n{8) such that i(x) < — 5(8) both in — oo <
<2< —dandin 8§ < x < co. This is trivial if 3 = ¢; if § < ¢ we
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observe that the maximum of the continuous function %(x) in the
closed interval 8 < x < c is attained at some point of that interval,
so that its value is negative (and similarly for — ¢ < ¥ < — §).

The contribution of the intervals —co<# < —dandd < ¥ < oo
satisfies

. —3 oo o
(4.2.1) [+ [ <o fepagy (> 1),
— 00 3 — o

In a neighbourhood of x = O we shall approximate the exponent
h(x) by 1x2h"{0). Given & (0 < 3e < |47(0)|), we can determine
& > 0 such that

4.22) [B{x) — $x227(0)] < ex? (—d<x< ).

In order to show this we put A(x) — }x24"(0) = ¢(x), whence
@(0) = ¢'{0) = ¢"(0) = 0. The fact that ¢"(0) exists, implies that
¢’ exists in a neighbourhood of 0. Moreover, x~1{p"(x)—¢’(0)} -0
when & — 0, and therefore we have'¢'(x) = o(x) (¥ - 0). If x| is
sufficiently small, we can apply the mean value theorem to ¢, and
it results that g(x) — @(0) = xp(fx) with some § (0 <8 < 1). So
(%) = xo(0x) = o(x?) (x - 0). From this (4.2.2) follows.
We can now deal with the integral from — 6 to + 4:

3 3 3
[ PR -2y < [ethi)y < [ ehte? RO+2e) ]y,
-8 ~8 ~3

1

All three integrals [% Jiffer from the corresponding integrals
/2% by an amount O(e—t*), where « is positive and independent of ¢,
though the value of « depends on the choice of . For the middle
one this is expressed by (4.2.1), for the other two it can be established
in the same way. Using (4.1.8) (with » = 1), we infer that

78th($ndx < (27,;);(._ A7{(0) — 2e)~ ¥t 4 Ofetx) E=>1.

It follows that
(4.2.3) S e Ddx < 2n)}(— A'(0) — 3g) ¥t

for all sufficiently large values of £ Needless to say, there is a similar
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estimate below. The number ¢ being arbitrary, it follows that
(4.2.4) - [ eMVdx ~ (2n)¥(— th"(0))-1 (t — o0).

If the restriction 4(0) = 0 is dropped, we of course get an extra
factor et#9 on the right-hand-side of (4.2.4).

4.3. Maximum at the boundary

In sec. 4.2 the maximum of the integrand occurred at an inner
point of the interval, and owing to our differentiability assumptions
we inferred that 4’ = O at that point. If, however, the maximum of
h is attained at the left end-point, say, then A’ will usually be
negative at this point.

So assume that we have to deal with

oa

f eth(z)dx’
0

where %(x) is real and continuous, that A({x) attains its maximum at
x == 0, that %'(0) exists and that 4’(0) < 0. Moreover we assume
that A(x) < A(0) (x > 0), that A{x) > — oo if x — o0, and that
Jo© et ®dx converges.

‘We can now repeat the analysis of sec. 4.2 in a somewhat simpler
form. Instead of (4.2.2) we have to use an inequality of the type

|A(x) — (0) — xh’(0)] < ex O<x<9),

which directly follows from the fact that (k(x) — 4(0))/x — A’(0)
when x — 0.

It is quite easy to verify by the same method, now using (4.1.8},
that

[ My~ (— th(0))1etH® (£ - oo).
0

Especially in this simple case it,is quite easy to see that the

- formula remains true if ¢ is a complex variable, with Re/ — oo

instead of ¢ — oco. The same remark applies to all integrals dis-

cussed in this chapter, if one only replaces error terms O(¢~%) by the
corresponding terms O((Re £)~¥), and Ofe—%¢), by O(e—aRe¥),
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4.4, Asymptotic expansions

It is clear that in the case of the integrals discussed in secs. 4.2
and 4.3 more asymiptotic information (as x — 0) about %(x) leads
to more asymptotic information about the integral (as # » co). We
shall restrict ourselves to the case of sec. 4.2, the case of sec. 4.3
being analogous. We already gave an example in sec. 4.1, but we
shall now discuss a more general and more difficult case.

For simplicity we shall assume that A(x) is, in some interval
— & £ 2 < 8, the sum of a convergent power series

h(x) = agx® + agx? + .
and that ag < 0. We shall discuss the mtegral

(4.4.1) F(t) = f glx)ethi)dy,

where g(x) is an integrable function which is, as far as the interval
— 8 < x < § is concerned, equal to the sum of a convergent power
series '
g(x) =bp + bax + bax? + ... .

We may assume that both power series are still absolutely con-
vergent if {x| = 8, for otherwise we can take a slightly smaller 4.

We need some rough-estimate expressing that the contributions
of the intervals (— oo, — &) and (4, oo) are negligible. We shall
assume that, for each positive integer M, we have

(4.4.2) _78 gix)ethtdy = O(1—M), _F gx)eth®dy = O(tM)

if ¢ — oo, not bothenng about how such information can be ob-
tained. And we shall assume the existence of a positive number #
such that

(4.4.3) Ax) < —px? (—d< x< ).

(Actually (4.4.3) can be proved, though with a smaller é wh1ch is,
however, as good as this one.)

We shall give two methods for obtaining an asymptotlc series for -
F. One will be described here, the second method will be explained
in sec. 4.5.

In the first method we consider exp(faox®) as the main factor of
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the integrand. The remaining factor

g(x) exp{txd(as + asx + asx® 4 ...)}

can be expanded as a double power series in the two arguments #x3
and x, convergent for |x| < 4, and for all values of #x3.

We shall denote this double sengs by

) P(tx3 ) Z Z Cmn((x3)mn,
m=0 n=0

Its coefficients ¢pny, are independent of / and x. We want to ap-
proximate P uniformly by its pa.rt:al sums, and therefore we
restrict /2% to some finite interval. That is to say, we shall use the
power series only if |x| <.#~"/*. We abbreviate £/ = 7. We may as-
sume that £ > 6-3, whence = < é. )

We first notice that the intervals (r, ) and {(— d, — 7) can be
neglected. Tt is not difficult to show that, if # > 0, 7 fixed,

(4.4:4) . [em?*dx = Ofexp(— nt”’)} t>1).

For, as ni(x2 — 72) > plr(x ~—~7) >5(x — 1) (¥ > 7), we have
7g-‘ﬂﬁ$’—‘r’ldx </°°e—7]($—‘1’)dx = n—l’
T T

and (4.4.4) follows. More generally, for each integer N > 0 we have
(4.4.5) . femagNiy = Ofexp(— nt'®)} @ > 1).

The factor xV gives no difficulties. For, if x = T we have x < #x2,
and so ¥ = O(eh?) = Ofexp(}n#*?}. So (4.4.5) follows from
(4.4.4), replacing # by % in that forinuia.

From (4.4.3) and (4.4.4) and from the fact that g(x) is bounded
in — 8 << x < ¢ it follows that

8 -7
(4.4.6) [ g(x)eth x4 [ g(x)emody = Ofexp(— g} (¢ > 8-9).
T . -3 ’ B
_ In the remaining interval — 7 < % < T we approximate P by a
partial sum. We chodse a positive integer 4, and we write
PA(txs x zm>0.\n>0, min<d %(txa)mxﬂ

Then we have, if Ix[ <
(4.4.7) : P PA O((#x3)4+1 )+ O(x411),
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uniformly with respect to x aad £ This step requires some explana-
tion. If a double power series 3,50 n>0 Cmn#™W® converges for
I} < 2R, |w| < 25, then we have, the terms of a convergent series
being bounded, cmp = O(R™S—®), Now we easily estimate, if
2] < §R, o] <3S,

2 Cma™w® = O(Z |2/R[™ [w/S]") =

mzo.n>o mi+n>4A
= 05‘ §+1(12/R| + [/S1)¥) = O{(l2/R| + |w/S[}4+1} =
= O{(l] + )41} = O(lz}4*1) + O(jw|4+1).
For the last step, cf. (1.2.12). It should be stressed that the estimates
are not uniform with respect to 4.
As to (4.4.7) we remark that P is continuous if — 8 < x < 3,
23] < 1, so that the formula just proved for a possibly smaller

reglon can be extended to this larger range (cf. sec. 1.2).
We have, by (4.4.5), if 4 is fixed,

{f J} Pa expltass?)dn = Oft4 exp(}aat™)} (¢~ o),

—en -7

as being negative. Hence, by (4.4.2), (4.4.5) (4.4.6) and {4.4.7), we
have, for each positive integer M,

(448)  [g(x)e™Modx — [ Py expltazs®ds = O-M) +

+ 0 { Jexplias®) (544 + 4R} (¢ oo).

For these integrals we refer to (4.1.5) and (4.1.65. By virtue of
(4.1.7), the last O-term in (4.4.8) is easily seen to be O(f34-1). So
we obtain

f g(x)gth(:t)dx —_
= 3 Coutmint HBEAED (g ) HOmEntD) [‘{.}(3,” +u+ 1)} +
m>0, n>0

minsd + O(#4-1) 4 O(tM) (¢ — o0},

where gn4n denotes 1 if m -+ # is even, and 0 if m + n is odd.
As A and M are arbitrary, we have an asymptotic series

(4.4.9) f g(x)eth@dx m_ij,,t‘*“’ {t > o),
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where \
d,=(—a)? % gm:%'—m("" agymI'm + v + 3).
me==

It is easily seen that the main term d¢i~* equals
{— 2r/eh"" (0)}4g(0).
We assumed above that # and g were the sums of convergent

power series in some neighbourhood of ¥ = 0. It is not difficult to
show that the results also apply to the case that

hix) ~ax® +agx®+ ..., gx) mbo+bix+ba2+ ... (x-0)

in the sense of asymptotic series.

45 Asymptotic behaviour of the I'-function

We shall apply the result of sec. 4.4 to the problem of the be-
haviour of I'(f + 1) as ¢ - co. We wish to keep our discussions
entirely independent of sec. 3.10, where the Euler-Maclaurin method
was applied to the infinite product of the Ifunction. Presently
we shall restrict ourselves to the case that £ is real.

We start from the integral representation

(4.5.1) TE+1) =fevwutdn (> — 1),
0

The integrand has a peak, but the localization of the peak is not
fixed: the maximum of e~%u* occurs at % = £, and the maximal
value is ¢~%¢. Therefore we introduce a substitution % = ¢ ¥,
taking y as the new integration variable, and we have to investigate
the integrand in the neighbourhood of ¥ == Q. The neighbourhoods
that matter, are rather large in this case. It can be seen from the
analysis below that they are intervals of lengths exceeding #. This
fact, however, does not influence the method in any respect, and
if we carry out the further substitution y = #x, this is only done in
order to obtain some minor simplifications in the formulas.

On substituting # = #(1 + x) in (4.5.1) the integral becomes
simply

TG + 1) = e~#41 [ {ea(1 + 2)}idx.
-

The function e~%(1 + x) has its maximum at x = 0, and putting
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e %(1 + x) = eh'® we have

h(x) = — $x2 + 328 — x4 4+ ...
So h(x) satisfies the conditions of sec. 4.2 with A”(0) = — 1.
Therefore, by (4.2.4),

L+ 1) ~ e i+ (2m) (¢ — co).

This is Stirling’s formula.

The method of sec. 4.4 leads to an asymptotic series for the
function I'(t + 1)i—t—¥et. We shall now explain a modification of that
method, which works out quite simply in many cases. We introduce
a new integration variable z by 322 = — &(x), or, more precisely,

z=ux(1 — 3x + 222 — .. )},

where the principal value of the root is chosen. In a certain neigh-
bourhood of the origin the Lagrange inversion formula (see sec. 2.2)
gives x as a power series in z:

X=2 - cg2® + ¢33+ ....

It does not matter how small that neighbourhood is, as it is in-
dependent of £, whence the integral can be restricted to that neigh-
bourhood (cf. (4.2.1)). So we infer that there exist positive numbers
é and ¢, both independent of ¢, such that

8
I+1) = et f 321 + 2002+ 3cg22+ . . . )dz+O(eo%)}
-3

if # — oo, and the method of sec. 4.1 leads to
(4.5.2) (2) (¢ + ettt

2 2 2\2 4t
N1+383'—t—-- 112 +585(7>—§?2“4+... (t—>°0).

We can compare this tesult with (3.10.7), which can be written
in the form

(4.5.3) log{(2n) It + Nett—t4) ~
By B, Bg

T T 3as Vs T

(t > o9).
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It follows that, if we denote the formal power series in (4.5.2)
and (4.5.3) by P(t1) and Q(f1), respectively, we have formally
e9@ = P(2). It is, however, by no means easy to verify this directly.

4.6. Multiple integrals
The Laplace method can easily be carried over to multiple
integrals. We shall consider

1 1
F{ty = [ ... fexplth(xi, ..., xp)}dx1. . .d%y,,
-1 -1

where 4 is continuousinthecube — 1 < 1 < 1, ..., — 1 < x,< 1.
We assume that A{(0,...,0) =0, but A(x1, ..., x,) <0 in all
other points of the cube. Moreover we assume that all second order
derivatives of 4 exist, and are continuous in a neighbourhood of the
origin, and that the maximum at (0, ..., 0) is of elliptic type. What
we actually need is this:
n n
(4.6.1) h(x1, .., %0) =—13% X X ayxie+

i=1j=1

+ o{x1® + ... + xa?) (1% + ... + 222 >0),

where the quadratic form 3 3} ayxixy (a4 = ay) is positive definite.
The procedure of sec. 4.2 can now be repeated, with obvious
alterations. Omitting details, we only mention the result

(4.6.2) F(t) ~ Atin {t > o0),
where
A=f...[ exp(—} T X ayxixs)dx1. . .d%y.
—0co —00

It is well-known that
{(4.6.3) A = (2r)inD—,
where D is the determinant of the matrix (ay). This is usually
derived by an orthogonal substitution in the integration variables,
in such a manner that the matrix gets the diagonal form, and then
the integral becomes the product of # single integrals,

If 4 admits a development into powers of %1, ..., ¥, We can ob-
tain an asymptotic series for F(f), in the same way as it was done
in sec. 4.4.

In many cases, especially for theoretical purposes, it is easier
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to apply an analogy of the method used in sec. 4.5. We shall give
only a brief description.

If y is a positive number, then ¢(y) will denote the volume of
that part of the cube — 1< x1< 1, ..., — 1< xp< 1, the
points of which satisfy A(x1, ..., 4) > — 3y2. Then we have

F) =°7 eHdg(y),

and so the problem has been reduced to a question about a single
integral. Usually ¢(y) will be differentiable, and ¢'(y) ~ nyn~1D—V,
(¥ — 0), where V, is the volume of the unit sphere in #-dimensional
euclidean space. For the main term we now obtain

F() ~nDVy [ ettsyn-1dy = nDV . 218 (4n)i— 15 (f-ro0).
0
As Vi = ait/I'(3n 4 1), this gives the same result as (4.6.2).

4.7. An application

We shall discuss an instructive example of the multidimensional
Laplace method. We consider the sum

4.2.1) S(s, n) = z(-— 1yk+n (2”) )

where s and # are positive mtegers. It is well-known that S(1, n)==0,
S5(2,n) = (2n)!/(n!)2, and a formula of Dixon ) gives S(3, #) =
= (3n)!/(nl)8. One of course expects similar formulas for larger
values of s, but no such formula is known. A simple method to
decide on the existence of such a formula is to determine the
asymptotic behaviour of S{s, #) as n — oo (s fixed) and to investi-
gate whether this corresponds to the behaviour of multiplicative
combinations of factorials. It will turn out that the asymptotic
formula for S(s, ) involves (cos n/2s)2n¢, The number (cos 7/2s)28
is rational if s = 2 or 3. If s > 3, however, this is no longér true,
and it follows that (cos z/2s)2¢# does not occur in the Stirling for-
mulas for nl, 2n!, 3nl, . Therefore, we cannot expect simple
extensions of the Dixon formula ifs>3.

Properly speaking, the discussion of S(s, #) belongs to Ch. 3. We

1) See W. N. BAILEY, Generalized Hypergeometric Series, Cambridge 1935,
p. 13.
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are, however, in the situation described in sec. 3.11: the sum is
exponentially small compared to the largest term (i.e. the term with
k = n). This fact is easily verified in the cases s = 1, 2, 3, and for
general s it follows from our final result (4.7.4). (We notice that
the term with k = », which we denote by {,, is asymptotically
(22n(nn)—t)%). This means, roughly, that the Euler-Maclaurin
method (in the version of sec. 3.11, because of the alternating
signs) gives a result of the type

Sjta ~ 0+ 01+ 02 4 ..,

and possibly (by the method of sec. 3.10) that S/¢, is exponentially
small, but we will not be satisfied with a mere upper estimate.
Moreover, in this case, the terms are, considered as functions of the
summation variable %, quite awkward, and the Euler-Maclaurin
analysis becomes involved. For these reasons it is worth while to try
other explicit expressions for S. One possibility is used below,
another one (not restricted to the case that s is an integer) will be
used in sec. 6.4.

It is easily seen that the sum S(s, #) is equal to the coefficient of
210230. . .20 in the product

(— DB (1 4 21)28 (1 + 29)28... (1 + z,)%» {1_(21...zf)—1}2n,

where 7y = 5 — 1. )
As S(1,n) = 0 is trivial, we henceforth assume s> 2, » > 1.
By Cauchy’s formula we have

S+ 1, m) = (— 0)»2ri)7r [ ... [(1 + 22)25--- (1 + z,)5.
) ‘{1 -— (2'1 “ee Zf)-l}z" (21-1d21 .e .Zf_ldzr),
where the integrals are taken along the anit cicles in the complex

z-planes.
On substituting z; = exp(2sp;) we obtain

(4.7.2) S(r + 1, n) = 2ernidngr,
i ir .
j};r .. {ﬂ{cbs @1--:c08 @ Sin(p1 + ... + @p)}20dg;. . .doy,

and to this multiple integral we can apply the Laplace method. We
put :
G(@1, -.., @) = COS @1 ---COS @ Sin{pP1 + ... + Py),
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and our first question concerns the extreme pointsof G. AsG =0
on the boundary of the cube
— < 1< dm o, — IS en < 37,

whereas G takes both positive and negative values inside the cube,
the boundary can be neglected. As to the inner points, we remark
that G has continuous partial derivatives, and so we only need to
consider points where &G/ép; = ... = 8G/dp, = 0. Excluding
points where G =0, we have, if j =1, ..., 7,

(47.3)  9G|dg; = {— tan g + cot{pr + ... + @)} G.

Hence our condition implies that tan ¢y = ... = tan ¢,. The ¢y
being restricted to the interval (— 4z, }#) it follows that all ¢; are
equal, gy = ... = @ == «, say. We obtain cot r& = tan «, and so
o <+ ra = §m + k=, where % is an integer. In other words o« ==v7/2s,
where s = 7 + 1, and » is an odd integer, |»| < s. The value of G
in such a point is
Gla, ..., @) == (cos &)7 sin (ra) = - (cos a)s.

So there are two absolute maxima of G2, corresponding to y=--1
and v = — 1. These are a = g and a= — f, respectively, where
B = =/2s. It is sufficienil 1o consider only one of them, « = + 3,
say. For, the integral in (4.7.2) can be split into two equal parts,
according to @3 + ... + g, > 0or <O.

We shall write, in a neighbourhood £ of (8, ..., 8),

G, - @r) =GB, ., B) exp BB + 21, ..., B+ 1),
and we have to deal with )
2/ ... fexp@nh(f + x1, ..., B + x))dx1. . .dxy,

the integral being extended over a neighbourhocod £2’ of (0, ..., 0).
As G has continuous partial derivatives of all orders, we have a
multiple Taylor expansion for % (cf.(4.6.1)). As G is maximal at
x1= ... =% =0, and as % == 0 at that point, the constant term
and all linear terms vanish:
ror
M+ %1, .., B+ x)=—% 2 X ayxixg+ ...,
P i=14=1
where “ay = —(8/2@4) (2/0g;) (log G), evaluated at x1 = ... =

=xr=0.
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From (4.7.3) we infey

ay = (0/d@:) {tan g5 — cot(pr + ... + @)} =
= 8y cos2 gy + sin (g1 + ... + @) = {0y + 1) cos—2(n/2s),

for at @1 = ... =¢@r=mf2s we have sin{gi1+ ...+ @r) =
= sin{rn/2s) = cos(n/2s). Here &8y is the Kronecker symbol-
dy=1ii=4, dy=01 7 5% j. The determinant of the matrix
(1 +6g) (£, =1, ..., 7) has elements 2 in the main diagonal, and
all other elements are 1. Its value equals s (the order of the matrix
is 7}, which easily can be shown by induction. It can also be derived
from eigenvalue theory: the numbers 1 and 7 4 I are obviously
eigenvalues, and as subtraction of the unit matrix from the given
matrix leads to a matrix of rank 1, the multiplicity of the eigen-
value 1 equals » — 1. Therefore, there are no other eigenvalues. The
determinant equals the product of the eigenvalues, whence the

determinant equals r 4 1.
The matrix (1 4 dy) is positive definite, for it is the matrix of the

quadratic form

LT P ats ol 02 T SRR S 2 L3

We are now in a position to apply (4.6.2) and (4.6.3), and the
result is that S{s, #) is asymptotically equivalent to

22rnt2ny-1Q. (Qn)irD—}. (21;)—-}1-.{(;(’3, e ﬂ)}Zn,
where D = s cos~2r(%/2s), G(B, ..., B) = cos® (7/2s). It results that
(4.7.49) S(s, n) ~ {2 cos(m/2s)}2ne+e-122-3(zy) (1815}

if # — .00 and if s is fixed (s =2, 3, ...).
As a verification we take s = 3. Then we find

S(3, n) ~ 330+ (2n)-1 (n — o0),
and since
(3) Y(#1)? ~ (3m)3nHi(2n)ie-3n{unti(2n)icn}-3,
this is in accordance with Dixon’s formula S(3, #) = (3n)!/(n!)3.

4.8. Exercises. 1. Prove the asymptotic equivalence

”
S xnsin ¥ da ~ gB+2p~2 (n ~» oo0).
0
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2. Show that
1
Sezxn(l + xt)y—ndx ~ (jm)ten—i2-n (n — oo).
0
3. Prove the asymptotic eguivalence

nin

3 ( )k!n"ﬂ ~ (frm)t (n — o0),.
k=0 A

and if 4 is a constant, 0 < A < 1, show that

k=0 k

o
(Hant: kln—t-1 = fe-nzxkdz).
Q

4. Show that there is an a.sym'f)botic expansion

o0 o0
S Je byt (1 — x — y)ndydy m can2 4 can~8 - eqn~d + ..
[ ]

withecg = 1, cg = — 7.

5 (” ) Bln—kiE = (1 — A)~1 — n~12%(1— 2)=2 + O(n~2) (1 — oo).

{n - oo),



CHAPTER §
THE SADDLE POINT METHOD

5.1. The method

The saddle point method, due fo B. Riemann and P. Debye 1),
is one of the most important and most powerful methods in asymp-
totics., Its object is to obtain useful approximations to integrals

(5.1.1) F{t) = [ ¢(2)dz,

where P is an integration path in the complex plane, and g(2) is
analytic in some neighbourhood of P. We assume that both the
integration path and the function ¢ depend on a real parameter ¢,
and we want to study the asymptotic behaviour of F(f) as £ — oo.

Any special application of the saddle point method consists of
two stages.

(i) The stage of exploring, conjecturing and scheming, which is
usually the most difficult one. It results in choosing a new inte-
gration path, madg ready for application of (ii).

(i} The stage of carrying out the method. Once the path has
been suitably chosen, this second stage is, as a rule, rather a matter
of routine, although it may be complicated. It essentially depends
on the Laplace method of Ch. 4.

The first stage, however, is usually quite difficult, especially
in those cases where the new path has to depend on %, Mest authors

1) B. RizmanNN, Gesammelte Mathematische Werke, 2¢ Aufl,, Leipzig
1892, pp. 424-430; P. Derve, Math. Ann. 67 (1909}, pp. 535-558.

Some books which give expositions' of the saddle point method, with
examples, are: R. Courant und D. HiLBerT, Methoden der Mathematischen
Physik, vol. 1, New York 1955; H. and B. S. Jerrrevs, Methads of Mathe-
matical Physics, 3rd ed., Cambridge 1956; E. T. CopsoN, The Asymptotic
Expansion of a Function Defined by a Definite Integral or a Contour Integral,
Admiralty Compnuting Service, London 1946; A. Erpfryi, Asymptotic
Expansions, Dover Publ., 1956.



78 ASYMPTOTIC METHODS IN ANALYSIS

dealing with special applications do not go into the trouble of ex-
plaining what arguments led to their choice of the path. The main
reason is that it is always very difficult to say why a certain pos-
sibility is tried and others are discarded, especially since this
depends on personal imagination and experience.

In the present exposition we shall try to give, in each example,
some arguments accounting to some extent for the choice of the
path, although many readers may find these quite unsatisfactory.
There are, of course, general arguments, to be explained in secs.
5.2-5.5, which form the basis of the method, but in special applica-
tions these generalities give only partial answers.

The general idea of the saddle point method can easily be
grasped in the following way: Assume, for a moment, that we are
not interested in the value of F(¢#), but that we only want to find
a good upper estimate for |F(f)|. We have, of course, if the path has
finite length /p,

(5.1.2) r3ul SPf lp(z)|-1d2] < Ip-maxp |p(2)!.

where maxp |@(2)} is the maximum of |@(z)| along P. It may be
possible, however, to obtain a better estimate by taking a different
path, By Cauchy’s theorem, the path P in {5.1.1) may be replaced
by other paths C, having the same endpoints as P, provided that C
can be continuously deformed into P without leaving the domain of
analyticity of ¢. We shall call these paths C admissible.

We now wish to determine C such that the value of

(5.1.3) lc maxc lg(2)]

is minimal. This C can of course depend on &.

The role of l¢ is, as a rule, quite unimpertant. In the first place,
we may remark that the estimation (5.1.2) is a rough one. Along
the largest part of the path the value of [¢(2)| may be much smaller
than the maximum, so that only a small part of the path may
count. Secondly, we are thinking of applications where ¢(z) behaves
rather violently, at any rate if ¢ is large: very large at some places,
and very small at other places. Therefore, small variations of the
path may result in large variations of maxc |p(2)|, whereas the
value of /¢ hardly changes.
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Finally it may be remarked that if ¢(z) does not behave violently,
the saddle point method has not much of a chance to succeed.

For these reasons we may expect that the value (5.1.3) is pretty
close to_ its minimum if we choose from the set of all admissible
paths the one, C say, for which

(5.1.4) maxc |p(2)]

is minimal. It is of course not generally true that a minimizing path
C exists, but commonly it does.

Usually it will turn out that we are so fortunate that the path C,
chosen this way in order to obtain an upper bound for |F(?)}, is at
the same time a good path for the evaluation of F(f) itself. That is,
we can parametrize the path and write /¢ ¢(2)dz as an integral
along a real interval, to which we can try to apply the Laplace
method (Ch. 4). If the Laplace method fails, all we can say is that
the problem was really no case for the saddle point method.

The above statement is, of course, very rough. There are many
paths giving the same value of maxg¢ [@(z)|, but not all are suitable
for application of the Laplace methed. We shall have to adjust the
path C in such a way that the parts of the path where |gp(z)] is close
to its maximum, become small in length. This can be achieved by
the so-called method of steepest descent (sec. 5.4).

If C is chosen according to that method, the maximum of |¢(2)|
will be attained at a few isolated points only, and as a rule only in
one single point. These isolated points are either end-points of the
path, or they turn out to be saddle points, i.e. points where the
derivativeé ¢'(z) vanishes. The saddle points are usually easy to
find, and they form the basis for the construction of the path C.

As we said before, it may occur that the point of C where |p(z)| is
maximal, is one of the end-points, and that there is no question of
saddle points. We shall then still speak about the saddle point
method, as the general aspect, both of problem and method, is of
the same type as in the saddle point case.

5.2. Geometrical interpretation

In orde:r to make things clear. we shall give a geometrical illustra-
tion. We put z = x + 4y, and we consider the suiface in three-di-
mensional x-y-w-space, whose equation is w=|p(x+y)|. We ex-
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clude the trivial case that ¢ is constant. It is easily seen that at
points where ¢'(x + 2y) = 0, and at no other points, the tangent
plane is horizontal, by virtue of the formula

dlpl . ool ~ {{ oRe log ¢ ___1:3Relog<p}__
oy T o vy )

dloge gl dg
dz @ dz’

= |¢|

(For simplicity, we shall forget a moment about points where
@(x + ¢y) = 0). By the maximum modulus principle, there are no
maxjma nor minima, apart from minima at points where ¢ = 0, so
that the points where the tangent plane is horizontal, are saddle
points. These have the property that their neighbourhoods on the
surface are partly above and partly below the level of the saddle
point itself.

Let us imagine a man who wants to move from spot 4 to spot B
in some mountain district, and whose physical condition makes it
desirable to avoid the higher altitudes as much as possible. On the
other hand, he has no objection whatsoever against walking, nor
against climbing. He therefore tries to do the same thing as we want
to do on our surface @w = |p(x + #y)|: he wants to take a path such
that the maximum altitude is as low as possible.

If there happens to be a path of which A is the highest level,
his problem is solved. It is clear that no path leading from 4 to B
has a maximum altitude below the one of A. The same remark
applies to B. )

On the other hand it may occur that no such path exists, so that
every path leading from 4 to B contains altitudes above those of 4
and B. Unless our man is a mathematician, it will be immediately
clear to him that if there exists a path which solves his minimum
problem, the highest point of that path will be a saddle point, that
is, in his terminology, the highest point of a pass. A mathematician
will be able to prove it (also assuming the existence of a solution of
the minimum problem) under some continuity conditions, which are
amply satisfied in our case w = @p(x +,7y). If the surface of the earth
were not a sphere, but an infinite plane, the man would readily
understand that the existence of a minimizing path is not guaran-
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teed. It might be possible that by making wider and wider detours
the maximum altitude of the path could be reduced and reduced,
without every attaining a minimum. A sufficient-though not neces-
sary, condition for the existence of a minimizing path is, that
there exists a large circle, containing both 4 and B in its interior,
such that every point of its circumference is higher than all points
on the straight line segment AB.

We shall now describe a method for finding the best possible path
for the mountaineer. Let /g be the highest of the altitudes of 4 and
B. Now for every number % > 74y we construct the region Rj,
consisting of all points whose altitudes are < k. Then both 4 and B
belong to Ry, and the question is wirether 4 and B can be connected
by a path entirely belonging to Rjp. If the answer is negative, the
highest point of his minimal path will certainly have an altitude
> k. If the answer is affirmative, there is a path whose ‘maximum
altitude is < %. So his problem is solved if he knows the smallest
value of % for which the answer to the above question is affirmative.
But how to find this smallest value?

To his non-mathematical mind the following will be obvious: if 2
is this smallest value of %, and if P is a path from A4 to B entirely in
Ry, then the highest point of P will be a saddle point. For otherwise,
this highest, point could be circumvented by making some detour.

It follows that the minimum value of %# only needs to be sought
amongst the altitudes of the various saddle points. And even without
these discussions the first thing our mountaineer would do, would be
to look up the altitudes of the various cols in the neighbourhood,
and try whether he can do with some of the lowest.

It is clear that the highest saddle point will be crossed by our
mountaineer, i.€. passed in such a way that in each neighbourhood
of the saddle point, and on both sides of the path, there are points
above the level of the saddle point.

The method described above simplifies the problem in so far
that the unknown quantity no longer is a path, but a number.
Unfortunately, it is often very difficult to carry out this procedure
in our mathematical saddle point problems. However, we can easily
look up the altitudes of the swrounding saddle points and try to
use the lowest one. In the next section it will be shown that we
often obtain-a definite answer in this way.
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5.3. Peakless landscapes

The landscape we are especially interested in, viz. 0 = |@p(x+17y})],
has a simple property: by the maximum modulus theorem we know
that there are no peaks. Assuming that there are no singularities
either, this property has the following consequence: if a closed path
crosses a saddle point, and if this saddle point is not a double
point of the path, then this saddle point is zof the highest point of
the path. (This has to be taken in the sense that there are other
points on the path which are definitely higher). In order to show
this it is sufficient to restrict ourselves to closed’ paths without
double points, for otherwise we can easily find a closed part of the
path, without double points, still crossing the saddle point
(fmathematically we arestill on the level of the mountaineer). Now
by the maximum modulus theorem a closed path contains in its
interior no points higher than the highest point of the path. So in
every neighbourhood of this highest point there are, on one side of
the path, no points higher than this point itself. Therefore, this
highest point cannot be a saddle point crossed by the path (see the
definition of “‘crossing”” at the end of sec. 5.2).

This closed path theorem has a consequence which is of gredt
practical value for our minimum problem. If (in a landscape without
peaks and without singularities) a path, without double points,
leading from A4 to B crosses a saddle point, and if this saddle point
is a highest point of the path (in the weak sense that no point of the
path is higher), then the path solves the minimwmn problem, that is,
any other path from A to B has at least one point of at least the
same altitude as the saddle point just mentioned. The proof is
easy. If we go from A4 1o B along this path, and go back from B to 4
along any other path, we have described a closed path to which the
previous theorem can be applied.

This means that the minimum path can be immediately rec-
ognized as such. I{ we conjecture that some path solves the mini-
mum problem, this conjecture can be tested by looking at this
path only, and it is no longer mnecessary to investigate all other
paths.

If we now include the case that there is a path of which either
A or B is the highest point, we can formulate the following rule for
the solution of the minimum problem: Find a path, from A fo B,
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without double points, the highest point of which is either an end-
point or a saddle point which is crossed by the path.

The additional words “‘which is crossed by the path’ are clearly
necessary in order to avoid that our mountaineer goes up to some
very high pass and after reaching the saddle point, goes back in the
direction he came from.

If there are singularities, we have to take care that the minimal
path hangs together with the path originally given, in the sense
that the first path can be continuously deformed into the second
one without ever leaving the regularity domain. Or in other words,
we have to take care that Cauchy’s theorem can be applied.

However, it is often useful to violate this provision about singu-
larities. Of course, we then have to take certain residues into
account, but these are, as a rule, easily determined with great
precision.

Various statements made thus far could be stated more precisely,
and could be proved more rigorously. But for the present purpose it
is not necessary to do so, as these matters only play a part af what
we called, in sec. 5.1, the first stage of the procedure. Rigorous
proofs will only be needed at the second stage, where calculations
are based upon one special path, and then we have nothing to do
with the question why just that path was chosen.

5.4. Steepest descent

Let us consider a path, the highest point of which is a saddle
point {crossed by this path).-We shall examine a neighbourhood of
the saddle point. . .

It is slightly easier to work with the logarithm of ¢(z), to be
denoted by 9(z), so that p(z) = e#). As the saddle point, to be
denoted by {, is the highest point of the path, we have ¢({) # 0. As
we are further only interested in a neighbourhood of £, we can select
for 9(z) any branch of the logarithm, and we have no difficulties
due to the muilti-valuedness.

It follows from ¢@({) % 0 that the conditions ¢’({) = 0 and
¥'(£) = O are equivalent. -

So far we have taken [p(z)| to be the altitude of the landscape. If
we replace it by Re y(z), which is a menotonic function of |p(z)i,
there is no change in any of the arguments of the preceding sections.



84 ASYMPTOTIC METHODS IN ANALYSIS

Moreover, Re u(2) is single-valued (at least if ¢(z) is single-valued).
Unless p(z) is a constant, at least one of the higher derivatives
(), v"(), ... differs from zero. Let % be the smallest positive

1nteger such that pE(L) 5= 0. We shall assume that 2 = 2. The

cases k > 2 are only slightly more difficult, and as they hardly ever
occur in applications we shall disregard them.

The situation in a small neighbourhood of { is mainly determined
by the value of ¢"(¢), since

v2) =9() + W) — 82+ .

We shall define the axzs of the saddle point { as the straight line
in the complex z-plane defined by

(L) (z — )2 real and < O.

This is a line passing through {. The argument of the axis is 7w —
— }arg v"”’({). (If a line / is parallel to the line connecting Oand «,
then we say that arg « is the argument.of /. The argument of / is
uniquely determined apart from an additional multiple of =).

The line defined by "({) (2 — ()2 = Ois clearly perpen&icula.r to
the axis.

The curves where Re y(z) = Re p({), intersect the axis at ¢,
making angles of £ }x with the axis. These curves are drawn in
Fig. 1 as heavy lines. The curves where Im 9(z) = Im 9({) are
drawn as dotted lines. Their tangents at { are the axis of the saddle
point and the line perpendicular to it, respectively. The axis itself is
denoted by . The curves Re yp(2) = Re 9({) divide the neighbour-
hood of ¢ into 4 parts. The two of these which do not contain the
axis, are hatched. In these regions we have Re (z) > Re (),
whence it follows that our integration path, of which { is the highest
point, does not enter into these regions. The integration path has to
cross the saddle point, so that it connects the two non-hatched
regions.

There is a limit case, where the integration path is exactly one
of the lines with Re p(2) = Re 9({), and where { is not the only
highest point of the path, all points of at least a part of the path
having the same altitude. There is 2 method specially devoted to
this case, called the “method of stationary phase”. We shall see,
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however, that in our case of analytic functions this case can always
be avoided (sec. 5.8), and we shall not further discuss it.

In the general case, where the integration path uses, apart from
¢ itself, only inner points of the non-hatched regions, we can always
deform it such that its tangent at { coincides with the axis 4, and
such that, in the cases of violent bebhaviour of Re y(z) we are inter-
ested in, the value of Re g(2) is in all points of the path very much
smaller than Re (), apart from a small segment of the path around
t. If we start at the saddle point, and go in one of the two directions

Fig. L.

of the axis, the function Re p(z) decreases. It is easily verified that
this decrease is stronger than the decrease of Re y(2) in any other
direction. Therefore, the directions of the axis are called directions
of steepest descent.

The use of these directions of steepest descent is not strictly
essential for the saddle point method. We can usually take any other
curve connecting the non-hatched regions, provided that the angle
it makes with the axis, is less than %z, and does not tend to }= if
the parameter 7 tends to infinity.

5.5. Steepest descent at end-point

Suppose that we have a path from 4 to B, the highest point of
which is A. In the general case we have y'(4) % 0. We shall not
consider what happens if y’(4) = 0, for then we have a saddle
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point at 4, and so things can be discussed according to sec. 5.4.
If 9'(A4) 5 0O, the value of Re p(2) in small neighbourhoods of 4
is to a large extent determined by the value of y’(4), since

w(E) =pd) + & — A)yp'd) + ....
We shall again define the axis as the set defined by
(z — A)y'(A) real and < O,

and in the present case this is a half-line through 4.

Perpendicular to this line is the curve along which we have
Re p{z) = Re y(4). At one side of this curve, the side of the axis,
we have Re y{z) < Re p(4), at the other side we have Re p(2) >
> Re p(4). The path under discussion certainly does not ente:
into the latter region, the highest point of the path being A4 itself.

The direction of the axis is the direction of steepest descent, and
we shall preferably take our path starting in this direction.

5.6. The second stage

Suppose that we have found a curve that minimizes maxe Re p(2),
along the principles expounded in sec. 5.3, and that we have modi-
fied it so as to show steepcst descent at end-points and saddle
points. Furthermore assume that the behaviour of Re y(z) is violent,
in the sense that it is, at least relatively, very large at some of the
saddle points or end-points, and that at these points |»”'({)] is large
as far as saddle points are concerned, and |p'({)! is large if end-
points are concerned. Then on our path we have large values of
je#2)] in small neighbourhoods of some of the saddle points or end-
points, and in all other points of the path its value is negligible
compared to these. Not all saddle points or end-points need to be
impertant, for it may happen that at some of them the value of
le#@ js negligible compared to its value at some of the others.
Accordingly, in these insignificant points there is no need for
steepest descent, and if saddle points are concerned, it is even not
necessary to draw the path exactly through these saddle points.

For the final evaluation of asymptotic expressions for our integral
we now immediately apply the Laplace method of Ch. 4. At the
end-points the integrand is, roughly speaking, of the type exp(—«s)
and at the saddle points it is of the type exp(— cs?). In both cases ¢
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is a constant whose real part is large, and s is 4 real variable used for
parametrization of the path in the neighbourhood of the significant
point under consideration.

5.7. A general simple case

We consider a simply connected region D in the complex plane,
and two functions g(z), %(z), both independent of . The functions
g and % are analytic functions of z for all v inside D. The points 4, B
are in D and independent of £. We want to discuss the asymptotic
behaviour of

B
F(t) = [ g{z)eth@dz
4

ast > 0, f — oo. Assume that there is a point £ € D where 4'(¢) = C,
h"(Z) # 0. Properly speaking, { is not a saddle point of get?, but of
eth; nevertheless it will turn out that { can be used for the problem
about geth as well.

The landscape of |¢2(2)] around { is of the type illustrated in fig. I,
p- 85. If § is a number independent of £, and 0 < § < %=, then we
can find p > O such that there are two opposite sectors of the
circle with centre { and radius p, with apertures 4= — 23, both
symmetrical with respect to the axis of the saddle point, in which
leth@| < letk&)], or Re h(z) < Re A(f). In formulas, these sectors
can be described by

i O<lz—l<p, larglz— 1)+ dn+ 2argh” ()] < in— 4,
(i) 0<l|z—il<p largle—2) —dm + targA'(Q)] < in—o.
For, in both sectors we have

farg{— (z — {)ZA" ()} < $= — 28,

and so
Re{~— (z — D)% (D)} > |z — |2 sin 23;

consequently

Re 4{z) — Re h(Z) = $Re{h” () (z — )2 + O(lz — {I3) <
< Re{— |z — [|2sin 28} + O(jz — £{3).

So this is negative if p is sufficiently smail.
Obviously, both & and p can be chosen independently of . Now
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assume that 4, is a point in sector (i), B; in sector (ii), both in-
dependent of ¢, and that the integration path from 4 to By remains
inside the domain D. Then we can replace the path by a new one:
First connect A3, to a point 42 on the axis, inside (i) ; then cross the
saddle point along the axis, from A4; to a point Bz (B inside (ii));
finally connect By to By by a path inside (ii). Along the paths from
A1 to Az and from B; to B2, Re(#(z) — A({)) has a negative upper
«bound — ¢, and therefore the contribution of these parts to the
integrals is O(e~¢t-¢tRe k&), The contribution of the integral from
Ag to By can be evaluated by application of the Laplace method.
We parametrize the path by

z={+ox, a<x<bd (—p<a<0<bd<p, a=exp(dni—3iarg 2''(]))),

and the integral from ‘43 to Bz becomes
b
o f gl + ax)ethrozigy,

We have thus obtained an integral that was discussed extensively in
sec. 4.4, as

B+ ax) = h{0) + 3 (DaBa® + ..., 3 (L)a? < O.

The results of that section can be applied immediately. We find
an asymptotic series of the form (cf. (4.4.9))

(5.7.1) fg(z)e”"”dz A etk @t ‘ﬁ:} dnt="  (t - o0).
If g(£) # O, the main term is easily evaluated:
(57.2) L e =
= (2n)lad A" QDO + OEY} (¢ — o).

We note that « is the complex number with modulus 1 whose
argument correponds to the direction on the axis from (i) to (ii).

The right-hand-side of (5.7.1) will be referred to as the coniri-
bution of the saddle point {. It is a trivial but important remark
that the contribution of a saddle point depends on the direction in
which it is crossed. If we reverse the direction, the contribution is of
course multiplied by — 1.
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As the integrals from 4 to 4z and from Bg to B; are exponential-
ly small compared to ¢#4®, formulas (5.7.1) and (5.7.2) remain true
if we replace Ag by 4; and Bz by Bi.

The question whether the integral along the original path from 4
to B can be represented asymptotically by the contribution of the
saddle point, is of a different type. It cannot be answered by stud-
ying small neighbourhoods of {. The answer is affirmative if 4 can
be linked to A3, and B to By, in such a way that on those connecting
paths the maximum of ReA(z) is less than Re k({), for then the
contribution of these paths is again negligible.

It is, of course, not necessary to use 4i, By as intermediates
between A, B and 43, Bs. In the above presentation it was done for
the sake of a minor simplification. The price we have to pay for
this, is exponentially small, and therefore we need not bother about
the strict necessity of this step.

If the path from 4 to B has { as its highest point, and if the
tangent at £ makes an angle < {= with the axds, then we can take
Aj and Bj on the path itself, sufficiently close to {.

A similar, but simpler, discussion can be given for the contri-
bution of an end-point to our integral f g(z)e?#@dz. We only state
the result: If g(4) 3 O, #'(4) # 0, and if the path starts from 4 in
a direction in which Re #(4) decreases, then the first term of the
contribution of a neighbourhood of 4 equals (cf. sec. 4.3)

gA)ethd)(—i’ (4))L.

5.8. Path of constant altitude
. We again consider integrals

B B
[ op(2)dz = [ ebtardz.
4 4

If the points 4 and B are connected by a path, all points of which
have the same altitude in the landscape w = Re y(z), then this path
automatically solves the minimum problem (for no other path from
A to B has a maximum altitude below the one of 4). We shall show
that this path can always be slightly deformed so as to give a path
having only a discrete number of highest points.

To this end we consider parts of the path, whose end-points are
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either A or B or else saddle points, not containing saddle points as
inner points. Obviously the whole path can be divided into such
parts. Let AxAy+1 be such a part of the path, and let this arc he
given in the parametric representation z = f(s), 0 < s < 1, where
f(s) is continuously differentiable, f'(s) #0 {0 <s< 1) and
f(O) = Ay, f(1) = Ag+1. As there are no saddle points on the arc
between Az and Ag.1, we have

dylds = '(&)-(5) £0 (0 <s <1)

As Re p was constant along the arc, we now know that idy/ds is real,
continuous and 0 (0 < s < 1). It follows that its sign is constant,
say

idy/ds realand < O 0O <s <)

1t now follows from the Cauchy-Riemann equations that the deri-
vative of Re ¢(2) in a direction perpendicular to the arc, is also
negative, provided that the positive direction on the normal is
pointing to the left bank of the arc. It follows that on the left bank
Re yp{z) has values less than the constant value which it has along
the arc, so instead of left bank we may speak about lower bank.

‘We now describe a new path from Ay to Ag+1. At Agpand Ay it
goes,- preferably by steepest descent, into the lower bank, and fur-
ther it proceeds along the lower bank ai a small distance of the arc.
Here “‘small” means: sufficiently small in order to guarantee that
we are below the level of the original path,

We can do the same thing for other parts of the path 4, B. Some-
times the lower bank will be on the left, sometimes it will be on the
right. At a saddle point, the new path goes up to the level of the
saddle point and descends again on the other side. {The last few
words are not strictly true. If we have a higher-order saddle point,
and if the order of the first non-vanishing derivative is odd, then
we have to descend at the bank we came from).

The asymptotic behaviour of the integral from 4 to B is now
given by the sum of the contributions of the points 4 = 4o, 431,
eeo, An=B.

In sec: 5.11 a worked example can be found.

5.9. Closed path
Instead of for a curve leading from a point 4 to a point B, the
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problem about {5.1.1) can also be proposed for a closed path. We of
course do not assume that the integrand is analytic everywhere
inside the path, for then the integral is trivially zero.

Considering a closed path, we of course get no contributions from
end-points. If the path can be deformed into another closed path
crossing just one saddle point, and if this saddle point is higher than
all other points of the path, then this path is fit for application of
the techniques of what we called the second stage.

If we have a closed path of constant altitude, it need not solve
the minimum problem (the argument given at the beginning of sec.
5.8 essentially depended on the fact that 4 and B were fixed before-
hand). For example, if p(z) = z~2, any circle whose centre is in the
origin, is a curve of constant altitude, and none of them solves the
minimum problem.

5.10. Range of a saddle point

It is often quite difficult to determine a saddle point exactly.
However, for asymptotic purposes it is not always necessary to
take a path exactly through the saddle point. (In sec. 5.7 we actual-
ly did not use the exact saddle point of g(z)et*#!, but an approxi-
mation to it, viz. the saddle point of ¢4, In order to get an idea
of what deviations from the saddle point are possible, we shall
introduce the notion of the “‘range” of a saddle point.

If {'is a saddle point of the function y, then the range of {is a
circular neighbourhood of £, consisting of all z-values which are
such that |y"’({) (z — {)?] is not very large.

This is obviously not a proper mathematical definition, however
useful it may be. The word “range” is as unmathematical as words
like ““small”, “large compared to”’. We might easily give it a definite
meaning, but that would be quite an arbitrary one. And, as the
word only plays a rdle in what we have called the first stage, we
need not be very precise.

Occasionally, we shall also use the word “‘range” for the radius of
the circular neighbourhood mentioned above. .

We have to remember that everything we are doing, depends on
the parameter ¢, although the letter ¢ was not explicitly written in
our formulas. Especially, the saddle point { may depend on {. But
even if the saddle point is fixed, the range may still depend on £.
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E.g., if p(z) = — #z2, then { = 0 is a fixed saddle point, and its
range is of the order of .

If we have to deal with an integral fe#2dz, and if ¢ is a saddle
point, then it is very important to know whether in the formula

(5.10.1) 9@ =v(t) + Q) = — O+ 1O t— 03 + ...

the sum of the terms
(5.10.2) W -3+ ...

is or is not small compared to the term 49"'({) (z — ¢)2, when zliesin
the range of the saddle point. (Needless to say, everything depends
on the parameter ¢, and ““small” has to be interpreted in the sense
of a o-formula as ¢ —o0). If it is small, we are in a position to apply
the technique of sec. 4.4 and, as far as the contribution of the saddle
point ¢ is concerned, the integral can be successfully compared to

(5.103) Jexplp(®) + 49°@) & — D) =
= (20)¥aly’' (@) [HeH®.

Here L is the axis of the saddle point, extended to infinity in
both directions, and the sense in which L is taken corresponds with
the sense in which our integration path crosses the saddle point. The
number « has absolute value 1, and its argument indicates the
direction on L (cf. 5.7.2).

In the special case that y(2) = th(z), A(z) independent of ¢,
K'(L) = 0, B"’({) # O (see sec. 5.7), we have an example where inside
the range the terms of third and higher order are small compared to
the second order terms. For then (5.10.1) has a positive radius of
convergence R, say, where R does not depend on ¢. The range has
the order of +3, for "’ () (z — ¢)2| is large if |2 — £] is much larger
than -, Furthermore, (5.10.2) converges if |z — {| < R, and so its
sumis Oz — ¢)3) if |z — | < Ry (where Rjisaconstant,0 < R; <
< R). It follows that the sum of (5.10.2) is O{t*- (¥"'({) (z — 2)®)}
if |z — ] = O(t%). This means that inside the range the second
order term dominates all other terms if {— co.

If, on the other hand, the sum (5.10.2) is not small compared to
$’(¢) (2 — £)® throughout the range of the saddle point ¢, it is
difficult to say anything i general. Usually it means that there are
other significant saddle points in the range of {, or that there are
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even singularities of  in that range. We shall discuss a few ex-
amples in sec. 5.12.

5.11. Examples
The examples we shall give in the final sections of this chapter,

will be somewhat artificial in two respects. First, they did not
arise from practical problems, but were just designed to illustrate
some aspects of the saddle point method. Secondly, in each of these
examples only some of thé typical difficulties of the saddle point
method will occur, whereas in most applications occurring in
practice, almost all possible difficulties occur in one and the same
problem. We shall give some of these more complicated problems in
the next chapter.

Our first example is
(&) = fexp(t(z + 1z — 28))dz,
0

which is of the type of the integrals considered in sec. 5.7.

Even in a simple case like this, it is not easy to get an adequate
survey over the landscape. Fortunately, the problem can be solved
almost blindfolded.

We put z + iz — 23 = A(z). The saddle points are the solutions of
B'(z) =1 + 7 — 322 = 0. So there are two of them, { and — ¢,
where = 2%.3-".¢74/8, At first sight it seems unlikely that — {
needs to be considered, and therefore we turn our attention to + ¢.

The axis of this saddle point (see sec, 5.4) has the argument — n/16.
Therefore, the straight line I connecting 0 and { cuts the axis under
an angle 37/16, which is less than #/4. This means that / is a suitable
path in a neighbourhood of the saddle point. Furtunately, this line
also serves our other purposes: it turns out that no other point of
the line is higher than the saddle point itself. For, if we describe the
line by z = e™/8x, 0 < x < oo, the function x(z) becomes

h(2) = h(e™¥8x) = e37U/8(2tx — x8),;
and 2Y2x — x3 is maximal at x = xp = 243-%2, Therefore, the same
thing applies to Re A(z).
On the line ! we have Re #(2) < ReA({) — x for x sufficiently
large, and therefore the contribution of the part from xg + 1, say,
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to oo is exponentially smali compared to the contribution of the
saddle point.

It is of course a routfine matter to show that the integral along
the real axis from 0 to oo is equal to the integral from O to & #8.c0
along .

In order to evaluate the contribution of the saddle point, we
evaluate

) = (1 + ) — 3 =301 + ) = 27/43—8113317‘/8,
B'(Q) = — 6F = — 2l3Hagmis8,

As we cross the saddle point from left to right, the number «
(see sec. 5.7) equals o = 7418, So by (5.7.2) the first term of the
contribution equals

(2m)¥ ,—-ﬂ/l&ﬁ(z‘hy)—} ethtl) — g/ 167-He 3—Yuzhi—4 gthed)
This gives at the same time the asymptotic behaviour of /, and so
f(#) ~ ei/18 2-s3- anki—t exp{2’ 3-"g3748Y} (¢ > o).

Our next example is
Ft)=/[ olz,8)dz, ¢z t) = ebt(3z—z%

and it is meant to illustrate sec. 5.8.

Although ¢ has absolute value 1 for all real values of z, the
integral will be proved to converge. So /;° tends to 0 if 4 —> oo (¢
fixed). But it is not true that /. is exponentially small if 4 is fixed
and ¢ — co. Therefore it is not advisable to apply the method of
sec. 5.8 to Fg = (%, and to make ¢ — oo afterwards. To that end
we would need a formula for F, holding uniformly in £ and a.

Therefore we prefer to replace the whole path (— oo, oo) by a new
infinite path P, before we start making ¢ — co.

The saddle points are z = — 1 and z = + 1. We first want to
know what the lower bank is (the words lower and upper bank refer
to the magnitude of the integrand, and not to lower and upper
half-plane). Taking 2z=x 44y, we have Re(#(3z — 23)) =
= 3y(x2 — 1) — 99). This is negative for small positive values of
y if — 1 <% < 1, and it is negative for small negative values of
yif x> 1 or x < — 1 (we of course assume ¢ > 0). So between
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% = — 1 and x = -+ 1 the lower bank lies in the upper half-plane,
and outside that interval it lies in the lower half-plane.

According to sec. 5.8, we now conmstruct a path crossing the
saddle point 1 from north-west to south-east, from 1~ & 4- ié to
1 + ¢ — 16, sa;", where = and J are small positive numbers. These
numbers are chosen such that the saddle point is the highest point
of that path. The saddle point — 1 can be crossed by a similar path
from — 1 — & — 13 to — 1 + & 4 i4. Finally we link the points
—14¢&+4 18 and 4+ 1 — e 4 126 by a straight line, and we link
the points — 1 —e — 46 and 1 4 ¢ — ¢80 to — oo and + oo, re-
spectively, by lines parallel to the real axis. This defines our modified
path P.

The integral along P is easily seen to converge, as

lplx — 8)] = |@(1 + & — 18)|-exp(—3bt(x% — (1 + &)2)) <
< |p(l + & — i8)] exp(— 66t(x — 1 — &) (x>1+5¢),

and a similar estimate holds on the part of P extending to — co.

Therefore we have
oo—id

|/ svdzl < lo(1 + & — 1é)}/641,

1 +e—-

and |@(1 4 & — 48)] is exponentially small, as Re(#(3z — 28)) < O at
z =1+ g — 1. It follows that the asymptotic behaviour of the
integral along P just consists of the contributions of the saddle
points 1 and — 1.

We still have the question whether /p = / %%,. When investigating
this, we can consider £ as a positive constant. If b is a large positive
number we have, by Cauchy’s theorem,

b c0—3§ —~b—i3 b
=/ -/ - [ + [~ f
-y P Pt —00=il Bwil ~D—i§

where the integration paths, apart from P, are straight horizontal
or vertical lines. It follows from the convergence of fp that the
second and the third integral on the right-hand-side tend to O as
b —» co. The same thing is true for the fourth and for the fifth, as

| fb P < ;exp(—t(Su(bZ — 1} — ud))du <
-5 0

< C@, 8 ofsexp(—- 3tu(b2 — 1))du < C(8, /3452 — 1),
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and this tends to 0 as b—~co (C(4,f) is independent of 5). Thi
proves that /2, tends to fp as b — co. So we have established th
convergence of /2, and we have shown that /= = /p.

The contributions of the saddle points are easily calculated
anyway their first order terms. At z = — 1 the axis is exactly
south-west to north-east, and the number « (see sec. 5.7) equal:
em/4, Putting k(z) = 7(3z — 28), we have 4''(z) = — 6¢z. Therefor
A" (— 1) = 6. Now (5.7.2) gives the first term of the contributior
of — 1, viz.

(2m)kemi/dg—t. 6He—28t,

Similarly, we find for the first term of the contribution of the saddle
point at z = 1 exactly the complex conjugate of this expression
Our final result is that

F(3) = 2(g/3t)¥ cos(2t — n/4) + O (t - o0).

In a case like this we cannot state that the first term gives the
asymptotic behaviour, as the error term is not always small com-
pared to the main term. In other words, it is not true that F(f) ~
~ 2(n/3t) cos(2t — m/4). The latter formula would imply that for
large values of #, F(f) vanishes at exactly the same places where
cos(2t — z/4) vanishes, and this is not necessarily so.

5.12. Small perturbations

We shall now discuss some examples illustrating the notion of
the range of a saddle point (sec. 5.10). We start from the integral

(5.12.1) [fetidz,

whose saddle point is z = 0. The circle |z] < #* can be considered as
its range. The notion of range has some importance when one wants
to discuss integrals obtained from (5.12.1) by, small perturbations.
For example, in the integral

o0

(5.12.2) S (1 4 iz)tetdz

the factor (1 + 4z)! behaves quite smoothly within the range of the
saddle point z = 0 of (5.12.1). Admittedly it becomes large far out-
side the range, but there it is quite innocent compared to the very
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small factor e~#", so that the contribution of these parts of the
integration path is negligible. This means that, although z = 0is not
a saddle point of (5.12.2), the integration path — co < x < oo of
(5.12.2) can still suocessfully be used for the calculation of the
asymptotic behaviour of (5.12.2). Actually this is what we did in
sec. 4.4, and it is not necessary to repeat those details here.

Our next example is slightly more complicated, the extra factor
depending on ¢. We put

o0

(5.12.3) F (8 = f g~

00

%,

1+ %22

where « is a positive parameter. For each fixed value of « the
asymptotic behaviour (as ¢ — oo} is required. We shall investigate in
what respect this can still be considered as a “minor modification”
of (5.12.1).

The factor e is harmless: it behaves smoothly within the range.
It gets large if z is positive and large with respect to 1, but then the
factor exp(— #z2) is overwhelmingly small.

The factor (1 + #%2)~1 behaves smoothly if %2 is small, for then
it can successfully be expanded into a power series. Also, if %2 is
large, that factor can be expanded as (#%22)-1 times a power series
in terms of (#22)~1. The dangerous zone is the circular annulus R
in the z-plane where %22 is neither large nor small, and actually
there are two poles in that annulus, viz. 2 = 4 i, Now there are
these possibilities:

(i) 0 < « < 1. Then the annulus R lies far outside the range,
(i} « = 1. The annulus R covers a considerable part of the range.
(iii) « > 1. The annulus R lies inside the range, but is very smalil
compared to the range.

Case (i). Here the state of affairs can be compared to the case of
(5.12.2). According to the technique of sec. 4.4, we choose a positive
number T which is large compared to the radius of the range, and
small compared to the radii of.R; we can take T = P, where
$a < f < }. The integrals from T to co and from — T to0 — oo are
easily seen to be O(exp (—} £1-28)). As | — 28> 0, this term is
negligible. In the interval — T < z < T, the extra factor can be
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successfully approximated. Taking the first three terms only, we
have, if — T <2< 7T,

e#(1 + 1221 = {I + z + 422 4 O(z3} {1 — %2 + O(22z4)} =
=14 7z 4+ (3 — )22 — 23 + O(2%4) 4 O(23).

We now easily find {cf. sec. 4.1)

Fa(t) =f?l + 2+ (3 — %22 — t"‘zs}e"t"sdz -+ t—iO(tZa-—‘z_‘_t—-slg),

— O

and therefore,
E (8) = mit¥{] — =1 + O(+1) 4 O(2=-2)} {t — oo).

Here we dealt with a {few terms only, but it is easily seen that the
complete asymptotic series has the form

o3 -]
PSS o R i,
k=01=0

Case (ii). If « = 1, the function e#* fails to be a good first
approximation to the integrand within the range, the factor
(1 + #22)~1 changing the scene entirely. In order to get a better
survey, we first transform the variable by 2 = {—#w, thus obtaining
a case where the range is independent of ¢:

Filt) = ¢¥ fozl + w21 exp(— w? + —w)dw.

The réle played thus far by the integrdls /%3, exp(— w?)wkdw, is
now taken over by integrals [, exp(— w?wk(l + w?)dw.
Otherwise, the technique is the same as in sec. 4.4. We obtain the
asymptotic series
Fi(t) ~ T c "1 (¢ — oo},
v=g
where

¢, = {(2) 1} f e w?(1 + w?)~Yuw.
In the present simple case it is not difficult to show that the

asymptotic series converges and that its sum equals Fi(#), for all
1 >0.
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Case (iii). @ > 1. The factor (1 + #2)~1 gives, in this case, two
poles which are very close to the point z = 0, that is to say, very
close compared to the dimensions of the range. And, the integration
path passes just between the poles. We shall now shift the integra-
tion path downwards, over a distance 2/-%%, say, taking the residue
of the lower pole into account. The effect is, that the path has
hardly been altered if we compare the shift to the size of the range,
whereas on the other hand (1 - #22)~1 can be expanded into powers
of 22 in all points of the new path. The residue at — st equals

7(2) = Jup i exp(pl— — i),
and we obtain

F,() = — 2mir(f) + [exp(— 122 + 2)- (1 + i%2)-14z,
P

the integration path P being the straight line from — 25.4* — oo
to — 2¢-£3* 4 oo. On this path the expansion

(1 4 22221 = 02 204 | B0

converges uniformly (as {#22| > 4 on the path). The function ¢ can
also be expanded into powers of 2, and within the range 2 is small.
Therefore, it is quite easy to obtain an asymptotic series for F(f) 4
+ 2rir(f). But the situation is even more favourable; we are able
to prove that the asymptotic series is convergent for all positive
values of ¢, and also that its sum equals F (£} 4 2wir(f). To this end
we write

Folt) + 2mir(t) =

= f 3 exp(— #2) (zk[k!) (— 1)mntDeg-2n+liy
o n=

k=0

~

where z = % — 2%, and x is the new integration variable.
We want to carry out termwise integration here, and this has to
be justified. We want to prove that

(5.12.4) f°° 5 §fm(x)dx== § EG_ _fn° fra(x)dz,

—o0 k=0 fu=0 K

=

where
fen(x) = exp(— #22) (/) (— 1)mg~mtDag-2miD)
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and z = x — 2i; { is a positive constant. It is not a difficult
case, since there is absolute convergence. We have

kz 2‘. Men(9)] = lexp(— ia%)] -l (#af? — 1),
since *|2]2 = #4244 1|2 > 4. By virtue of the overwhelming power
of the factor fexp(— #22)] it is easily seen that

/X X \fien(x)ldx
—o0 k=0 n=0
converges. It now follows from the theory of Lebesgue integrals 1)
that (5.12.4) holds, and also that

2z J _fenlx)dx

converges absolutely. However, it is not difficult to give a more
elementary proof, avoiding Lebesgue integrals: If 4 is an integer,
then the double series 3274 22 ¢ fen(x) converges uniformly in the
interval & < x < A + 1, whence it follows that

A+l 00 o o oo h+1

1.f 2 X fenydx =3 X f fen(x)dx

k=0 n=0 k=0n=0

Writing f}*! fen(x)d% = Carn, we have, by virtue of the absolute
convergence of the multiple series on the left,

<> o [--] o

E E Chkn = 2, 2 2 Chkn,

"h—-—oo k=0 n=0 k=0 n=0 h=—oo

and this is equivalent to (5.12.4).
Returning to our original variable z, we deduce from (5.12.4) that

F (&) + 2mir(t) = Z Z f-intb( 1)B(k1)-1 f exp(— tzz)z"—zﬂ—‘-"dz
k=0 15.=0
and that this double series converges absolutely.
It remains to evaluate the integrals occurring on the right. We
substitute — #22 = w, z = — {(w/f)}, where the principal value of the

1) See E. C. TrrcumarsH, Theory of Functions, 2nd ed.,” Oxford 1939,
§ 10.9and § 1.77. .
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square root is taken. If z runs through P, then w describes a path C
starting at — oo, encircling the origin in the positive sense, and
leading back to — co. The integral becomes

[exp(— t22) 2E=2m2dz = — 41 [exp(— 122)2¥-2n=3d(— {z%) =
P P

= — 3L [ o {2tk RS-k i—2n-8)dyy —
¢
= g +k-1520-k+2['(n + (3 — &),

aceording to Hankel’s formula ?) for (F(a))“l..Our final result is that

e o i) et g oo fnta~1)~ik j—k
F ()= ” exp(f® —1t3) — Y ,
() Pt : 2 Z BT+ 36 = 7)
and the double series converges absolutely forall £ > 0. As a > 1,
only negative exponents occur in the double series, and therefore
the series is at the same time an asymptotic series.

If we expand the function exp(f1~= — 7¢-3) as a double series, we
get again terms of the same type. Combining the two double series,
one easily finds

P = apie 3 3 o Dmmerhoy
a n=0m=0  (2)T(Grat-1—h)

& > 0).

5 13. Exercises. . Show that
?e“z(l + 2B ~tdx ~ (m(l — c}/t)e—et(2)~t (# - oo),
where ¢ —=°°—— 14 2t
2. Show that

ija + 3x — 2)-mplzdy ~ 2e(i[/4)3(n/3n)k  (n ~ oo),
-1

where » runs through the integers.

3. Show that
i+ oo
J e (1 -+ 2)-ndz ~ (n)2e)bi-nedn(fn)-in ¢iv(2n) (n - =),
i—co

where 7 runs through the integers.

v

1) See E. T. WHITTAKER and G. N. Warson, Modern Analysis, 4th ed.,
Cambridge, 1946, § 12.22.



CHAPTER 6
APPLICATIONS OF THE SADDLE POINT METHOD

In Ch. 5 we gave several Telatively simple applications of the
saddle point method, intended to illustrate the principles of the
method with easy examples. Since simple examples of the saddle
point method seem to be relatively rare in practice, we shall ex-
pose in this chapter three more difficult cases, in order to give an
idea of the complications which may occur in such problems.

" The first problem covers secs. 6.1—6.3. In this case we have a
quite simple integrand. There are infinitely many saddle points,
but as the contribution of the main saddle point is very large
compared to the contribution of all others, these other saddle
points need not even enter into the discussion. An extra difficulty
is that the main saddle point cannot be represented explicitly; it is
given by a transcendental equation. Fortunately, this equation has
already been studied extensively in Ch. 2.

The second problem (secs. 6.4—6.7) is complicated because the
integrand contains gamma functions. We have to simplify them by
application of the Stirling formula, but this does not work for the
whole integration path. The problem of finding a suitable path,
however, is not exceedingly difficul. in this case.

In the third example (secs. 6.8-~6.10) the major difficulty lies in
finding a suitable path. The parameter is a complex number in this
case, and it is by no means easy to give a suitable path for all pos-
sible values of the parameter. The difficulty is overcome by appli-
cation of conformal mapping, which usually is a very efficient
instrument for obtaining a survey of the behaviour of an analytic
function in a large area.

6.1. The number of class-partitions of a finite set
Let S be a finite set. By a class-partition of S we denote a collec-
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tion of non-empty subsets of S, which are mutually disjoint and
whose union is S. For example, if S consists of the three elements
a, b, ¢, then there are five possible class-partitions, viz. (i) (a) () (c),
(i) (ab) (c), () (ac) (B), (iv) (bc) (), (v) (abc). The number of
class-partitions of § obviously depends only on the nwirber of
elements of S. Now by &, we denote the number of class-partitions
of a set of n elements. One easily finds dy = 1, dg= 2, d3 = 5,
ds = 15. Our problem is to determine the asymptotic behaviour
of d, as # — oo.

There is a recurrence relation, expressing dn4+1 in terms of 4,
rewsy dn:

6.1.1)  dppr= ( g)do+ ( 1 )d1+. ot (:)d,, n=0,1,2,...),

where dg = 1. The proof runs as follows. Let S have the elements
@1, ..., Gn, @p+1. Consider a class-partition of S, and assume
that the subset which contains a,41, contains % further elements
{0< k< n). If we fix &, there are ( Z)d,._k class-partitions of this
type. For, the % further elements just mentioned, can be chosen
from the set{ai, ..., 4y} in ( Z ) ways, and the set of the remaining
n — k elements from {ay, ..., 2,} admits d,—; class-partitions.
(If k= n, there are no remaining elements, but the convention
dg = 1 covers this case). Now carrying out summation with respect
to %, we obtain (6.1.1).

Starting from the recurrence relation (6.1.1), we proceed by the
method of generating functions. Putting

D) = End,,zu/n' !

we deduce that .D'(z) = ¢2-D(z), and, as D(0) = 1, it follows that
D(z) = exp(e® — 1). Therefore, the dg/n! are the coefficients in the
expansion

(6.1.2) expler — 1) = 3, duztfnl.
n=0

A more direct way of counting the class-partitions, leading to
the same formula (6.1.2), is the following one. Consider a class
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partition of the set S, S having » elements. This is a collection ot
subsets; let in this collection the number of subsets having ; ele-
ments be denoted by s5. Sos; =2 0(7=1,2,3, ...),and 5 = 50 +
-+ 255+ 3s3+ ... . We now fix a sequence si, s3, ..., satisfying
these conditions, and we ask for the number of class-partitions
corresponding to this sequence. This number is easily seen to be
equal to

Af(11)"1(20) (@31, . 511 sal s3! ... }-L.

It follows that dy/z#! equals the coefficient of 27 in the power
series development of

° gm ® /a2\E ] R [ 8\% ]
= = (2L s (2
8=0 51! g=0 \ 2! sol s=0 \ 3! sgl

and this represents

22 z8 22
exp (z)-exp(—z—’) -exXp (§7> o= €Xp (z+ 31 +.. ) = exp (e —1).

6.2. Asymptotic behaviour of d,

We shall study the asymptotic behaviour of the coefficients in
(6.1.2) by expressing them via Cauchy’s formula for the coefficients
of a power series:

(6‘2.1) Medn/ﬂ! —-.._:fexp(gz) *—n—ldz,
C

where the integration path C encircles the origin once, in the
positive sense. To this integral we shall apply the saddle point
method. The saddle points are the roots of ze? = n + 1. This equa-
tion has one positive solution, discussed in sec. 2.4, but this is not
the only solution. Actually it can be shown, for each integer %, that
there is just one saddle point in the horizontal strip

Ck—Na<Imz<(@k+ D (k=0,+1,+2...),

provided that » is sufficiently large. .

Let the positive saddle point, i.e. the positive solutien of ze? =
=n + 1, be denoted by «. Fortunately, we are in a position where
the other saddle points can be disregarded, that is to say, we are¢
able to find a path through #, of which # itself is the highest point.
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The axis of the saddle point # is easily seen to be vertical. Pro-
ceeding along the principle that the simplest possibilities should
be tried first, we try to take a large part of the path as a vertical
line. Along this vertical line through the point # we have
lexp ¢#| < exp e¥, since Ree¢? < |e?] = eRe 2 = ¢% holds on that
line. Secondly, the factor z—#-1 is, in absolute value, maximal at
the point . So a vertical path satisfies the requirement that the
integrand should attain its maximal absolute value at the saddle
point.

However, a vertical line does not encircle the origin. But if we
take a large segment of the vertical line, and complete it to a closed
contour by adding a large semi-circle, it does, And, if we make the
radius R of the semi-circle tend to infinity, its contribution to the
integral {6.2.1) tends to zero (if » > 0), the factor z=#1 being
O(R-7-1), whereas exp ¢ is bounded in the half-plane Rez < .
Therefore, the integral f¢ in (6.2.1) may be replaced by f¥*i>.

The integrand is

exp(e? — (n + 1)log 2) = exp(ez — wue® log z).
Writing z = # -+ 4y, we obtain

o0

(6.2.2) 2medg/n! = exp(e® — ue¥ log u) [ exp, (y)dy,

-0

where
w{y) = e¥[(¥ — 1) — w log(l + syu1)].

As lexp v(y)| = exp Re p(y), we Have to study
Re w(y) = e¥[— 1 4 cos y — u log{l + y2u—3)i].

Aslong as y is not too large, the terms — 1 + cos y are predominant.
Therefore, there is a maximum at y = 0, there are further maxima
around y = + 27, etc. The influence of these further maxima is
very small, because of the large factor e* in front. We shall show
that in (6.2.2) we~can restrict ourselves essentially to the interval
—a <y <z

If # <y < u, then we have log(l + y2/u2) >'3y2/u?, and there-
fore

| exp ply)dy < w-exp{— ates/(4u)}
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If y > «, then we use 1 ++ y%/42 > 2y/u, and so we have, putting
Y = Ux,

| fexp p(y)dy| < u [exp{— }evu log(2x)}dx.
LT3 1
It is easily seen that f1° (2x)~Pdx = O(e~¥?) (p > 2), and therefore

T exp v(y)dy = O(u-exp[— Juer]) (s —oo).
It follows that

(6:23) Jexpyly) dy — Jexp pls)dy = Ofexp(— i)} (u oo),

and now we can direct our attention to the interval (— =, #), where
the saddle point at y == 0 gives the main contribution.
As

_ y: )3 y: o ()R ]
oy =en[-2 L 002 OB ]
we find by the Laplace method (Ch. 4),

(6.2.4) Sexp p(idy = (2me~¥)* {1 4+ O}

In order to get an asymptotic expansion, it seems to be in-
convenient to follow the method of sec. 4.4, asp dependsonz in a
rather complicated way. We prefer to apply the method used in
sec. 4.5, consisting of the introduction of a new integration variable
w such that exp y(y) is transformed into exp(— w2f(u)) (f(#) de-
pending on # only).

So far y was real; we shall now treat it as a complex variable.
If |y| is small, we define w by

ey — 1 — ylog(l + dyu1) = — jw?(1 4 »1),

choosing the root w which satisfies dw/dy = 4 1 at y = 0. Now w
can be written as

(6.2.5) w =y + y2P(y, w1},
where P(y, #~1) is a power series in the variables y and #-1, con-

vergent if both y and %1 are sufficienﬂy small. It follows that y
can be solved from (6.2.5), by the technique explained in sec. 2.4
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(cf. (2.4.7)):

1 d
— ol 8Pl 41} — gt~1y 2 2 -1
y )'(W)——zz.f{n-m?uu ) =}t o + 0P, -,
[+

where C is a contour encircling the origin in the positive direction,
as long as w and «~! are sufficiently small. Therefore, y is a power
series in w and #—1. We also need its derivative

dyjdw = 1 + wy1(w™1) + wiyy(ut) + ...,

where 1, y2, ... are power series in terms of %1, simultaneously
convergent for large values of «.

It is not quite sure that the integral (6.2.4) can be transformed
successfully this way, biit at any rate we can find a positive num-
ber ¢ such that it works for /°,. In the w-plane the integration path
becomes a curve which crosses the saddle point at w = 0. The
errors made by braking off the integrals at ¢ and — ¢, and at the
corresponding points in the w-plane, are in no way alarming, as
they are of the type exp(— Ae¥), where 4 is a positive constant.

Our final result is

(20)4TF  exp piy)dy
a1+ arye(@) U + agysa()U—2 + ... (1 — o),
where U = e#(] + %1, ax = (2k)! (R1)12-%,
Using one term only, we get the following expression for dn:
(6.2.6) n = nle"1(27)~% (1 + w1+,
{1 + Ofe %)} exp(e® — ue* log u — }u).
Here # is related to », by the formula
wet =n 1+ 1, % >0,

The asymptotic behaviour of «, as # — &0, was investigated in sec.
2.4. By (2.4.10), which was the solution of the equation xe? = {, we
now have

# = log 2 — log log ¢ + (log log &) {log )2 Q{o, 7),
where Q(o, 7) is a double power series, and we abbreviate
o= (log#), +=1Iloglogiflogé (t=mn+41).
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However, if we approximate # by taking a finite number of terms
of Q(o, 7), the error introduced in (6.2.6) becomes considerable and
much of the accuracy obtained in (6.2.6) is lost. Approximating
4 by log ¢ — log log ¢, we find that

% — ye¥ log # — 4u = {(u~1 — log u) 4 O(log &) =

log log ¢ 1 (log log t>2
,t{ log log ¢ + og ¢ + Tog 7 + 3 gt /- +

( tloglog ¢ )
(log 2)2

Here # is still # 4- 1, but it is easy to see that when replacing # 4 1
by #, we make an error which is much smaller than the error al-
ready involved. Furthermore, we use a rough estimate for #!:

log n! = nlog n — n + O(log n},
and we find that

log 4 loglog »
(6:2.7) =2 —logn—loglogn — 1 + log7_
1 log log n)2 ( loglog » )
——— —_— O — - .
+ log n +i ( logn + (log n)2 (n = =)

It is quite easy to replace the O-term by an asymptetic series, with
terms of the form (log log #)%(log #)—m.

6.3. Alternative method

We briefly indicate an entirely different method by which the
asymptotic behaviour of the sequence dp, dealt with in sec. 6.2, can
be obtained. Starting from (6.1.2), we expand exp % as Y., €5%/k1,
and in each term we expand e¥% into its power series. So we get an
absolutely convergent double series, in which the order of summation
may be changed, and (6.1.2) gives

dp = e 13 kn/hL.
k=0

This sum can be tackled by the methods of Ch. 3. The index
kmax of the maximal terrh lies close to e¥%, where « is again the so-
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lution of the equation ue¥ = n + 1. For, k#/k! roughly equals
(27) k"2 exp((n + 1)log & — klog & + &),

and the function {(# + 1l)log x — xlog x + x is maximal at x — e%.
The second derivative of this function is — (# + [)2~2 — x~1, and
it follows that, roughly speaking, it is only an interval |B— kpax| <72t
that gives a substantial contribution to the sum. In this interval
the sum can be replaced by an integral, if we only carry out cor-
rections according to the Euler-Maclaurin sum formula.

6.4. The sum S(s, n)

In sec. 4.7 we obtained the asymptotic behaviour of S(s, #),
defined by

2n s
(6.4.1) S(s,m) = I (—1)k+n ( 2: ) ,

if s is a fixed integer > 1, and # — oo. The method was definitely
restricted fo this case, as s — 1 occurred as the number of dimen-
sions of a euclidean space. In the present section we shall study
this sum for general real values of s (s fixed, # — oc). It should be
admitted that this is not a very natural question, as non-integral
powers of binomial coefficients do not frequently occur in mathe-
matics. The main reason for its discussion {xere 1s, that it is a diffi-
cult problem with various interesting aspects.
If s =2, 3, ... we have, by {(4.7.4),

(6.4.2) S{s, n) ~ {2 cos(z/2s)}2ns+s-122-8(nn)tl-0 s

if » — co. This formula is definitely false if s = 0, for S(0, #) equals
(— 1)s. If s is negative, it does not hold either. Then we are in the
situation that the first few terms, and the last few, are prevailing.
If s < 0, we have the asymptotic series

Sis, n) ~ 2-(— 1)n{1 - (21”)‘+ (22">’- .. } (7 = o0),

or, more explicitly, for 4 and s fixed (s < 0}, and # — oo,

(6.4.3) S(s.n) = 2-{— 1)”k2:;0(— 1)% (2:)'+ O(n+1s),
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(In order to prove this, we have to consider all terms for which
k < h -+ (— s)"1, and to remark that the sum of the remaining
terms with % < # is at most # times the first neglected term).

If s > O, there is no such trivial way. We shall then replace the
sum by an integral, by application of the residue theorem:

II(2m) 8 dz
(6.4.4) S(s, n) = I( II(n + 2)I(n — 2) ) 2 sinnz
[3]

Here the integration path C is a curve which encircles the points
—n, —n+1,...,— 1,0, 1,2, ..., # just once {in the positive
sense), but does not encircle the points 4 (n + 1), £ (n + 2),... .
We might take for C a rectangle, with vertices 4 (» 4 }) £+ 21,
where $ is some positive number. The function [I(z} is Gauss” ex-
tension of the factorial (ZI{%) = k!}; it is slightly more convenient
to operate with 77{z) than with the gamma function, which is related
to I7 by the formula J7{2) = I'(z + 1},

The function II{n + z)II(n — z) has poles at the points 4+ (n41),
+ (» -+ 2), ..., and therefore the integrand is, unless s is an integer,
a multi-valued function. However, if we cut the z-plane along the
real axis from # -+ 1 t0 4+ oo and from — # — 1 to — oo, the inte-
grand is single-valued in the remaining domain D of the z-plane.
Needless to say, the value of the s-th power occurring in the inte-
grand, is given its positive value at z = 0. Furthermore we can take
care that the path C lies entirely inside the.domain D. Now it is
easy to prove (6.4.4): theresidueatz=A(A=0,+ 1, ..., £ n)is

{Cm!/(n + B)l(n — B)RE-(— 1)P- (2ri)1,

and on replacing 2 — n by £, the integral turns out to be equal to
S(s, n).

Before starting any serious work with the integral (6.4.4) we
make some observations.

(i) The integrand is an odd function of z. Therefore, if C is sym-
metric with respect to the origin, it is sufficient to consider only
half the integration path, and to multiply the result by 2.

(i} If z is somewhere in the right half-plahe, then the absolute
value of the integrand decreases on replacing z by z + 1. For, by
this operation, this absolute value is multiplied by the factor
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|(n — 2)/(n 4+ z + 1)|8. This makes it plausible that something like
a saddle point can be expected on the upper, and also on the lower
part, of the imaginary axis.

(iiiy The integrand is far too complicated for calculations of
exact saddle points. However, on a large part of the path C we have
a reasonable approximation to the integrand, by the Stirling for-
mula. Precisely, if é is a positive number (0 < é < ), and if Rj
denotes the sector |argz] <z — §, then we infer from (3.10.7)
(with 1 — p(1) = } log 2n) that

(6.45)  II(z) = (2n)tr+e2{l 4+ O(jz 1)}  (z¢Ry),

where 2+t = gfz+i10g z with the principal value of the logarithm.

Formula (6.4.5) means that the_ integrand of (6.4.4) can be ap-
proximated by elementary functions as long as z stays sufficiently
far away from the boundary of D, i.e. from the half lines (— oo,
—n—1}and (241, co). However, we are not in a position to apply
this to the whole path C, as C has to cross the real axis between n
and » 4 1, and this is not far from the boundary of D.

(iv) It will not be difficult to find a useful approximation to the
integrand, also by the Stirling formula, for values of z which are
not too far from z = xn. Therefore, we shall have to work with two
different approximations, in different regions. This gives, of course,
some difficulty in fitting the respective parts of the path together.
This is not so much an essential difficulty, but rather a technical
one, caused by the relative complexity of the integrand.

(v) The difficulty just stated can be overcome by making the
connection between the two regions far away from the main battle
field, viz. at + co and — oo, respectively. Remark (ii) suggests that
a retreat to + oo or to — oo is comparatively easy.

Following the above suggestions, we shall split the problem into
two parts. Let N be an integer > #, and let # be a positive number.

We define Py and Qwn by
N +¥+ip
Py= [ L4z On = [ Ldz
s+ —=N—}+ip v+

Here £ is an abbreviation for the integrand of (6.4.4). In the case
of Py, the integration path is a straight line. The number p is a
positive constant. The integration path of Qy starts at N4, pro-
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ceeds through the lower half-plane, crosses the real axis between #
and 7 4 1, and then leads back to N 4 } through the upper
half-plane. Therefore, this path lies, apart from its end-points,
inside the domain D. We shall show, if » is fixed, but sufficiently

large, that
lim Py = P, im Qn =@

N— o N—+ oo

both exist, and that
(6.4.6) S{(s,n) = — 2P + 2Q.

These statements will easily follow from the fact that the integrand
£ is O(jz~2) in the domain described by

64.7) |Imzl<p, lz—k <} (E=0+1+2 ...,

provided that # is fixed but sufficiently large (it suffices that
(27 + 1)s = 2). For, by the functional equation

H(z) - II(— 2) == zmz/sin =z,
we have

(6.4.8) 0=

1 < (—1)n(2n)! IT(z — )

2i \ ale—n)II(z + #) ) (sin 72)*2,

whence it follows that
(6.4.9) £ = O(|z|~2n+1¥8{sin 2z|s—1) (lz| > 2n)

if s and » are fixed (s > 0, » > 0). This implies that 2 = O(lz|-2)
if z lies in the region just considered, provided that (2n41)s > 2.

As to formula (6.4.6) we refer to remark (i), which shows that
3S(s, n) equals —Px + Qn plus an integral from N + 3 to N + }4-ip
and a similar integral in the lower half-plane. The latter integrals
tend to zero as N — oo, since 2 = O(|z|~2) (n fixed).

There are now two separate problems, viz. the asymptotic
behaviour of P and Q, respectively, as # — oco.

6.5. Asymptotic ibeha;riour of P

We shall first deal with P = /%2 Qdz, where p is a positive
number. Clearly, P is independent of $ (cf. 6.4.9). We shall ap-
proximate 2 with the aid of Stirling’s formula. However, a slight
extension of (6.4.5) is necessary, as our values # 4 z and » — z do
not always belong to the sector Rj. If we use the relation J7(2)IT(—2)
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= mz/sin =z, the behaviour of 77{z) in the quadrant Imz > 0,
Re z < 0 can be deduced from its behaviour in the opposite qua-
drant. By a careful discussion of the arguments of 72+t and (—z)-2+#
(the principal values are related by (—z)” = e~™r2¥} we find that

I(z){1 — e2™8} = (2m)tzztte=2{1 4 O(z71)} (Rez < 0,Imz > 0).
It now easily follows that we have, if p¢ is positive and fixed,

II(z) = (2mj¥z7He2{1 + O(jz"Y) + O(e2=Im2)}  ({Im 2|>po).

From this formula we can immediately deduce an estimate for 2
(i.e. the integrand of (6.4.4)) by some trivial calculations:

(6.5.1) Q = — 22n8(zp)F5(1 — [2)~is.

-exp [n{—— slog(l — %) — stlog: t§+ mt}]

{1 ++ Ot + n7H1 + {7 n 1|12 In 1))
(> 1, Imn{ > p).

Here s and pp are positive and fixed, and { stands for z/n.

The integrand is, roughly speaking, of the type considered in
sec. 5.7, if we put
' 1+ 2
. T—1¢
We remark that s is a fixed positive constant, and that the multi-
valued functions log(l + ¢) and log(1 — () are given their principal
values. Disregarding the O-terms of (6.5.1) for the moment, we start
looking for saddle points of . We have

(6.5.3) ¥'(0) = A — slog{(1 + §)/(1 — )},

and therefore ¢'(n) = 0 if = ¢ tan(z/2s). So we observe that there
is a saddle point in the upper half-plane if and only if s > 1. First
assuming s > 1, we take for integration path the infinite straight
horizontal line through the saddle point #. As we have

') = —25(1 — %L = ‘
= — 2s(1 + tan2(n/2s))~1 = — 2s cos?(w/2s) < O,

(6.5.2) () = — slog(l — (%) — sl log + il

this line coincides with the axis of the saddle point.
QOur path can be described by (=1 4+ 2 (— co < x < 00).
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Fortunately, the saddie point 7 is “the highest point” of the path,
as far as y is concerned. Re () decreases if x increases from 0 to oo,
and also if x runs from O to — co. For, by (6.5.3) we have

dy 1+ ¢ |
Re‘;;"‘ - i-——-—»} <0 {x > 0),

as |1+ > |1 —2| if x > 0. If < 0, we have some thing similar,
By sec. 5.7 we have

(6.5.4) f (1 — {2)-38 exp{np{)}dl =

(2%)*"4*"’r v ()1 expiny(n)}i(l — 7?)~*e{l + O(n-1)}.

We have
¥ () = — 2s(cos(x/2s))?,
expiny(n)} = (cos(x/2s))2ns,
{1 — 528 = (cos(m/2s))e,

and therefore the valne of (6.5.4) is reduced to
(6.5.5) {7r/ms)¥ (cos(m[2s))2ns+te-1{] + On~1)}.

Now returning to £, we remark that on our path we have
Im n{ = n tan(z/2s), and this exceeds pg if # is sufficiently large.
So (6.5.1) can be applied. Moreover, the O-terms in (6 5.1) can be
reduced to ode term O(n—1). It is not difficult to show that

"fl (1 = 224 explmp(2))- Ot — Ofr—"h explrp(r)),
.

and therefore these O-terms result in a correction of the same
order as the O-term in (6.5.5).

The fact that Re ¢(l) decreases (if ¥ — o0), combined with the
occurrence of the factor (1 — {2)-#, makes that hardly any com-
plication is caused by the circumstance that the path has infinite
length, so, fortunately, we need not go into the trouble of investi-
gating 1,0(5) as ¥ — oo. Actually we infer that

| {1 .thi < C2%ns(mn)—3# | explny(y -+ 1))| f ll — L3j~tedy
7

with some positive number C (independent of n). The latter integral
is easily seen to converge by virtue of our assumption s > 1.
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Needless to say, the integral /771 can be estimated in the same way.
Coilecting the various results we obtain our final formula for P:

(6.5.6) P="f Qdz=n | Qdt =

17—@ T’l—'w

= — {2 cos(m[2s)}2nme+8-121-8(rn)tA-005—H1 4 Ofn-1)},

valid if s is fixed and > 1.

It may be remarked that the factor {1 4 O(#~1)} can be replaced
by an asymptotic series 3.5° cx#—*. In order to obtain this series it
is necessary, of course, to use the Stirling formula in the form of an
asymptotic series.

The saddle point # moves to 7co when s decreases to 1. This
suggests that, if s < 1, an estimate for the integral can be obtained
by shifting the whole horizontal path upwards to infinity. In fact
we can show that, if 0 <s< 1, n > (st — 1}, the integral P
vanishes. For, if 0 <s < 1 and Im 2z > po (po positive and fized)
we have |[sin az[*~1 = O(1). Now we deduce from (6.4.9) that
Q =0z (jz] > 2», Imz > po) with a constant 1> 1, if
@2n+ 1)s>1,0<s< 1, n and s fixed. It follows that

ip+ oo
P = [ Qdz= 0(p (p - o0),
ip— oo
in' this case. Since P does not depend on p, we obtain that P = 0
O<s<1,{(2n+ 1)s > 1).

s

6.6. Asymptotic behaviour of Q

We next turn our attention to ¢, defined in sec. 6.4. We assume
throughout that s > 0. Of course, we expect a saddle point on the
real axis between # and # 4 1 close to #» -+ 1. If we replace, in the
integrand, II(n 4 z) by its Stirling approximation, such a saddle
point turns out to exist, but only if 0 < s < 1. Moreover, the sihgu-
larity at # 4 1 can be shown to lie within the range of this saddle
point. Therefore the ordinary saddle point analysis does not apply
in the case of our integral for Q.

In order to study 2 for values of z neax # - 1, we use (6.4.8).
For a first orientation, we remark that the only factor in (6.4.8)
depending “‘heavily”” on #, apart from the trivial multiplier {(2n) }¢,
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is the factor {{I{z + #)}~8. To this factor we apply the following
direct comsequence of Stirling’s formula:

(6.6.1) (2u)!/II(x + 2n) = (2n)~%{l + O(x~1)} (x fixed, # — o9),
and we take z=# 4 %.

Because of the factor (2n)~2 it seems to be sensible to pull the
integrationr path as far as possible to the right. But needless to say,
we cannot pull it over the branch point at z = n.4 1.

We shall therefore deform the integration path of the integral Q
by making a path following the real axis from oo to # + 1, taking
the values of the multi-valued functions which correspond to their
values in the lower half-plane, and back from # + 1 to co with the
“values from the upper half-plane. (Notice that the integrand is
one-valaed in the domain D, described in sec. 6.4). This path has to
be provided with small semi-circles around # + 2, # + 3, ».. and
with a full circle around # 4~ 1 in the well-known fashion, in order
to circumvent the singularities, but, as commonly happens in such
cases, these circles can be removed by making their radii tend to
zero. Furthermore it should be remarked that the integral was
originally not defined as an integral from oo to oo, but as the limit
of an integral Qx leading from N + ¢ to N + }, where NV runs
through the integers. However, it is easily shown that this makes
no difference, as £ = O(jz{~2) in the region (6.4.7).

According to (6.4.8), we write 2 in the form

Q=(—1)rn—8(2¢)"Y(2n) TI(z—n—1) [II(z+n)}3(sin =(z—n))*-L.

The function IX(z — n — 1)/II(z 4 n) is single-valued in the half-
plane Re z > », and positive if z is real, 2 > ». The behaviour of
{sin z(z — #)}s1 is also easy to describe. It is positive if n < z <
*< n + 1. Its argument increases by n(s — 1) if we pass the branch
point n+4 % (B =1,2,3, ...) by a semicircle in the lower half-plane
fromn 4+ k&~ 6 ton 4 &k + 4, and for the similar thing in the
upper half-plane we find — #(s —1). So we obtain, again writing
z2=mn -+ x,

(6.6.2) 0 = (— )®Hn—s [ Adx,
: 1

where
A == {(2n) \T(x—1)/TT(x+2m)}2 - |sin mx|s-1. sin{n(s— 1)[#]},
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and [x] depotes the largest integer < x. A first consequence is that
Q =0 if s is an integer > 0, for then sin{n(s — 1)[#]) vanishes
identically.

It will turn out that the mamn contribution to the integral is
given by values of x close to 1. In the interval | < x < 2, say, we
can use (6.6.1), which is easily seen to hold uniformly with respect
to x in that interval. It results that /Z Adx cin be written as

g
J @ny==s{Il(x — 1)}5|sin zx|s-1{1 + O(n—1)} sin{n(s — 1)}dx.
1
This integral is of the type of those discussed in sec. 4.3, log 2x
playing the réle of the parameter ¢ which occurs in that section.
Writing £ = 1 + ¥, and comparing the integral with
S eve 108 2n ye-l dy = I(s) (s log 2n)~2,
o
we easily obtain that
2
(6.6.3) [ Adx = nt~1I(s) (2ns log 2n)—2.
1
{sin w(s — 1) + O((log #)~}.
Instead of the term O((log #)~1) we can get an asymptotic series in
terms of powers (log #)~% (k= 1,2,3, ...).

The remaining integral f;° requires some careful attention, as
(6.6.1) does not hold uniformly with respect to x in the interval
2 < x < oo. On the other hand a rough estimate will do : we shall
show that f3° is O(n—2¢), so that it amply vanishes into the O-term
of (6.6.3).

Let K be an integer > s—1. We shall show that there exists a
constant C; (depending neither on x nor on %), such that

(6.6.4) II(x + 2n)/{(2n)! [I(x — 1)} > C1x#En2 (x> 2, n = K).
The left-hand-side can be written as

() 5) (v ),

and this is greater than

n 2n
AE(K — 1 TL (1 4 25°Y) = Con® T (14 257,
A=K hm1
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with Co = (K — IJTIE (1 + 2A~Y). The product [I?" can be
compared to I1(1 + 241 + 4-2):

2n 2n 2n
l;I (1 + 2 = I (1 + A-1)2. I —-C+1)3=
= (2 + 12 II{1 — (b + 3.
1
The latter product being convergent, we have proved (6.6.4), with

Cy = 4Cy 1;1” {0 — (h+ 13

We can now give a satisfactory upper bound for the integral
from 2 to oo:

oo -]
| [ ddx | < n~28 [ Cy~8x~Ke| sin nx|s-1dx.
2 2

The integral on the right being eonvergent (as K > s~1), and in-
dependent of #, we have

| _;o Adx} < Cgn~28  (Cgindependent of n).
2

Comparing this to (6.6.3) we observe that #—2¢ can be absorbed by
the O-term 7n—¢(s log n)~2O((log n)~1). Therefore, our final result
for @ (cf. (6.6.2)) is, if s > 0,

(6.6.5)  Q==(—1)2a—1I{s) (2ns log Zn)~*{sin =s+O((log n)~1)}.

6.7. Conclusions about S(s, n)

Thus we have obtained the asymptotic behaviour of S(s, #), for
all real values of s. If s < 0, we have (6.4.3); if s = 0 we have
S0, n) = (— 1)»*;if 0 <s <1 we use § = 2Q — 2P (see (6.4.6)},
with P=0; if s=1 we have S(1,#)=0; #f 1 <s< } Pis
much smaller than @, as 2 cos(z/2s) < 1 in that case {(cf. (6.5.6) and
(6.6.5)); if s > &, P is much larger than @ (if s = §, P and @ are
almost of the same order, although @ is still the smaller of the two).
We give a list of the results:

s <0 S(s, n) = 2.(— 1)» +,(.)(”.)‘
s =02 SO, n) = (— 1)~
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0<s<§:  Sis,n) = 2(—1)pa1I(s) (2ns log(2n))—s-
-{sin &s + O{(log »)~1)}.
I S(1, n) = O.
s> $: Sis, n) = 22-5{2 cos(w/2s)}2wsto-1.
-(am)ti-ois—i{1 + Ofn-1)}.

In the cases s <0 and s > § the O-term can be replaced by an
asymptotic series in terms of powers of #~1; the same thing can be’
done if 0 < s < 2, but then in terms of powers of (log n)—1. If
s = } the asymptotic series is more complicated, as both P and Q
give their contributions:

5%, n) ~ 2.3 a.gefnYa oyt + con—*la(log m)~"e 4-
+ can~2log )2 + ...},

the terms of the development of P are, from the third term onwards,
negligible compared to the development of Q.

6.8. A modified Gamma function

We shall discuss an example where the problem of finding a
suitable integration path is quite difficult. This difficulty is mainly
caused by the circumstance that the real variable #, which occurred
thus far in our saddle point problems, is replaced by a complex
variable s, and we want to find the asymptotic behaviour ot the
integral for all complex values of s, when |s| — oco. The integration
path will therefore depend both on |s| and on arg s, and it is the
dependence on arg s which gives the major trouble. We shall meet
.these difficulties by application of conformal mapping.

The function to be considered is defined by

(6.8.1) G(s) = fePwiys—idy (Res > 0),
0
where P(u) is a polynomial
P{u) = VN 4 ey w1 4. ., 4+ ey + ap.

The degree N is a fixed positive integer, and the coefficients
@N-1, - .., ap are fixed complex numbers. In the special case that
oy-1 = ... = g = 0 the function G(s) becomes N-1I'(s/N and),
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therefore the complex Stirling formula (cf. (6,4.5)) will form a
special case. This special case can, of course, be derived much
easier than the formula for G(s). For example, with the gamma
function it is sufficient to discuss the half-plane Re s > 0, because
of the functional equation I'(z}I'(1 — z) = =/sin(nz). Moreover, it
can be done by entirely different methods as well (see, for example,
sec. 3.10).

As in the case of the I-integral, it is easily seen that the integral
{6.8.1) converges only if Re s > 0. But it is not difficult to show
that G(s) can be continued analytically over the whole plane,
except for single poles at the points s =0, — 1, — 2, ... (however,
for exceptional sets of coefficients o, some of these points can be
regular points of the function). The possibility of this continuation
is a well-known consequence of the fact that ¢~P# is analytic at
% = 0. The argument is as follows. There is a power series expansion

e P = gy | a14 + agu + ..., '
valid for all values of %. So if % is any integer > O, we have
e P = gg + ayu + agu? + ... 4+ apu¥ + R(u),
R(w) = O(wr*)  (ul < 1),

and therefore

(] 1
G(s) = fe~Pha-dy + [ R{u)ut~ldu +
i 0

k
+izoa,(s + 7)1 (Res > 0).

The first integral is analytic for all complex values of s, and the
second one is analytic in the half-plane Res > — 2 — 1. This
shows the analytic continuation of G(s) throughout that half-plane,
and, as % is arbitrary, it solves the problem for the whole plane.

A second method for establishing the analytic continuation
depends on the functional equation

5G(s) = NG(s + N) + (N — Dan—16(s + N — 1) +
4 ... aGls + 1),
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which is, if Re s > 0, easily derived from (6.8.1} by partial inte-
gration.

A third method is closely connected to our way of attacking the
asymptotic problem, and we shall postpone it for a moment {see
6.8.8)).
( Fm?c we want to get rid of the multi-valued function #*-1 in the
integrand. Performing the substitution # = ¢2, we obtain

682  Gls)=fexp{— Ple*) + si3dz  (Res > O).

The integral converges if Re s > 0, but if we alter the integration
path, it can be used for other parts of the s-plane as well. We choose
some small positive number d, and we define the path Cj, consisting
of two half lines

{i) the half line described by z = txe®®, co > > 0,

(i) the positive real axis z = x, 0 < x < oo,
1t is not difficult to show that the integral along Cj is equal to G{s)
if Res > 0, Im s = 0, and that the integral is an analytic function
of s in the half-plane defined by —d < args <z — 4. As & is
arbitrary, this furnishes the anhalytic continuation over the whole
upper half-plane, but it does not give the behaviour of G{s) on the
negative real axis.

The asymptotic behaviour of the integral along C; can be tackled
by saddle point analysis. The saddle points are the solutions of

(6.8.3) #P'(¢?) = s.

1I |s{ is large, the solutions of {6.8.3) are easily localized. We write
s = [s|e®®, with — 3z < 6 < }n. Now in, every horizontal strip
Se(k=0, £ 1, + 2, ...), defined by

(6.8.4) Si: |Imz — (6 4 2&n)/N| < =/N
there lies just one root of {6.8.3), close to z == 2z, where
zx = N-1{log(|s|/N) + 65 + 2%kni}.

This we observe when replacing e*P’(ef) by its first term, viz.
NeNz, and applying the Rouché theorem (see sec. 2.4) to the strip
just mentioned, with the functions e#P’(¢#) — s and NeNz — s, The
difference between the two is, in absolute value, smaller than
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|NeNz — s| for all values of z on the boundary, provided that |s| is
sufficiently large. (The Rouché theorem requires a bounded domain
so that it is necessary to approximate the strip by a long horizontal
rectangle). As NeNz — s has just one root, viz. zx, in the 2-th strip,
the same thing holds for ¢2P’(e?) — s.

Moreover, if |s| is large enough, the roots of (6.8.3) can be ex-
panded into powers of s~U/¥,

(6.8.5) Lr = 2k + Cr1s™UN - cpos—2N 4,

where {j denotes the root i the k-th strip. The series in {6.8.5)
converges absolutely for all large values of |s|. We do not go into
details of the proof of (6.8.5), but refer to a similar case in sec. 2
(see (2.4.7)).

Our integration path Cj leads to + oo through the strip So. We
have to move the path such that it leads over the saddle point o.
However, we cannot keep the path entirely inside the strip So; as
Cs starts at ie®. oo, it has to cross the strips S1, Sy, ... . And, it is
to be feared that (in order to avoid values of the integrand greater
than its value at o) the crossings have to be made quite close to
the saddle points {1, {a, {3, .... Actually this makes our problem
awkward to deal with, It could easily be handled if the problem
were restricted to the case that |s| tends to infinity with arg s fixed,
or with arg s restricted to some small interval. Under such circum-
stances the problem would be of the type of the one in sec. 6.2,
where the infinite collection of saddle points did not cause much
trouble. Even so a certain amount of non-elegant calculations
would be involved. And, as we are interested in the whole upper
half-plane, we should have to divide it into some smaller sectors,
and in each sector the calculations would be different.

Fortunately there is a much simpler way out, by virtue of the
fact that the exponents in P(ef) = e¥% 4 ayeW-12 4 .. are
integers, which implies that P(e?) is periodic mod 2zi, We shall first
define new paths Ly (=0, +1, +£2, ...).

L; consists of three parts:

(i) The half-line z = 2kmiN-1 4 x (00 >2x = 0),
(ii) The segment z = ix (2kz/N < x < 2(k + 1)z/N),
(iii) The half-line z = 2(k + )aN-1 4+ ¥ (0 < x < o0).
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Let the function Gg(s) be defined by
(6.8.6) Gi(s) = [exp{— P(e?) + sz} dz.
Iy

Obviously, Ge(s) is analytic for all s. And, as Ly is obtained from
L; by shifting it mn vertical direction over a distance 2», we have

(687)  Grenls) = e2m8Gy(s)  (k=0,+ 1, +2, ...).

The function G(s) can be expressed in terms of Gy, ..., Gy-1-
Assume, for 2 moment, that Re s > 0, so that G(s) is represented by
(6.8.2). Obviously we have

2ni+ o0 -
f = 321!’{:./"
27i— o> — 02

in analogy to (6.8.7). Furthermore, it can be shown that

i + 00 £
/S - =Go+G1+ ... + Gy,
2= 0o — 00

by shifting the paths Ly, ..., Ly~ indefinitely to the left. There-
fore, if Res >0,

(6.8.8) G{s) = —(1 — e2™8)=1Go(s) + ... + Gy-a(s)}.

The right-hand-side is analytic for all s, except for possible poles
ats=0,+1, & 2, .... But, of course, we know that G is regular
at s=1,2,3, .... So the possibility of analytic continuation has
been proved for the third time.

It will turn out that the asymptotic behaviour of Gy, ..., Gy
can be satisfactorily described in the sector § < arg s < 2z — 4, So
{6.8.8) will give us a satisfactory result for G(s), except for those s
which are close to the positive real axis. It is, however, quite easy to
solve the asymptotic problem for s in a small sector around the
positive real axis, jarg s| < =/8, say, directly from (6.8.2) by saddle
point analysis, and we shall not devote much attention to it.

6.9. The entire function Gy(s)

For the time beiiig, we shall consider Gqfs) only. We shall assume
that 8 < args < 2% — 8, with some positive number 4. Then the
saddle point {o of exp(— P(e?) + s2) lies inside the path Lo if |s| is
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large, for, {o is close to zq (see (6.8.5)), and 2o = N—Hlog(s|/N)+-64},
where 6 = arg s.

In order to find our way in the darkness, we first take the special
case that ay-; = ... = a; = 0, whence {p coincides with z. In
this special case we write Go* instead of Ge.

By the substitution z = 29 + w, the saddle point is shifted to the
origin, The path is also shifted; it becomes (Lo} — 2o}, by which we
denote the path described by z — zp, if z describes the path L. It
follows from Cauchy’s theorem that a horizontal shift of the path
(Lo} — zp) has no influence upon the value of the integral, and
therefore we may replace it by (Lo|—#68/IV). This path passes through
the saddle point w = 0.

The integrand becomes

exp(— e¥% 4 sz) = exp(s(z0 — N-1))-exp{— sN—{eN® — Nw — 1)},

where the splitting has been made so as.to make the second factor
of the form exp(— 3sN{w? + ...)), for small values of w. Now
Go*(s) becomes
(6.9.1)  Go*(s) = exp(s(zo — N-1))-
-fexp{— sN—1(eNv — Nw — 1)} dw.
(Lol—18I N)

At this point we apply a conformal mapping in order to get a
clear idea about the behaviour of e¥® — Nw — 1. We consider this
functicn in the strip {Im w| < 22/N. The path (L¢| — #8/N) lies, for
all @ satisfying § < 8 < 2z — 4, inside this strip.

Needless to say, V¥ — Nw — 1 cannot give a conformal mapping
of any region containing w = 0, the function having a double zerc
here. Instead, we consider the function

§(w) = {2(e¥% — Nw — 1)},

where in a neighbourhood of w = 0 the sign of the square root has
been chosen such that #(w) = Nw + .

We shall show that the strip |Im w} < 2n/N is mapped confor—
mally onto a region S, which is obtained from the complete {-plane
by deleting two hyperbolic arcs in the left half-plane. These arcs
can be described by .

(Re)-(Im§) = £ 27, Ref< — |[Imé|.
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In order to prove this, we first remark that £2 is positive if w > 0,
so from the choice of the sign of the square root near w = 0 we infer
that £ itself is positive if w > 0. Moreover, & tends to + oo if w
tends to + oo

We now consider a rectangle with vertices 4+ A -t 2wi/N, where
M is a large positive number, and we analyze what £ does if w
proceeds through its boundary. We start at w = M, where £ is
positive and large. If w runs from M to M + 2ai/N, then i is
large, and arg & increases from O to almost z. If w runs through the
upper horizontal side of the rectangle, then & runs through the upper
hyperbolic arc, up to its end-point (Za)t (4 — 1) (this is attained if
w = 2mi/N), and back along the same arc to a point far to the left,
and close to the real axis. If w proceeds from — M + 2#i/N to
— M, then & jumps from the hyperbolic arc to the reat axis, over a
small distance only. If w proceeds along the lower part of the
rectangle, then £ runs through the complex conjugate of the path
described just now.

Let « be any point of the region S. Then it is clear that
arg(&(w) — «) increases by 27z if w runs throngh the boundary of the
rectangle, since the path of & encircles « just once, provided that M
is large enough. We infer that &{w) attains the value « just once
inside the rectangle 3}, and, therefore, just once inside the infinite
strip.

If xlies on one of the hyperbolic arcs, then &{w) is never equal to «
if @ lies inside the strip, This can be shown, for instance, by in-
vestigating a rectangle with vertices 4 M -+ (2= — &)i/N, where ¢
is positive and small,

So we have shown that £(w) gives a one-to-one mapping of the
open infinite strip onto the region S. As £ is an analytic function
of », it is a conformal mapping.

We want to introduce & as a new integration variable in the
integral (6.9.1), and therefore we have to investigate dw/dé. Needless
to say, this is an analytic function of § throughout the region S.

As §2 = 2(eN® — Nw — 1), we have &df = N{eVv — l)dw. Now
eNw — 1 is, as far as our strip is concerned, close to 0 only if w is

1} See E. C. TrrcumarsH, Theory of Functions, 2nd ed., Oxford 1939,
§3.41.
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close to either 0, or 2ni/N, or — 2ni/N., Therefore we have
(6.9.2) dw[df = O(§)  (largé| < ¢, 1§ > 3).

It is not even difficult to show that dw/df is O(£~1) in this region,
yet O(f) is sufficient for our purpose.
Our integral becomes

(6.9.3) Go*(s) = exp(s(zo — N7H)) fexp(— JsN—14%) fzi:ds,

and next we ask what C is. Analyzing the image of (Lo} — #6/N)
under the conformal mapping, we find that C is a curve starting at
e%. 00 and tending to em-#9.c0, avoiding the hyperbolic arcs. We
have, however, considerable freedom in modifying this path. Along
the straight line through the origin, with arguments — }8 and
a — 40 (a full line through the origin has fwo arguments!) the ex-
pression $sN-1£2 is positive. It is easily seen that this line may be
replaced by other lines through the origin, whose arguments differ
from — 36 and 7z — 40 by less than #/4, for then the real part of
3sN-1£2 is still larger than a constant positive multiple of [£|2, so
that, by virtue of (6.9.2), the convergence is guaranteed. Naturally,
in the finite part of the plane a deviation from the straight line may
be necessary in otder to avoid the hyperbolic arcs.

All such straight lines are, at the same time, satisfactory from the
point of view of the saddle point method: on these lines the abso-
lute value of exp(— $sN—1£2) is maximal at the saddle point
& = 0. However, for this purpose, deviations from the straight line,
as mentioned above, cannot always be tolerated. In other words,
we can only admit straight lines from — ¢#-co to + €f7-00, where
}r < n < 3x. This is no objection: as n — (z — }0) is allowed to
lie between — }x and =, we can find a satisfactory value for 7 to
any # in the interval é < 6 < 27 — 4. Actually we might take
7 = 33z — 6).

It is, however, preferable to have a fixed integration path, not
depending on 7. This can only be achieved under restriction of
6, and therefore we shall consider two different values of #:

() 7= 33z — 8). Thiscanbeused aslongas}é <6 <= -+ §9.

(ii) 7 = }(z + 8). Can be used if w — 38 < § < 2w — }4.

It will turn out that, for reasons of symmetry, we can restrict
ourselves to § < 8 < = -+ }6. So we shall only consider case (i), We
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replace, in (6.9.3), the path C by the straight line through the origin,
from — 137 4.00 to 4 ¢¥87—3/4.00. This path will be denoted by
D. Along D we have
lexp(— 3sN-1£%)| < exp{— }|s|-N-1-|§|?-sin(}d)}.
Now the stage has been set for application of the method of sec. 4.1.
The value of dw/dé at £ = 0 equals N-1 (for, é = Nw 4 ...).
Furthermore, dw/d¢ is an analytic function of & along the line D,
and dw/d¢ = O(g) if |&§] > 3.
The integral can be compared with the formula

Jexp(— 3sN-1£2)dE = —(2nN)is,
D

where st is to be interpreted as |s|~t¢ % So finally we obtain

(6.9.4) Go*(s) = — exp(s(zo — N-1)) ( 12\; )* {1 + O(s™1)},

and the O-term can be replaced by an asymptotic series of the form
cis1 + cgs~2 + . ... It should be noted that {6.9.4) holds uniformly
in the region |s| > 1,8 < args <=z + 19.
Formula (6.9.4) is not new, of course. We have (notice that
Gr*(s) = e2mks/NG*(s) and apply (6.8.8)),
Go*(s) = — N-L{1 — e2ms/N)J'(s/N).
So if we replace s/IV by w, (6.9.4) reduces to
I(w) = (2n)t (1 — e2mi)-1 glw—bilog w—wf] 4 Ofw—1)}
(6 <argw < = -+ 19).

This is an easy consequence of the Stirling formula (log w is given
the value with é << Imlogw < &= + }4). It was not, however, our
purpose to deduce well-known results concerning the gamma
function, for which easier methods exist, but rather to develop a
technique for Go*(s) which can be modified to a technique for Gg(s).

As a preparation to the problem of the asymptotic behaviour of
Go(z) we shall first investigate the following integral

(6.9.5) 16, @) = T e(x) exp(— 2% — Q(x, w))dx.

Here p is a fixed positive number, Q(, o) is a double power series
mxand w: w oo
Qi @) =% I cpmita™,

=0 m=1
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absolutely convergent if {x] < 2p and |w| < b, where b is a fixed
positive number. The function g(x) is assumed to be analytic in the
circle |x] < 2p, and it is assumed that g(0) % 0. We want to de-
termine the behaviour of f{f, ) when |w| is small and |f] » oo,
where ¢ is restricted to a sector |arg #| < §= — 6.

Searching for saddle points, we investigate the eqguation

(6.9.6) — 2% — 1Q'(%, w) = O,

the dash indicating differentiation with respect to x. By the Rouché
theorem (see sec. 2.4) this equation has exactly ome solution xg
mnside the cirele 2] < $ if |w]| is sufficiently small. For then we have
1Q'(x, w}| < 2|x] on the boundary of that circle, whence 2v+Q'(x, )
has as many roots in the mterior as 2x itself. Furthermore, xg can be
written as a sum of a power series:

xo = 3 drok,
k=1
convergent if [w] is sufficiently small.

The straight line from — p to + p is a satisfactory path for
applying the saddle point method to the simplified integral
Jexp(— txf)dx. This path makes an angle < }x — & with the axis
of the saddle point in the origin. In the modified integral (6.9.5) the
saddle point xp is close to the original saddle point, and also the
direction of its axis does not differ much from the original axis. So if
jo} is small enough, the horizontal path through xp makes an angle
less than jz - 30 with the new axis, and therefore it can be used,
at any rate in a neighbourhcod of the saddle point. These remarks
are, of course, only intended as an orientation; the work remains to
be done.

We replace (6.5.5) by

et -z »

(6.9.7) f+ f+ 7.

-p bt +3'>ﬁ » 4Ty
where the integration is taken along straight line segments in all
three cases. The first and the last term in {6.9,7) are easily seen to be
exponentially small in comparison to the value of exp{— ix? — Q)
at the saddle point, and therefore they can be neglected. In the
middle term of (6.9.7) we carry out the substitution x = x¢ + v.
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Then the integral becomes
(6.9,8) #(t, @) = exp(— txo?® — #Q (%o, »))-
»
-f g(xo + v)exp(— ty2 — Q1(y, w))dy,
-P

where 01y, ®) = Q(x0 + ¥, @) — Qfxo, ®) — y('(xo, ) is again a
double power series
G1(y, w) = E Z Yemy "™,
n=2 m=1
convergent if |y] < 3p/2 and |w| sufficiently small (if jo]| is small
enough, this condition on y implies that |y + xo| < 2p).

We can now proceed along various methods. For example, we can
expand exp(— (Q1(y, w)) in terms of powers of y. Another method is
to apply conformal transformation again, introducing a new
variable z by ¥2 + Q(y, o) = z2. Then z can be solved as a double
power serles in y and o, and we get an integral

S 0s(z2, w) exp(— #22)dz.
Omitting the details, which are all implied in the usual saddle
point routine, we state the result:

(6.9.9) f@t, w) = att=H1 + 30" (xo, )} F-
-{g(x0) + OF~*Nexp{— txe® — 1Q(xo, w)},

uniformly in the region

larg ] < 3x — 8, t| > 1, ol < b1
(for some fixed positive number ;). The term O{f~1) can be replaced
by an asymptotic series with terms fy(w)t~%, where the fx(w) are
power series in terms of powers of w, convergent if o] < 5. It
should be remarked that also g{xg) and @"'(ve, ) are convergent
power series in terms of powers of w.

In order to apply the result about f{z, w) to Gg it is easier to ex-
press the main result about (6.9.5) in words: If o is small enough,
there is just one saddle point near x = 0, and the contribution of
this saddle point gives an asymptotic series for f(, w) if £ — oo.

In the integral (6.8.6) for Gg(s), we carry out the same sub-
stitutions as we did in the case of Go*(s). That is, z = z 4+ w, where

Nzo = log(|s|/N) + 46, 8 = arg s, 2(e¥¥ — Nw — 1) = £2,
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and we discuss the integral in the £-plane:
(6.9.10) Gols) = exp(s(zo — N-1)).

f exp{— AsN-L£2 4 (N2 — P(er))} —f-zi;-ds.
D

D is the straight line through the origin, from — &G7—3/4.06 to
+ e8873/4.00, We shall again restrict § by 6 < 6 < = + §/4.

We first investigate the term eN2 — P(e?), which embodies the
deviation of Go from Go*. It is equal to

(6.9.1 1) eNeotN w{-—-— AN—18"%0W — o ge—220—2W | .}.

It is not difficult to show from the properties of the conformal
mapping that Re w tends to 4 oo if || tends to infinity, provided
that £ runs along D. It easily follows, for any positive number 5,
that e¥ = O(£2%¥) (¢ on D, |&| > p). Therefore

|3 — P(e)] < eyfsf2|N-VIN - (£ on D, |E] > p, Is| > co),

where the ¢’s are suitable positive numbers independent of s and &.
It follows that, if p is any positive number, we can restrict the
integration in (6.9.10) to a segment of D with length 2p, symmetric
with respect to the origin. For, the further parts of D are easily seen
to give a contribution which is exponentially negligible if |s| — oo.

To the remaining part of D, with length 2p, we apply the resuit
about (6.9.5). We have, of course, to turn the integration path over
an angle — }(3w — &), by the substitution & = xet37-9/4, and to
put s = #8350 that ¢ is restricted by the condition — 7z +
+ 30 < argt < 4= — 34, and s£2 becomes #x2. Furthermore, if p
is small enough we have, in the circle |&] < 2§,

Nt — P(e%) = N-1sQ(x, ),

where (cf. (6.9.11)) @ = s~1/¥, and Q is a double power series with
Q. 0)=0. For, w =N+ ... and &%, ,.., e~¥N-1¥ are con-
vergent power series in powers of ¢ for small values of £, and
¢ % = NV¥g, (Actually it can be seen from the conformal mapping
that the series for w converges if |§] < 2xr#, so p can be taken
= nt).

It follows from our discussions of (6.9.5) that for Go(s) we have an
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asymptotic series, which is identical to the contribution of the saddle
point. The series equals a certain function multiplied by an asymp-
totic series co(w) 4 ci(w)s—1 4 ..., and the c(w)’s are convergent
series in powers of @ = s~Y¥N, Therefore, the series co(w) + ... can
be rewritten as an asymptotig series of the form ¢o + cys~VN
4+ ocogs—¥N 4+ ..

We do not evaluate explicitly the contribution of the saddle
point in the integral in the &-plane, as it is easier to do so in the
original z-plane (see (6.8.6), with the saddle point s, given by
(6.8.5)). It is not difficult to see that the contribution of the saddle
point is not affected by the substitutions relating z to £ and £ to x.
So our final result is an asymptotic series

(6.9.12)  Gols) ~ — exp{— P(é) + s{}+
«(— 2x=/y" (L)) % crs~HIN,

where co = 1, and y(z) is the function — P(e?) + sz. There is of
course the difficnlty to determine the sign of the contribution, but
this sign is easily derived from the sign in (6.9.4), by a continuity
argument. We have
— ‘90"(50) = N2z | (N — l)zuN_.le‘N“l’z + .=
= Ns{l + a1sUN + apos=2N { . .},

so that (6.9.12) can be slightly simplified. Introducing new coef-
ficients dp (with do = 1), we get

(6.9.13)  Go(s) ~ — (—i%)* exp{— P(els) + so} :z:: dpsHN,

and the formula has been proved if 8 < args <= 4 14, |s| — co.
The argument of st is understood to Lie between $4 and in + 44.
Formnla (6.9.13) obviously generalizes (6.9.4).

6.10. Conclusions about G(s)

In order to deal with G(s), we need, according to (6.8.8), the
asymptotic behaviour of Gy, G1, ..., Gy-1.
The problem about Gx (¢ =1, ..., N — 1) is easily reduced to
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the problem for Go. It follows from (6.8.6) that
(6.10.1)  Gi(s) = exp(2niks/N) fexp{—P(e?™$kINg2) 4 s2}dz,
Lo

and this integral equals the function Gofs), constructed for the
polynomial P(e27¢%/Ny) instead of B(u}. The leading term of the
new polynomial is again #%.

Replacing P(x) by P(e2=i¥/N) can have an influence upon the
situation of the saddle point; the difference of the two saddle points
can be of the order of s~¥¥, And, as in (6.9.13) there occurs a term
s{o in the exponent, the influence upon the asymptotic behaviour
can be considerable.

It is quite easy to state a simpler but weaker result:

(6.10.2)  Guls) = e2etksiN (25 Nis)t-
s s s
~exp{ -~ + N log N + O(st¥-1/N) } ,

where 8 < arg s < & + 34, and [s| - co. From this we infer that
Gy (k > 0) is negligible compared to Gop as soon as the factor
exp(2niks/N) beats the exp{O(s*¥—1/N)}, This is certainly the case
if s is restricted to < arg s < m — 4. And, under that assumption,
the factor (1 — ¢27%)-1 of (6.8.8) can be replaced by 1. The relative
errors made this way are of the type O{e*l#)) with some positive c.
So summarizing, we infer, from (6.9.13), that

(6.103)  Gls) ~ (2n/Ns)* exp(— P(eo) + sto) 3, das#N
[

if |s] > oo, in the sector 4 < args <=z — d. We observe that
do == 1.

For the sector — @ + 8 < arg s < — 6 we can obtain the same
result, provided that ¢ indicates the saddle point close to
N-1log(s/N), where the log has its principal value. In a sector like
— 238 < args < 26 it is quite easy to obtain (6.10.3) again, by
direct application of the saddle point method to the integral
(6.8.2). In this case we can take the horizontal line through the
saddle point as the integration path.

So (6.10.3) has been proved in the sector — # 46 < args <
< 7z — 8. In the special case that P(u) = M4, it reduces to the
Stirling formula, which is known to hold in the same sector.
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We finally state a rough inequality which is easily deduced from
(6.10.2) and (6.8.8). If we delete from the complex plane the half
strip described by {Ims| < 1, Res < I, then we have in the re-
maining region

[G{s)/T'(s/N)| < C1 exp(Cals|¥-1r¥),

6.11. ExXerciseEs. 1. If a is a fixed real number we put

2%).2+
. _77111

n

=1
Show that there 1s an asymptotic series
n-3e/35,/(2n)! ~ cg + can~t 4 con~2 4+ ... (% — oo},
with ¢o = $3¥/I'(1 + %a).

2. If « is a non-negative even integer, then at most a finite number of the
¢’s in the previous problem are different from zero, and the sum of this
finite asymptotic series is exactly equal to the expression on the left (Hint:
consider the (2% -+ a)-th derivative of (¢} — ¢~¥2)28 gt x = Q) If « is even
and negative, then Sy = 0if Zn + a > 0.

3. Ifdisa posi'Eive constant, then show that .
o0 o0
[exp(— ¥x — )2 — ev)dw ~ (27/A)} exp(— 342 — A) X bpi—F,
—oa k=0

in the sector |arg x| < 3#/4 — &, with {¥] - co. Here 1 represents the root
of L 4+ log A =x (Jarg A| < x; log A has its principal value). The b’s are
constants; b¢ = 1. (C£. N. G. de Bruijn, Nederl. Akad. Wetensch. Proc. Ser.
A 56 = Indagationes Math. r3, p. 456 (1953)).



CHAPTER 7
INDIRECT ASYMPTOTICS

7.1. Direct and indirect asymptotics

The first six chapters of this book (with the exception of some
arguments in Ch. 1) have been devoted to asymptotic methods
which we shall call direct methods. The common features are (i) the
function f() whose asymptotic behaviour (as £ — <o) is required, is
represented by some explicit formula in the form of a series or
integral, and (ii) this expression is split into parts, some of which
are proved to be small, whereas the dominating parts are compared
with known functions, and it is shown that their deviations from
these known functions are small; (iii) the final result is then ob-
tained from the fact that the absolute value of a sum (i.e. the total
error) does not exceed the sum of the absolute value of the terms
(i.e. the sum of the absolute values of the partial errors). We remark
that these direct methods are always constructive, in the sense that
the methods supply the means for replacing O- and o-formulas by
definite numerical estimates (cf. sec. 1.7).

Observing that the direct methods essentially depend on the in-
equality |a + b| < |a] + |b], we remark that these direct methods
work in the real field as well as in the complex field, and actually
they can be applied to functions f({f) whose values belong to a system
where each element & has a “norm’” |a|, such that [@ + b} <
< |a}-+1b| holds (we of course assume that the system is an abelian
group with respect to addition). v

In the remaining chapters of this book we shall come across
several methods which are not of this direct type; we shall call them
sndirect methods. It is difficult to describe common features in the
way we did above for the direct methods. We shall indicate some
aspects here which are, however, by no means common to 4 indi-
rect methods.
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(i) Most indirect methods consider real functions only. Usually
they essentially depend upon the property that the set of real
numbers is a linearly ordered system (i.e. a system where an in-
equality relation < is given, such that ¢ < b and & < ¢ imply
a < ¢), and upon the fact that any bounded monotonic sequence
converges.

(i) Sometimes indirect proofs play a réle. This may mean that
the resulting O- and o-formulas, which are statements as to the
existence of a number, or of two numbers, or of a function (see sec.
1.2 and 1.3), are reduced to statements expressing the absurdity of
non-existence. In such cases we cannot replace the O- or o-formulas
by definite numerical estimates.

However, non-constructivity can be the result of direct proofs
as well. In particular it can occur after an application of the theorem
that any bounded monotonic sequence converges: If a1 < a3 <
< ... < 1, then there exists a number « such that 2, = « 4 o(1)
{(n — c0), but we cannot be more specific as long as we have no
further information about the ay’s.

(iii) Frequently indirect methods essentially involve proofs by
induction. We mention a typical argument: In order to show that a
certain function f(#) satisfies f(f) = 2 + O(¢) (¢ — o) we show, tor
instance, that |f{(f)] < 10 {2 < ¢ < 3) and that, for all T > 3, the
assumption

Ift) — 2l <80t (T—1<t<T)
lezis to
ey — ¢ <80t (T <t<T+1).

Now the principle of induction shows that |f() — #2] < 80¢ (¢ > 2).

The difficulty with such arguments is the same one as the
difficulty of induction proofs in general. It may happen that the
induction step fails if we replace 80z by 100¢. Or it may happen that
the induction step fails for any inequality |f(}) — #2] < A4¢, but that
it works for some stronger inequality of the type |f(f) — #3] < 4.
In other words, it may happen that a stronger assertlon is easier to
prove than a weaker one.

Needless to say, proofs by induction often occur in cases where
we want to know the asymptetic behaviour of a sequence {an}
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which is given by induction, and where we do not possess a formula
expressing a, in terms of # (cf. Ch. 8).

(iv) Quite often we shall use formulas expressing the function f(z)
(whose asymptotic behaviour is required), not only in terms of
known expressions, but also in terms of f itself. It may happen, for
example, that f(f}) can be expressed, by some integral, in terms of the
values of f(7) in the interval ¢ < + < oco. Such expressions can often
be used for determining the behaviour as £ — co; they may permit
to transform quite rough information about f(z} (in the interval
t < 7 < oo) into more definite information about £(2).

For example, if we know that the real function f(#) satisfies the
relation

f(t) = cos -1 +ﬁr2 ) > ),

then it is easily seen that the integral is O(¢-1). If follows that
f{t) = cos 1 4 Oft-1) = 1 4 O(¢~1) ¢>1.

Inserting this into the integral, we get

ifoo{fz + 1 + O(r 1)} dr = f {r=2 — =4 4 O(r-5)}dr =
]

whence f(t) = 1 + 1 — §t2 — §i-3 4 O(t4) (£t > 1).

The procedure can be carried on, and it is easy to show that f(#)
has an asymptotic series.

(v) Sometimes we have to find the behaviour of a function
f@), given by a number of data, one of which is a requirement
about the asymptotic behaviour itself. An example: Suppose that
we are dealing with a bounded function f(f} (in 0 < ¢ < oo) which
satisfies a given differential equation. Suppose it turns out that this
equation has just one bounded solution. Now again the problem is
to transform the rough asymptotic information (the boundedness)
into something more definite. Some of the problems in Ch. 9 will
be of this type.

(vi) Needless to say, many indirect arguments contain parts
which have a direct nature (see, for example, sec. 7.5).
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From the above remarksit will be clear that “indirect asymptotics”
indicates not so much a method as a lack of general methods. As the
further chapters of this book give indirect methods applied in
several fields, we give only one type of examples in the present
chapter: some of the simpler parts of Tauberian asymptotics ).

Tauberian theorems are usually proved by indirect methods,
though this cannot always be said to be essential. However, their
counterparts, the so called Abelian theorems, entirely belong to
direct asymptotics.

7.2. Tauberian theorems

A well-known theorem of Abel reads as follows: If the power
series Xy g axx* converges at ¥ == 1, then it converges throughout
the interval 0 < x < 1, and its sum f(x) satisfies

lim  f(x) = A1).
z—-+1, 0z <1

Subtracting the constant value f(1), we can put this theorem into

the following form: If

(7.2.1) ao+ a1+ ... + ap = o(l) (n - o),
then we have
(7.2.2) 3 apx® = o(l) O<x<l,x—>1).

k=0

This theorem can be proved by a method belonging to direct
asymptotics. If we write
AW) =3 a,
0sks<y
then we have by partial summation (cf. (3.13.2))

n n
(7.2.3) 2 apx® = A(n)xn — log x [ A(y)xvdy.
k=0 0

Taking a fixed value of x in the interval 0 < x < 1, we observe that
A(n)x® =o(x") -0 as # —> oo, and that f[° A(y)xvdy converges.
It therefore follows from (7.2.3) that

(7.2.4) @) = — log % [ A{y)xvdy.
(1]

1) For a more extensive treatment the reader may consult: G. H. Harpy,
Divergent Series, Oxford 1949,
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Now split the integral into two parts. If a number & > 0 is given,
we determine b such that |4 (y)] < 3¢ when b < ¥ < co. Then we
have, splitting f5° = f& + /5,

b <o
[fx)l < llog xloflA(S’)ldy + $ellog xlbfx”dy-

The first term is < 4e¢ if x is sufficiently close to 1. The second term
is at most

3z |log x| j°'° xVdy = }e.
0

It follows that |f(x)| < ¢ if x is sufficiently close to 1, so that we
have proved (7.2.2).
Formula (7.2.4) can also be written in the form

Hx) = f A{y)xvdy / f xvdy,

and this expresses that f(x) is an average of values of A(y), with
positive weights. Abel’s theorem derives asymptotic information
about this average of A(y) from asymptotic information about
A(y) itself.

The converse of Abel’s theorem is not true: (7.2.2) does not
imply (7.2.1). It is easy to give a counterexample. If

) =% —2422—284+ ... =31 —2)/1+2) O<zx<l),
then f(x) — 0 as x — 1, i.e. (7.2.2) holds. However, (721) is false -
in this case:

ag a1+ ... +an=4%-(— 1) 2 o(l).

It is possible to prove that (7.2.2) implies (7.2.1) by assuming
some supplementary condition. The first result in this direction was
obtained by A. Tauber, who showed that

(7.2.5) an = o{n~1) (n — o0)

is satisfactory: (7.2.2) and (7.2.5) together imply (7.2.1). It was
proved later by Hardy and Littlewood that (7.2.5) can be replaced
by the weaker condition that there exists a positive constant C such
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that
(7.2.6) Ay > — Cn1 r=1,2,3...).

We shall show the sufficiency of (7.2.6) in sec. 7.5.

The general terminology is modelled after this special case. A
theorem which derives asymptotic information about some kind of
average of a function from asymptotic information about the
function itself, is called an Abelian theorem. If one can find a
supplementary condition under which the converse of an Abelian
theorem holds, then this condition is called a Tauberian condition,
and the converse theorem is called a Tauberian theorem.

In secs. 7.3 and 7.4 we shall deal with quite simple cases, and a
more difficult Tauberian theorem will be proved in sec. 7.5.

7.3. Differentiation of an asymptotic formnula
Let f(x) be integrable over every finite interval, and put

(7.3.1) Fli) = {' Hx)dx.

Assuming some asymptotic behaviour of f{f), say, an equi-
valence

(7.3.2) ) ~2 (> o0),

where « is a constant > 0, it is easy to derive an Abelian result
about F(f), in this case

(7.3.3) F() ~(a+ DM (£ > oo0).

The converse is not always true, i.e. formal differentiation of
(7.3.3) is not always legitimate. For example, if F(#) = 2 4 ¢sin ¢,
then F'(f) = (2 4 cos ¢)f 4 sint, so F(t) ~ 2, but not F'({) ~ 2,

In order to be able to deduce (7.3.2) from (7.3.3), we need a
Tauberian condition, and as such we take

(7.3.4)  f(t) is real and non-decreasing 0 <t <oo)

We shall prove the Tauberian theorem that (7.3.3) and (7.3.4)
together imply (7.3.2).
Let ¢ be a positive number. By (7.3.3) we can take T such that

(F() — (@ + 1)U < gfel (2> T).
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Let p and ¢ be numbers such that ¢ > T, £+ $ > T; p may be
negative. Then we have also
FE+ p) — (@ + D7IE + p)4 < e (¢ 4 ),
and taking differences we find that
t+p

{7.3.5) | tf ’ fF)dx — [ xvdx| < ettt (i -+ Pt
: ¢

First assume that p > 0. Then it immediately follows from (7.3.4)
that pf(t) < f{*? f(x)dx. Moreover, we have [} ¥? x*dx < p(t + p)=.
It follows that

1) < (¢ + D) + 2671 + p).

This gives an upper estimate for f(¢), and we can still fix $ in order
to make it as efficient as possible. Writing $ = g¢ we get

@) < &{(1 + @ + 2eg7X(1 + g)*+1}.

It is not necessary to find the exact minimum. We only remark
that ¢ should be small enough to keep (1 + g)*close to 1, and that ¢
should be large with respect to &, in order to keep &g-1 small. So we
take ¢ = ¢}, and we get

(7.3.6) 1) < #{(1 + &)= + 2641 + &)} (= T).

A lower bound is obtained by taking < 0 in (7.3.5). We im-
mediately take # = — &¥. Assuming ¢ < }, and ¢ > 27T, we have
p +t= T. Moreover we have

4 4
pl10) = J Hxldx, [ x*dx = [pl(¢ + )
t+p i+p

and it follows from (7.3.5) that
(7.3.7) @) = (1 — e¥)> — 28} (t = 27).

From (7.3.6) and (7.3.7) we can deduce f(f) ~ #* (¢ — o0). For, if
&' > Ois given, then e can be chosen such that the factors between
{} in (7.3.6) and (7.3.7) lie between 1 — ¢’ and 1 + ¢'. With this
value of ¢ we can determine T, and then we have |f() — | <
< &'t* (¢ = 2T). This proves our Tauberian theorem.
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7.4. A similar problem

We again consider F{f) = f§ f(x)dx, as in the previous sectionm,
but instead of (7.3.2) we assume

(7.4.1) fy=2+0(1) (o).
Then we can derive by an Abelian argument
(7.4.2) F{ty = 4 0@) {t - oo).

We again ask whether the supplementary condition
(7.4.3) 7{¢) is non-decreasing 0t <o)

is sufficient in order to make (7.4.2) imply (7.4.1). It will tumm out
that it is not.

Proceeding in the same way as in sec. 7.3, we choose a positive
function p(#) of ¢, and we obtain from (7.4.2) and (7.4.3):

t
1 < ﬁ“lf?(x)dx — pUF( + p) — F(§} =

=204 p+0@pY) +0(1) (t—oc0).

The best possible O-result is obtained by taking p such that the
terms p and £p~1 are of the same order. So taking p = #, we obtain
1) < 2t 4+ O(f}). We easily get the corresponding lower estimate,
and so

(7.4.4) ) =2+ 0@ (¢t —oo).

Roughly speaking this is the best possible result that can be
derived from (7.4.2) and (7.4.3). More precisely we shall show that
there exists a function f{¢) satisfying (7.4.2) and (7.4.3), which is
of the form £{() = 2¢ 4+ O(#}), but which does not satisfy f{) =
= 2¢ 4 o(f}).

A good example can be obtained by graphical arguments. We
shall assume that |F(f) — #2| < ¢ (¢ > 0), which ‘means that the
graph of the function y = F(f) in the (¢, ¥)-plane lies below the
graph of y = {2 4 f and above the graph of y = {2 — ¢, as far as
values £ > 0 are concerned. We shall denote the parabola y == 24
by 71, and the parabola 9 = 2 — ¢ by 7ma. The condition (7.4.3)
means that the graph of F(¢) is convex. We now want to draw a
convex curve between = and »a which behaves as irregularly as
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possible. By ““irregularly”” we mean that the deviation of the slope of
the graph from the slope of the parabolas is occasionally large.

We therefore choose the graph of F as follows. We take a sequence
of points Py = (fo, ¥o), P1 = (f1, ¥1), ... on zg, such that, for each
value of %, the line connecting Py and Pg4; touches #; in a point
somewhere between these two. Now the graph of F is the broken
line PQP1P3P3. .

It does not matter that F has no derivative at the vertices Py,
for f is not defined as the derivative of F, but F is defined as the
integral of f. We can give f({x) any value between the slopes of
Py-1Pr and PiPry1. '

The condition that PPy touches zz is, by elementary analytic
geometry, easily translated into the relation (fx 4 fg41 — 2)2 =
= 4{tx+1, Whence

tpe1 =t + 2 + (8x)}.

If ¢y is chosen arbitrarily, then #, #», ... can be evaluated suc-
cessively. Accidentally we are able to give an explicit solution. (If
we were not, we should have to study the asymptotic behaviour of
tx, as B — oo, and that can be done by methods indicated in Ch. 8).
Ifwetake g =0, then 1 =0+24+0=2, 80 =2+ 2+ 4 =8,
tg =8+ 2 4 8 == 18, {3 = 32, {5 = 50, ... and it is easy to show
that ¢ = 2k2. Now the slope of PPy, is easily seen to be (25-4-1)%,
and the point of contact lies at ¢ = 2k2 + 2k. We therefore define
f by

) = (2k + 1)2 R <t<2k+ 12 2=0,1,2...).
Now obviously f(tx) — 2ty = 4k + 1 > #t, so that (f(f) — 2)¢
does not tend to zero. The function f(f) is non-decreasing, and
F(#) = f§ {(x)dx lies between 2 — ¢ and #2 + ¢ for all 2 This follows
from the geometrical argument, but it can of course be verified by
integration, which gives

F(t) =12+t — (t — 2k%2 — 2R)2 =

=12 — ¢t 4 (2(k + 1)2 — 1) (£ — 2k2) (2% < t < 2(k 4 1)?).

From these formulas it is evident that

B-t<F)<t+t (0<?<oo).
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We just established that (7.4.3) is not a satisfactory Tauberian
condition in order to pass from (7.4.2) to (7.4.1). We shall now
consider a much stronger condition: we assume that f has a non-
negative second derivative:

(7.4.5) =0 (¢=0).

Moreover assuming (7.4.2), ie. F(f) =2 -- O(f), we can derive
(7.4.1) by some simple arguments. We can even prove more, viz.
that there exists a number & such that f(#) = 2¢ + & -+ o(1). First
we remark that /7(?) > O means that f'(f) is non-decreasing. If for
some fo we had ['(fp) = a, where a > 2, we would have f(f) >
= a(t>1%), and this would conflict with F(f) = 2 4 O(f). So
F'(¢) < 2 for all £, and it follows that f(f) — 2¢ is non-increasing, If
¢t ># > 1 wehave

Fl) — 2 — Flr) + 12 =tf<f<x> — 205 < ¢ — 1) (flt)—24).

Let 4 be such that |F(f) — ¢2] < 4¢ (¢ > 1). Making ¢ - co we
infer that f(f1) — 24 = — 4. So f(f) — 2¢ is non-increasing and
bounded below; it follows that f(f) — 2¢ tends to a limit when #—>co.
We can also say something about f'(f); as ' is non-decreasing,
f'< 2, and f(f) = 2t 4 b 4 o(1), it is evident that f{f) = 2 + o(l),
and even that /g° (f'({) — 2)d¢ converges.

7.5. Karamata’s method

Let ap + aix 4 azx® + ... be a power series, convergent if
[#] < 1, and let some asymptotic information be given about the
partial sums @1 + ... + a4, as # — oo. If this behaviour is not
too irregular, we can deduce, by Abelian arguments, the behaviour of
the sum function

f(#) = ap + a1x + agx® + ...
as 0 <x <1, x> 1. (A special case of this problem and of its
Tauberian counterpart was discussed in sec. 7.2).
Conversely, assume that the asymptotic behaviour of f(x) (as
% — 1) is known, and that we want to derive information about the
partial sums

A(”). = Eosksg ag.
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These can be written as

(7.5.1) Alr) = T axgle ) (n>0),
k=0

where
0 0 <y,
g = {1 i< x< 1),

In Karamata’s method this discontinuous function g(x) is
approximated, in some sense to be specified later, by a polynomial
P(x), with P(0) = 0. If

m
Plx) = 2 pyd,
i=1
then the sum corresponding with (7.5.1) is

o m
(7.5.2) S apP(e~¥n) = 3 pyf{ed7).
k=0 i=1

If Pis a fixed polynomial, then the asymptotic behaviour (as
n — oo) of the right-hand-side is known.

The method can be applied to a fairly large class of cases. We
shall specialize by taking a fixed real number ¥ and assuming

(7.5.3)  f(x) =k§0akxk = of(1 — %)~7) OP<zx<l, x-1).

Using the Tauberian condition
(7.5.4) ap > — C{k + 1)y =012 ...),
where C is a positive constant, we shall prove that
(7.5.5) An) = 3 ar = o(n?) (n — co).

k=0

The special case ¥ = 0 has been announced aiready in sec. 7.2.
This case is usually deduced from the case y = 1 by some auxiliary
Tauberian theorems, but Karamata’s method is strong enough to
cover the case y = 0 as well 1). :

As to the approximations of g(x) by polynomials we shall stipu-
late the following conditions. Let % be an integer, 2 > 0, & > — y;
e 4

1) See H. WieranDT, Math, Zeitschr. 56 (1952), pp. 206-207.
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in fact we take for /4 the smallest integer satisfying these inequali-
ties. Let e be a positive number, 0 < ¢ < }. Then we want to have
polyncemials Pi{x), Pa(x) such that

Pi(x) < glx) < Palx) O<x<1),
le(x) — Pl(x)l < 2 (0 << 1),
[P2{x) — Pi(x)] < ex (0€ x < 18,

[Pa(x) — Prlx)] < o(l — )% (e < x < 1)

We do not require anything regarding the degree or the coefficients
of these polynomials. The possibility of finding Py and Ps can be
shown as follows. We first get rid of the discontinuity at x = -1,
constructing continuous functions gi{x) and gg(x) such that

gilx) < glv) <galx) (O=<=2<1),
golx) = glx) = glx) U x < e1Forx = glts,
galx) —gifx) < 1 i el < x g el

Next we determine a polynomial Q(x) such that Q(0) = g{(0),

Q1) =g(1), (1) =¢g'(1), ..., QP V(1) =g®D(1). Actually,
Q(x) = 1 — (1 — x)* is already suitable, but the explicit form of
{ does not matter. Now the function g, defined by

(g2(*) — QlaNxH(1 — 2)~» = g2(x)

is a continuous function in 0 < x < 1. By the Weierstrass ap-
proximation theorem ) we can find a polynomial Rg(x) such that

lpe{x) + 3 — Ro(x)| < }e O<x< 1)
Putting @ + x(1 — x)hRg = Pg, we observe that
ga(x) < Pa(x) < ga(x) + 3ex(l — x)2 << 1)
Similarly we construct Py(x) such that
gi(x) — fex(l — 2P < Pi1(x) < gil) o<x< 1)

Then P; and P; cobviously satisfy all requirements.
By (7.5.1) and (7.5.4) we have, for all positive values of #,

1) See E. C. TrrcuMarsH, Theory of Functions, 2nd ed., Oxford 1939,
§ 13.33.
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(7.5.6) An) + 2 apPi(e %7 <
< 2 C(k + 1)”"1( (eEIm) — Py(e~kin)),

(7.5.7) A(n) — 2 arPa(e*/n) <
k=0
< 3 Clh + 173 (Pafe4m) — glesrm),
k=0
by virtue of the fact that g — Py = 0, Py — g > 0. The right-hand-
sides are al most
S Clk + 1)-2Polem) — Pye#m)).
k=0
This amount is easily estimated above, by splitting the sum ac-
cording to A< n(l —¢), n{l —e) <k< n(l +5¢), n(l 46 <
< k < oo. We have, for the first part of the sum
> < X Cle+ 1)yl — etinyh <
0 £k £n(l—e) 0 <k <n(l—e)
< X eClk+ 1)7-1khn—t < eCDynv,
0<ksn
where D; depends on y, but not on ¢ and #. For, (¢ 4 1)y-1k» <
< (k4 1)r*2-1 and y + & is positive. And if 8 is a positive num-
ber, we have

S+ )l =0@h (x> 0).
k=0

The second part of the sum has at most 2en -+ 1 terms, and so
s  <2C = (k - 171 < 2C(2en + 1)Danr-1,

n(l-—s) <k <n(l +-8) n(l—e) <k <n(l +:z)
where D2 depends on y only (we can take Dj = 3iv-1l, since 0 <
< & < % guaraniees that #/3 <A+ 1 <3n if n{(l —¢g) <k <
< n(l + g).
The third part of the sum is
3<% Cle+ NrYeedn < eCDagnr,

kzn(l+te) kznl+s)
where D3 depends on y only. This is easily obtained by comparing
the sum with the corresponding integral

o0 . -
Jxr-te-zindx = ny fyr-le-vdy.
n 1
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%o the sums occurring on the right-hand-sides of (7.5.6) and
(7.5.7) give at most eCu¥(Dy + 4D2 + Dg + 2n~1e71Dy), where the
D’s depend on y only.

The sum Yi-, axP1(¢~*/®) occurring in (7.5.6), can be estimated
by virtue of (7.5.2) and (7.5.3} (it should be noticed that P;(0)=0).
As

(1 — )= ~ 7Y (n— oo, ] fixed),
the sum is o{(n¥). More precisely, we can determine a number 7o,
depending on y, ¢ and on the polynomial Pj, such that the sum is,
in absolute value, less than en”. The same thing holds for the sum
with P, occurring in (7.5.7). We can assume that #g serves both P;
and P;. We finally obtain, from (7.5.6) and (7.5.7),

{A(n)| < env(CD1+ 4CD3 4+ CDg + 2171 1CD2 + 1) (n > ng).
If moreover n > ¢~1, we infer that [4(n)| < envD,, where Dy is
independent of ¢ and #. As ¢ is arbitrary, this proves (7.5.5).

If y > 0, it is easy to prove (cf. sec. 3.5) that
S+ 1)k ~TH (1 —27 O<zx<l,x-—>1),
E=0

S+ ey lny  (n - o0).
k=0

So for y > 0 our Tauberian theorem can be generalized as follows. If

3 agxk ~ (1 — z)v O<x<l,xz->1),
k=0

ay > — C(k + 1)yt (=0,1,2 ...),
then we have

kﬁoak ~ (Tl + D)7 (n — o).

7.6. EXERCISES. 1. Assume ¢ > 0, C >0, /() > — C¢-1 (¢ > 1), and
1§ f(#)dx ~ (« + 1)"1%+1 (£ -> o). Show that () ~ & (f - oo).
2. Assume that
o0
Z azpa* ~ — log(l — %) C<r<tz—=1,
6

where
ag> — Ckllogk (k=1,223..)

with some positive constant C. Show that X} ay ~logn (7 — o).



CHAPTER 8
ITERATED FUNCTIONS

8.1. Introduction
Many problems in asymptotics can be stated in the following
terms: Let a sequence of functions Fy, Fa, ... be given, and let
%g be a number. Now we put
x1 = Fi(xo), #xg=Fa(m), xs=Fs(xs), ...,

assuming that F; is defined at xg, Fg is defined at xy, etc. The
problem is to find the asymptotic behaviour of x, as » tends to
infinity.

In the larger part of the present chapter we shall discuss only a
very special case of the problem, taking all functions Fy, Fj, ..
to be one and the same function f. Nevertheless, cases where the Fy
are different, can quite often be tackled by methods devised for
this special case. This remark holds for even more general cases.
We mention the possibility that F, is a function of # variables
instead of one variable, and that x, is defined recursively by the
formula xp = Fy{%o, %1, - - ., #n-1). A further generalization is ob-
tained if we replace the x’s by functions and the F’s by operators.
Many asymptotic problems about the solutions of differential or
integral equations fall under this heading.

§.2. Iterates of a function
Until sec. 8.9 we shall take all functions Fi to be equal to a
fixed real function f. Then we have, if xp is any real number,
v = f(xo), xa=f(x1), x3=f(xs), ...
We shall denote by fn the n-th iterate of f, which is defined by
filxo) = fxa), fa+r(Fo) = f{fnlx0)} = fu{f(xo)} (s =0,1,2, ...).

Therefore we have xy = fa(xo) (n = 1, 2, ...).
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For a geometrical interpretation of these formulas we refer to
Fig. 2. The figure shows the graph of y = f(x) and the graph of
y == x, and it shows how x1, x2, x3, ... can be constructed conse-
cutively if xp is given. The reader may take a pleasure in drawing
some graphs himself and in discovering what happens to sequences
Xp, X1, %2, ... with various values of xp.
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In the following discussion we shall assume that f is defined for
all redl values of the variable, so that there is no question about the
fn’s being defined or not.

It is possible that the sequence zq, %1, x2, ... tends to a limit c.
If the function f is continuous at ¢, then xz41 = f(x,) shows that
¢ = f{c). Therefore, if f is continuous everywhere, the possibilities
for ¢ are restricted to the solutions of the equation ¢ == f{c).

Convergence to a point ¢, where ¢ = f{c), can often be proved in
the following way. We show the existence of a neighbourhood N of ¢
such that, once some x, falls into NV, the sequence Xn+1, Xn+2, - -«
converges to c. In such cases it is likely that the asymptotic beha-
viour of x, (as # — oo) can be studied in detail, especially if f(x) is
analytic at x == ¢,

The problem whether for a given value of xp there exists an »n
such that x, lies in that neighbourhood N of ¢, is of a different
nature. It is offen quite easy if f is a real continuous function and x
is a real variable. We shall discuss a general example.
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Assume that f(x) is continuous in the interval ] , defined by
¢ < x < d (d may also stand for + co). Furthermore assume that
He)y =cand f(¢) < f(¥) <xif xe J, x > c. Then we have, for any
x in J, that lim,,__, fa(x) = ¢. For, our assumptions imply that f
maps J into itself, and therefore the same thing can be said about
fo, fs, ... . Furthermore f{x) < x (x ¢ J) guarantees that x > fi(x) >
= fa(x) = ... . Asall f4(x) are in J, the sequence is bounded below.
It follows that lim f,(x) exists, and that it tends to a solution of
x¥ = f(1), which cannot be anything but c.

A similar discussion applies if f(¢) = ¢, ¥ < f{x) < ¢ in an inter-
val d <x < c.

It has to be remarked that lim,,_, ., /x(%) need not be a continuous
function of x. If, for example, we apply our previous results to the
function f{x) ==x + sin x, we observe that the limit exists for all x,
and if it is denoted by @(x), it can be described by ¢(0) = 0, p(x)=n
(6 < x < 2n), p(27) = 2x, ¢(¥) = 3n 2 < x < 4n), ¢(4n) = 4=,
p(x) = 5n (4n < x < 6m), etc.

However, the situation can be much more complicated than in
the cases we discussed just now. If f(x) is continuous in — co <
< x < oo, and it f(x) < x in an interval ¢ < x < 4, with f(c) = ¢,
but if f(x) is not = f(¢) throughout that interval, then the behaviour
of x5 (as ¢ < x < d, n — o0) is no longer exclusively determined by
the behaviour of f in the interval ¢ < x < 4. In such cases the
complete discussion of the behaviour of x, might be very difficult.

We again turn to the local problem, ie. the question what
happens in small neighbourhoeds of a point ¢ where f(c) = c.

Without loss of generality we take ¢ = O (otherwise consider f*,
defined by f*(x) = f(x + ¢) — c; notice that its iterates are given by
fa*(x) = fu{x 4+ ) — ¢), and by virtue of the relation ¢ = f(c) we
now have f(0) = 0. '

In order to be able to be more specific we shall assume that f is
analytic at x = 0:

(8.2.1) Hx) = a1x + asx® 4 azxd + ... (Ix] < 2),

where $ is some positive number, The coefficients a3, as, ... are

allowed to be complex numbers, and # is a complex variable.
The absolute value of the coefficient a; is decisive for our prob-

lem. If |a1] < 1 the sequence xy; %3, 2, ... converges to O indeed,
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provided that the starting point xg is sufficiently close to 0. More-
over the asymptotic behaviour of x, is not difficult to find (see
sec. 8.3). Convergence is, rapid in this case. If 0 < |43} < 1, then
log |x»~1| behaves as Cn, where C is a positive constant. If 43 = 0
the convergence is even much faster. If |a3] > 1 it is easy to see
that x, does not converge to O, unless the x,’s vanish identically
from a certain value of # onwards. If |a;] = 1 the problem is more
intricate (see sec. 8.5), and if there is convergence it is quite slow.

8.3. Rapid convergence

If ja1] < 1 we are in the fortunate circumstance that the iteration
problem for f(x), given by (8.2.1), can be solved by a direct method.
That is, for x5, (defined by x5 == fn(%0}) we can derive a new formula,
from which the asymptotic behaviour of #, (as # — co) can be ob-
tained, provided that |xp| is not too large.

We assume here that ; 2 0; the case a; = 0 will be considered at
the end of this section.

_ We start from a rough estimate for f5(%). Let b satisly |a;| <b<1.
Then there exists a number $; (0 < $1 < p) such that

B83.1) O <lfal®)) <ozl (n=1,2 ...;0< |5 <p1).

For, the power series for x~1f(x) has the value a; at x == 0. Therefore
$1 can be found such that |#] < $; implies 0 < |~ 1f{x)} < b. So if
xp satisfies 0 < |xp] < $1 we have 0 < |x1] < b ||, and therefore
0 < |7} < $1. In the second step we infer that O < |xa] < &jxy|
and 0 < |x2| < p3. By induction we find 0 < {x5] < bjxp-1} and
0 < lxq] <p1. It follows that O < x| < b%jxg], and (8.3.1)
follows.

We next prove that, if % is fixed (0 < [#o| < 71), then xpa;—
tends to a limit, which we denote by w(xs). We have

% % a
@32 2 fon) _ + 2+ B e
a1%n a1%p ax ax

and this is close to 1 if » is large. Writing 1 + r, for the right-hand-
side of (8.3.2), we infer from (8.3.1) that r, == O{b3). Consequently,
the product T3, (1 + 7&) converges. As T[]} equals x,a1 %071,
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we infer that x,a;~7 tends to a limit w(zg), where
(8.3.3) w{xg) = %o Ho(l + 7).

As falx0) = Fr-1{f(%0)) = fa-1(x1), we find that xga 1% tends to
w(x1), and therefore w(xy) = ajee(xp). That is, the function o satis-
fies the so-called Schrider equation 1) )

(8.3.4) o(f®) = ;mw(x)  (x < $1).

It should be remarked that w(x) is analytic inside the circle
|#| < pi. This follows from the fact that each factor 1 4 7, in the
product (8.3.3) is an analytic function of xp, and the product con-
verges uniformly for x¢ in that circle. And (8.3.3) shows that
w(0) = 0, 0’ (0) = 1. We put

(8.3.5) ox) = x + dax? + dax® 4 ... {Ix] < p1)-

The coefficients ds, dg, ... can be determined recursively from
the identity {8.3.4). Once we have determined da, ds, . . ., dp—1, We
can evaluate d, by equating the coefficients of x# in (8.3.4). This
gives a linear equation for d,, only containing ds, ..., dy. In this
equation d, gets the coefficient a;® -~ @3, and this is = 0 by our
assumption that 0 < a1 < 1.

By repeated application of (8.3.4) we obtain w(xy) = a1%w(xy),
and solving this for x, we shall get an explicit formula. The La-
grange inversion formula (see sec. 2.2) gives the inverse function £
of w, satisfying £2(w(x)) = x in a suitable circle |x| < p2; and

Q(x) = x + eax? 4 egxd 4 ... (lxl < p2)-

We remark that the coefficients of £2 can be evaluated recursively
without using the coefficients of . To this end we can use the
identity f(£2(yv)) = £(a1y), which follows from (8.3.4) by putting
wlx) = y.

If p3 = min(ps, $2), and |xp| < paz, then we have by (8.3.1) that
{xq} < pg for all n. It follows that

(8.3.6) xn = Qa1%w{x)) =
= a1%w(x0) + e2a12”w(x0)2 + eg@13®w(x0)3® + ... (|xo] < p3).

1)Ann E. SCHRODER, Math. . 3 (1871), pp. 296-322.
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This formula gives very satisfactory information about the be-
haviour of x, when # — co.

Although it has no direct consequence for asymptotics, we men-
tion that the above formulas can be used for continuous iteration.
That is to say, we can define functions fy(x) for all 2 > 0, such that

Alud®) = Hhsepl®) 20,220, h=Ff

and fp is the identity (fo(x) = x). If 1 is a positive integer, then f,
is the A-th iterate of f. The functions f, can be defined by %)

hix) = Qarto(®} (5l < ps).

Thus far we have assumed that a3 % 0. We now briefly indicate
what happené if a3 == 0. If all coefficients in (8.2.1) vaznish, then all
%n are zero, and there is no problem. So assume that ag is the first
non-vanishing coefficient, and that 2 > 1. Without loss of generality
we may take ap = 1, for otherwise we can consider the function
F*(x) = o~1f(xx) where « is chosen such that a;a*-1 == 1. So we put

f(x) = 2% + apsixFtl - qpaoxkt2 4 |

The iteration machinery can be coatrolled by the following for-
mulas:

Hm {fp(x)}¥ " = w(x), ©(0) =0, «'(0)=1.
w(f(x)) = (o(x))*.
falx) = {(ow(x))k™} (2 = inverse of w).
This is only the formal side of the matter, but it is not difficult to

give a detailed justification in the way it was done in the case
0O<lal < 1.

8.4. Slow convergence
Our next case is the iteration problem for a function f, in the
form (8.2.1}, with |@3] == 1, Our methods will be applicable to func-
tions which have an asymptotic series of the type
f#x) &~ 2+ apx® + agaaxd®1 4+ ... (x>0, >0),
with & > I, ag < 0. As an example we shall treat the case that
f(x) == sin £ = x — x3/3! 4+ %x5/58! — ...,

1) The formula is due to G. Koenigs, Ann. Sci. Ec. Norm. Sup., (3) 1
{1884}, Supplém. pp. 341, and 2 (1885), pp. 385404.
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but the general case is not more difficult (see sec. 8.11, exercise 1}.
As before, we write

siny ¥ = sin %, sin(sing %) == sing(sin &) = siip+1%; %y == sing xp.

If 0 < %0 < =, then we have 0 < sin xy < %p. Therefore, by induc-
tion, ¢ < %, < = for all », and x5 > %1 > x2 > .... It follows that
lim x,, = O (see sec. 8.2). We now raise the question of the asymp-
totic behaviour.

There is a difference between this case and the cases of sec. 8.3.
In sec. 8.3 there was convergence to 0 for all complex %o inside a
certain circle. In the present case this is no longer true. For example,
if we take %o purely imaginary, xo = i¢g {fo > 0), then we have
Xp == tf,, where ¢, = sinh, f. And it is easily seen that 0 < <
< {3 < ..., and that #, tends to infinity, no matter how small
o was chosen.

In sec. 8.3 we were able to solve the problem by means of certain
series in terms of powers of x, for which it did not matter whether xp
was real or not. In the present case it seems to matter indeed, and
therefore we cannot expect to be able to do much with such power
series. Apart from that, the study of complex values of xp seems to
be difficult, and so we shall confine ourselves to real values of xs.
It is no essential restriction to assume that 0 < xp << 7 {%1 = sin xp
at any rate satisfles —az <% <z, and. sing %p == sing—1 x1;
furthermore, owing to the symmetry, there is no harm in considering
positive values only).

We shall give two different methods for the solution of the
problem of the asymptotic behaviour of sin, x¢. The first one (secs.
8.5 and 8.6) is quite natural, and uses ideas which are generally
applicable in iteration problems; the second method (sec. 8.7 and
8.8) is more effective, but essentially restricted to iteration problems
of the type we are dealing with now.

8.5. Preparation

The following question will serve as a preparation. Let g, ug, .
be a sequence of positive numbers, and assume that

(8.5.1) Upil == Uy — Up2 -+ O1,8) (n — oco).

What can be said about the asymptotic behaviour of %, as # —> co?
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In the first place it is clear that nothing can be said if we do not
assume something like u, — 0. For, if $ and ¢ are fixed positive
numbers, 0 < $ < ¢, then any arbitrary sequence of numbers
{un} with p < w4, < g obviously satisfies (8.5.1).

We want to be more specific about the O-term: Let 4 be a fixed
positive number such that

(85.2)  jtni1 — tn + un? < Aug®  (n=1,2,3,...).

It is not difficult to show that there exists a number 4 > 0, such
that, whenever O < #; < p for some value of %, we automatically
get ug > Upt1 > gz > ..., and #p — 0. To this end we choose
$ such that 0 < x < p implies both x — %2 > Ax3 and 443 < x2
{therefore Ap < 1). Then it follows from (8.5.2) that 0 < ux <
implics 0 < #g41 < #g < p, and so {orth. The sequence is decreasing
and bounded below, and so it converges to a limit ¢, with0 < ¢ < 5.
From (8.5.2) we infer that |c — ¢ 4 ¢2| < Ac8. As 4p < 1,0<¢e<p,
it follows that ¢ == 0,

We just learned (under the general assumption that all %, are
positive) that either all #, are > $ or #, tends monotonically to 0
from a certain » onward. For the latter case we can deduce a much
sharper result:

(8.5.3) If up -0, then 1w, =n"1+4 O(n2logn).

This can be proved as follows. By some elementary computations
we find that there exist positive constants K and N such that, for
all # > N the following is true: for all x in the interval

(8.5.4) O<xy <wi+4 Kn32logn

we have

(85.5) 0 <x— a2+ 4x8 < (4 1)L 4+ K(n 4 1)~2log(n + 1).

(In order to show this, put i, == #~1 4 Kn—2log #, and show that
Anii — Ap + Ap% — Adp3 = (1 + K — A)n~3 + O(n—%logZn),

whence 4, — Ap2 + 44,3 < Ap41 if K and » are sufficiently large).
Now let & be chosen such that 0 < %y < N-1 4 KN-2log N;
this is possible by virtue of the assumption %, — 0. Then it is easy
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to prove by induction that
O<tupim <(N + m) 2+ K(N +m)~2log (N+m) (m=0,1,2,...).

Therefore #, < n~1 4+ O(n-2log #). A similar argument can be used
for the lower estimation.

The difficulty lies, of course, not so much in proving a result
like (8.5.3) as in guessing what one has to prove. That #~1 is a first
approximation may already be guessed by comparing the difference
equation #ni1 — #n = — ug? with the differential equation
%' () = — (u(#))%, whose solutions are %(f) = (¢ 4+ ¢)~-1. It is not so
easy to describe how the O(n~2log #) can be guessed. It requires
some imagination and experience to see that just the term
Kn—2]og » makes it possible to pass from (8.5.4) to (8.5.5).

Accidentally there is a much simpler way to prove (8.5.3). It
depends on the substitution #, = v,71, which transforms the
equation (8.5.1) into a more suitable form. There is no obvious
reason to expect this beforehand, but it is suggested by the form of
(8.5.3). We obtain from (8.5.1)

Upi1 = Up(l — #g + O(1g?))"1 = vu(l 4 t4n + O(uy?)) (n—>c0),
and therefore
(8.5.6) Upt1 — Un =1 + Ov,7Y), vy —>00 {n — o0).

As vy~ - 0, we infer that vp41 — v, > § for all large #, and
therefore v, > n/4 for all large n. It follows that v,~1 == O{n-1).

Consequently vpi1 — va =1+ O(n~1), and from this we infer
vp == 1 4+ O(log n). As

Un == vy = {n + O(log #)}"t = #~1 4+ O(n—2 log n),
we again have (8.5.3).

About (8.5.1) we proved (8.5.3), that is a statement of the type:
if the u,'s are not too large, then they are very small. Without
proof we quote two similar results, whose validity, however, is not
restricted to real sequences.

(i) If the sequence {a,} satisfies
(8.5.7)  @pt1— an = O0@n1) + O(n2as?), an =o(n) (#—>0o9),

then we have a, = O(log n).
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(i) If the sequence {b,} satisfies
Bpii — bp = O(n~25,2), by = ofn) (n — oo).

then we have b, = O(1).

Theorem (i} is related to {8.5.1): assuming that we have already
established #nu, — 1, u, satisfying (8.5.1), then the substitution
1y = w1 + n2a, leads to {8.5.7).

8.6. Iteration of the sine function

We return to the iteration problem for the sine function. It is
assumed that 0 < xp <z, 21 =sinxg xz=sinx;, etc. We
already showed that x, — 0. We have

xn+1 == Sin x” =xn — é'xns + ml xns T e

As the series contains only odd powers of x,, the formula can be
simplified by putting x,2 = y5:

Yr+1 = Yl — §¥a + thya® —. . )2
Writing {1y, = 3x»2 = 2,, we obtain something resembling (8.5.1):

(8-6.1) 241 = Zn(i o ‘%Zn + %21;2 e -)2 =
=25 — 2p2 + 22,3 — ...

As zp —~ 0, (B.5.3) gives an asymptotic formula for z,, viz.
z2p=n"14+0(n"2 log n), whence siny xp=3tn—3{1+0(n"1 log #)} 1).

It has to be understood that all O-formulas in this section
refer to the set of all positive integers #, and that they do not hold
uniformly with respect to xg.

Further results can be found by inserting this result into the
equation (8.6.1). Calculations are somewhat easier if we consider
Wg == Z,~1 instead of z,, the same substitution that gave such an
easy success in sec. 8.5, The relation between w, and x, is

Wy == 3xn—21
and we know that w, —» co. Moreover, w,, satisfies the relation
6.6-2) Wasr = wa + |+ §wnt + Olwn ).

1) A shghtly ‘a;ealger result, viz #¥ smy v = 3% (z fixed, C < # < 7, 7 — co)
was given by G Poérva and G Szeco, Aufgaben und Lehrsatze aus der
Analysis, vol. 1, New York 1945, Abschn I, problem ar 173.
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It is not difficult to obtain the full development. By differentia-
tion of the well-known series for cotg x it follows that

(8.63)  (sinx)2 =3 (— 4)k(1 — 25)Bors2—2/(28) 1,
k=0

where the B’s are the Bernoulli numbers (see sec. 3.6). If follows
from x;41 = sin ¥, that

8.6.4) wpy1 = wy gwn‘k(l — 2k) (— 12)kBop/(2k)! =
k=0

= W, + 1 +B.wn——1+_wﬂ—2+ wﬂ~3+ 18 w,—t -+ .

Just as in our conclusions about (8.5.6), we infer that w, ! =
= O(n~1) and wy = n + Olog n). Inserting this into (8.6.4), we
obtain

Wptl — Wa = 1 + §n-1 4 O(n2 log u).

From this we infer, putting w, = n +  log # + #,, that
t“.‘.]_ — tu = O(ﬂ—z Iog n),
and it follows that ¢, tends to a limit, to be denoted by C, and that

by =C+ X (s —txrr) = C + HT E2log k) =
k=n E
= C + O(n—1log n).
We shall write £y = C -+ r,, whence 7, = O(n—1log#). Sub-
stituting wy, =# + $logn 4+ C + 7, into (8.6.4), we obtain

, logn 41 — 42C log2n
ptl — ¥n = —'3g n? 70n? P

ns
and we easily infer by summation that

o log » — 79 4+ 210C <log2n)
TR 350n nt /'

This procedure can be continued, and it is possible to show that
there exists an asymptotic series for 7y, of the form

S 3 cu(n log m)ent.

k=0 I=0
It follows that #n~lw, has a similar asymptotic serjes. Finally we get
for xy = 3%w,~} an asymptotic series, of which we produce a few
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terms here:
(8.6.5) X == sing xp =
logn C  azlog2nt-flogn-ty (log3 n)}
P P L
sin 11 LU 2n T #n? +0 #s /5

where
— 2 —_ — B3 3
a=2k B=5C—F& v=502—-35C+ 75

The value of C of course depends on xg. It is remarkable that
the first two terms of the asymptotic series are independent of xp.
In order to find out something about how C depends on xp, we
replace C by ¥(xo) and we consider the following abbreviation of
formula (8.6.5):
log n ¥(x0)

—3ytd] — 3 — ~2 Jog?2
(8.6.6) 2y = 3in {1 < o + O(n—2log n)}.

AS Xp41 == SIIt &y == Sin,(sin xp}, we have

logn  ¥(sin xp)
== 3ty-ti] — 3 -
Xn+1 " { T, o

-+ O(n‘z log“ ”nj },

and so
Lnil — %n = %3P (xg) — ¥(sin xg)} -+ O(n—"2log? n).
On the other hand, we have

Xp+l — ¥p = SIN Xy — %p = — }x,3 4+ O(xp®) =
= — }- 3t L O(n—"2log n).

Therefore, it results that ¥ satisfies the equation
(8.6.7) Y(sin xp) — Flxp) == 1.

The function ¥ is uniquely determined by (8.6.6). In fact (8.6.6)
implies that
¥(xo) = lim {2n — 3 log n — 2x,n°23-1}.
This formula shows that ¥(x) = Pz — #) (0 < % < =), and that
¥(x) is non-increasing in the interval 0 < x < 3&. (For, if xg
increases, and '» is fixed, then x, increases). Moreover it can be
shown from (8.6.7) that ¥(x) > oo if x -0 (x > 0).
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8.7. An alterpative method

Our second method for dealing with the asymptotic behaviour
of sin, x¢ has some analogy to the contents of sec. 8.3. It starts
from the Schrider equation (8.3.4), or, what is slightly simpler in
our case, the so-called Abel equation

(8.7.1) P{f@)} — o(x) =1

{thie connection between the two is expressed by the relation
w{x) = @),

If g is known, and if f satisfies (8.7.1), then the iterates of f are
easily obtained. In analogy with (8.3.6) we find #, by solving

(8.7.2) ¢{falx)} = n + p(x)

for fu(x). We shall give two examples.
If ¢(y) = y~1, then f(x) equals x/(1 + x), as follows from (8.7.1).
Now fn(x) can be found from (8.7.2):

fn(x) = z[{1 + nx),

and this can also be used for continuous iteration (see sec. 8.3).
Next we take @(y) = c¢~1y~2, where ¢ is a constant. This corre-
sponds to the system of iterates:

(8.7.3) fa(x) = %(1 4+ ncx?)—H,

In the following, however, we shall discuss (8.7.1) from a different
point of view by considering f as given and ¢ as unknown. We
again take f(x) = sin x, and the Abel equation becomes

(8.7.4) p(sin x) — p(x) =

A special solution ‘was obtained at the end of sec. 8.6, but we shall
not use this information here.

Restricting ourselves to the interval 0 < x < 4=, it is qmte
easy to describe the general solution of (8.7.4): Choose an arbitrary
function y* in the interval 1 < x < )=, and take y = y* in that
interval, In the next interval sin 1 < x < 1 we take v such that
{8.7.4) is satisfied. Next we define it in the interval sing 1 <x <
< sin 1, such that (8.7.4) again holds. Continuing this process
mdeﬁmtely we obtain a solution for the interval 0 < x < 4.

It is clear that the asymptotic behaviour (as x — 0) of this
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solution p{x) can be described to a certain extent once the asymp-
totic behaviour of sin, xz is known. We want to go the other way
rounrd, however, in the following order: (i) Find an explicit soluticn.
(i) Determinc its asymptotic behaviouvr. (iii) Apply this to the
asymptotic behaviour of sing, .

Properly speaking we do not reguire, for our purpose, that the
solution is explicit itself, but only that its asymptotic behaviour
is explicitly known.

Instead of asking for elementary functions which approximate a
solution of (8.7.4), we start with a simpler problem: we ask for
elementary functions y for which p{sin x) — (x) tends rapidly to i
as x —0. One of the tirst functions to try is a monormial pi{x} ==
= ax~? (b > 0). It gives

pi1(sin x) — p1{x) = afsin £)~0 — ax0 =
= ar (1 — §x2 + ...)70 — 1} = Jabxtr2 4 .

We want it to approximate 1, and this is achieved by taking & == 2,
a = 3. So yr1{x) = 322, and

pifsinz) —yi(x) =1 + 352+ Z ot Lead 4 L,

(the series on the right equals
12 Z (— 4)% (2% + 1)Bap+ox2%/(2k + 2)1, cf. (8.6.3)).

Next we want to modify y; in order to compensate the term £2/5,
Therefore we try to find a function y; such that the difference
yi{sin x) — y1{x) is approximately equal to — %2/5. We notice that
a monomial does not work now. It is worth while to try log #, for if
we replace the difference yi(sin x) — zi(¥) by (sin 2 — z)z1'{z}, we
see that y1'(x) should be approximately 6/(5x).

Actually, if we take yi(x) = §log x, we have

x1{sin x) — yi(x) = Llog(sin x/x) = — 2% — gyt 4 ...,
If we take p2 = y1 + y1, we have
pa(sin ) — pa(x) = 1 + (),

) = — )t = — 1 flog
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‘Lnus we can go on, by choosing ya such that ys(sin x) — x2(x)
equals approximately —#(x), 2nd so on. In this way we would still
be constructing approximate solutions instead of approximations
to a solution. Fortunately we are now able to indicate an exact
solution of the equation x(sin x) — x(x) = — p(x). This equation
is satisfied by the function

(8.7.5) x2(¥) = px) 4 p(sin x) + p(sing %) + p(sing x) + ..

We only need to show that the series is convergent for all real
values of x. This immediately follows from the formulas ${y) =
= O(y%) (y - 0) and sin, x = O(n~%) (# — oo), whence p(sin, x) =
= O(n~?%) (n — o0).

The formula sing % = O(n~}) can be proved in the way we proved
(8.5.3). We shall, however, indicate a short independent proof: If ¢
is a positive constant, then the iterates of the function f(x) =
= x(1 + &x%)~* can be evaluated explicitly. By (8.7.3) we have
fa{%) = x(1 + nex®)—+ Furthermore it is not difficult to show that ¢
can be chosen such that sin ¥ < f{x) < x (0 < x < x). We then ob-
tain sing x < f(sin x) < fa(x), singx < f(sina x) < f(f2(x)) = fa(x),
etc. It follows that

(8.7.6) sinpx < x(1 + nex?)—* O<x<ax, n=1223...),
and so sing ¥ = O(n—*). The assumption 0 < x¥ < = is, of course, no
essential restriction. i

We just established the convergence of (8.7.5), but we shall need
more, viz. an estimate for ya(x) as ¥ — 0. We shall prove that
(8.7.7) xe(x) = O(x?) 0 <x < #n).

We established before that #(x) = O(x%) (x > 0), and that
P(sing ) = O(n~3) (x fixed, n - o0). We can easily be more
specific: There are absolute constants C; and Cg such that

ip(x)] < C1x4, [p(sing x)] < Cam~2 O <x < $m,n=1,2,...).

It follows that .

Y p(sing x) < Can~l,
k=n+1

Furthermore we have, if 0 < x < ¥,

Eﬁ(ﬁnkx) <Ci1 X% (Sinkx)4 <C1 T xt= Cinxd.
kw0 k=0 k=0
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So for 0 < x < 4r and for all values of » we have
lxa(x)] < Cimx® + Con~1,

We now choose n: As x < 37, we have 3x~2 > 1. Let # be the
smallest integer exceeding 3x—2. Then 3x~2 < # < 6x~2, and so

[x2(®)] < (6C1 + }Co)x2,

which proves (8.7.7). A slightly simpler proof is obtained by using
the inequality (8.7.6).

As ys, given by (8.7.5), exactly satisfies xa(sin x) + ya(x) =
= — p(x), the function

(8.7.8) p(z) = 352 + § log % + 72(2)

is an exact solution of (8.7.4). We have the estimate (8.7.7) for ys,
but it is not difficult to see that there is an asymptotic series

8.7.9) xal%) ~e cox® 4 cax? + cex® + ... (x — 0).

The leading coefficient equals ¢ = 79/1050. We shall show the
first step of the proof of (8.7.5); all further steps are analogous.
We have )

ya(sin x) — yo(x) = — p(x) = ax? 4 ..., with « = — 79/3150.
Furthermore

(sin2)¥ — 2% = — Rx¥42/6 + ... (k=1,2,...);
here we use the case & = 2. Now put ya2(x) = — 3ax2 + yx3(x), then
xs(sin x} — xa(x) = — g(x) is a power series starting with a term

Bx8.
From (8.7.7) we derive the rough estimate yg(x) = O(x?), and we
infer that ya(sing %) =0, if » oo (x fixed). It follows that

x3(%) =§_ 1{Jai(-°>i!1n--1 %) — xs(sing x)} =

= g(x) + ¢(sin ) + g(sina %) + ....
It can now be derived, in analogy with the proof of (8.7.7), that
z3(x) = O(x4). So ya(x) = — 3ax? 4 O(x4).
It should be noted that the functions p(x), g(x), ... are power
series, with a positive radius of convergence, but that it is very
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improbable that the same thing could be said about ya{x) (or about
zg(x), e )

8.8. Final discussion about the iterated sine

The asymptotic information about y, obtained in sec. 8.7 (see
{8.7.8) and (8.7.9)), will now be applied to the problem about sing .
To this end we start from the formula

&8.8.1) p(sing x) = n + y(x),

which is a direct consequence of (8.7.4). We shall consider x as a
fixed number, and # as a large integer. Since v is a given function,
we can consider (8.8 1) as an equation for the unknown quantity
sin, x. Therefore the question to express the asymptotic behaviour
of the solution sing x in terms of the pararaeter % is 2 problem of the
type discussed in Ch. 2.

We replace the unknown sing x by the single letter ». The equa-
tion can be written as

(8.8.2) n+ ) 324 flogu 4 7531+ ... {(#—>o0).

In some respects the question is more difficult than the problems
considered in Ch. 2. Firstly, the right-hand-side represents the
function (%) asymptotically, but probably not exactly, and (%) is
probably very singular at #=0. Secondly, we are not yet sure, that
p is monotonic, and therefore the uniqueness of the solution of
p(u) = n -+ p{x) is unproved as yet. (This refers to the question
whether sin, x depends uniquely on p(x}; it is of course trivial that
sin, x depends uniquely on ).

But fortunatcly we need not bother aboul the existence and
uniqueness of the solution # of (8.8.2). For, # = sin, x is a well-
defined quantity, and the thing we want to do is to obtain asymp-
totic information about # in the way we use to handle the solution
of an equation. In other words, % is not virtually unknown, but the
fact that links our problem with the problems of Ch. 2 is that the
asymptotic behaviour of # is unknown.

To start with, we know that w — O (when # — o0}, and it easily
follows from (8.8.2) that # ~ (3/x)}. This will be used repeatedly for
estimating rounding-off errors.

In order to eliminate the difficulty that the right-hand-side of
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(8.8.2) represents y(x) only asymptotically, we break it off some-
where, after the second term say, and the error made this way is
transported to the left-hand-side. At the same time we subtract on
both sides £ log 3 in order to simplify further calculations. So we

have
{8.8.3) n+ p(x) — p — $log 3 = 3u2 + § log(GHu).

Here p is equal to p(#) — 3u~2 — & log #. So by (8.7.8) and (8.7.9)
it is asymptotically

(8.8.4) pavegu fcaul+ ... (8 —>0),
whence p = O{n~1) (n — oo).

Replacing the left-hand-side of {8.8.3) by y, we have
y == 3u~% + £log(3u),
and y = #n + O{1), for # is a fixed number. Putting u# = (3/y)iv we
get

1
(8.8.5) PETESEE. + .

— —1logv.
Sy .

‘From # ~ (3/8)}, ¥y ~n we know that v — 1, whencelog v=0(1).
Raising both sides of {8.8.5) ic the power — 4, we get

iogy

(8.8.6) v=1— 1}{% — —5%— log v} + O(y—2 log2 %),

and so v = 1 + O(y~llogy), log v = O(y-1log %).
Inserting this into (8.8.6) we get

1
v=1—3 °iy + Ofy~2log? 9),

whence log v = — & y-1log y + O(y~2log? y). Now we again raise
(8.8.5) to the power — }, and we develop it a little further, according
to the formula

{1 +2%=1—3z+ §2 4 O(z3).

Then we obtain

log y 6 } ( 10gy)Z
v=1— - —log v} + B{3—— O(v—3 log3 ).
&{% y 5y 8 3 y + O(y-3log?y)
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Contenting ourselves with a third-order error, we thus have

logy | 27 log2y i logy
7200 2 LERY

It is not difficult to show that there exists an asymptotic series
in terms of powers of y~1 and y~1log y. Actually, the equation (8.8.5)
can be transformed into an equation of the type (2.4.6) (put v=¢i%),
and it follows that the asymptotic series even converges.

We next replace, in (8.8.7), v by 3~¥ytu, and y by = + p(x) +
+ p — %log 3, and we use that p = O(n~1). Then we get sin, x
expressed in terms of #, with an error term O(n—"2log2 n):

-+ Ofy—3 log3 ).

(8.87) v=1—3

(8.8.8) % == sing % = (3/n) ¥l — & nllogn —
— 3{y(x) — 2log 3)n~1t 4+ O(n—2log? n)} (n — oo).
Comparing this to (8.6.6) we learn that there is a simple relation
P(x) = plx) — §log 3
between the special solutions P(x) (see sec. 8.6) and p(x) (see sec.
8.7) of the Abel equation (8.7.3). Incidentally this shows that y(x)
is decreasing (0 < x < 7/2).

Refinements of (8.8.8) can be found as follows. On the strength of
(8.8.8) we can improve our formula p = O(n~1). Formula (8.8.4)
gives

p == 3czn~1 + O(n2log n).

Inserting this into (8.8.7), with y = n 4 ¥(x) — p, we obtain
the next approximation to sin, x, already given in (8.6.5). It is clear
that this process can be continued indefinitely, and it follows, for
the second time, that there exists an asymptotic series.

Above it was remarked that the asymptotic series for v, of which
(8.8.7) is a beginning segment, is convergent in the ordinary sense.
There is no reason, however, to expect this to remain true for the
series that expresses v asymptotically in terms of #. For in passing
from y to # we use the series (8.8.4), and that series cannot be
expected to be-convergent in the ordinary sense.

8.9. An inequality concerning infinite series
In sec. 8.10 we shall solve an iteration problem belonging to the
general class described in sec. 8.1. The most remarkable feature of
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the problem of sec. 8.10 will be the fact that there is an unexpected
discontinuity (with respect to the parameter x) in the asymptotic
behaviour.

As the problem will look quite artificial, we shall show in the
present section how it originates from a series problem in a natural
way.

Ifi>1,a,=20{m =12, ...), then we have the inequality

E an < AT 0@ + apsd + ..,

n=1

due to Copson 1). The constant on the right, viz. AV/4, is not best
possible, however. It will be our aim to discuss the question of the
best possible constant in the special case 4A==2. Actually, we shall
show that there is a constant y (1 < y < 2%) such that

(8.9.1) 2 an <y Eln"'(a,.2 + a4 .0
Sy

for all sequences of non-negative a;’s (provided that the series on
the right converges), and such that there is a special convergent
series Y, @y (with positive terms) for which the equality sign holds.
The method depends, of course, on application of Cauchy’s inequali-
ty (X %a08)2 < T %42 3 v42 Introducing positive numbers Py,
we have

(8.9.2) :z° axprn < (k;:j: ﬂkz)‘°(k§ Prn)t
whence
Elak E?kn = E! kE Axpra < 3‘ ( 2 ag?)* { Z Pra?)t.

In order to get an inequality of the requlred type we want to choose
the pgn such that

Spen=1(h=12 ...} Bpumt=anl(n=12...),

n=1 k=n
where x is a positive number not depending on #. If the pgq’s are
chosen that way, then (8.9.1) holds, with x instead of with y, and
the pext problem is to minimize z.

1) See G. H. Harpy, J. E. LirtLewoop and G. Pbéuva, Inequalities,
Cambridge 1934, theorem 345.



168 ASYMPTOTIC METHODS IN ANALYSIS

We eventually want to have an inequality for which the equality
sign holds for at least one series 3 az. Therefore it will be a good
idea to take the $4’s such that there is a possibility, 4z = az, say,
to have the equality sign in {8.9.2) for all # simultaneously. This
ieads us to the restriction fry == apfns, where both {«z} and {f,} are
positive sequences. And these should satisfy, forn = 1,2, ...,

=]

)
The=1ant, Xo?=xtn 1,2
1 »

For each #, the second equation contains infinitely many variables.
Therefore we put T3 ap? = d,, and eliminating the §’s we get the
equations

n

5 E Y = (Jp — dgp)t (=1,2,...},

)

with the supplementary conditions
i >8>8>...>0 liméd,=0.

T — 00

Taking diffcrences, we get the equations .

I Bd Sp— -1
:m*im(l——- Ml) —-( nl‘—l) (n=23,...),
5511 612

and x = (1 — dpd 1)+, We choose 8y == 1, and 83 == v, J3 = 1192,
fig == DvUavs, .. .. Lhe v's should lie between 0 and I, and should
satisfy '

2t = (] — vyt — (vt — 1) n=23...),

where x¥ = (1—wv1)~. Finally writing 1 — v, = %;~2, we obtain the
following system of equations:
Uy = X, .
P Yo == 2-ix -~ (ﬂlz b 3}#,
{8.9. ,
18:9.3) wg == 37 4 (uz2 — 1)},

@ &+ & & 4 ¢ 8 s a e e

Now assume that x, #y, %s, ... are pesitive numbers satisfying
{8.9.0}. Tuen we take
Pra = wxfn, ap = wp vy . . vp-1)¥,
Br = sk Hvy. .. op-1)"Y, O = vi...0p-3,
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where vg = | — #;72, and v1...vz-s denotes | if & = 1. Indeed it
can be proved that 8z — 0 (& — co) (see sec. 8.10), and it follows
that (8.9.1) is true (with x instead of p). In order to find a series
Y. ap for which the equality sign holds, we remark that we have
equality in (8.9.2) if we take ap = ay. So the problem is whether the
series

o0 0 oo o9
Sar = & #p~Hoy. . .opa)t and 21: ¥y =% k‘%(‘v]_. L Vp—)Y
1 1 1
converge. In sec. &.10 we shall find out that they do converge if x
has its minimal valus y (the existence of a minimal value is also
proved in sec. 8.10). It does not happen, of course, if ¥ > y. For if
(8.9.1) is true, it remains true if 4 is enlarged to x, but then we
loose the equality case.

8.16. The iteration problem

We shall investigate the solutions of the system (8.9.3). The word
“solution’” will indicate a sequence of positive numbers #3, #%g, ...,
satisfying (8.9.3) for some given value of x. If x is given, there is at
most one solution, since the #’s can be evaluated consecutively. We
shall show: .

{i) Thereis a number y (! < ¥ < 23) such that there is a solution
ifand only if x > y.

(il For every x = y the sequence {#tx,} converges, and

Hm nduy == % 4+ (52 — 1)} i x fized, v > ;,
Emadu, =y — (2 — 1)} i x=7p.

Proof of {i): The system (8.9.3) has a solution if x = 2. For then
we can prove by induction ihat #y > 2F, up > 3%, ug=> 4%, ...
This depends on the inequality

{n + 1)} < ((n))2 — 1)} 4 n—i28 n=23...),
which follows from '

4+ 1 —(n— )=} an it < (n— 1) < (fn)h
n—1

There is not always a solution of (893} if 0 <x <2k If x is
given, we can determine #, #g, ... consecutively. It may happen,
however, that for a certain & we get %y < 1, and then either u,
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or #g41 is not positive. We can take #; = w1(¥) = x if x > 0. So
there is a positive solution for both %; and %, if and only if x > 1.
The function #a(x) is continuous and increasing if ¥ > 1, and
since wug(l) == 2%, its value at ¥ = 1 is < 1. On the other hand
#s(x) - oo (x — o0), since #z(x) = 2—¥x. So there is a number
c2 > 1 with #s(ca) = 1. Hence there is a positive solution for ui,
#g, ug if anc only if ¥ > ca. Again, us(x) is continuous and increasing
if x > cp, and wg(cp) = 3~#cy < 1 (remember that %, = (# + 1)1 if
x> 2%, whence ¢3 < 2t). We thus find a sequence ¢z, c3, ..., with

l<ea<ez<... <23,

and the infinite system has a positive solution if and only if x > ¢x
for all k. That means, if and only if ¥ > y, where y = lim ¢;.
Moreover, we find 1 <y < 2%

Proof of (ii): If x = y, we deduce from (8.9.3) that

Un{x) < ntx + tp-1(¥) =223, ...),
and therefore that #,(x) < x(1 + 2% + ... + »#). If follows that

(8.10.1) lim sup ntu, < 2x (x = ).
N0
In the other direction we can prove
(8.10.2) lim inf ndu, > (2x)-1 (x = 9y).
n—> co

Assume that this is false for a certain x > ». Then we can find
a number ¢ (0 < ¢ < (2x)~1) such that u,(x) < c¢nt for infinitely
many values of #. So there is a number m such that

(8.10.3) ta < cnt, n > 2x%(1 — 2cx)~1

holds for # = m. We can now show by induction that (8.10.3) holds
for all # = m. The induction step is:

Bne12 = Up? — 1+ (m + 1)~1x2 4 2x(n + 1)F (up2 — 1P <
<tp? — 1 4 (m+ 1)"x2 4 2% < wy2 — 3(1 — 2cx) < e(n + 1)L

At the same time we have proved that #4412 — %,2 is less than the
negative constant }(2cx — 1) if » > m. It follows that %,2 - — oo.
As this is contradictory, we have proved (8.10.2).

For convenience we put #y, = nis,. So if x is fixed (x = y), we
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have sp = O(1), sp~t == O(1). The relation between s, and sp+1
can be written as

=1,2...).

sn“'z + 1 )%
— (n
n+1
As s, and s,~1 are bounded, we infer that

(8.10.4)  Sp11 — sp=n"Hx — Isp — 45271) + O(n~2) (n — o0).

Spar == (n + 1)-tx + sn<1 —

The sign of x — s, — 4s,~! will be important. Let 4; and 43
denote the roots of the equation A2 — 2ix 4 1 = 0O

A=x— (@ — 1), dg=x+ (x2— 1)}

whence (2x)~1 < 43 < 1< 1z < 2x. Nowwe havex — $s — 4571 =
= — }s~1(s — A1) (s — A2). And (8.10.4) expresses, roughly speak-
ing, that if s, lies to the right of A3, then it will move (when # in-
creases) into the direction of 1z, and if s, lies to the left of 4y, then it
will move farther away to the left. Therefore we expect that either
Sp —> A1 OF sy, — Ag. Indeed we shall prove that the assumption

(8.10.5) msups, >4
leads to s, — A2, whereas the assumption
(8.10.6) lim sup sp < 43

leads to s, — 4;. It will depend on x, which one of these two alter-
natives actually occurs.
First assume (8.10.5). We write (8.10.4) in the form

(8.10.7)  [(Sn+1 — A2) — (sn — A2) (1 — n~1ap)| < An—2,
where A is a constant, and
CGp = '%Sn_l(Sn -— 2.1).
1t follows from (8.10.5) that there is a number S with 43 < § < 4s,
such that s, > B infinitely often. We shall deduce that s, > f for
all large values of #. To this end we shall show the existence of 2
number 7o with the property that # > g, s5 > 8 imply sp41 > B.

If s, > 29, we derive from (8.10.7) that sp41 = A2 — An~2, and if
B < sp < A2 we infer that ¢, > 0, and

Susl > B + (Azg — p)n—log — An~2.
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We have s,~1 = O(1), so s,~! < B, where B is a constant. It follows
that o, > 3B-1 (§ — A1), whence

Sne1 > B+ Az — ) (B — 4)B-ln"l — An-2,
So in order to meet all requirements we take »g such that
Ang=2 < Ag — B, and Ang=! << Az — B) (B — A} 5L

Then % > np, Su > B imply sgpe3 > B, 1t follows that spe1 > 8,
Sa+2 > f,

So from (8 IG 5) we deduced that s, > § for all large » (for some
8, A1 < B << Ag), and from this we inter that there is a positive
constant' ¢ such that o, > ¢ for all n. Putting s, — 12 = w,, we
obtain from (8.10.7) that

(8.10.8) |wpnl < (I —cnYjwe] + A2 (n=1,2,...).

We may of course assume 0 < ¢ < I, whence0 <1 — el < 1.
By repeated application of (8.10.8) we gel

wnsal < (1 — o(n + 170 (1 — oY) fwa] + An~2 + A(n-+1)73,
lwnts] < 3 —eln + 2y (1 —e{n + D7) (1 —- en1) jwa| 4+
4 At L Am+ )2+ A + 2%,

and so on. As the infinite product [I7 {1 — ck)~! diverges to zero,
we obtain that

msup {wprpl < A 42 < 4w — 1)L
P o L=n

Now making # — oo, we infer that the left-hand-side is zero. It
follows that w, — 0, so on the assumption (8.10.5) we have de-
duced that s, — Aa.

Next we assume (8.10.6). Moreover, we assume thal s, -»> 45 is
false. Then we can find a number p (0 < g < A3} such that s, < u
infinitely often. As in the previous case, but interchanging the réles
of A1 and Az, we can show that s, < g for all large values of n.
Putting A1 — s, = 24, we get an inequality of the type

Zp11 = (1 + en Yz — An2 n=121...),

with a positive constant ¢. Instead of following the method applied
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tc (8.10.8), w2 now show a simple trick. We derive that

Zper — LA + D> (1 + ol (5, — c~1dn1),

”

whence 2, — ¢~ tdn~! — oco. This is contradictory, as 2z, = i
— Sz < A1

So far we have proved that sy = n—u, = n—¥u,{x) converges if
x> y and % —> oo, either to x — (¥ — 1)% or to x + (22 — 1)},

t is easy to see that the limit is x  (x2 — 1} if x > y. For, every

%n(x) is an increasing function of x, whence lim n—3u,(x) is a non-
decreasing function of x. If the Limit were x; — (%12 — 1)t at a
point x; > y, it would be less than %3 — (%32 — 1)2 at x = y. But
this cannot be true, both y — (2 — 1}* and y + (32 — 1)? being
larger.

The remaining difficulty is to decide the value of the limit at
x = y. We, of course, have to use the minimum preperty of . We
shall show that if the limit would be y 4+ (32 — 1)}t at » =y, we
should be able fo find a number 9’ <y such that the system
{8.9.3) still has a positive solution at x = ',

So we assume that w#,(p) ~#¥(y + (2 — 1)¥). If follows that
#unly) > nt for all large values of . Put y” = }{1 4+ y) (so 1< 3" <
< ), and take XV so large that

un(y) >N, (p D — (-t <y"nt (g2 N)

(notice that (n - 1)* — (# — 1)} ~#x~%). The functions wu;{x),
ua(x), ..., un(x) are continuous for x 2 cy-1 (See page 170).
Hence we can fix y’ such that

ev1 <y <y, ¥ <y <y, uxnly) > NhL

Then we can prove by induction that #,(y") > #t (n = N, N + |,
N+ 2,...). The induction step is produced by the formula
() > — 1+ udy' > (n— ) 4 nd' > (04 1),

Thus we have proved that (8.9.3) still has a solution at x = ¢,
in spite of the minimum property of y. So the case y + (y2 — 1)t
is ruled out, and it follows that n—tu,(y) -y — (p2 — 1)L

This completes the proof of (ii).

We finally return to the questions left open at the end of sec. 8.9.



174 ~ASYMPTOTIC METHODS IN ANALYSIS

In the first place it has to be shown that v;...v5-1 -0 (x = y,
n —> c0).

We have ¢, = 1 — %52, and #,~2 > cn~1 (¢ not depending on #,
see (8.10.2)). Therefore, the infinite product [J(l — u,~2) diverges
to zero, whence vy...vp—1 — Q.

Secondly, we have to show the convergence of 33" uxHry . . . Up-1)}
and of T7° 2~¥(vy. . .vx-1)?, in the case that ¥ = y. As 4, 1=0(n"1),
it suffices to consider the latter series. We have #,2 ~ pn-1,
with p = (y — {2 — 1)¥)~2. Since p > 1, we can find a constant
7 > 1 such that #,~2 > #n~1 for all large ».

It follows that

V1. .. 051 = O(II¥ (1 — 9n1)) = O(k—).
As 3(1 + %) > 1, we find that 3 2¥(v;...v5-1)* converges.

From a discussion of the system (8.9.3) it was shown before 1)
that the best possible constant y for Copson’s ihequality lies be-
tween 1.08 and 1-13334. .

Much better numerical results can be obtained, if we study the
asymptotic behaviour of #,(y) in some detail. It can be shown that
we have, forn=1,2,3, ...,

ntug(y) = A1 + Byl — 321 + p)" 2 4 Opnd,

with 0 < 0, < 2-4{(J; 4 ¥)~2%y3. This can be proved by showing
that (i) if some 0, lies outside this interval, then all further 0, lie
outside, and (ii) 6, tends to the limit

2735y 4 8h1)- (¥ + A1) (y + 341)7Y,

which lies inside the interval. This formula was taken as a basis for
numerical computations, made by the electronic computer ARMAC
at the Mathematical Centre, Amsterdam. Using values of # up to
n = 50, the ARMAC proved that

4752363148 < 232y < 4752363155,

Therefore y = 1.1064957714, with an error of at most 9 units at the
last decimal place.

1) Wiskundige Opgaven, vol. 20 (3) (1957), solution of problem nr. 83
(preblem by R. P. Boas, solution by N. G. g Bruijn).
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For this numerical work on the ARMAC the author is indebted
to Prof. A. van Wijngaarden and his staff.

8.11. ExErcisEs. 1. Let % be an integer > 1, and let, in some interval
0 < # < 4, the real function f be the sum of a convergent power series

Fx) = & + aprk + apgxbil Lo

with @y < 0. Show that there is an interval 0 < ¥ < §; such that for any »
of this interval the n-th iterate f(x) is asymptotically equivalent to
({1 — Ryagpm)~l/tk-D  Purthermore, show that there is, in some interval
0 < x < dg, a solution p of the equation ¢{f{x)) — p(*) = 1, with

) s gl + L.+ et Fcplogx 4 cax L oopx® + L.
x>0 0.
The coefficients ¢1-%, ..., to are such that

P(x) — 31 + f(2)) (f(#) — %72 = O(1) (¥ >0, 5 —0).
More precise results about fn(¥) can be obtained from ‘the relation

p(/n(#) = n + p(»).

l 2. Let P(x, y) be a double power series

o0 o0
Pix,y)= X = cigxiyd,
i=1 =0

convergent for sufficiently small values of |x} and |y|, with real coefficients,
and assume that g19 = 0, 61y > 0. Let {w,} be a sequence satisfying
wy = o1} (# - oo} and wuqy ~— wy = P{n-1, w,) for all large values of x.
Show that there is an asymptotic development

Wy a1 nt 4+ a2 4 L, (7 — oo).

3. Let x be the minimal number such that the system {8.9.3) has a solution
in positive numbers t;,%a,%s, . . .. Show that there is an asymptotic expansion

Up e nh(co + ool + cgn—? 4 . ..) (n = oo,

Show also that sy = g = ¢C7 = ... = 0.



CHAPTER %
DIFFERENTIAL EQUATIONS

9.1. Introduction

Many problems in pure and applied mathematics are dealing
with the behaviour of the solutions of a differential equation at a
singular point, Such problems are obviously of asymptotic nature,
for by a transformation of the independent variable it is always
possible to transform the singularity to infinity, and after that, the
question takes the following form: Let F(£, 9, ', . ... ") = O bes
given differential equation for the unknown function y = y(#). How
do the solutions behave as ¢ — co?

Such questions arise, for instance, in stability problems, in
problems about linear or non-linear oscillations and in guantum
mechanics. Another type of applications is given by the fact that
one can study the asymptolic behaviour of a given function, a
Bessel function, say, from the differential equation which it satis-
fies, instead of from one of the explicit expressions for that function,

There is a wide variety of problems in this field, and there is
an extensive literature about it1). It is out of the question that an
adequate survey could be given within the scope of this book.
Nevertheless, in the few problems we shall discuss here, several
ideas appear which can be applied 11 many other cases,

Problems on differential equations are usually very flexible
owing to the possibility of transforming both the dependent and
the independent variable. After such a transformation has been
carried out, the problem usually looks different.

Another general trend in the asymptotics of differential equations
is the following one. Usually it is quite easy to guess an asymptotic

1) For references, see A. Erp#rvi, Asymptotic Expansions, Dover Publ.
1956.
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formula, or even an asymptotic senies, and more often than not it is
less easy to prove that it 1s an asymptotic formula indeed.

If we have to prove a certain asymptotic formula for a certain
solution of a differential equation, then the obvious thing to try
is to enclose this solution between functions whose asymptotic
behaviour is known. In many cases such inequalities can be derived
by simple theorems of the following type:

Let y(%) be a solution of the firsi-order differential equation y' =
= F(t,y) (@<t < d), and lei p(t) be a function satisfying

Py <Flel) @<t<b), ¢ <iyla).

Then we have ¢(t) <y(t) (@ <t < b). (So in order to prove an in-
equality for y(?) itis not necessary to solve the differential equation
explicitly, as functions ¢ satisfying ¢’ < F(Z, ) are of course quite
easy to find).

Ptoof: We first show that there is an interval (4, a + &) where
() <y(@). This is trivial if @(e) < y(a). If @(a) = y(a), we have

¢(d) < F o) = F(, y(a) = y'(a),

and the existence of such an interval follows again. Suppose that the
inequality @(f} < y(Z) can not be continued over the whole interval
a <t < b Then there exists a number ¢ (2 < ¢ < b) such that
@(c) = y(c), and @) < y(f) (@ <t < ¢). This implies ¢’(c) = ¥'(c),
but now ¢’(c) < F{c, @(c)) = F(c, ¥(¢)) = ¥'(c) leads to a contra-
diction. .

The question whether in the above theorem the signs < can be
replaced by <, is not very important for our purpose. It depends on
more delicate considerations as to the uniqueness of solutions. For,
if @ and y were different solutions of the differential equation, both
having the same value at 7 = g, ther ¢(f) < F(¢, p(¢)) would still be
valid, whereas @) < ¥(f) (¢ <? < b) would not be necessarily
true.

9.2. A Riccati equation

Let «(2), B(t), v () be continuous real functions for # > 0, and let
k be an ifiteger > 0. We consider the differential equation
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(9.2.1) £*p'() = alt) + )P + y(1)P2()

for the unknown function p(f). {(We choose Greek letters fol the
functions «, B, y, p in order to be able to use the correspouding
Latin letters for the coefficients of their asymptotic expansions).

Everything we shall do with (9.2.1) can be extended to equations

of the type '
£Ep (t) = xo(t) + ca(®)p(®) + ... + amlt) ™),

but as the case m > 2 hardly ever occurs in practical problems, we

shall restrict ourselves to (9.2.1).

As to the _existence of solutions, the state of affairs is only
slightty less simple than with linear equations. Since the equation
can be written as p'{f) = F(!, p), where F is a continuous function in
both wvariables as long as ¢# > 0, with a continuous derivative
oF ap, the following theorem holds. >

Let a positive number to > O and a real numbey po be given. Then
these numbers uniquely define an interval J, which is etther the infinite
wuterval to < £ << oo o7 a finite interval by < t < {1 Theve is a solution
p(t), defined on J, and satisfying the differential equation, with
plto} == po. If J is the finite interval o < t < ty, then p(f) tends
etther fo -+ oo or to — oo if t tends to 1y from the left.

The solution p(t) is uniquely determined: If J* is any other interval
with left end-point ty, and if p* is a solution throughout J*, with
p*{to) = po, then J* is contasned tn J, and p* = p on J*.

Proof: Throughout this proof the word ‘“solution” will be
restricted to solutions of the differential equation p'{#) = F{t, p)
which satisfy the initial condition p(tp) = po.

It follows from the fundamental existence and uniqueness
theorem 1) that there is a maximal interval J (with left end-point
Zo) carrying a solution p(#). For, in the first place, the fundamental
theorem asserts that there is a number b > # such that there is a
solution for fp < ¢ < &, Secondly, if b3 < b3, and if both #p < ¢ < b
and #g < ¢ < by carry a solution, then these solutions coincide in the
common interval #g < # < by, If not, we could cbtain a contradic-
tion by application of the uniqueness theorem at a point ¢, where ¢

1) See E. L. Ince, Ordinary Differential Equations, Ist ed., New York,
§3.1.
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is the maximal number such that both solutzons coincide in the
intervalfp < £ < ¢

Now the set of numbers & which have the property that the
interval Zp < £ < b carries a solution, is either unbounded or
bounded. In the first case we denote the interval { < ¢ < oo by J.
In the second case we denote the least upper bound of the set of all
possible &’s by £;, and then [ stands for the interval {p < ¢ < #.
From the arguments above it follows that in both cases J carries
a uniquely determined solution, and in the case of finite J we can
assert that there is no solution in the closed interval ¢y < £ < 2.

It remains to be shown that, in the case of finite J, the solution
p(t) tends either to 4- oo or to — oo if  tends to ¢; from the left.

If p is bounded over ¥y < ¢ < #;, then F(Z, p(f)) is bounded, so

p'(¢) is bounded. It follows that /;’ i1 p'(#)dt converges, so p(f) tends to a
hm1t p1if ¢ tends to #; from the left As p'(t) = F(2, p(f)}, the function
p'(®) tends to F(f1, p{f1)), and it follows that the closed interval
fp < ¢ < iy carries a solution. This being contradictory, p is un-
bounded over J. \

Now assume that p(#) is unbounded over [, and neither tends
to + oo, nor to — oco. Then it is not difficult to show that there
are numbers 4, B, x1, %3, ..., ¥1, Y2, ... satisfying

A<B ph<mp<n<tp<yr<..<t,
such that forz =1, 2, 3, ... we have
A< p) < B (%p <t <¥a), plan) =4, plyn)=

The function F{¢, p) is continuous in the closed rectangle fo< i<,

A < p < B of the #-p-plane. Therefore F(¢, p) is bounded above

by some constant ¢, as far ds that rectangle is concerned. It follows

that e

B — A4 =[p'{)dt < c(yn — %a).
Zn

This contradicts the fact that ¥J° (ya — xs) converges (its sum
is less than #; — #p), and so the proof of the theorem is complete.

We especially emphasize the fact that the length of the interval
J may depend on the initial value po.

The above theorem will be repeatedly used in the following way.
If we have numbers Zy, po and 4 (4 > 0), and if we have proved
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that for no value of £; ({1 > o) there exists a solution p(f) (fe<?f<?1)
with p(fo) = po, |p(t1)] > A, then we know that there is a solution
p(8) (to < ¢ < oo) with the initial condition p(fp) = po (and satis-
fying |p(f)] < 4 (fo < £ < 09)).

A clear idea about the existence of solutions of a Riccati equation,
and of their singularities, can be obtained from their relation to
linear second-order equations. For example, the equation p’ + p2?
= aft) + pf(¢) is related to ¥’ — B(f)y’ — «(f}y = O by the substz-
tution y'[y == p. I 9{¢1} = O for some solution y, then the corre-
sponding function p has a singularity at ¢ = #;: it behaves like
(¢ — t1)~1 if £ tends to #;. The existence and location of roots f;,
however, obviously depend on the choice of the ratio 4:5 of the
integration constants in the general solution y(f) = Ay1(f)+Bya(f).

Returning to the equation (9.2.1), we shall introduce the further
assumption that the asymptotic behaviour of each of the coef-
ficients «, B, ¥ is given by an asymptotic series:

alf) ~vap+art-l +-agt 2+ ... (t — c0),
(9.2.2) B() A by + bat™t + bgt~2 + ...  {f > o00),
y({@) ~co + et + ot~ 4 L. (¢ — o),

and we assume that
{9.2.3) 6o <0, ¢co=0.

It is our aim to prove that there is a class of solutions, whose
behaviour is also given by an asymptotic series

(9.24) - pl) mrp+ritt w24 ... (¢ = o0).

More precisely, we shall show the existence of numbers fg > 0
and 4 > O such that for every number pg in the interval — 4 <
< po < A the solution with p(fg) = pe can be continued indefinitely
to the right, with an asymptotic series of the form (9.2.4). More-
over, the coefficients 7y, 71, 72, ... are independent of po.

It is not generally true that all solutlons show this behaviour.
For example, the equation

Pty =—1—p() = 1p2Q)

has the solution p(f) = — ¢, and moreover it has solutions escaping
to — oo if £ tends to some finite number #;. (This can be seen from
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the equation 9" - (1 4 1)y 4 £ 4= 0, and the substitution
y'ly =t"p).

Let A be a number exceeding 2{ao/bo|. By virtue of ($.2.3), { can
be determined such that

(9.2.5) Blt) <O, 2l <AIBEI (= @),
and such that
(9.2.6) 24 o)l <18 (= to).
Let g1 denote the constant function ¢1{f) = -— 4 (¢ > %), and

@2 the constant function @aff) = 4 (¢ = #). It follows from (2.2.5)
and (9.2.6) that

Ep(f) < o) + Bler() + yO)3() (= fo),
e (f) > alt) + flh)p2t) + y(B)p2?() (= &)

By virtue of the theorem of sec. 9.1. we infer that any solution p{t)
of our equation i—%p" = « + 8p + yp2 with |p(tp)] < A automatical-
ly satisfies |p(f})] < A for all £ > £y as long as p{f) exists. So these
solutions can not escape to - oo, and it follows that they can be
continued indefinitely to the right and that they satisfy (p(f)] < 4
(¢ = fo). We shall only use the fact that they are bounded: p{f} =
= O(1) (# —o0). A solution will be called bounded if it is bounded in
some interval ({3, oo}, although it is possible that this solution can be
continued over some interval (4, #3) or even over {— oo, {3) without
being bounded over the extended interval.

In our next step we shall show that p{f} = O(1) (¢ — co) implies
that

(9.2.7) p(t) = 7o + O(t~1) {¢ - o0), where 75 = — ag/bo.

We consider a special solution p(f), bounded in some interval
%9 < ¢t < oo. Again we introduce two auxiliary functions

@a(t) = 7o — AL, @4(t) =79 + A,
and we try to determine 4 > O and {; > 7 such that
(9.2.8) t*pg’(l) < alt) + Bllealt) + y(ps?() (¢ = t).
(9.29) t¥ps(t) > alt) + Bl)pelt) + v(tlpa?lt) (= 1),
(9.2.10) ps(f) < plh) < gults).
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To this end we remark that both sides of (9.2.8) have asymptotic
series, On both sides the constant term of the series vanishes. The
coefficient of the term ¢-! vanishes on the left; on the right (notice
that ¢o = 0) it equals

a1 — bod + bire + c170.

Since b9 < 0, we can determine 4 > O such that this is > 1, say.
Therefore it is easy to find #; such that (9.2.8) holds. Moreover, we
can argue similarly about {(9.2.9), and it results that 4 and #; can be
chosen such that both (9.2.8) and (9.2.9) are satisfied. However,
{9.2.10) gives a difficulty: 1t is easily satisfied for a special #; by
making 4 sufficiently large, but in the previous argument the choice
of #; was depending on A. We therefore restate things more care-
fully, considering both ¢ and 4 as variables.
We have

ps(f) = 70 + O(At1), @a¥(f) = O(1) + O(4%~2), aif)=ao+O0(),
Blé) = bo + O(™), »(f) = O(F™), t7¥ps'(t)=0(4s-5-3),

where all O-symbols refer to £ = £, 4 > 1, say. It follows that

B(t)ps(t) = boro — oAt + O(F1) + O(4£-2),
Y()ps?(t) = O(™1) + O(4%79),
and the right-hand-side of (9.2.8) exceeds the left-hand-side by the
amount
—.bodt-1 4 O@F1) 4 O(At-2) + O(A%-3) =
= At-Y{— b + O(4~1) + O@1) + O(4¢2)}.

It follows that (9.2.8) is true when A, #; and #;24-1 are sufficiently
large, and of course the same thing applies to (9.2.9). Next we
consider (9.2.10). As p(f) — 7p = O(1), (9.2.10) holds if 41 is
sufficiently large. So the question remains, if C is any large number,
whether 4 and #,-1 can be found such that

A>C, 1 >C, H24-1 > C, A4AHh-1>C.

This can be achieved by making 4 = £, and taking ¢, sufficiently
large. Thus we have found 4 and # such that (9.2.8), (9.2.9),
(9.2.10) hoid simultaneously.
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By the theorem of sec. 9.1 we now infer that
e3ll) < plf) < @alt) (62 o),

and we have proved (9.2.7). (For a second proof, see sec. 9.7, ex. 2).

(
Next we write p(f) = 7o + t~1p1(f), so that the result we just
proved, is: if p(f) = O(1), then pi(¢) = O(1). We easily derive the
differential equation

(9.2.11)  Ep)(t) = ou(t) + Br{)p1(d) + v1(t)pr2(2),
with

a1 = e + rof) + 7oy,

B1 =B + 2roy -+ %1,

Y1 == t—rl}’.

The new coefficients a3, $1, 1 turn out to have asymptotic series
again, and the analogue of (9.2.3) holds. Applying the above result
to our new equation, we infer that there exists a constant 7, such
that, if pi{f) = 71 + #~1pa(#), then pi(¢) = O(1) implies pa(t)=0(1).
As this procedure can be continued, it is clear that p(¢) has an asymp-
totic development of the type (9.2.4).

The coefficients 7g, 71, 72, . .. follow successively from the above
procedure. It is easier, however, to proceed by the method of un-
determined coefficients. Just substitute the formal series 7y 4~
+ 71271 + 7962 4 ... into the equation (9.2.1), taking as its
derivative the formal derivative — #yt71 — 2r9t—2 — ... Then
require that, for each value of n (n = 0, 1, 2, ...), the coefficients
of {-7 on both sides are equal. This produces a set of equations from
which, by virtue of &y % 0, ¢p == 0, the numbers 7, 71, ... can be
solved successively. The validity of this procedure is easily proved
from the fact that there exists asymptotic series both for p(¢) and for
i-%p'(t), but it can also be shown by comparing the two procedures
from an algebraic point of view.

With our equation we have a typical case of stability. If pi(t) is
one of the bounded solutions, bounded in ¢ < ¢ < oo, say, then
there exists a positive number & such that any solution whose value
at 7o satisfies [pa(fo) — pi(fo)| < &, also satisfies pa(f) — piff) >0
(¢ = 00). It is quite a strong type of stability, for p; and ps have
the same asymptotic series, and therefore ps — py = O(n), for
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every fixed value of #n (n = 1, 2, 3, ...}). We shall even show that
p2 — p1 = O(e~%) with some positive constant c.

Let p; and ps be two bounded solutions, and put pg — py = #. If
p1{f) = pa(t) for some ¢, it holds identically, by virtue of the unique-
ness. So we may assume that paff) > pi{t) for all values of 2. We
evidently have

£k = By + yn(p1 + po),

= n(f + O@F1).
As B ms o+ ..., By < 0, and 5(f) > O for all £, we have, for some
1 >0,

and consequently

7y < fbof®  {t > 1),
It follows by integration that
7 = Ofexp(bot¥**+1/2(k + 1))} {t = o0).

9.3. An unstable case
We again consider the equation (%.2.1)
(9.3.1) t=kp'(t) = alf) + B(E)pt) + y({)0%(),
and again we assume that «, § and y have asymptetic developments
(9.2.2), but instead of (9.2.3) we assume

{9.3.2) bg >0, ¢p=0.

Formally nothing has been changed, and therefore we can again
find a series ro + it~ + r9t~2 -+ ... which formally satisfies the
equation (in this formal procedure the sign of &g is irrelevant; it is
only the condition by 7= O that matters). The -difference with the
case bp < 0 is that in the present case there is only one solution
having this series as its development, and this one is the only
bounded solution (i.e. the only solution which is O(1) when ¢ — co).

In order to show this, we start by defining the functions

@3(f) = ro — AL, @u(f) =70+ At~  (ro = — ao/bo),
just as in sec. 9.2. And we can fix 4 > 0 and #; > 0 such that
(93.3) HHgx'(l) > alf) + BOpslt) + yBes) (¢ > 1),

(93.4) rro () < alt) + BB)pald) + yBpa2) (> b
The inequality signs are different from those in (9.2.8) and
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(9.2.9), as bg > 0O in the present case. The conclusion is, that if a
solution p(f) exists in an interval (¢s, i5), where #3 > f5 > #1, and if
pltz) < @s3(tz), then we have p(f) < @3(f) (2 < ¢ < £3). Similarly, if a
solution p(f) exceeds gs(f) at # = ¢a, where #2 > £, then p{) > @4(f)
for all ¢ > £g, as long as p(Z) exists. So the situation is just the oppo-
site of the one in sec. 9.2.

Just now we made a statement about solutions < @3 or > @4, but
we would rather know something about solutions between s and
@4. This can still be achieved with the aid of the theorem of sec.
9.1, by taking v = — ¢ as the independent variable, sc that dp/di =
= — dp/ds. That is, we observe what the solutions do if ¢ is de-
creasing instead of increasing. Our conclusion reads as follows:
Assume #; < #3, and let the number p; satisfy @s(fs) < ps < @a(ts).
Then the given equation has a solution p(f) in the interval #; << s,
with p(f2) = p2 and @s(f) < p(f) < @afd) (01 < ¢ < ).

If ps ranges through the closed interval gg(fs) < p2 < @alta),
then the value p; = p(f;) ranges through a subset of the interval
pa(f1) < p < @alty).

If follows from the general theory of differential equations 1) that
p1 is a continuous and increasing function of ps, and therefore this
subset is again a closed interval. We shall denote it by i(t) (f1 is
considered as fixed, and # Will be varied).

The set #(¢3) can be inteipreted as the set of all numbers py with
the property that there exists a solution p(f) in the interval #; <
<t < ta'satisfying @g(t) < p{f) < @a(f) throughout that interval,
with p(¢1) = p1. It follows that i(fs) 2 ¢(tz + 1). Now applying this
with g =6 4+ n (n=1, 2, 3, ...) we get a sequence of closed
intervals '
i+ 1D)Dit +2) D4t +3)D ...,
and therefore these intervals have a number pi1* in common.
Denoting the solution with the initial value p1* at & by p*{f), we
know that this one can be continued up to # - #, and remains
between gs(t) and @4(f) ({1 < t < £ + =), This holds for any value
of #, and therefore p*(f} can be continued to infinity, and

os(t) < p*() < @alt) (€ > 4).

1) See E. L. INCE, Ordinary Differential Equations, Ist ed., New York,
§3.22, ‘
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Thus we have proved that our equation has a solution of the form
ro + O(t1). We next show that there is only one such solution, and
even that there is only one bounded solution. Let p1{f) and pa{¢)
denote solutions which are both bounded in an interval{y < ¢ < cc.
We suppose them to be different: pa(f) > pi(f) (f > ?o), say. Putting
p2(f) — p1(®) = n(¢), we should have (cf. the end of sec. 9.2), for
some %1,

n'[n > tbot* (1 >4)

and it would follow that
(9.3.5) 5 > ¢ exp{bet*+1/2(k + 1)} (> t1)

with some positive constant ¢. So 5 would tend to infinity, whereas
p1 and ps are bounded. This is contradictory; hence there is just
one bounded solution.

In order to get the full asymptotic expansion for p*({f), we write
p(&) = 7o + t1pa(t), as n sec. 9.2, and for p; we get a different.ial
equation (9.2.11) of the same type as the equation for p(f). So we
infer that there is just one solution p1*(?} of the form »;+O(+2).
Now #p + £~1p1*(¢) is a solution of (9.3.1), having the form 7y +
+ 7t + O(t2). As (9.3.1) possesses only one bounded solutioa, we
have identically

ro + £lp1*) = p*(0),
and therefore
p*() = 7o + rit—1 + O(F2).

This procedure can be continued, and it follows that p*(f) has an
asymptotic development (9.2.4). The numbers 7, 71, ... can again
be obtained by formal substitution of (9.2.4) into the differential
equation, and by equating coefficients of corresponding powers of 2.

9.4. Application to a linear second-order equation

If 4(¢) is the unknown function in a linear homogeneous second-
order equation

Y@ + POy @) + Q@) =0,

then the substitution y’/y = v leads to a first-order equation, of
the Riccati type, for the function »:

2(0) + v2%) + PAo(d) + Q) = O.
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By linear substifution () = a(f) + b()w(f), where w(f) is the new
unknown function, we get for w an equation, again of the Riccati
type {l.e. a linear relation between %, w2, w and 1). Now one can
try to obtain a Riccati equation of one of the types discussed in
the previous sections, or at least an equation to which the tech-
niques of thosc sections can be applied.

As an example we take the equation

(9.4.1) Y (6 — t4y(e) = 0,
for which the substitution 3'jy = » leads to
(9.4.2) v L v2— =0,

This one is not yet of the right type. In order to get a rough idea
about the behaviour of the solutions, we argue as follows. There are
three terms in the equation, and so at least two have to be of the
same order of magnitude. So we first try to neglect one of the terms,
and we investigate the remaining equation.

First neglect the term #4. The remaining equation v’ + 12 =0
has the solution v = (f — #)~%, with an arbitrary constant #. Now
for these fuuctions » the neglected term is much larger than v and
22, and so we are left nowhere. Next neglect the term v2. Then there
remains v = #4, and therefore v = 15 4 C. And again the neglected
term is much larger than the others.

So our last attempt will be to neglect »’. The fact that the remain-
ing equation is no longer a differential ecuation does not disturb us
in the least. We obtain » = 4 #2, and now the term 2’ is small
indeed. Nothing has been proved yet, but we have now sufficient

reason to try the substitutions v = #2 4 p(#) and v = — £2 4 p(?).
The first one, v = 12 + p(f), transform (9.4.2) into
(9.4.3) £2p" = — 241 — 2p — {2p2,
and this one is of the stable type discussed in sec. 9.2 (with 2 = 2,
aft) = — 2671, B(t) = — 2, p(f) = — £2, so indeed by < 0, co = 0).
We infer that there is a solution p(f) with an asymptotic series

plty ~rp +riir F a2 4 L., (t — o0),

(and even that there are infinitely many such solutions). Upon
formal substitution of the series into (9.4.3) we obtain that rg = 0,
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7y = — I, 73 = rg = 0, and generally, that 7, = 0 unless # is of
the form 3k <+ 1. So it may have some advantage to put p(f) =
= 1g(¢8), #3 = =, which transforms the equation into

do

3 rFm = — 2+ (— 2 + 7 Yor) — 7 1lo%(7).

As y'ly = v, we obtain logy by integration of 2 4 #1o(f3). It
follows that the equation (9.4.1) has solutions of the form

(9.44) ya~Ctred®(l+atS+at®+...) (o0,
where C 5 0, and 1 + a1x + 4222 4 ... is the formal develop-
ment of
exp(— $rax — Jrex? — .. .).
We can also try the second substitution, viz » = — 2 4 p(2).
We then get
1-2p'(2) = 241 4 2p — 2p2,
and so we are in the unstable case of sec. 9.3. We now infer that
there exists just one solution of the form

pll) s so+ st + 5282 + ... (£ = co).

In terms of y it means that there is, apart form the arbitrary con-
stant C = 0, just one solution of the form

9.4.5) y av Ct-1e-¥(1 4 bpi—3+4-bot~6 + ...) (t — oo).
(9.4.5) )

If we select a solution y;(f) of the form (9.4.4), and a solution
ya{f) of the form (9.4.5), then y; and y; are obviously linearly in-
dependent {as ya/y1 — 0). Now the general solution of {9.4.1} is
Av1(f) + Byz(t) (4 and B are constants). This illustrates the in-
stability of the solution y3: Every solution with 4 3£ Ois easily seen
io have (9.4.4) as its asymptotic behaviour (with some value of €),
and only if 4 = 0, B = 0 we have something of the type (9.4.5).
Moreover, it is easily seen that when adding Bya(¥) to 4yi(f), the
asymptotic series for Ay,(f) is not altered.

There is a quite simple relation between the a’s of (9.4.4) and the
b’s of (9.4.5). due to the fact that the coefficients in (9.4.1) are even
functions of #. Its effect is that

(5.4.6) by = (— 1)Pay, n=0,1,2...).
In other words, if the right-hand-side of (9.4.4) is denoted formally
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by P(¢), then the right-hand-side of {9.4.5) equals P(— #). This is
easily deduced by studying the Riccati equation (9.4.2). If we
substitute for v the formal series

Qut) =2 +-ro+ 7t vt 24 ...,

then (9.4.2) 15 formally satisfied. As # is an even function, it
follows that the formal series Qa(f) = — Qi1(—#) also satisfies
(9.4.2). On the other hand we observe {cf, secs. 9.2 and 9.3) that the
Riccatti equation has only one formal solution of the type — 2 +
4+ so -+ s127t 5ot 2 4- ..., It follows that s, = — (— 1)#r,
{n=20,1,2,...). Now (9.4.6) is easily shown.

Let yo(#) denote the unstable solution of the form (9.4.5) (with
C = 1). We shall show, as a consequence of (9.4.6), that the general
solution of ¥"' — 4y = O can be written in the form

y = Aya(— &) + Bya(t).

First we remark that ys(f) can be continued over (— oo, co), the
equation being linear. As #4 is even, the function ya(— £) also satis-
fies ¥ — 4y = 0. It follows from the asymptotic behaviour that
ya(— ?) is positive and increasing if ¢ is negative and large. It follows
from the equation y’* = #4y that the solutions are convex whenever
they are positive, and therefore yz(— ¢} keeps on increasing as ¢
tends to -+ oo. As yz(f) — O (£ — o0), it follows that y2(f) and yo(—?)
are linearly independent solutions.

It is not difficult to cvaluate the coefficients of the asymptotic
series for ys(f). The reader may verify that

= (3n)!

yalt) ~ e 5

"2 TgnpE (DR (o)

9.5. Oscillatory cases

The analysis of sec. 9.4 applies to many equations of the type
¥y () — y(8)f() = O, where f(f) > 0. The situation is entirely differ-
ent, however, with equations of the form y”(f) + y{#)}f(f) =0
‘(again with f(#} > 0). Under very general conditions it can be proved

that all solutions are oscillating, i.e. that they have infinitely many
zeros in the interval (0, co). We shall consider the special case

(9.5.1) y @) + (1 + )yl = 0.
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We obtain a Riccati equation
v 4124 (1 +£Y) =0

by the substitution y'/y = ». Guided by the same heuristic argument
we used in the case of (9.4.2)," we introduce a new function p(f) by
the substitution v = ¢ + ¢1p(¢). This function p(f) satisfies

(952 p')=— 1+ (— 2 + rYplt) — +-1p2().

With the notation of (9.2.2), we thus have bg == — 24, ¢g = 0. As
both in sec. 9.2 and sec. 9.3 the reality of the coefficients was pos-
tulated, these sections cannol be applied to (9.5.2). Admittedly, we
may be able to show that the main results of sec. 9.2 and sec. 9.3
remain valid for complex equations, provided that we replace
by < Oin (9.2.3) by Re bg << 0, and & > 0 in (9.3.2) by Re bg > 0.
But in the present case by is purely imaginary, and therefore we
neither have the strong type of stability of sec. 9.2, nor the strong
type of instability of sec. 9.3.

We remark that it is not difficult to find an asymptotic series.
formally satisfying (9.5.2), just by substituting the series and
equating coefficients. The first few terms are

¥+ (2 —4)/(8) — (4 + 35)/(1682) + .. ..

However, at the present stage we cannot say whether this formal
series has any significance.

We shall attempt an entirely different method, based upon the
use of an integral equation. It should be noted that it is not difficult
to modify this method so that it will work equally well in the ex-
ponential case of sec. 9.4.

We consider an equation of the type

(9.5.3) Y@ + {1 + gdhyit) =0,

where the given function g is continuous and moreover satisfies
Jo° 1gt)|dt < oo. This means that the results will not be directly
applicable to {9.5.1), although (9.5.1) can easily be transformed into
an equation of the present type (see the end of sec. 9.6).

We shall first transform (9.5.3) into an integral equation. It
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can be obtained as follows. We write the equation in the form

y'®) + @) = — 2(yl),

and we treat this equation' as if the right-hand-side were a given
function A(#). Using the method of variation of constants, we put

y(¢) = A(f) cos t + B(f) sin ¢,
y'(t) = — A(f) sinf 4 B} cosé, A'(¥)cos?+ B'(f)siné =0,
y'(t) = — y(t) — A'(#) sin¢ + B'(t) cos ¢,
— A'(%) sin £ + B'{f) cos t = h(f).
Thus we have A’ = — k() sin {, B’ = -}- A(f) cos £. So if a is a real
number, everys solution of y"'(f) 4 ¥(¢) = A{f) can be written in the

form
1

y == Cycos t + Casint + f&(r) (sin £ cos  — cos ¢ sin 7)dr,

with suitable constants Cy and Ca. So if () is a solution of (9.5.3),
it also satisfies

4
(9.5.4) () == Ci1cost -+ Casiné — fg(r)y(r) sin —7)dr,

with suitable constants C; and Ca.

We can now show that every solution of (9.5.3) is bounded in the
interval 0 < ¢ < co. To this end we choose a positive number &
such that /°|g(¢)|dt < %, which is possible on the strength of the
convergence of /3° |g(¢)|d:. Let y(#) be any solution, and let b be any
number > a. Put M = max, ., [y(f)|. From (9.5.4) we infer that

b
M < [C1} + [Col + M [g(r)ldr < |Ci] + [Ce| + $M,

"and so M < 2|Cy| -+ 2|Cq, irrespective of the value of 4. This
shows the boundedness.

The boundedness implies that /5° g(r)y(7) sin(f — 7)dr is conver-
gent, and therefore we can rewrite (9.5.4) into the form

(9.5.5) y(¢) = Cacost + Cysint — fg(r)y(r) sin{r — t)dr,
3
with new constants C3 and Cy:

Cs = Cy + Jglr)yln)sinr dr, Cq= Ca — [ g(x)y(r)cos = dr.
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We have proved that for every solution of (9.5.3) there exist
constants Cg, C4 such that (9.5.5) holds. We shall next show that
to every choice of the pair of numbers Cs, C4 there corresponds
exactly one solution.

Let y1(f) denote the solution determined by the initial conditions
yi{a) = 1, y1’(a) = 0, and let ya(f) be determined by yz(a) = O,
y2'(@) = 1. Then every solution of (9.5.3) is a linear combination of
y1(t) and y2():

y(&) = y(@)y1(t) + y'(@)ya(),

and y(a), ¥'(a) can be prescribed arbitrarily.

The constants Cg, C4, corresponding to the solution y(#) in (9.5.5),
are easily determined by differentiation of that relation at {=a.
For simplicity we assume that ¢ is an integral multiple of Z=.
Then we obtain that

Cs = (@) + ¥(a) [ glr)yr() sin rdr + y'(a) fg(r)yz(v) sin = dr,

Ca = y'(a) — y(a) f glr)y1(r) cos 7 dv — ¥'(a) [ g(r)ye{r) cos 7 d=.
a a

We observe that Cg and C4 are linear combinations of y(a) and
y'(a). We have to show that these combinations are linearly in-
dependent. In other words, we have to prove that Cg = Cy4 =0
occurs only if y(a) = y’(a) = 0, that is, if y(f) vanishes identically.

Let y(f) be a solution with the property that Cs and C4 both
vanish. As y{f) is bounded over (g, o), we deduce from (9.5.5) that

sup |y()] < sup |y@)| - Slg(7)lar.
a<t<oo a <t Loo a

As the integral on the right can be assumed to be less that 4, we

infer that y(f) vanishes identically.

The integral equation (9.5.5) can be used in order to solve the
differential equation explicitly, in the form of the so-called Neumann
series 1). We shall not do this, as our only aim is to obtain asymptotic

1) See E. T. WriTTAKER and G. N, WarsoN, Modern Analysis, 4th ed.,
Cambridge 1946, § 11.4.
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information about y(f). This is achieved by the iteration method
which is used in the derivation of the Neumann series. We choose
the solution y3, say, determined by C3 =1, C4 = 0. We know
already that y(#) is bounded, and so we infer from (9.5.5) that

(9.5.6) va(t) = cost 4 O(_f lg()ld) = cos ¢ + ofl).

Next we insert this result into the integral on the right-hand-
side of (9.5.5):

yslt) = cos t — [ g(r)cos 7 sin(r — f)dr + O(f lg(s)lds / lg(r)|dr),

and so on.
For the calculations it may be easier to deal with the complex
combinations

ya(f) + tyalf) = e¥ 4 o(1),
ya{t) — tya(f) = e# + o(1),

where y4 is the solution determined by Cg == 0, C4 = 1.

We take a specific example. If in the differential equation for
the n-th Bessel function we write y =#],(), } — 7% = 1, we
obtain the equation 1)

(9.5.7) y'@) + (1 + -2y =0,

which is indeed of the type discussed above (4 is a constant}. So we
know that there is a solution of the type e# 4 o(l) (# —+ o0).
Denoting this one by y(#), we have

yil) = eft O(ff—%) = ot 4 O(Y),
In the next step we get from (9.5.5) (Ca =1, C4 =)
058  yo=e—1 Ja=%eb sinfr — f)dr + O ff—%).
We first consider the integrals [° 7—%¢¢" sin{r — ¢)dr = fz(f), with &

1) See E. L. INcE, Ordinary Differential Equations, Ist ed., New York,
§7.32
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fixed, and 2 > 2. We have, as 2¢ sin x == ¢i% — 17,
ey (f) = 0f°° e 4 £)ket® sin x dx =
= ik — 1)"Y k1 — I [Zx + f)Eeirdx,

This last integral can be expanded asymptotically by means of
repeated partial integration, or by steepest descent. It results that
we have an asymptotic expansion of the form

r“fk(t) Y t—"'*'l(Co + -t + Cz\f"z +...) {t - oco).

Now (9.5.8) gives y(#) = (1 + axf~! + O(t~2)) {with a1= —3}il).
Again inserting this into the right-hand-side of (9.5.5), we: get a
formula of the type y(f) = e¥#(1 4+ ait~! + aot~2 4 O(t3)). Con-
tinuing this procedure, we obtain an asymptotic series

(9.5.9) y(H) ~ (1 '+ artl + agt2 -+ ast=3 4 ...} (> o).

Once we know that there exists an asymptotic series of this type,
it is quite easy to determine the coefficients directly frorn the
differential equation. If we put y(f)e® = @, then ¢ satisfies
¢” + 2ip" + M~2p = 0. Formally substituting

($.5.10) ety m 1 +a~t + a2 4 ...,

and equating coefficients, we can evaluate the ;. In order to,
justify this procedure it is sufficient to show that ¢’(#) and ¢”' (¢} also
have asymptotic series (for then those series automatically repre-
sent the formal derivatives of the asymptotic series of ¢(Z)). It

follows from (9.5.7) and (9.5.9) that
Y o — (1 + ) (1 f a4 ..)) (- o0).

From the asymptotic formulas of the functions f efrr—kdr
(=1, 2,3, ...) it can now be shown that f;° (y"'(r) + ¢tr)dr con-
verges, and that it has an asymptotic series of the form ef#(by +
+ bit~! + bot~2 4 ...). On the other hand, this integral equals
~— ¥'() + ie** + C, where C is a constant. By a second integration
we infer, since y(¢) is bounded, that C vanishes. It now follows that
¢’ and ¢” have asymptotic series of the required type.
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So in order to determine the coefficients in (9.5.10), we have the
right of formal substitution into ¢ 4 2i¢’ 4 Ai2¢ = 0. Equating
coefficients, we get the relations

arsr = ap(k: + k+ A2+ 1) (h=0,1,2 ...),

where gg = 1.

Our differential equation (9.5.7) has also a solution of the form
e~t 4 O(1). For this one we get similar results, and it is easily seen
that its asymptotic series is e~#(1 — a1 + at—2 — agt=3 4 ...).
So every solution of (9.5.7) has an expansion of the type

Aett(l 4 ayt + agt~2 4 ...) + Be (1 — ay~l 4 ast~2— .. .).

The contents of this section do not give us a method to determine
the values of 4 and B belonging to the special solution #],(f).
The choice of this special solution from the set of all solutions
depends on its behaviour as £ -+ 0, and here our knowledge about
¢ —> oo has no direct value. On the other hand, a quite rough estima-
te for the behaviour of #],(¢), obtained by any other method, will
be sufficient in order to evaluate the numbers A and B.

9.6. More general oscillatory cases

In sec. 9.5 we learned that y"” + {1 + g(f)}y = 0 has solutions
e 4 o(1) and ¥ 4 o(l) ( — o0), provided that f;° |g(f)id¢ con-
verges. We shall now try to reduce the more general equation

(9.6.1) Y + @)y =0

to this special case. It is assumed that $(Z) is a positive continuous
function. .

We shall replace the variables ¢ and y by new variables x and 2.
We put

=¢lt), y =yl

‘Here ¢(f) and p(¢) are functions of {, to be determined later. We
assume that ¢(#) tends monotonically to + co when ¢ - + oco. We
obtain (accents denoting differentiation with respect to #):

- ,dz+z,
22

d dz
II_____ I2 (44 r ——— If-
Y = (@) + (" + 29'9) o+
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Our differential equation becomes

N dzz 1 " 7 dz 2 I3
— +_,_(,fp_’_+2£_)__ +{(_7_§:_) + -w’z}z=0.
dx ¢ \o v/ dx P py

If we now succeed in choosing ¢ and y such that

Lt ’ Py 2 r
062 L-4+2% -0 f {(p) + w,g—l
¢ p ) I\ v

dx < 0o,

then we know from what we proved about {9.5.3) that (9.6.1) ha:
solutions

p(B}{e®@ + o(1)} and p(A{e P 4 o(l)} (¢ — o).

Bearing in mind that 9"/y = (p'/y)’ + (¥'/v)2, and dx = ¢'ds
we can replace (9.6.2) by

[-~]

(9.6.3) f
0

/
Moreover, we have our condition that ¢(¢) — co when ¢ — oo, whick:
means that /;° ¢'dt = oo. If, for example

2 4 rr 2
¥ ¢ ’

(-] -]

(9.6.4) [13p'2p~3 — 2p"p2| dt < o0, [ pdt = oo,
0 ]

it is possible to choose @ such that ¢’ = , i.e. ¢(f) = /§ p(+)dr, and
then (9.6.3) is satisfied 1). Moreover, we take y(f) = (p(f))~*.

If (9.6.4) holds, we know by virtue of sec. 9.5 that (9.6.1) has
solutions y; and y2 whose asymptotic behaviour is given by

31 ~ (B(5) EXP{I'Z'P(T)JT},

yo ~ () exp(— ifpi} (¢ > o).

The substituticns x = g(f), ¥ = z(p(#))* which in this case have to
be carried out, transform the equation into the form d2z/dx2 4-
+ (1 4 g(x))z = O, with a relatively small function g(x). In many
cases it will be possible to apply the method of sec. 9.5 in order to
obtain asymptotic series for the functions y; and ys.

1) A. WINTNER, Phys. Rev., 72 (1947), pp. 516-517.

(9.6.5)
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In a fairly wide range of cases the substitution ¢’ = $ can be
used. The condition (9.€.4) is satisfied, for example, if p{f) = &
(A > —1). It fails, however, if $(f) =#-1, In this case we can still
satisfy (9.6.3), but then with ¢'{f) = 3%/(2/). Then the integrand of
(9.6.3) vanishes identically, corresponding to the fact that y" 4-
+ #~2y = O has the simple solutions y = #, 1 = } 4 }i4/3.

1f ¢ is a positive constant < 1, then the solutions of y'* <+ ¢#-2y=0
are no longer oscillatory, and the same thing can be said about the
equations ¥’ + 2y = 0if A < — 1.

The contents of this section can easily be applied to (9.5.1), i.e.
the special case of {3.6.1) with p(#) = (1 + #1)} It is easily seen
that (9.6.4) is satisfied in this case, if we replace the integration
interval (0, oo} by (1, co), which obviously does not matter. So we
can take

t
o(t) = 1f (1 + v Ndr, p() = (1 4+ )4
This means that v

o) =t + 4logt + C + O@¢Y), o) =1+ OF?Y),

where C is a constant. It follows that (9.5.1) has solutions y(¢) and
va(t) with the asymptotic behaviour (when 2 — o)

yi(d) ~ glttitlog ¢ ya(f) ~ e—tidtlog e

If we want to have the asymptotic series for y; and yz, we can
argue as follows. Let

Sy =1+¥14st2+ ...
be a formal series satisfying
(9.6.6) . (1 + 2152 = 15”53 — }5'S-2)2 + 1.
Then the integrand of (9.6.3) vanishes upon formal substitution of
¢’ = S. The existence of S is easily established. If
Sp=1+ 31+ sgi2+ ... + sutn

is inserted into the right-hand-side of (9.6.6), then Sp41 can be
evaluated.

Next take, for some %, ¢(f) such that ¢'() = Sx(f). Then it is
' easily seen that the integrand of (9.6.3) becomes O(t~#-1). It follows
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(cf. (9.5.6)) that we have a solution

y1(t) = g @(1 4 OF7)),
where (f) is related to ¢(f) according to (9.6.2). It is now quite easy
to prove that we have asymptotic expansions
yi(ty == efttiilog £ S(f)— exp(— dsgt~1 — disgt~2 — ...),
yolf) ~ et-HlogtS(f)—t expliset~t + §isat~2 + ...},
if £ - co.

These lines have to be interpreted in the following sense. The
function yy(fje—#t-#102 ¢ has an asymptotic series which is obtained
by formal multiplication of the formal series S{f)~* by the formal
series exp(— isat~1 — §isgt—2 — ...), and similarly for ya(?).

Once we know the existence of these expansions, it is of course

possible to derive them directly from the Riccati equation (see the
beginning of sec. 9.5).

9.7. Exercises. 1. Let p(f) be real and differentiable (1 < ¢ < oo) and
assume that

B + plt) — 1020 = O(1) (> co),
lim sup #1p(f) < 1 (t > od).
Show that p(f) = O(1) {{ - oo).

2. Give an alternative proof of (9.2.7) (assuming (9.2.1), (9.2.2), (9.2.3),
k =0 and p() = O(l)}), based upon integration of

() (bop(®) + a0)}’ = () O@+-1),
where (f) = exp (— bot¥+1/(k+1)).

3. Show that there are constants aq, 41, g2, . . . with the following property:
If p(#) is any real solution of

P8 = pft) + p¥(f) + i~1p%(¢)
in any interval {fg, oo), then we have
e} map + axtt 4+ a9t + ... (t > o0),

unless p(f) vanishes identically.



INDEX

Abel, Adbelian theorems
equation 160

asymptotic, behaviour 10; equivalence
10; expansion 11; series 11

asymptotics 1

alternating sums 49

argument of the axis of a saddle
point 84

ARMAC 174

axis of a saddle point 84

139; A4.’s

Bachmann 3

Bernoulls, numbers' 41, 158; poly-
nomials 41

Bessel function 54, 193

Boas 174

Boole sum formula 51

bounded variation 53

class partitions 102

closed path theorem 82
conformal mapping 124
continuous iteration 153, 160
contribution of a saddle point 88
Copson 167

crossing of a saddie point 81

Debye 77

differentiation of an asymptotic for-
mula 15, 17, 139

direct asymptotics 134

Dixon 72

Euler 47, E.’s consiant 58; E.-Mac-
laurin sum formula 40, 109

exponential integral 13

exponentially small 44

Founer series §2
functional equations of gamma
function 48

Gauss’ factorial 110
Gamma function 46, 69, 119

 Hankel 101
Hardy 138
Hermite polynomials 45

Implicit functions 21

indirect asymptotics 134

integration of an asymptotic formula
17

iteration 13, 28, 31, 148, 193

. Karamata 143

Koenigs 153
Kronecker symbol 75

Lagrange inversion formula 22
Landau 3

Laplace 1, 60, 77

Lebesgue integrals 100
Littlewood 138

mountaineering 80
multiple integrals 71

Neumann series 192

Newton 30, 31

numerical, analysis 18, 174; equadions
30

oscillatory 189



200

perturbations 96
Poincaré 11

Poisson’s sum, formula 52
power series 14

Prime numbers 2, 57, 59

range of a sad lle point 91
refinement 7

Riccati 177

Riemann 77, R.’s zeta function 40, 42
roots of equations 30

Rouché 26, 122

saddle point 80

Schrader 152, 160

stability 183

stationary phase 84

steepest descent 85, 86

Stirling’s formula 1, 42, 46, 70, 127
summation by parts 56

INDEX

Tauber 138, Tauberian theorems 139
theta functions 45

unstable 184
uniformity with respect to a para-
meter 7

volume of unit sphere 72

Weierstrass 145
Wielandt 144

van Wijngaarden 175
Wintner 196

Zeta function 40, 42

Symbols: 0 3
o 10
~ 10
s~ 11



