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Preface

The majority of students who take number theory courses are mathematics majors who will not become
number theorists. In fact, many of them will go out into the world and teach mathematics in high school
and junior college. It is hoped that this book will satisfy the needs of these students. To this end, the text
is intentionally wordier than the average number theory text. There are more discussions of proofs and
more worked out examples than will usually be found elsewhere. In particular, we sometimes make use
of very large numbers. After all, the percentage of positive integers that are less than a trillion is rather
small. It seems rather unfair, then, to constantly use these small numbers in examples.

In addition, there are hundreds of homework exercises of all levels for the student to sink his teeth into.
The exercises fall into two categories. In the first category we find the problems at the end of the
sections. These are mostly of a computational nature designed to help the student become familiar with
the material of the section, although there are questions about the proofs in the book and occasional
"theory" problems. A few of the more difficult problems in these sections have been marked with an
asterisk. In the second category we have miscellaneous exercises at the end of each chapter. These are,
on the average, of a decidedly more difficult character than the section problems, although there are
some, such as the perpetual calendar problems in Chapter 3, that are merely too long to include in the
sections. The answers to these problems are not included in the answer section. Because of the
difficulty of these problems, they should be used sparingly outside of honors courses.

The textual material is fairly standard in Chapters 1, 2, 3, 5, and 6, and somewhat nonstandard in
Chapters 4, 7, and 8. The last section of Chapter 6, marked by an asterisk, is somewhat difficult and
may be skipped; it is not used later. Chapter 4 is not essential to the subject of number theory, but in my
experience students find magic squares very interesting and the material
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will give them good practice using congruences. Nevertheless, if time is very critical in a course, the
last half (or even all) of the chapter could be skipped.

Chapter 7 presents continued fractions from a geometric viewpoint. While not the standard treatment, I
believe it to be clearer and it certainly leads more naturally to higher dimensional generalizations such
as the Jacobi algorithm than does the usual approach. The natural means for treating this topic is two-
dimensional vectors. The necessary material on vectors is in Appendix A, but most students will have
had it in calculus courses. The last two sections of Chapter 7 treat the expansion of quadratic
irrationalities and their connection with the Fermat-Pell equation. These two sections, both marked by
an asterisk, use 2 x 2 matrices and might well be skipped in the average course. The only material used
from these sections later is the fact that the infinitely many solutions to the Fermat-Pell equation imply
that there are infinitely many units in a real quadratic field. To cover this somewhat, it is shown in
Section 5.4 that if there is one nontrivial solution to the Fermat-Pell equation, then there are infinitely
many.

Chapter 8 treats the topic of quadratic fields. This material is designed to make the student think about
some of the "obvious" concepts that he has taken for granted earlier. It will also illustrate some of the
simplest applications of algebraic number theory to elementary number theory problems. The teacher
may wish to illustrate the material throughout by use of some particular field. The following fields, all
Euclidean, offer an ample choice of any level of complexity that the teacher may desire:

Q(V-1), Q(V-2), Q(V-3), Q(V2), Q(V3).

The law of quadratic reciprocity has been intentionally omitted. It is my belief that even for the serious
number theory student, the law of quadratic reciprocity is better taught in a second course of number
theory than a first course. After the student has worked with quadratic Diophantine equations and
quadratic fields, then he can appreciate the usefulness of the quadratic reciprocity law. As a result, only
in the miscellaneous exercises of Chapter 8 is the law even mentioned and there the student can prove
many special cases using the theory of quadratic fields.

A bibliography is included at the end of the book. References to specific results given in the book may
be found here. This will be mostly of interest to specialists. I for one become very frustrated when I find
some advanced result that I had not known stated in an elementary book without reference. I hope this
will not happen to readers here.

Finally, I wish to express my thanks to Prof. D. J. Lewis, Prof. James Schafer, my wife Betty, Miss
Ramelle Myers, and the unnamed reviewers
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who read earlier versions of the book. Their comments have greatly improved the final result.

HAROLD M. STARK
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS
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Chapter 1

AN INTRODUCTION TO NUMBER THEORY

1.1. An Introduction to Number Theory

The theory of numbers is concerned with properties of numbers, particu-
larly properties of the integers, 0, +1, +2, +3,.... It may be asked: What
properties can numbers have? After all, they may be added, subtracted,
multiplied, and divided ; what else is there? It is the purpose of this section
toillustrate some of the answers to this question. Many of the results indicated
here will be proved in later chapters, but proofs of some are too advanced
and cannot be included here.

One main subdivision of elementary number theory deals with multi-
plicative properties of integers. Fundamental to questions in this area is the
notion of divisibility.

Definition. If a and b are integers, a # 0, and if there is an integer ¢ such
that b = ac, then we say that a divides b, and we write alb. If a does not
divide b, then we write a tb.

Thus, although £ = 1.4, the quotient is not an integer and thus 547. Other
examples are

218, 1]42, 3|(=6), —7l49, 9480, —6431.

Certain positive integers, suchas 1, 2, 3, 13,and 10 006 721," have the property
that the only positive integers that divide them are themselves and 1. These
numbers were called the prime numbers by the ancients, but more and more
it has become advantageous to exclude 1 from this list, and thus the modern
definition of a prime number is

' The usual commas that separate thousands and millions are too confusing. It is
customary not to use them.
1
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Definition. An integer greater than one whose only positive divisors are
itself and one is called a prime number. An integer greater than one which
is not a prime number is said to be composite.

All sorts of questions immediately spring to mind. How many primes are
there? The answer is infinitely many. This means that there is no last prime.
Or, alternatively, it can be thought of as meaning that there are more than
| million primes, more than 1 billion primes, more than 1 trillion primes,
in fact, more primes than any number that you care to name. This fact was
known by Euclid over 2000 years ago, and his proof will be given shortly.
What is the nth prime? For any given n, this question can always be answered
in a finite amount of time. For example, the 664 999th prime is 10 006 721.2
But in the sense of giving a formula which yields the nth prime for all n, this
has never been done. Is there a formula which at least gives only primes? No
one has ever found one. Centuries ago, it was believed that if n is an integer,
then

n* +n + 41

is always a prime number. [tis for n = 0, 1, 2,3, ..., 39, but it fails to be for
n = 40 and it fails obviously for n = 41 (there is a factor of 41 in both cases).
We will see in Chapter 3 that no polynomial can give only primes. Fermat
(1601-1665) conjectured that the numbers

F,=2"+1

are primes for all integers n > 0. He checked this for n =0, 1, 2, 3,4 and found
that the corresponding F,’s, 3, 5, 17, 257, and 65 537, are indeed primes. Since

Fs = 4294967 297,

Fermat did not attempt to verify his conjecture any further. Fermat un-
doubtedly had good reasons for believing his conjecture, nevertheless, he
was wrong. Euler (1707-1783) found in 1732 that 641|F5 and hence Fj5 is
composite. Since then it has been discovered that several additional F,’s are
composite. In fact, no F, with n > 4 has yet been proved to be a prime.
How many primes are there less than a given integer n? Legendre (1752

2] fear that this was done the hard way. All the primes from 2 to 10 006 721 were listed
by D. N. Lehmer in 1914—before the days of computers (see the bibliography at the
end of the book). There were 664 999 of them. Why did he stop here rather than at
the next prime? Lehmer defined | to be a prime also, and thus, in his terminology, he
stopped at the 665 000th prime. His goal was to list all primes from | to 10 000 000 ;
at 5000 primes per page, he reached the last prime under 10 000 000 on page 133 and
then simply completed the page.
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1833) and, after him, Gauss (1777-1855) conjectured that the answer is
approximately

n

L +]'
2 3 n

The fact that the ratio of this number to the number of primes less than n gets
nearer and nearer 1 as n gets larger is known as the prime number theorem.
It was first proved in 1896 by Hadamard (1865-1963)and de la Vallée Poussin
(1866-1962), and even today its proof is far from simple.

How can we tell whether or not a given integer is a prime? There is no
general method, although it is sometimes possible to find a small factor of
the given number by trial and error and hence show that it is composite.
For example, is

32589 158 477 190 044 731

a prime number? How would you tell? There are some general methods for
answering this question theoretically, but they are completely unsuited for
practical computations. For example, we will show in Chapter 3 that a
number n is a prime if and only if

nll(n — O + 1].

For example, 5|(4! + 1) and hence is a prime, while 64(5! + 1) and hence
is not a prime. This is an interesting property of primes, but it is totally
useless for verifying that the 20-digit number above is or is not a prime.

Another main category in number theory is given by additive questions.
The most familiar question of this type to the reader is the problem of writing
a perfect square as the sum of two perfect squares. Because of the Pythagorean
theorem, this problem is equivalent to the problem of finding right triangles
with integral sides. The reader has probably seen the 3,4,5 and 5,12,13 right
triangles. With the exception of these triangles and triangles similar to them
[such as twice the 3,4,5 triangle (6,8,10) or five times the 5,12,13 triangle
(25,60,65)], the reader may not have seen others. But there are others. Both
the 3,4,5 triangle and the 5,12,13 triangles have the hypotenuse being one
unit longer than one of the sides. If the sides are ¢ and b and the hypotenuse
is b + 1, then by the Pythagorean theorem

a? + b2 =(b+ 1)?
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or

(1) a? = (b + 1)* — b?
=b2+2b+1—b?
=2b+ 1.

Since 2b + 1 is an odd number, that is, since 2¥(2b + 1) (since b + % is not
an integer), we see that a? is an odd number and so we put

2) a=2n+1.
Then we see from (1) that
(3) _at -1
b="

_@n+ 12 -1

B 2

_4n* +4n+1 -1

B 2

= 2n? + 2n.

In equations (2) and (3), we have a and b in terms of n. Thus, we expect that
2n+1), 2n*+2n), @n*+2n+1)

is a Pythagorean triplet; that is, 2n + 1 and 2n? + 2n are the sides of a right
triangle and 2n* + 2n + 1 is the hypotenuse. This may be easily checked by
merely verifying that

(2n + 1) + (2n? + 2n)? = (2n? 4+ 2n + 1)?
for all n. When n = 1 and n = 2, we get the 3,4,5 triangles and the 5,12,13
triangles. When n = 3, n = 4, and n = 5, we get the triangles
7,24,25; 9,4041; 11,60,61.

We may continue plugging in different values of n as long as we desire. As
the 8,15,17 triangle shows, this method does not give all right triangles with
integral sides, but it does go far beyond the old standards 3,4,5 and 5,12,13.
The problem of finding all right triangles with integral sides boils down to
finding all solutions to the equation

x? 4+ 2 = 22

in positive integers. Such an equation is called a Diophantine equation in
honor of the Greek mathematician Diophantus (4th century A.D.?), who
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first investigated the problem of finding integral solutions to equations,
particularly the cases with more unknowns than equations. In Chapter 5
we will study some of the simpler methods of solving such equations, but we
will also run into them in other chapters.

Fermat generalized the Pythagorean equation by looking at the equation

(4) X"y =2

where n is an integer greater than or equal to 3. In the margin of his copy of
the works of Diophantus, Fermat stated that he had a truly wondrous proof
of the fact that, unlike the case of n = 2, when n > 3, equation (4) has no
solutions where x, y, and z are all nonzero integers. Unfortunately, Fermat
continued, the margin was not big enough to hold the proof. This result has
come to be known as Fermat’s last theorem, or Fermat’s great theorem (as
opposed to Fermat’s lesser theorem, which we find in Chapter 3). It is
unfortunate that Fermat left no hints as to his method of proof because no
one has been able to prove his theorem since! In fact, it is one of the two or
three most famous unsolved mathematical problems today.® The question
naturally arises: Did Fermat really have a proof of his theorem? There are
those who argue that Fermat did have a proof of his theorem and note that
the wisdom of the ancients far exceeded that of the mere mortal man of today.
Then there are the more cynical who believe that Fermat must have made
one of the mistakes that many after him have made. This question is as much
fun to argue as any philosophic or theologic question, and, like them, there
are no facts to contradict one’s arguments.

As another example of an additive question, we have Goldbach’s conjec-
ture made in 1742 that every even integer greater than 2 is the sum of two
primes. For example,

4=2+2 6=3+4+3 8=5+4+3 20=13+7, 100 =83 + 17.

This conjecture has been verified by Pipping for all even numbers less than
100 000, but no one has been able to prove it.

In this book, we will prove many seemingly obvious theorems. Perhaps a
word is in order on why we bother. There are two reasons why something is
obvious: First, it may sound very reasonable and, second, it may have been

3 Before the reader attempts to solve this problem, he should finish reading the book.
If he still insists on solving the problem after that, I request that he not send his solution
to me, as [ am not qualified to judge the correctness of so difficult a work. The reader
should be warned that thousands of people have submitted solutions to this problem
and none has been anywhere near correct. An announcement by an amateur that he
has solved the problem is greeted with the same skepticism as an announcement by
a sailor that he has seen a sea serpent.
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verified so often by personal experience that it no longer seems questionable
(itis hard to doubt something that has worked a million times in a row). How
obvious should something be before we accept it as true? A few examples
may help answer this question.

Let us investigate the conjecture thatany odd number which is not divisible
by either 3 or 5 is a prime. The odd numbers less than 20 which are not
divisible by 3 or 5 are 7, 11, 13, 17, and 19, all primes. The odd numbers
between 20 and 40 not divisible by 3 or 5are 23, 29, 31, and 37, also all primes.
Perhaps we should believe the conjecture and try to prove it. But wait! In
the next set of 20, we get the numbers 41, 43,47, 49, 53, and 59,and 49 = 7-7
is not a prime. Thus the conjecture is false and having seen a counterexample,
it is easy to construct others. The remaining counterexamples less than 100
are 77 = 7-11 and 91 = 7- 13. Perhaps, then, we should not accept some-
thing as true until it has been verified past 100.

Twenty-five centuries ago, the Chinese gave what they believed was an
infallible rule for determining primality. Their rule stated that n is a prime
if and only if

n(2" — 2).

For example, 2”7 — 2 = 126 = 7- 18 and 7 is a prime, while 2'° — 2 = 1022,
which is not divisible by the composite number 10. It is doubtful that the
Chinese had any reason to believe their rule other than the fact that it seemed
to work. Owing to the complexity of the number 2" — 2 when nis large, it is
hard to believe that the Chinese verified their rule for very many n. And yet
the Chinese rule was believed to be true for more than 23 centuries, and it
has been verified for all n up to 300. Further, Fermat showed that the Chinese
were correct when nis a prime. But in spite of all this, the Chinese were wrong.
It can be shown that their rule fails for n = 341 = 11 - 31. I would not advise
checking this statement, since 2**' — 2 has 103 digits. Besides, results of
Fermat, Euler, and Gauss, presented in Chapter 3, will make it trivial that

341)(2341 — 2).

Let us examine another conjecture. By the number of prime factors of an
integer n, we mean the number of factors (whether distinct from each other
or not) when n is written as a product of primes. For example, 12 =223
has three prime factors by this definition, and 16 = 2-2-2- 2 has four. We
shall say that 1 has zero prime factors and that a prime has one. Let O, be
the number of positive integers less than or equal to » which have an odd
number of prime factors and let E, be the number of positive integers less
than or equal to n which have an even number of prime factors. For example,
O,, = 7(thenumbers being 2, 3, 5,7, 8, 11,and 12)and E,, = 5(the numbers
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being 1, 4, 6,9, and 10). A product of two primes is clearly greater than either
of its prime factors. A product of four primes has smaller divisors which are
products of three primes, and so on. Thus, in some sense, the numbers which
are products of an odd number of primes come earlier in the sequence of
positive integers than the numbers which are products of an even number of
primes. This leads us to suspect that there are at least as many numbers less
than n with an odd number of prime factors as there are numbers with an
even number of prime factors. In other words, we have the conjecture that

0, >E,.

This is known as the Polya conjecture, after G. Polya (1887-), who in 1919
conjectured that if n > 2, then O, > E, (O, = 0 and E, = 1, but after this,
we come to the primes before we come to the product of two primes). The
Polya conjecture sounds reasonable without even experimentally verifying
it. But since the Polya conjecture had many important consequences in
advanced number theory, it was checked experimentally and it was found
to be true for the first million positive integers. Is it any wonder, then, that
the majority of mathematicians were confident that the Polya conjecture
would eventually be proved? But they were wrong. In 1958, Haselgrove
showed that there are infinitely many n for which

0, < E,.

The smallest known counterexample to Polya’s conjecture was found by
R. S. Lehman in 1962, and it is

n = 906 180 359,

at which
0,=E, - 1.

Perhaps the word ““obvious” is beginning to lose its meaning, but to make
sure, we give one last example. Wesee that x = 1, y = Osatisfies the Diophan-
tine equation
(5 x? — 1141y* = 1.

We might ask, does equation (5) have any solution in positive integers? We
see from (5) that

X = \ﬂ]41y2 + 1.
Thus the question is: Is 1141y* + 1 ever a perfect square? This may be
checked experimentally. It turns out that the answer is no for all positive y

less than 1 million. In view of the previous example, perhaps we should
experiment further. The answer is still no for all y less than 1 trillion (1 million
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million, or 10'?). We go overboard and check all y up to 1 trillion trillion
(10%%). Again the answer is, no. No one in his right mind would really believe

that there could be a positive y such that \/1141y* + 1is an integer if there
is no such yless than 1 trillion trillion. But there is. In fact, there are infinitely
many of them, the smallest among them having 26 digits. If you still do not
believe this, we will prove in Chapter 7 that there are infinitely many such y
and give a method whereby you may start from scratch and find the smallest
positive value of y in less than an hour (with a desk calculator).

In later chapters, we will discuss two widely believed conjectures of Euler,
both of which have been shown to be false within the last ten years. Thus it
is that the mathematician refuses to accept a statement as true, no matter
how plausible it is, until it is proved. In this vein, it is interesting to note that
we have used an obvious result in two of the examples above. How do we
know that every factorization of n into primes has the same number of prime
factors? How do we know that if two primes greater than 5 are multiplied,
the result will not be divisible by 3 or 5? Maybe it has never occurred to you
to ask these questions, but the chances are that your beliefs are based on
experience with rather small numbers. In view of the previous examples, we
will prove these rather obvious statements in Chapter 2 as part of a general
theorem on factorization. In Chapter 8, we will reexamine these “‘obvious”
concepts from a more advanced standpoint.

There are other questions that may be asked about numbers that are
neither multiplicative nor additive in character. For example, consider the
number 7 = 3.14159.... Pause at this point and think of a fraction which
you associate with . I suspect that you have thought of the number twenty-
two sevenths. Assuming this to be true, let us ask why you associate this
particular fraction with z. The first answer is that you were taught it in
school. But why did your teachers pick %2*? Presumably, the answer is that
42 is close to m and it is easier to work with 32 than 3.14159.... But why
sevenths? If it is ease of operation that we desire, 33 is close to m and by far
easier to use. Were your teachers being sadistic in making you always divide
by 7 rather than by 10, or is %* somehow a better representative of z than 34?
The answer is that 27 is a far better approximation to z than 3}. In fact, in a
sense to be explained in Chapter 7,2 is one of the best approximations to 7
by fractions.

How close can we expect a fraction with denominator g to come to a given
real number «? We can partially answer this question here. We consider all
the fractions with denominator ¢:

9 9’ q 9 9a°d4d4d4dqgqg "
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Either « is one of these fractions or a lies between two consecutive fractions.
In either case, there are two consecutive numerators n and n + 1 such that

n+1
P

<a<

1S

Now the following theorem becomes reasonable.

Theorem 1.1. Given a real number « and a positive integer ¢, there is an
integer p such that

—Tl< —.
a _2q

p‘l

Proof. As noted above, there is an integer »n such that

n n+1
- <La< -.
q q
Therefore, either
n<a<n+1(_n+l 1
9 4 24 q 2q
or
n+ 1 1 n+1
——=<a<
q 2q q
In the first case, « is within 1/2q of n/q and we take p = n;in the second case,
a is within 1/2q of (n + 1)/q and we take p = n + 1. A

Theorem [.1 is the best that we can do for an arbitrary denominator.
For example, with denominator g = 2, we can come no closer to 2 than the
1/2¢ of the theorem. With the denominator g = 10, we come slightly closer
tom (m — 35| = .04159 .. ) than the 55 = .05 guaranteed by the theorem. On
the other hand, with the denominator ¢ = 7, we come considerably closer

to 7 than the 4 = .0714 ... of the theorem, since
In — 22 .= 0012... .

In other words, 27 is roughly .0714.../.0012 ... =~ 60 times closer to n than
what is guaranteed by Theorem 1.1. Thus it appears that for certain excep-
tional denominators, we can find far better fractional approximations to real

4 We use the symbol A to signify that we have reached the end of a proof.
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numbers than what is guaranteed by Theorem 1.1. Let us illustrate the
difference between the ordinary denominator and the exceptional denomin-
ator. The closest approximation to = with denominator 117 is given by the
fraction 368/117 (it barely satisfies Theorem 1.1). The closest approximation
to z with denominator 113 is given by the fraction 355/113. Suppose we wish
to compute the circumference of the earth from its diameter. If we use 368/117
in place of 7, we will make an error of about 294 miles, while if we use 355/113
in place of n, we will make an error of only 1135 feet! In Chapter 7 we will
learn how to find the exceptional fractional approximations to a real number.

Let us completely change the subject. In 1693, De la Loubére gave a rule
for inserting the numbers 1, 2, ..., n? intoann x nsquare (n odd) so that the
sums of the numbers of any two rows or columns are the same (this square
array is commonly called a magic square). We illustrate the Loubére method
in Figure 1.1 with a 5 x 5 square. Place 1 anywhere in the square and then
move diagonally upward to the right, inserting the numbers 2, 3, and 4 as
you go. We pretend that the 5 x 5 squares on the boundary of our square
are copies of the original. Thus when 4 is put in the lower-right-hand corner
of the square above, we should also put 4 in the lower-right-hand corner of
the original square. We always move diagonally upward when possible.

13]20]22] 4| 6
1211921 I 73A 70 12 7 12119 —;l 3 110
s as 2 o T s s 252 9 |
24 | | 87_175~’l7~ 24 24 | 1 8 [ 15 117
5—77 **1417 lg 7;37 5 51714 71677 2?
767 l; i) 22 47 76 13 12022 4
- " S 00 EN O N E

Figure 1.1. The constructive process and the finished square. The numbers in any row
or column add up to 65.



INTRODUCTION 11

When we are blocked by a previous entry, as in going from 5 to 6 or from
10 to 11, we drop down one square instead and then continue diagonally
upward from there. In Chapter 4 we will apply the theory of Chapter 3 to
show that the Loubére method does what it claims to do for all odd n. In
the meantime, the reader may enjoy trying it out for other odd n.

1.2. Some Elementary Properties of Divisibility

In this section we derive some of the most used properties of divisibility
that do not depend on the factorization of a number into primes. Throughout
the rest of the book, unless otherwise mentioned, the small Roman letters
a, b, ¢, ... (with the possible exception of x, y, z) will stand for integers. The
letter p, except in Chapter 7, will be reserved for primes. Small Greek letters
o, f, 7, ... will stand for real numbers, except in Chapter 8, where they may
be complex as well.

Number theory could be deduced from a small set of axioms but we shall
not take this approach here. There are in particular two basic facts about
integers that we shall use throughout the book. The first states that any
nonempty set of positive integers contains a smallest member. Known as
the well-ordering principle, this property of integers will be used implicitly
time and again (for example, it is used in the paragraphs immediately before
and after the statement of Theorem 1.5). The second fact is known as the
division algorithm (logically, it is a consequence of the well-ordering principle).
It states that if ¢ and b are positive integers, then there are unique integers
g and r such that

a =bq+r, 0<r<b.

It is called an algorithm because the ordinary method of long division of u
by b produces the quotient ¢ and remainder r.

Theorem 1.2. Ifq, b, d, r, s are integers, d # 0, and d|a, d|b, then d|(ra + sb).
It follows that d|(a + b), d|{(u — b), d|ru.

Proof. By definition, there are integers ¢ and fsuch that

a = de, b =df.
Thus
ra + sb

rde + sdf
dre + sf),
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where re + sfisalso an integer. Therefore, d|(ra + sb). The special cases have
r=s=1,r=1ands= —1,b=uaands = 0, respectively. A

Theorem 1.3. If q, b, ¢ are integers, a # 0, b # 0 and q|b, b|c, then dlc.

Proof. By definition, there are integers d and e such that
b = ad, ¢ = be.
Therefore,
¢ = ade = a(de)

and hence d]c. A

Theorem 1.4. Ifa, b, and k are integers, a # 0, k # 0, then ¢|b if and only

if ak|bk.

Proof. If a|b, then there is an integer ¢ such that

b=uac.

Therefore,

bk = (ak)c
and hence ak|bk. Conversely, if ak|bk, then there is an integer ¢ such that

bk = (ak)c.
Thus, since k # 0,
b =uac

and hence alb. A

As an example of the application of Theorem 1.3, let n be an integer
greater than | and let m be the smallest divisor of n which is greater than |
(this is n itself if n is a prime). Then m is a prime. For if m were composite, we
would have an integer k, smaller than m but greater than 1, which divides m.
Thus by Theorem 1.3, k|n, since k|m and m|n. Thus k is a divisor of n which is
greater than 1 and smaller than the smallest such divisor, m. This is a con-
tradiction and hence m is a prime. By the way, it follows from this that every
positive integer greater than | has a prime divisor.

Theorem 1.5. If n is an integer greater than 1, then either n is a prime or
n is a finite product of primes.
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Proof. 1f the theorem is false, then there are composite numbers which are
not representable as a product of a finite number of primes. Let N be the
smallest such number. Thus if | < n < N, the theorem is true for n. Let p
be a prime divisor of N. Since N is composite,

N
Il <— < N.
p

But this means that the theorem is true for N/p and hence there are primes
Pi>P2»---, Pi such that

N
— = D1P2 - Dk-
p

Therefore,

N =ppip; - D«

is a product of a finite number of primes also. This is a contradiction and
thus the theorem is true for all n. A
Let us illustrate Theorem 1.2 by giving Euclid’s proof of a classic result.

Theorem 1.6. There are infinitely many primes.

Proof. Suppose to the contrary that there are only k primes, p, p2, ..., P«
and that all other integers greater than | are composite. Let

n=ppy-p+1

and let p be a prime divisor of n (it is possible that p = n). Then p is one of
the numbers py, p,, ..., p, and hence p|(p,p; - - - p«)- Since p|n, Theorem 1.2
tells us that

plin — pipa--- pd).
But

n—ppy - p=1
and pt1 since p > 1. This is a contradiction and hence there are infinitely

many primes. A
In the examples

3=2+1, 7=2-3+1, 31=2-3-5+1,
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1 plus the product of the first k primes is a prime (k = 1, 2, 3). The obvious
conjecture that this always occurs is false. The first counterexample is

2-3-5-7-11-13 + 1 = 30031 = 59509,

which is composite.

EXERCISES

1. Show thatifa # 0, then |0 and ala.

2. Show that if d # 0, d|a, then d|(—a) and —d|a.

3. What properties of integers do you use to show that if n > 1, then nf17?
4. Show that if a|b and b|a, then eithera = bora = —b.

5. List all the divisors of 12.

6. List all the numbers which divide both 24 and 36 (compare your answer

with your answer to the previous problem).

MISCELLANEOUS EXERCISES

L.

Show that if n is composite, then there exists a prime p < \/;l such that
pln. (Hint : Consider what happens when two numbers greater than \/;
are multiplied.)

Use the idea of problem 1 to test the numbers 91, 103, and 343 as to
whether they are prime or composite.

. Write down the numbers from 1 to 40. Starting with 2 - 2, cross out every

second number: 4, 6, 8, 10, . ... Starting with 2 - 3, cross out every third
number: 6,9, 12, 15, . ... Starting with 2 - 5, cross out every fifth number :
10, 15, 20, .... Use the result of problem 1 to show that the numbers
that are not crossed out (except for 1) are exactly the set of primes less
than 40.

Generalize the result of problem 3 to show how you would find all primes
less than or equal to a given integer n. Show that in using this method,
it is not necessary to know the primes less than \/ﬁ beforehand, since
after the multiples of the jth prime have been crossed out, the next
number remaining after the jth prime is the (j + 1)st prime. This method
is known as the Sieve of Eratosthenes, and its generalizations have been
used to construct the modern tables of primes. (For example, the 168
primes less than 1000 will produce all the primes less than 1 000 000.)

. We will constantly be talking about the smallest (or first) integer of a set

of positive integers. Show that there is no such thing as the smallest (or
first) positive rational number.
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. Starting with 1 in the lower-left-hand corner, construct the 3 x 3 and

4 x 4 squares given by the Loubére method. Verify that all rows and
columns have the sum 15 in the 3 x 3 square and that all the columns
of the 4 x 4 square have the sum 34 but that the rows add up to 32 and
36.

. Show that if ptn for all primes p < \3/;1, then n is either a prime or a

product of two primes.

. Let p and ¢ be two consecutive odd members of the sequence of primes

2,3,5,7,11,.... Show that every factorization of p + ¢ into primes
involves at least three (not necessarily distinct) primes. As an example,
7+11=2-3-3

. Note that

15% = 225,352 = 1225,85% = 7225, 1052 = 11025

(the underlined portions are for emphasis only). Find a rule for squaring
an integer ending in 5 and prove that it works.

Note that
1777 1 4 28 5 7
749550 5 SITXI™4 28 5 7 (repeats)
5
21
2 0
1 4
10
4 2
4 0
2 8
2 5
35
35

7

The modification of the usual division process for .7/5 shown above
gives %5 exactly. Use this illustration as a guide to find a simplified
method for evaluating the decimal expansion of a/b when0 < a < band
b ends in the digit 9. Illustrate your method with {5 and prove that your
method always works.



Chapter 2

THE EUCLIDEAN ALGORITHM AND
UNIQUE FACTORIZATION

2.1. The Euclidean Algorithm

Consider the set of all common divisors of the two integers a and b. If
a = b = 0, then the set of common divisors of ¢ and b is the set of all nonzero
integers. If not both a and b are 0, then there are only a finite number of
common divisors of @ and b, one of which is always 1, and thus there will be
a greatest member of this set and it will be positive.

Definition. Let a and b be integers, not both zero. Let d be the largest
number in the set of common divisors of ¢ and b. Then we call d the
greatest common divisor of a and b and we write

d = (a,b).
For example,

64 =2 G3S5=1, (-93)=3, (-6,—-4=2 40 =4, (55 =5.
Since any divisor of an integer n is also a divisor of —n, we see thatifa and b
are not both zero,

(a,b) = (lal.|b]).

Hence we will restrict ourselves at first to finding the greatest common
divisor of positive integers.
Let us illustrate the general process by an example. Let

d = (54,21).
By Theorem 1.2, d also divides

12=54-2-21
16
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and thus is a common divisor of 12 and 21. By Theorem 1.2, d divides
9=21-12,

and therefore d is a common divisor of 9 and 12. By Theorem 1.2 again, d
divides

3=12-09.
Since 3|9, we stop at this point. Now that we know that d|3, we know that

d < 3. We turn these equations around and using Theorem 1.2 again each
time see that 3 divides

12=3+09,
and then 3 divides
21 =9 + 12,
and then 3 divides
54 =12+ 2-21.

Thus 3|21, 3|54, and (21, 54) = d < 3. Therefore,
(21,54) = 3.

We find also that we may use the above equations to write 3 as a linear
combination of 21 and 54. Using each equation successively we get

12=54-2.21,
9=21—-12=21—(54—2-21)=3-21 — 54,
3=12-9=(54—2-21)—(3-21 —54)=2-54 — 5-21.

Everything done above is perfectly general. Let d_, and d_,; be positive
integers. The ordinary division algorithm for

d-
d_,

gives a quotient ¢, and remainder d, such that
d_2=u0d71+d0, 0Sd0<d71.
If d, is O we stop ; otherwise the division algorithm for

d_,

do



18 NUMBER THEORY

gives a quotient ¢, and remainder d, such that
d y=aydy +dy, 0<d, <d,.

If d, # 0, we continue onward, getting, successively,

do = azdl + dz, 0 < dz < dls
dl =a3d2 +d3, OSd3 <d2,
dk—Z =akdk71 +dk, OSdk<dk*ls

where it is assumed that d; # 0 if j < k. Since
d_, >dy>d  >dy>dy > >d_y >d, =0,

it is clear that, sooner or later, some d; will equal zero and, in fact, since
each d; is at least one smaller than the d; before it, we will come toa d; = 0
with j < d_,. (Actually, it will happen much sooner than j=d | — |;
we are concerned here only with the fact that it does happen.) If d,,, = 0,
then

di_ | = ayy dy.
Thus, we may put these equations together as
d_ 5, =aed_| + dy, 0<dy<d_,
d_i=aydy +dy, 0<d <dg,
(1) :
di—2 = aydi—1 + di, 0<d <d,,
di 1 = ay41dy-
Theorem 2.1. If d_, and d | are positive integers and d, is found from
the process of equations (1), then
(d_s,d_y) = d,.

Further, we may find integers r and s in a systematic way from equations
(1) such that

rd_, +sd_; = d,.
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Proof. Letd = (d_,,d_,). When we put (1) in the form
do=d_; —apd_y,
dy =d_; — aydy,

d2 = do - azdl,

dy = di—2 — apdy
we see from Theorem 1.2 that d|d,, and then d|d,, d|d,, ..., d|d,. Therefore,
(2) d < d,.

On the other hand, by starting at the last of equations (1) and working up,
we see from Theorem 1.2 that in succession,

dildi—y ddd -2, .. diddy, diddy, dildo, dild - dild .

Thus d, is a common divisor of d _ ; and d _ , and, therefore, by the definition
of the greatest common divisor,

d, < d.
This, combined with equation (2), says that
dy =d,
as desired.
It is most convenient to give an inductive proof of the last part of the

theorem. The main idea is that if we can express d,_, and d,. ; as combina-
tions of d_, and d _ |, then we may use the equation

dj = d’,z —_ ade71

to express d; as a combination of d _, and d _, also. The actual induction is
somewhat awkward since d;_, and d;_, are involved in getting the result
for d;. We may put things in the usual form for induction by complicating
our induction hypothesis. Let S, be the statement: There are integers r,, _,,
Sp_2, Fa—1-and s, such that

dyz3 =71y 2d 3 +5,-2d 4,

dpy =rpyd_3 + s, 4d_ .
Our goal is to prove that S, , ; is true since the second part of S, , | says that
there are integers r, and s, such that

dk = rkd_z + Skd~l'
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First, we note that
d_,=1-d ,+0-d_,
d—l = O'd_2 + l'd_l,

and thus S, is true. We now prove thatif 0 < n < kand S, is true, then S, |
is true. Suppose that S, is true so that there are integers r,_ 5, S,—,, r,— |, and
S, ; such that

du-2 =r,_2d_5 + s,-2d_y,
(3)

d" 1 =r",ld 2 +S",1d 1-
We see from (1) that

dn = dn* 2 = andnfl’
and if we substitute (3) into this, we get
dy = (rn_2d 5 + 5, 2d () —ar,d_; +s,_1d_))

(rn—z — ayry l)d—z + (Sn 2 a,,s,,,l)d 1
= r"d_z + S"d_l,

where we have put
Fon =Fp—2 — Qpl'p— 1y,
Sy =Sy_2 — AySy- 1.
Thus we have integers r,_ ¢, s, , r,, and s, such that
dyy =ryd-y +5,4d_y,
dy=rd 5, +sd_q,
which is the statement S, ;. Thus S, , , follows from S, Since S, is true, S,

follows from S,, and then S, follows from S|, S; from S,, ..., until finally
Si+1 follows from §,. A

Definition. The use of equations (1) for finding the greatest common
divisor is called the Euclidean algorithm.

Euclid, of course, did not use algebraic manipulations but rather stated the
whole process geometrically. We will say more about this in Chapter 7. In
actual practice, when we wish to write d, in terms of d_, and d_, it is
advantageous to proceed from the bottom of equations (1) rather than from
the top.
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As another example of the Euclidean algorithm, let us calculate (53, 77)
and express it as a linear combination of 53 and 77. We see that

77 =1-53 + 24,

53=2-24 45,
24=4-5+4,
S=1-4+1,
4=4.1,
and thus
(53,77) = 1.

Working backward we see that

1=5-1-4
=5-1-(24-4-5=55-1.24
—5.(53—-2.24)—1-24=5-53— 11.24
=5.53—11-(77—=1-53) = 1653 — 11-77.

In the example above, 53 and 77 have 1 as their greatest common divisor
and hence they have no common factors other than 1 and — 1. Such a fact
is sufficiently important to give it a name.

Definition. Let a and b be integers, not both zero. If
(a.b) =1,
then we say that ¢ and b are relatively prime.
Another way of putting this is to say that a and b are relatively prime if and
only if 1 and — [ are their only common divisors.
The result on linear combinations will be very useful both here and later,

and thus we will extend it to all integers and not just positive integers.

Theorem 2.2. Let a and b be integers, not both zero. Then there exist
integers r and s such that

ar + bs = (a,b).
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Proof. We take the cases of neither a and b are zero and one of a and b is
zero separately. Suppose that b = 0. Then

(a,0) = (la|, 0) = |al
and
a(+1) + 0(0) = |al,

where the + lisusedifa > 0and — lisused ifa < 0.Inlike manner,ifa = 0,
then

0(0) + b(+1) = [b] = (0, b),

where the +1isusedif b > 0and —1lisusedifb < 0.

We may now restrict our attention to the case that neither a nor b is zero
and, in this case, both |a| and |b| are positive. By Theorem 2.1, there are
integers r and s such that

ral + slbl = (al, |b]) = (a,b).

Since

a= xlal, b= %bl,
we see that

(£r)a + (£s)b = (a,b),
for an appropriate choice of signs. A

As an example, we saw earlier that

2-54 4+ (—5)-21 =3 =(54,21)
and thus
(—2)-(=54) + (=5)-21 =3 = (—54,21),
2-54 +5.(=21) =3 =(54,-21),
(—2)-(—54) +5-(=21) = 3 = (—54,-21).

One result of Theorem 2.2 is the following.

Theorem 2.3. Let d = (a,b). Then n is a common divisor of a and b if and
only if n|d.

Proof. 1f n|d, then since d|a and d|b, Theorem 1.3 says that n|a and n|b, and
hence any divisor of d is a divisor of a and b. Conversely, if nja and n|b, then
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by Theorem 1.2, n divides
ar + bs = d,

where r and s are the integers given by Theorem 2.2. Thus a common divisor
of a and b is also a divisor of d. A

This result is a much more useful property of the greatest common divisor
than its definition as the largest of the common divisors. We will now
assemble several of the other most used properties of greatest common
divisors.

Theorem 2.4. Let (a,b) = d and let k be an arbitrary integer. Then

(@) (a, b + ka) = (a,b).
(b) (ak,bk) = |k|(a,b) (k #0).

ab
(C) (—1,‘—1) =1.

Proof. 1f n|a, n|b, then by Theorem 1.2, n|(b + ka). Thus any divisor of a
and b is a divisor of a and b + ka. Conversely, if nla, n|(b + ka), then
n|[(b + ka) — ka], and thus n is a common divisor of a and b. Hence the set
of divisors of a and b is also the set of divisors of a and b + ka, and therefore
the greatest member of this set is the greatest common divisor ofaand b + ka
as well as the greatest common divisor of a and b. This proves (a). Let

(ak,bk) = n,

and, for the moment, let k be positive. Since d|a, d|b, we see that dk|ak, dk|bk
and thus, by Theorem 2.3,

dk|n.
Thus there is a positive integer m such that
(4) (ak, bk) = dkm.
As a result,
dmk|ak, dmk|bk .

It follows from Theorem 1.4 that

dmia, dm|b,
then from Theorem 2.3 that

dmld -1,
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and finally from Theorem 1.4 again that
m|l.
Thus m = +1 and since m > 0, m = 1. Equation (4) is thus
(ak,bk) = dk = k(a,b) = |k|(a,b),
which proves (b) when k > 0. Now ifk < 0, then —k = |k| > 0, and therefore
(ak,bk) = (—ak,—bk) = (alk|,blk|) = |k|(a.b),
and thus (b) is true. Last, since d > 0, it follows from (b) that

b
d = (ab) = %3)

d d

d.f’d.é) =d

which yields, after dividing both sides by d,

. A
d’d]’
We may also define the greatest common divisor of more than two integers.

We will use this concept for three integers in Chapter 5, and so we present
here the necessary details and leave further results to the problems.

Definition. If a, b, and ¢ are integers, not all zero, and d is the largest of
the common divisors of a, b, and ¢, then we say that d is the greatest common
divisor of a, b, and ¢ and we write

d = (a,b,c).

Since 1|a, 1]b, 1|c, we see that (a,b,c) is positive. As an example,

(4.8,10) = 2.

Theorem 2.5. If (a,b,c) = d, then

—_
ISV RS
]S
S Rs)
S —
Il
—_

Proof. Let
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so that n > 1. Thus

nl- n

b l¢
vd’ & "JJ

and, by Theorem 1.4,
dnla, dn|b, dn|c.

Hence dn is a common divisor of ¢, b, and ¢ and hence is less than or equal
to the greatest common divisor of a4, b, and ¢:

dn < d.
We divide this by d and find that
n<l.

Hence n = 1. A
We note that it is possible to have

(a,bc) =1

even though no two of the numbers a, b, and ¢ are relatively prime. For
example,

(6,10,15) = 1
even though

(6,100=2, (615 =3, (10,15 = 5.

Definition. Let a,,d,,...,a, be nonzero integers. We say that these
numbers are pairwise relatively prime if the greatest common divisor of
each pair of these integers is 1.

For example, the integers 4, 15, and 77 are pairwise relatively prime since
4,15) = (4,77) = (15,77) = 1,
while the integers 4, 15, 77, and 91 are not pairwise relatively prinfe since

(77.91) = 7.

EXERCISES
1. Show that if a, b, ¢ are pairwise relatively prime, then

(a,b,c) = 1.
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2. Use the Euclidean algorithm to find the greatest common divisor of
(@) 77 and 91, (b) 182 and 442, and (c) 2311 and 3701.

. Express (17,37) as a linear combination of 17 and 37.

. Express (399,703) as a linear combination of 399 and 703.

. Find integers r and s such that 547r + 632s = 1.

. Find integers r and s such that 398r + 600s = 2.

. Find integers r and s such that 922r + 2163s = 7.

. Are there integers r and s such that 1841r + 3647s = 1? Why?

. Show that if there is no prime p such that pla, p|b, then

*

*

Neliie JBbN e WLV I NIV

(ab)=1.

10. In the proof of Theorem 2.1, why did we restrict the proof that S, implies
S,+1t00<n<k?

11. Are the integers 101, 209, 283, and 341 pairwise relatively prime?

12. Show that if p is a prime and a an integer, then either (a,p) = 1 or
(a.p) = p.

13. Use Theorem 2.4(c) to show that a fraction m/n can always be reduced to
lowest terms.

14. Let o; = d;_,/d;_,. Show that the Euclidean algorithm of equation (1)
takes the form

1

a():ao+—, a0<a0<a0+1,
oy
|

o0 =a, +—, a, <ada; <a; + 1,
®2

oy = dy + 5 ak<ak<ak+1,
O+ 1

X1 = Ap+1-

2.2. The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic, otherwise known as the unique
factorization theorem, states that if you and I independently write an integer
greater than | as a product of primes, we will get the same result except for
the order in which the primes are written in the two products. This theorem
will be used constantly throughout the rest of the book and well deserves its
name. There are times that the following milder-sounding theorems will
suffice in the applications; they are not really milder since they will be used
to prove the fundamental theorem later in this section.
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Theorem 2.6. If (n,a) = 1 and n|ab, then n|b.

Proof. Since (n,a) = 1, by Theorem 2.2, there are integers r and s such that
nr+as = 1.
Thus
nrb + abs = b.

Since n|n and nlab, n|[n(rb) + (ab)s], which is to say n|b. A

Theorem 2.7. If (a,m,n) = 1 (note that this is true whenever two of the

numbers a, m, n are relatively prime), then

(a,mn) = (a,m) - (a,n).

In particular, if (a,m) = (a,n) = 1, then (a,mn) = 1.

Proof. Let

d = (a,mn), d, = (a,m), d, = (a,n).

We then wish to show that d = d,d,. By Theorem 2.2, there are integers
r, s, t,and u such that

ar + ms =d,, at + nu = d,.
Therefore,
(ar + ms)(at + nu) =dd,;
that is,
a(art + rnu + mst) + mn(su) = dd,.

It follows from the definition of d and Theorem 1.2 that d|d,d,. Hence
%) d <dd,.
In order to prove the opposite inequality, we need to prove that
(dy,dy) = 1.

This is done as follows. Let (d,,d,) = ¢ > 1. Then e|d,, e|d, and thus by the
definition of d, and d, and by Theorem 2.3, ¢|a, ¢|m, ¢|n. Thus ¢ is a common
divisor of a, m, n, and if ¢ > 1, this contradicts the fact that (¢, m, n) = 1.
Hence ¢ = 1, as desired. But now, note that d|a, d,|m (by definition) and
thus, by Theorem 2.3, d,|d. In like manner, d,|a, d,|n, and thus d,|d. But this



28 NUMBER THEORY

may be written d,|d, - (d/d,). Since (d,,d,) = 1, it follows from Theorem 2.6
that d,|(d/d,), and then it follows from Theorem 1.4 that d,d,|d. Therefore,

did, < d,

and comparing this with (5) we see that d = d,d,. A
The next theorem is usually proved by using Theorem 2.6, but it is some-
what simpler to use Theorem 2.7.

Theorem 2.8. If pis a prime and p|(a,a, - - - a;), then for some j, | <j <k,
pla;. As a special case, if pla*, then pla.

Proof. We note that the only positive divisors of p are | and p. If ¢ is an
arbitrary integer, then since (a,p)|p, we see that (a,p) = | or (a,p) = p. In the
second case pla. Thus if ¢ is an integer such that pta, then

(pa)=1.
Now suppose that p divides none of the numbers a,, a5, ..., a,. Then
(pa,) = L(pay) = 1,....(pa) = 1.
By Theorem 2.7,
(p.aay) = 1.
By Theorem 2.7, again,
(p.ajazas) = 1.
After the (k — 1)st application of Theorem 2.7, we find that
(paay---a;) = 1.
But this contradicts the fact that p > | isa common divisor of pandaa, - - «,.

Hence p divides one of the numbers a,,q,, ..., q,, as desired. A

Theorem 2.9. (The Fundamental Theorem of Arithmetic, or the Unique
Factorization Theorem for Positive Integers). Suppose that n > 1 and

hR=Dpp2P3 Pr = q142 "y,

where p,, p2,.- 5P 41,92, ---,q, are primes. Then r = s and the two
factorizations of n are the same apart from the order of the factors.

Proof. Suppose that the theorem is false. Then the theorem is false for
certain values of n, and we will let N be the smallest of these. Thus we shall
assume that the theorem is true for all integers n between | and N but that
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the theorem is false for n = N. We will show that this leads to a contradiction.
Suppose that

N=pip2- P = 9192 4s»
where p;, P2, ... Prs 415425 - - -, 45 are primes.
The theorem is clearly true for primes and thus N must be composite and
hence r > 2, s = 2. Since the order of the factors is not important, we may
assume that they have been written so that

p=p, 1<j<r—1.

(6) .
qs = ¢, | <j<s—1.

We will first show that p, = g,. If this is false, then either p, > g, or g, > p,.
We will show here that p, > ¢, is false; the proof that g, > p, is false is
identical and in fact may be given from our proof by interchanging the
letters p and g and interchanging r and s. If p, > ¢, then, by (6),

P> qj, l<j<s.
Therefore, p,tq;forany of the g;’s. But by Theorem 2.8, this is a contradiction,
since
Pr|(‘I1‘I2 o qs)a
the product being N. Thus the inequality p, > g, is false and, in like manner,
q, > p, is false. Hence
pr = qs’
and therefore

N
(7 — =DPP2Pr-1 T 4192 Gy

r

Since r > 2, s > 2, there is at least one prime in each of the factorizations of
N/p, in (7) and thus

N
l <—<N.

pr
As a result, the theorem holds for n = N/p, and therefore
r—1l=s-1,

and the factorization ¢,q,---q,—, of N/p, is the same factorization as
piP2- - Pr- 1 €xcept possibly for the order of the factors. It follows that r = s
and the two factorizations of N as p,p,---p, and q,q, - - - q, are the same
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except possibly for the order of the factors. Thus the theorem is true for N
and this contradicts the definition of N. Thus the theorem is true for all
n> 1. A

As the example

shows, the fundamental theorem would be false if 1 were a prime. This is one
reason why [ is not considered a prime. As we see from the examples,

18 =2-3.3, 36 =2-2-3-3, 64=2.2.2.2.2.2,

it frequently happens that certain primes occur more than once in the
factorization of a composite number. In such cases, it is customary to use
exponents,

18 =232, 36 = 2232, 64 = 2°,
and in general we will write
n = pi'py - pi
When n is written this way, we will always assume that the numbers
Pis>P2s-- ., Di are distinct primes and, unless otherwise stated, that a; > 0,

a, > 0,...,a, > 0. The unique factorization theorem in this form says
that if

n=pi'py - P =414y - qur
(where the q; are also primes and the b; are positive), then k = m and, in
some order, the primes p,, p,,...,p; and ¢, 45, ..., q,, are the same with
the corresponding exponents being equal also. The following result is an

immediate corollary of either Theorem 2.8 or 2.9, but it is one which will be
used time and again.

Theorem 2.10. Suppose that the factorization of n into primes is given as
n=pi'py - pi

and that p is a prime such that p|n. Then for some jin therange 1 < j < k,
P = Dj.

Proof. By Theorem 2.8, p|p, for some j. Since p > | and the only positive
divisors of p; are 1 and p;, it must be that p = p;. A
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We may easily find the greatest common divisor of two (or more) integers
if we know their factorizations into primes. For example, from the factoriza-
tions

2600 =2-2-2-5-5-13
10140 =2-2-3-5-13-13,
it is easy to see that
(2600, 10 140) = 2-2-5-13 = 260,
particularly if we write the above factorizations as
2600 =(2-2-5-13)-2-5,
10140 =(2-2-5-13)-3-13.
This process is perfectly general; its only disadvantage for large numbers is
that you must know how they factor into primes.
Theorem 2.11. Suppose that
n=pip2- D419z 9i,
m=pipy--prifa -t

where py, P2, -5 P> 4154925 ---»4i> 1> F2,- . ., F;are primes such that none
of the ¢’s are equal to any of the r’s. (If k = 0, we interpret the product
piP2 - - pr as | and similarly for i = 0 and j = 0.) Then

(n,m) = p1p2 - pi-
Proof. Let
d =pip2- - P

Then d|n, djm and hence by Theorem 2.3, d|(n,m). Thus there is a positive
integer a such that

(nm) = da.
Therefore,
daldg,q;---q;,  daldriry---r;

and hence, by Theorem 1.4,

alq192 - g, ajryfy - r;.
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Our goal is to prove thata = 1.Ifa > 1, then thereis a prime p which divides
a, and it must also divide q,4, ---g; and ryr, - r;. By Theorem 2.10, p is

one of the g,,’s and is also one of the r,,’s. Thus the primes q,, ..., g; have
a prime in common with the primes ry,...,r;, which is contrary to the
hypothesis of the theorem. Hence a = 1 and therefore

(n,m) = d. A
EXERCISES

In problems 1-6, find the greatest common divisor of m and n by means of

Theorem 2.11 and check your result by using the Euclidean algorithm. You

may assume that the factorizations given of m and n are factorizations into

primes.

m=143 =11-13,n = 187 = 11-17.

m=231=3-7-11,n =561 =3-11-17.

m=>588=2:2-3-7-7,n=7546 =2-7-7-7-11.

m=119790 =2.3-3-5-11-11-11,n = 42900 = 2-2-3-5-5-11-13.

. m = 830407 = 823-1009, n = 919 199 = 911 - 1009.

m = 9797 = 97-101,n = 14507 = 89 - 163.

. What can you conclude about the four numbers 1456 813, 1468 823,
1476221, and 1488391 given that 1456813 1488391 = 1468 823 -
1 476 2217 Justify your conclusions.

8. Suppose that

N wvAE LN

n=pi'ps---p  m=pipP--pie
(Any two positive integers may be written this way with the same

primes if we allow zero exponents.) If min{a,b} means the smaller of a
and b (or their common value if they are equal), show that

(n,m) = pTin(an.bl)p;\in(az.bzl e pkmin(ak.bk)'
9. Suppose that
— — b1 b
n=py'py---pis  m=pi'py--pis,

where zero exponents are allowed. Prove that n|m if and only if

a; Sbl,az sz,...,akak.

*10. Show that Theorem 2.6 can be proved from Theorem 2.9 without use
of the material of Section 2.1.
11. Show that Theorem 2.8 can be proved from Theorem 2.9.
12. Show that log,, 2 is irrational. (Hint : Let log,, 2 = n/m and show that
2m = 10")
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13. Show that if p is a prime and p|a”, then p"|a".

14. How many zeros are there at the end of 100!?

15. Give an example of four positive integers such that any three of them
have a common divisor greater than 1, although only + 1 divide all
four of them.

2.3. Applications of the Fundamental Theorem

This is actually a misleading section heading since it is usually Theorems
2.6, 2.7, and 2.8 that are used in applications rather than Theorem 2.9. But
as none of these theorems could be true without unique factorization, the
section heading accurately describes the fact that the results in this section
depend on the unique factorization property of the positive integers. Our
first application will be an application of the fundamental theorem itself.
Although it seems very mild, Theorem 2.12 will be of great importance in
Chapter 5.

Theorem 2.12. Suppose that ¢ and b are relatively prime positive integers
and

ab = "
Then there are positive integers d and ¢ such that
a=d" b=¢"

Proof. If a = 1, then we may letd = 1, ¢ = ¢;if b = 1, then we may let
d = ¢,e = 1. Thus we may restrict our attention to the case thata > 1,h > 1.
Since (a.b) = 1, the prime factors of ¢ and b are distinct. Thus we may set

a=pi'ps---p’ = Pt prYS,
where p,.p,,...,p.+, are distinct primes, r > 1, s > 1. Suppose that the
prime decomposition of ¢ is given by

b, by

= ‘1’1’"12 k-
Then

nby, nby nby

pi'ps - P = 4V 'q; 4
By Theorem 2.9, k = r + s, the primes q; are the same as the primes p,

(except for order), and the corresponding exponents are the same. Thus we
may renumber the ¢’s so that

q4; = p,, l<j<r+s
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and then

Hence

a = (pyps - piry,

b = (piphis - phio) A

The reader may have learned that \/:2 is irrational. This is a special case
of the converse of a far more general result,

Theorem 2.13. Suppose that ¢ and n are positive integers and \"/a 1s
rational. Then \"/Zz is an integer.

Proof. Since \"/a is rational (and positive), there are positive integers r
and s such that

We may even assume that (r,s) = 1, since we may otherwise divide the
numerator and denominator by (r,s). We will show that s = 1. If s > 1,
then there is a prime p which divides s and then p divides

as" = r".

By Theorem 2.8, p also divides r, and this contradicts the fact that (r,s) = 1.
Hence s = 1 and therefore

Ja=r,
an integer. A

As an example of this theorem, since | < \/2 < 2, \/2 is not an integer
and hence not rational. As another example, since

23 < 10 < 33,

it follows that

2<\m<3,

and thus \m is not an integer. Therefore, 3/% is irrational.

The nextapplication isactually only a preliminary result which is necessary
in the proof of Theorem 2.15 in the next section (such a result is sometimes
called a lemma).
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Theorem 2.14. Suppose that m and n are relatively prime positive integers.
If d is positive and d|mn, then there are unique positive integers d; and d,
such that

d = dles dllnl, dzln.
Conversely, if d,|m and d,|n, then d,d,|mn.
Proof. Suppose that d|mn. We first show that there exists at least one such
pair of integers d,, d,. Let
(8) dy =(dm), dy=(dn).

Since dlmn, we see that (d,mn) = d. Further, since (m,n) = 1, we may apply
Theorem 2.7 to get
d = (dmn) = (dm)-(dn) = d,d,.
By definition, d,|m, d,|n, and thus d, and d, have the desired properties.
Now suppose that d) and d) are positive integers with the properties that
d = did,, dilm, d|n.

Then we see from the definitions of d, and d, as greatest common divisors
in (8) that

9 dy, <d,, d, <d,
and therefore
(10) d’ld’2 < d1d2 = d.

The only way that equality may hold in (10) is that equality holds in both of
(9) and hence

d!lzdl, d’zzdz.

This proves that the representation of d in the form of the theorem is unique.
The converse follows from the definition of divisibility. A

EXERCISES
1. Prove that \‘/3 is irrational.
2. Prove that /5 is irrational.
3. Prove thatifn > 2, then \"/; is irrational. (Hint : Show thatifn > 2, then
2" > n)
*4. Verify that ﬁ + ﬁ is a root of the equation

x*—10x2+1=0.
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Use the methods in the proof of Theorem 2.13 to show that the only

possible rational roots of this equation are x = 1 and x = — I, neither
of which are roots. Conclude that the roots of this equation are all
irrational.

5. The following numbers were once offered as a counterexample to
Theorem 2.14: m = 2%-3-5,n = 7-11,d = 11 (the claim being that, as
may be seen from the factorizations, there is no value of ¢, that will do).
Is this really a counterexample?

2.4. Multiplicative Functions

Before we actually give a definition of multiplicative functions, we will
present two examples.

Definition. Let n be a positive integer. We let d(a) be the number of positive
integers which divide n (including 1 and » itself). We let 6(n) be the sum
of the positive divisors of n (including 1 and n).

In Figure 2.1, we have evaluated d(n) and o(n) for »n in the range 1 to 20.

n|12345 67 8 91011 1213141516 17 1819 20

dn)| 12232 42 4 3 4 2 6 2 4 4526 26

an)| 1 347612815 1318 12 28 14 24 24 31 18 39 20 42

Figure 2.1

Itis clear that d(n) = 2ifand only if n is a prime and likewise a(n) = n + 1
ifand only if n is a prime. We should not expect a simple formula for either
d(n) or a(n), since then we could immediately decide from it whether or not
a given integer is a prime. We will see shortly, however, that if we already
know the factorization of n into primes, then there are simple formulas for
d(n) and a(n).

We see from the figure that there are times that d(nm) [or a(mn)] can be
determined from d(n) and d(m) [or o(m) and o(n)] by multiplication. For
example,

d2-5) = 4 =d(2)-d(5),

d3-4) = 6 =d(3)-d4),
d(2-9) = 39 = ¢(2) - 6(9),
a(4-5) =42 = a(4)- a(5).
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On the other hand, this cannot always be done, as the following examples
illustrate ;

d3-6)= 6% 8 =d((3) do),
a(4-4) = 31 # 49 = d(4)- 9(4).
In the above examples, we have had success in saying that
d(mn) = d(m) - d(n),

o(mn) = a(m)- o(n),

in every case that (m;n) = 1. We will prove this to be true shortly. These
examples motivate the following definition.

Definition. If the function f(n) is defined for all positive integers n, then
we say that f(n) is multiplicative if for all pairs of relatively prime positive
integers m and n,

S(mn) = f(m)- f(n).

If this is true for all pairs of positive integers, relatively prime or not, then
we say that f(n) is completely multiplicative.

As the examples above show, the concept of completely multiplicative
functions eliminates some functions of interest that the broader concept of
multiplicative function is able to consider. Examples of completely multipli-
cative functions are f(n) = n and the constant function, f(n) = 1. The
usefulness of a multiplicative function is that if we know what it is at prime
powers, then we know what it is for all positive integers by multiplication;
for example, if d(n) is multiplicative, then

d(126) = d(2-32-7) = d(2)-d(3%)-d(7) = 2-3-2 = 12.

It is usually, but not always, easy to evaluate multiplicative functions at
prime powers, and this leads to general formulas for all integers. The methods
of showing that d(n) and o(n) are multiplicative are virtually identical. As a
result, we will prove a more general result which will be useful later and
from which we may instantly show that d(n) and o(n) are multiplicative.

It may be useful to review the summation notation before continuing. The
reader is no doubt familiar with the notation

> /00,
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which is defined fora < b as

™M=

SfW=f@+fa+ )+ fla+2)+---+ f(b—1)+ f(b).

n=a

It frequently happens that we do not wish to add f(n) for all n in an interval,
but that we wish to add f(n) for all n restricted in a certain manner. In this
case, the restriction is usually put under the summation sign. For example,

Y =12+ /@) + 1)

neven

Y o) =f(5) + S (7

P prime

17 4
Y S = 1)+ [ + fO) + f(16) = T f(m?)

perfect
square

19
2 Sy =) +12)+SB) + &) + f5) + f(6) + [(10) + f(12) + f(15).

n|60

This last type of sum occurs particularly often in number theory. In such
cases, it is usual to drop the range of summation and, if necessary, add a new
restriction under the summation sign. For example, the last sum above may
be written

Y S

n|60,
1<n<19

It is always assumed in this notation that we are speaking of only the positive
divisors of an integer. Thus the preceding sum may just as well be written

and this is always done by mathematicians. Other examples of this notation
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are

Sy =f(1) + f2) + f(5) + f(10),

410

2 fd)=f1)+ 2+ f3)+ f(4) + [(6),

2,
<12

h-n.

> f(d)g( ) S(1)g(10) + f(2)g(5) + f(5)g(2) + f(10)g(1),

d|10

Y. Sfldgldy) = f(1)g(10) + f(2)g(5) + f(5)g(2) + f(10)g(1),

|10,
did;=10
Y fldidy)=f(1-1) + f(1-2) + f(1-5) + f(1-10)
dy|3,
al1o + /G- D+ fB-2+ fB-5 + f(3-10),
2 Sd)y = f(1) + f(2) + f(5) + f(10) + f(3) + f(6) + f(15)
d|30

+ f(30).

Notice that the third and fourth sums are the same, as are the fifth and sixth.
We are going to prove that if f(n) is multiplicative, then so is the function
g(n) defined by

gn) =Y f(d)

d|n

Let us first illustrate the proof with a numerical example. We will show that
8(30) = g(3)g(10).

g3)210) = ¥ fd)- Y f(da)

di[3 d,[10
=[/()+ fON-[/MD) + f) + f5) + f(10)]
=f(MfM) + f()fQR) + f()S5) + /(1) f(10)

+ /G (D) + B2+ fB)f(5) + fB)f(10)
=f0-1)+ f{1-2) + f(1-5) + f(1-10)

+ /G- D+ f3-2)+ f3-5+ f(3-10)
=f() + f2) + f(5) + f10) + f(3) + f(6) + f(15) + f(30)
. f(30)

4|30

£(30).
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In the summation notation, this string of equalities may be written

g(3)g(10) = dZH f(dll'dlzm f(dy)

= ) fld)f(dy)
o

= dZH f(dd>)
dz|10

=Y fld
d|30

= g(30).

This is exactly what will be done in general.

Theorem 2.15. If f(n) is multiplicative, and g(n) is defined as
gn) =) f(d),

d|n

then g(n) is multiplicative.

Proof. Suppose that n > 0, m > 0, (m,;n) = 1. Our goal is to show that

g(m)g(n) = g(mn).
We begin by finding g(m)g(n),

(11 gmg(n) = 3 f(d\) 3 f(dy)
dy|m

da|n

= ) fd)f(dy).

dqm
dy|n

If dy|m, dy|n, and n and m have no common factors greater than 1, it follows
that d, and d, have no common factors greater than 1, or, in other words,
(d,,d,) = 1. Thus by the definition of multiplicative functions, if d, and d,
are positive and d,|m, d,|n, then

f(dl)f(dz) = f(dldz)-

Thus the expression in (11) becomes

(12) gmign) = 3 f(didy).

dym
dain

By Theorem 2.14, the set of numbers d,d,, where d, and d, are positive
divisors of m and n, is exactly the set of positive divisors of mn, and no
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duplications occur. Therefore, we may put (12) in the form

glmg(n) = . f(d)

d|mn
g(mn),

and hence g(n) is multiplicative. A
As immediate consequences of Theorem 2.15, we have

Theorem 2.16. The functions d(n) and a(n) are multiplicative.
Proof. The function f(n) = | is multiplicative and

din) =} f(d),

d|n

41

since the sum on the right adds | as many times as there are positive divisors

of n. By Theorem 2.15, d(n) is multiplicative.
The function f(n) = n is multiplicative and

a(n) = f(d).

dln

Hence o(n) is also multiplicative. A

The facts that d(n) and o(n) are multiplicative enable us to evaluate them

in terms of the factorization of n into primes.

Theorem 2.17. If the factorization of n into primes is given by
n = pi'p% - pi¥,
then
dn)y = (a, + Da, + -~ (a + 1)
and
a(n) = (1 + py +pi+ -+ pI)1 + py + p3+ -+ pP)--
(L4 e+ pi+ o+ PR
prot—pptt -1t -
p—1 p—1 =1

Proof. If pis a prime and a > 1, then the divisors of p“ are 1, p, p%, . ..

Hence

dp") = a + |
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and

op)=1+p+p'+--+p

pa+ 1
==—7"
The last equality utilized the formula for the sum of a finite number of terms
of a geometric progression (first term equals 1, and common ratio equals p).
The result of the theorem now follows from the multiplicative properties of

d(n) and o(n) derived in Theorem 2.16. A
As an example, the factorization of 20 into primes is
20 = 22.5!
and hence

d20) =2+ (1 + 1) =6,
23—1) 52 — 1) 724
|

a(20) = (2 | T

These results are of course the same as those listed in Figure 2.1.

The function a(n) has been an object of interest since before the time of
Euclid. The ancients considered the function

on)—n= 3 d,
d|n
d<n

or, in words, the sum of the positive divisors of n other than n itself. This
function is not multiplicative, as the example
6(6) —6=6+#1-1=(a(2) — 2)-(a(3) — 3)
shows. This is the reason that a(n) is usually investigated today rather than
a(n) — n. Certain integers n (such as n = 6) have the property that
o(n) —n=n.

The ancients believed that such numbers had mystical properties and called
them perfect numbers. A somewhat larger example than 6 of a perfect number
is 211212 (11213 1) 1 which has 6751 digits. Euler knew the form of all even
perfect numbers. He showed that an even perfect number must be of the
following form (Euclid had shown such numbers to be perfect):

n=2r"12r - 1),

! As this is being written, 2''*'? — 1 is the largest number that has been proved to be
a prime.
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where both p and (27 — 1) are primes. To this day, it is not known if there are
infinitely many perfect numbers, nor is it known if there are any odd perfect
numbers. It is known that there are no odd perfect numbers less than 1029,
but in view of the examples in Section 1.1, this should not be regarded as
conclusive evidence that there are no odd perfect numbers.

EXERCISES

l.
2.

w

9.*

10.*

Verify that 6, 28, and 496 are perfect numbers.
The Greeks defined the numbers m and n to be amicable if

olm) — m = n, on) — n=m.

The amicable numbers 220 and 284 were known to Pythagoras.
Verify that they are amicable.

Find a(n) — nforn = 1184 and n = 1210.

Find o(n) — n for n = 12496 = 2*-11-71, n = 14288 = 2*.19-47,
n=15472=2%.967, n=14536=2%.23.79, and n = 14264 =
23.1783. These numbers were found by Poulet in 1918.

Prove thatif 2 — 1 is a prime, then

n=2""12r-1)
is a perfect number.

Find an integer n less than or equal to 70 such that d(n) = 12.
Find an integer n such that

a(n) = 546.

. Let o,(n) be the sum of the squares of the positive divisors of n. Show

that o,(n) is multiplicative and show that if

- a (73 a
n = py'p3* .- - pi,

then
i P g
: pi—1  p3—1 pi — 1

Show that if n is a perfect square, then o(n)|o,(n) (see problem 8). Give
an example of an integer n such that a(n)fa,(n).

We seem to have done more in problem 5 than Euler’s result says that
we can do since we did not require that p be a prime number. Prove
that if 2" — 11sa prime, then n is a prime. (Hint : If n is composite, show
2" — 1 may be factored.)
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2.5. Linear Diophantine Equations

With this title, we could investigate 20 linear equations in 37 unknowns,
but we will stick to one equation in two unknowns. Our aim is to either find
all integers x and y which satisfy the equation

ax + by = ¢
(a, b, and ¢ are integers) or show that there are none.

Theorem 2.18. Suppose that a and b are nonzero integers and d = (a,b).
If d¥¢, then the equation

(13) ax + by = ¢

has no integral solutions. If d|¢, then the equation has infinitely many
solutions. [f x = x,, y = y, is one integral solution to (13), then all integral
solutions to (13) are given by

x=x0+12
0 d’
(14)
— v t(l
y Yo d’

where t is an integer.
Proof. Since d|a, d|b, it follows that d|(ax + by) for all integers x and y.
Thus if
ax + by = ¢,

then d|¢. Hence (13) has no solutions if d f¢. Suppose now that d|c. Then there
is an integer e such that

¢ = de.
By Theorem 2.2, there are integers r and s such that
ar + bs = d.
Hence
a(re) + b(se) = de = ¢
and (13) has an integral solution. If

(15) axo + by = ¢,
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then

X +tb
a —_—
°T

a
+ b(yo — [Z = dXyp + byo =q,

and hence (13) has infinitely many solutions, among them being the in-
finitely many given in (14).

It remains to show that every solution of (13) can be put in the form of (14).
Suppose that x and y are integers which satisfy (13). If we subtract (15) from
(13), we get

alx — xo) + by — yo) =0

or
a b
(16) J(x — Xo) = _E(y = Yo)-
Thus
bla b a
*‘2 E(x — Xo), but 'J, —(}) 1

by Theorem 2.4, and hence, by Theorem 2.6,

d (x — xo).

Thus there is an integer ¢ such that

17 —té
(17) X = Xo = Lo,

If we substitute this in (16), we get

b
= —E(y = Yo)

ISURIR o

a
—t
d
and hence
y—JYo = 4

From this and (17), we get
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and thus every solution to (13) may be written in the form of (14). A

When a and b are small, it is frequently possible to find a solution to (13)
by inspection. Otherwise the Euclidean algorithm gives us a systematic
method of finding a particular solution to (13) (assuming that d|c). For
example, suppose that we wish to solve the equation

(18) 12x + 25y = 331.

We first use the Euclidean algorithm to express (12,25) in terms of 12 and 25.
Since

25=2-12+ 1,

12=12-1,
we see that (12,25) = 1 and

—-2-124+1.25=1.
If we multiply this through by 331, we find
12(—662) + 25(331) = 331
and thus
X = —662, y = 331

is a particular solution to (18). The general solution to (18) is then given as

(19) x = —662 + 25  y=2331—12t.

It is interesting to note that (18) has a unique solution in nonnegative
integers. If x > 0, then, by (19),

—662 + 25t >0
25t = 662

t> %82 =26+ 3%,

w|

If y > 0, then by (19),
331 - 12t >0
331 > 12t
27T+ G =3 >t.
Thus if x > 0 and y > 0, then

26 +42 <t <27+ 1%,
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and the only integer in this range is t = 27. If we put ¢t = 27 into (19), then
we get
x = 13, y=17

as the only solution to (18) in nonnegative integers.

The fact that some Diophantine equations have unique solutions in
positive integers leads to the possibility of being able to completely solve
certain “word problems’ without having as many equations available as
unknowns. For example, consider the following problem: Jimmy bought a
certain number of regular-size comic books at 12 cents apiece and a certain
number of “‘giant”-size comic books at 25 cents apiece. If Jimmy spent
$3.31 altogether, how many comic books did he buy? If we let x be the number
ofregular size and y the number of giant-size comic books that Jimmy bought,
then x and y are related by equation (18). Clearly, x and y are restricted to
being nonnegative integers by the problem and thus, as was shown above,
x = 13, y = 7. Therefore Jimmy bought 20 comic books altogether.

There is one last item that we will discuss here since it sometimes causes
confusion. Since x = 13, y = 7 is a solution to (18), it follows from Theorem
2.18 that all solutions to (18) can be written in the form

x =13 + 25T,
y= 7- 12T

This seems to contradict what we derived in (19), but it does not. Equations
(19) and (20) are connected by the relation

T=1t-—27.

(20)

For example, the solution x = 38, y = —5 to (18) is given by ¢t = 28 in
(19) and T =1 in (20). The form of the final answer depends on which
particular solution is used in expressing it. There are infinitely many ways
of writing the solution to (18). The reader should remember this if his answer
to some of the exercises differs from the answer given at the back of the book.

EXERCISES
In problems 1-6, either find all integral solutions to the given equation or
show that it has none.

l. 3x + 2y = |
3x — 2y =1.
17x + 14y = 4.
33x — 12y = 9.

91x + 221y = 15.
401x + 503y = 20.

S kW
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In problems 7-10, find all solutions in positive integers to the given equation
or show that there are none.

7. 23x — Ty = 1.

8 9x + 11y = 79.

9. 39x + 47y = 4151.

10. 5x + 6y = 50. (You may check your answer by looking at the stars on
an American flag.)

11. Harold and Betty find that their house is 33 of a Harold length plus 33
of a Betty length long. They find this hard to remember and would much
prefer integral Harold and Betty lengths. Can this be done if Harold
is 6 feet tall and Betty is 5 feet tall?

12. A grocer sells a 1-gallon container of milk for 79 cents and a -gallon
container of milk for 41 cents. At the end of the day he sold $63.58
worth of milk. How many 1-gallon and 3-gallon containers did he sell?

*13. A teacher has been designing a word problem for a number theory
examination. Thus far he has decided on the following outline for his
problem. A furniture dealer used to sell 49 black-and-white TV sets a
week at $70 apiece with a profit of 30 percent on each set. Since the
advent of color TV, black-and-white TV sets became cheaper at the
wholesale level, but the dealer has kept his price at $70 a set and now
he makes 40 percent on each set. However, in order to capture a greater
share of the color-TV market, the-dealer has reduced his profit on
color-TV sets to 19 percent per set, which enables him to sell color-TV
sets for only $300 apiece. The dealer’s total sales in TV sets last week
was d dollars. How did his profits last week compare with the days
before color TV?

The teacher desires to have the answer come out that the dealer
made $13 more with his present arrangements. What value of d should
he use in his problem to get the desired answer? With this value of d,
will the teacher’s students get a unique answer?

MISCELLANEQOUS EXERCISES
1. Show that (a,b,c) = ((a,b),c) provided that a and b are not both 0.
2. Show that if m and n are positive, then

mn

(m.n)
is the least common multiple of m and n (that is, the smallest positive
integer divisible by both m and n).
3. Show that if
ax" +a, 1 x"" "+ +a;x+a,=0,
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where ay,4a,,...,a, are integers and x = r/s is rational, (r,s) = 1, then
sla, and rlag. (In applications, it must be remembered that r/s may be
negative.) In particular, show that if ¢, = 1 and x is rational, then x is
an integer.

. Ifax? + bx + ¢ = 0, then, as is well known,

_ —b+ /b? — dac
B 2a '

X

Reconcile this with problem 3, which says that if x is rational, then the
denominator of x divides a.
. Suppose that b and ¢ are integers and that

r=—-b+./b*-c¢
1s rational. Since r is a root of the equation
x2 4+ 2bx + ¢ =0,

it follows from problem 3 that r is an integer and r|c. Prove this directly.
. Prove that (a®,b?) = (a,b)%.

. Factor the numbers 1 456 813, 1468 823, 1476221, and 1 488 391 into
primes ( and prove that you have primes when you are done), given only
that none of these numbers have any prime factors less than 35 and

1456813 - 1488391 = 1468 823-1476221.
. Show that if there are integral solutions to the equation
ax + by + cz = e,

then (a,b,c)le. Suppose that (a,b,c)le. Show that there are integers w and
z such that

(a,b)w + cz = ¢
(see problem 1). Then show that there are integers x and y such that
ax + by = (a,bw.

(This same technique works for one equation in n unknowns. Solutions
may be found—when they exist—by the analogous process of converting
the equation to n — 1 successive equations in two unknowns.)

. Use the method of problem 8 to find all the integral solutions of the
equation

323x + 391y + 437z = 10473.
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11.
12.

13.

NUMBER THEORY

Your answer should have two integer variables in it. Find all positive
solutions.

. When Mr. Smith returned from Europe in 1966, he found that he had in

his possession 35 British sixpence coins, 55 French ten-centime pieces,
and 77 Greek drachmas. Mr. Smith converted each of these coins to its
value in American money (rounded off to the nearest cent) and found
that the total was worth $5.86. How much was each coin worth in 1966
(to the nearest cent)? If the phrase “‘rounded off to the nearest cent”
were dropped from the problem, would your answer above necessarily
be near the correct coin values?

For n > 0, show that if 2" + 1 is a prime, then n is a power of 2.

We may use the unique factorization theorem to give another proof (due
to Euler) that there are infinitely many primes. Assume that there are
only finitely many primes, p,, p,,..., px. Prove that

1 1
EAllEA (5
a)= 0P1 ar= on a=0 Pk

(-3l b2

The product of the finite number of series on the left will converge
absolutely since each series is absolutely convergent. Show that the
product of the series on the left is

which diverges. Hence there are infinitely many primes.
Prove that nis a common divisor of ¢, b, and ¢ if and only if nis a divisor
of (a,b,¢).



Chapter 3

CONGRUENCES

3.1. Introduction

We may thank Gauss for the exceedingly useful concept of congruences.
Some of the results of this chapter were known earlier, but Gauss was the
first to systematically develop the subject.

Definition. Let a and b be integers and n a positive integer. If nl(a — b),
then we say that a is congruent to b modulo n, and we write

a = b(mod n).

We also write a # b(mod n) when we wish to say that a is not congruent
to b modulo n. This is equivalent to saying that n¥(a — b).

Thus by the definition of divisibility, a = b(mod n) if and only if there exists
k such that a = b + kn. For example,

37 = 25(mod 12),
-9 = 31(mod 10),
7216 = 29 216(mod 1000),
5= 7(mod 3).

Congruences occur in everyday life. Ordinary clocks and wrist watches
measure hours (mod 12). Days of the week measure days (mod 7). A car
speedometer (technically an odometer) measures mileage (mod 100 000). A
speedometer that reads 51 937 does not say (even if it has not been tampered
with) that the car has driven 51 937 miles; the fact that this is the unanimous

interpretation is a comment on today’s low-quality production methods,
which virtually ensure that no car will last 151 937 miles.

51
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The congruence sign, =, resembles an equal sign. This is particularly
appropriate since congruences possess many of the properties of ordinary
equality. As an illustration, suppose that a and b are positive integers and

a = b(mod 1000).
This says that
1000|(u — b),

or, in other words, the last three digits of (@ — b) are zeros. Thus the last
three digits of a and b must be the same. Conversely, if the last three digits
of a and b are the same, then

1000|(a — b)
and hence
a = b(mod 1000).

Therefore, two positive integers are congruent modulo 1000 if and only if
their last three digits agree. If you think about it for a minute, you will
realize that the last three digits of the sum and product of two positive
integers depends only on the last three digits of the two integers. Thus, if
a, b, ¢, and d are positive integers and

a = b(mod 1000), ¢ = d(mod 1000),
then
a + ¢ = b + dimod 1000), ac = bd(mod 1000).

We will shortly prove these rules for all moduli n.

The above result on products modulo 1000 has an amusing application.
A beginning mind reader asks a person to think of a number from 1 to 999,
multiply it by 143, and state the last three digits of the answer. Once this is
done, the mind reader promptly states the original number used and explains
that being a beginner, he needed to make the person concentrate on his
original number and hence the multiplication by 143. On the other hand,
he did not want the audience to think that he was merely able to rapidly
divide by 143, and hence he asked for only the last three digits of the answer.

The “mind reader” is of course no such thing. He simply takes the three-
digit number given to him and multiplies by 7. The last three digits of the
answer gives the original number. For instance, if 492 is the number thought
of originally, then the last three digits of 492 - 143 (= 70 356) are 356. The
product of 7 and 356 is 2492, the last three digits of which give the original
number. The only remaining question is: Why does this work?
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The trick is based on the fact that
7-143 = 1001.

If x isany three-digit integer, then 1001 x is simply two copies of x, for instance
1001 - 492 = 492 492. The whole process of multiplying by 143, taking the
last three digits and multiplying by 7, and taking the last three digits reduces
to the process of multiplying by 1001 and taking the last three digits, thus
getting the original number. In terms of congruences, we wish to find a three-,
two-, or one-digit number, x. We are told only that a given number b consists
of the last three digits of 143x. Thus we are given the congruence

143x = b(mod 1000).
Clearly,
7 = 7(mod 1000);

we may multiply these congruences together and get

7-143x = 7h(mod 1000),

or
1001x = 7b(mod 1000).
Since
1001 = 1(mod 1000)
and
x = x(mod 1000),
we see that

1001x = x(mod 1000)
and therefore
x = 7b(mod 1000).
This says that the last three digits of 7b and the last three digits of x agree.
Since x has at most three digits, the last three digits of 7b give x completely.

What the “mind-reading” trick really boils down to is solving the con-
gruence equation

143x = b(mod 1000)

for x. We will look into such problems later in the chapter.
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EXERCISES

1. True or false? 17 = 2(mod 5), 14 = —6(mod 10), and 97 = 5(mod 13).

2. Verifythat3-5 = 3-13(mod 4),7-18 = 7(—2)(mod 10),and3-4 =3-14
(mod 6).

3. Which of the following are valid? 5 = 13(mod 4), 18 = —2(mod 10), and
4 = 14(mod 6).

Problems 2 and 3 combined show that the assertion “If ab = ac(mod n),
then b = ¢(mod n)” is not always correct, even ifa £ 0.

4. Finda ifa =97mod7)and 1 <a < 7.

5. Find a if a = 32(mod 19) and 52 < a < 70.

6. Show that, modulo 1000, adding 999 to a number is the same as sub-
tracting 1.

7. Prove that if a = b(mod n), then a + ¢ = b + ¢(mod n).

8. Prove that if ¢ = b(mod n), then ac = be(mod n).

9. Why did we restrict a and b to be positive integers when we said that
“a = b(mod 1000) if and only if the last three digits of ¢ and b are the
same”’?

10. At 5p.Mm. (Eastern Standard Time), Dec. 7, 1967, how many hours had
passed (mod 24) in New York City since the beginning of the century?
11. If nis positive, show that n|¢ if and only ifa = 0(mod n).

3.2. Fundamental Properties of Congruences

Theorem 3.1. Let n be a positive integer. For all integers a,
a = a(mod n).

If @ = b(mod n), then b = a(mod n). If @ = b(mod n) and b = ¢(mod n),
then a = ¢(mod n).

Proof. Since n|0, a = a(modn) by definition. If a = b(mod n), then
nl(@ — b). Thus n divides (— I)(a — b) = (b — a) and therefore b = a(mod n).
Finally, if a = b(mod n) and b = c¢(mod n), then n|(a — b) and n|(b — o).
Therefore, n divides the number

a—-b+b-c)=a—-c

and hence a = ¢(mod n). A

Theorem 3.1 is analogous to the corresponding result for equalities. It will
be used in many ways usually without specific mention. For example,
because of Theorem 3.1, we may write something like

a=b=c=d=e¢=f(modn)
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and immediately infer that ¢ = f(mod n). As another example, this theorem
1s the justification for the inference

*“1001x = 7b(mod 1000) and 1001x = x(mod 1000);
therefore, x = 7h(mod 1000),”

which was used in Section 3.1.

Theorem 3.2. Ifu = b(mod n) and ¢ = d(mod n), then
a + ¢ =b + dimod n), a — ¢ =b — dimod n), ac = bd(mod n).

If « = b(mod n), then for all ¢,
a+c¢=b+ cmodn), a—c=b— cimodn), ac = bc(mod n).

Proof. Since
@+a-0b+d)= (a-b+ (c—4d),
@-0-b-d=@-b- (-d,
ac — bd = cla — b) + b(c — d),

the first part of the theorem follows from Theorem 1.2 and the definition of
congruence. By Theorem 3.1, ¢ = ¢(mod n) for all ¢, and thus the second part
of the theorem is a special case of the first part. A

We illustrate Theorem 3.2 by solving the following word problem. The
town of Anyplace, U.S.A., derives its principal income from fines paid by
nonresidents cited for speeding while passing through town. Mr. Storer, who
as a boy was cited for bicycling down Main Street at 100 miles an hour, finds
to his horror that he must go to Anyplace every seven months on business
starting in October. Thus it occurred that every seven months beginning in
October, Mr. Storer received a speeding citation. The first citation came in
October, the second in the following May, the third in December, and so on.
Which were the first two citations in the series that were received in January?

We assign the numbers 1,2, 3,..., 12 to the months January, February,
March, ..., December, respectively. October is assigned the number 10 and
January the number 1. Thus we wish to find x, where

10 + 7(x — 1) = I(mod 12)

(the expression on the left is not merely 10 + 7x, since the first citation,
rather than the zeroth, occurred in the tenth month of the year). Hence

(1) 7x = —2(mod 12).
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If we subtract (1) from the obviously true congruence,
12x = O(mod 12),

we get
(2} 5x = 2(mod 12).
Subtracting (2) from (1) gives
3) 2x = —4 = 8§(mod 12).
Doubling (3) gives

4x = 16 = 4(mod 12),
and if we subtract this from (2) we see that

x = —2 = 10(mod 12).
Therefore,

x =10 + 12k;

the first two positive values of x that result are x = 10 and 22. These values
satisfy the original equation and hence the first two citations received by
Mr. Storer in the month of January were the tenth and twenty-second of the
series.

The reader has possibly noticed that we had the opportunity to divide
both sides of (3) by 2. Such a division would have given us the incorrect
result

x = 4(mod 12).

The conditions under which one can divide both sides of a congruence are
given in the next theorem.

Theorem 3.3. If (a,n) = | and ab = ac(mod n), then b = c¢(mod n). More
generally, if (a,n) = d and ab = ac(mod n), then b = c(mod n/d).

Proof. Suppose that (a,n) =d and ab = ac(mod n). Then there is an
integer k such that
4) ab =ac + kn.
Let

a = n =
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these numbers are integers and
(ay.ng) = (

) _ .
We divide (4) by d and get
(5) ayb — ¢) = kn,

QU S

4
d?

and thus a|kn,. Since (a,,n,) = 1, a,|k by Theorem 2.6. Thus there is an
integer k, such that k = u,k,. It follows from (5) that

b—c¢= k|n|
or, in other words, n,|(b — ¢). Therefore, by definition,
b = ¢(mod n,). A

There is another very important fact about congruences that we shall
prove here. We first prove that any integer is congruent modulo n to exactly
one of the numbers 0,1,2,...,n — 1. We show this as follows. Given an
integer a, the division algorithm says that we may write it in the form

a=qn+r, 0<r<n.
Thus
a=qgn+r=q-0+r=r(modn)

and hence a is congruent, modulo n, to at least one of the numbers
0,1,2,...,n — 1. Suppose that r, and r, are two different integers in the
range 0, 1,...,n — | and that

a = r;(mod n), a = ry(mod n).
We may as well assume that r; > r,. We see that
r, = ry(mod n)
and hence
n|(ry — rsy).
But

O<r,—r,<(n—-1)—(0) <n;

thatis, r, — r, is a positive number less than n. As such, it cannot be divisible
by n and therefore a cannot be congruent to two different numbers in the
range 0 to n — 1. Thus each integer is congruent (mod n) to exactly one of
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the numbers 0, 1,...,n — 1, as stated. The numbers 0, 1,...,n — | give one
example of a complete system of residues (mod n).

Definition. A set of n integers, a,, d,, ..., d,, is called a complete system
of residues (or a complete residue system) (mod n) if every integer is con-
gruent (mod n) to exactly one of the a;’s.

The reason for restricting the definition to n integers is that if the set
a;,ds,,...,dq, has the properties of the definition, then n = r. This is easy to
show and is left to problems 17 and 18 at the end of the section. Note that
for a complete residue system (a)), if j # k, then a; # a,(mod n), as otherwise
a; would be congruent (mod n) to two members of the system: itself and ;.

Theorem 3.4. Any set of n consecutive integers is a complete residue
system (mod n).

Proof. We have already seen that the set 0,1,2,...,n — | 1s a complete
residue system (mod n). Let b be the first of n consecutive integers which are
then given by b,b + 1,b + 2,...,b + n — 1. Given an integer q, there is, by
the definition of a complete residue system, an integer j in the range
0 <j < n — 1 such that

a — b = j(mod n).

Therefore,

a = b + j(mod n)

and hence any integer is congruent to at least one of the numbers
b,b+ 1,...,b + n — 1. Suppose that j, and j, are different integers in the
range 0 < j < »n — 1 and there is an integer « such that

a =b + j(mod n), a = b + j,(mod n).
Then

a — b = j(mod n), a — b = j,(mod n)
and thusa — bis congruent (mod n) to two distinct members of the complete
residue system (mod n), 0, 1,2,...,n — 1, which is impossible. Hence every

integer is congruent (mod n) to exactly one of the n integers b,b + 1,...,
b + n — 1;thisset is therefore a complete system of residues (mod n). A
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The most commonly used complete systems of residues (mod n) are the
sets

0,1,2....,n—1;
1,2,3,...,n;
and when n is odd,

—1 1 _ _
n—l o=l . n—1
2 2 2 2

This last set is often given (for odd n) as the set of all integers j with the
property that

.on
Il < 5
(for example, when n = 5, the numbers jsuch that|j| < 3are —2, —1,0, 1, 2).

The fact thatthenumbers 0, 1,...,n — | give a complete system of residues
(mod n) says that any combination of sums, differences, and products of
these numbers i1s congruent (mod n) to a unique integer of the system. This
leads to the concept of arithmetic (mod n) or, as it is sometimes called,
modular arithmetic. Figures 3.1 and 3.2 show the tables for addition and
multiplication (mod 5) and (mod 6), respectively.

It follows from Theorem 3.2 that many of the usual laws of arithmetic are
valid for arithmetic (mod n). For instance, the law

alb + ¢) = ab + ac

:x\b‘ 0o 1 2 3 4 N 0 1 2 3 4
010 1{2%4} o o]0 ololo
il ls]alo Lol 23 a
sl s a0 > o la el
s l3lalol 1|2 3030 4%2
slalol ] 213 alolals 211

 utbmods)  abimods)

Figure 3.1. Arithmetic (mod 5).
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Nloo1 2 3 4 s Nloor 2 3 a4 s
0 0 | 2 3 | 4 ? ”6 0 010 0 0 0
i li 2 3 4 5 0 | 7;) | 2 3 4 5 i
2 | 2 3 4 5 0 1\ 2 0‘ 21410 2 | 4
3 7_3 4 5 ‘ 0 7 | 2 . 3 70 ""‘3‘“* 0 ] 3 V 70 177
4 | 47 5 0 i | 2 3 7 4 | OilF 4 ; 0 4 2
5 7;‘ 0 | . 27 3 47 5 0 L57 N 4 | 3 72 7117
a‘ + b(mod 6) o o ub(m_od 6)
Figure 3.2. Arithmetic (mod 6).
becomes
6) alb + ¢) = ab + ac(mod n).

The reason that this is not an utter triviality in arithmetic (mod n) is that the
numbers b + ¢, ab, ac found by the arithmetic (mod n) tables are, as likely
as not, different from the usual sums and products. Thus (6) becomes a
statement of the fact that when a(b + ¢) is reduced (mod n) in two different
ways to the complete system of residues O, I, ..., n — 1, the results are the
same. For example, by Figure 3.1,

34 + 4) = 3(3) = 4(mod 5),
3-4+3-4=2+ 2 =4(mod5).

We may put arithmetic (mod ») to another use. For example, we see in
Figure 3.1 that the numbers 02, 12,22, 32, and 42 are congruent (mod 5) to
one of the numbers 0, 1, and 4. Since the numbers 0, 1, 2, 3, and 4 give a com-
plete system of residues (mod 5), every integer squared is congruent to either
0, 1, or 4 (mod 5). Thus, although there are infinitely many perfect squares,
none of them leave the remainder 2 or 3 when divided by 5!' It is not un-
common to find people who think that five verifications surely proves the
theorem. Here it has actually happened.

The next theorem has many applications. We give a few of the more
interesting applications immediately after its proof.

! This is not to be interpreted as five factorial (there would then be a period following
the exclamation mark).
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Theorem 3.5. Let f(x) be a polynomial with integral coefficients. If
a = b(mod n), then

J(a) = f(b)(mod n).
Proof. Let

1

Sy =ax* +ap_ X'+ -+ a;x + a,,

where ag.dq. ..., a, are integers. Then by Theorem 3.2,

Kl r o+ ag=abt + g B+ - + ag(mod n);

ad + a,_a
that is,
fla) = f(b)(mod n). A
Asour firstapplication of Theorem 3.5, we show that there isno polynomial
f(x) with integral coefficients and degree >1 such that f(q) is a prime for
all integers a. Let

1

f(x)=ax* +a,_;x* '+ - + ag,

where ag,a,,...,a, are integers and a, # 0. If ¢, > 0, then f(x) > + o0 as
x — + o, while if a, <0, then f(x) > —o as x > + . Since the word
prime has been defined to mean positive, we let ¢, > 0. The same proof
would show that if ¢, < 0, we do not always get negative primes. Since
f(x) - o as x — oo, we can take the integer a sufficiently large to ensure
that

n=fl)>1.

Just because we have used the letter n does not mean that »n is not a prime.
Let j be so large that
Sla + jn) > n;

this is again possible since f(x) » 20 as x — co. But
a + jn = a(mod n)
and hence, by Theorem 3.5,
fla + jn) = f(a) = n = 0(mod n).
Thus
nlfla + jn),

and since
I <n< fla+jn),

f(a + jn)is not a prime.
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As another illustration, we show that every positive integer is congruent
to the sum of its digits (mod 9). Let n > 0 have the decimal representation

n=ua, 10" +a,_,- 10"+ +4a,-10 + aq,

where for all j, 0 < a; < 9; the numbers «,, . .., a; are thus the digits of the
number n. Let

1

fx) =ax* +a X"+ +ax +ag.

Theorem 3.5 says that
J(10) = f(1)(mod 9);
that is,
n=d,+d,_; + -+ dp(mod9),
which was to be shown. For example,
139854872=1+3+9+8+5+4+8+7+2

47=4+7=11=1+1=2mod9).

Usually one does not actually sum the digits of n as we did above, but rather
one sums them (mod 9). In particular, one may neglect any 9’s that show up
or any combination of numbers that add up to 9. In the above calculation,
for example, one may ignore the 9, the 8 and |, the 5 and 4, the 7 and 2; only
the digits 3 and 8 are left, their sum is 11 which is congruent to 2(mod 9).
It is because we may ignore 9’s that this result goes by the name ‘“*casting
out nines.”

The process of casting out nines serves as a partial check on the arithmetic
operations of addition, subtraction, and multiplication. For example, if we
wished to check the claim that

147% = 21 509

we would cast out the nines in 147 and 21 509
147=1+ 4+ 7 = 3(mod9),
147? = 32 = 0(mod 9),

but
20509 =2+ 1+5+0+9=8mod9).

Therefore, 1472 # 21 509. The method is not foolproof; casting out nines
would not have disproved the absurd claim that 1472 = 18. In fact, one out
of every nine integers is congruent to 1472(mod 9). Thus, speaking very
loosely, casting out nines will find 8 of 9 errors.
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Asa lastillustration of Theorem 3.5, we present a process that is sometimes
called *‘casting out elevens.” Let the decimal representation of a positive
integer n be

n=a.- 10" +a,_,-10 "+ - +4a,-10 + q,,

where the numbers a, ..., a, are the digits of n and are in the range 0 to 9.
Let

fxX)=ax* +a, X" '+ 4+ ax + ag.
Then
J(10) = f(—=1)(mod 11);
that is,
n=(=fa, +(—1Y"'a,_, +- +a, —as; +a, —a, +ayg(mod 11).

In words, we add the units, hundreds, ten thousands, ..., digits of n and
subtract from this the sum of the tens, thousands, hundred thousands, .. .,
digits of n. The result is congruent to n(mod 11). For example,

37147289 =9 +2+4+7) -8+ 7+ 1 + 3) = 3(mod 11).

The casting-out-elevens process also serves as a partial check on the
arithmetic operations of addition, subtraction, and multiplication. For
example, in the supposed equality

147% = 21 509,
we find that
147 =7 — 4 + 1 = 4(mod 11),
1472 =4>=16 =6 — | = 5(mod 11),
while
21509 =19 +5+2)— (0 + 1) = 4mod 11).
Thus

1477 # 21 509.

Here again the method of casting out elevens is not foolproof, but, loosely
speaking, it will discover 10 of 11 errors.

EXERCISES
1. Show that if a = b(mod n) and d|n, then a = b(mod d).
2. Show that if @ = b(mod n) and ¢ > 0, then ac = bc(mod ne).
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. Use Figure 3.2 to calculate 4-(2-5) and (4-2)-5 (mod 6).
. Construct the tables for addition and multiplication (mod 7) correspond-

ing to Figures 3.1 and 3.2.

. Show that a perfect square is congruent to either 0 or 1 (mod 4).

. Show that a perfect square is congruent to either 0, 1, or 4 (mod 8).

. Show that for all n, n* = n(mod 3).

. Show that if 5¢n, then n* = 1(mod 5).

. We did not prove that if ¢ = b(mod n), then ¢* = cb(mod n). Let ¢ = 2,

n=7a=2b=09,and show that for these values, ¢* # ¢®(mod n), thus
disproving such a result.

Show that the prime numbers split up into the three classes: 2, those
primes congruent to 1(mod 4), and those primes = 3(mod 4).

Show that every prime number is in one of the six classes:
2,3,p = l(mod 12), p = 5(mod 12), p = 7(mod 12), and p = 11(mod 12).
In 1825 Gauss gave the following construction for writing a prime
congruent to 1(mod 4) as the sum of two squares: Let p = 4k + 1 be
a prime number. Determine x (this is uniquely possible by Theorem
3.4) so that

_ (k!
X =2k

(modp),  |x < g.

Now determine y so that

y=x-(QKlmodp) Iy <?.

Gauss showed that x? + y*> = p. Verify Gauss’s result for p = 5 and
p =13

Find all the possible values of the sum of two squares (mod 4). Use your
result to show that 4926 834 923 is not the sum of two squares.

. There is reason to believe (but it has never been proved) that there are

infinitely many primes which are the sum of the squares of three different
prime numbers (the smallest example is 83 = 3% + 5% + 7%). Let
p = p? + p3 + p3, where p, p,, p», and p; are primes. Use congruences
(mod 3) to show that one of the three primes p,, p,, and p; is, in fact, 3.

. Suppose that m > 0. Show that 17|(3-52"*! 4 23"*!), [Hint: Use

congruences (mod 17). A further hint is given in the answers at the back
of the book.]

Suppose that m > 0. Show that 49|(5-3*"*2 + 53.25m),

Given m integers where m > n, show that two of these integers must be
congruent (mod n). (Hint : Any integer is congruent to one of the numbers
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0,1,...,n — 1; show that two of the m integers are congruent to the
same thing and hence to each other.)

. Given m integers where m < n, show that there is an integer in the range

0, 1,...,n — 1 which is congruent to none of the given integers.

Show that if n is a positive integer with two or more digits, then the sum
of the digits of n is less than n. This shows that the process of casting out
nines ultimately leads to a single digit.

Show that an integer is divisible by 9 if and only if the process of casting
out nines leads ultimately to 0 or 9.

Show that an integer is divisible by 3 if and only if the process of casting
out nines leads ultimately to 0, 3, 6, or 9.

Show that an integer is divisible by 11 if and only if the process of casting
out elevens leads ultimately to 0.

Let n = a,- 10 + a, - 10 + a,. Show that n = ay + 3a, + 2a,(mod 7)
and use this result to find criteria for divisibility of a three (or less)-
digit number by 7.

It is a fact that 23 538 = 38 + 35 + 02 = 75(mod 99). Prove the result
that this suggests. The result could well be called *‘casting out ninety
nines.” [Hint: Inthecase of 23 538, therelevant polynomialis f(x) = 2x? +
35x + 38 with f(100) = f(1) (mod 99).]

Show that a number is divisible by 11 if and only if the casting-out-
ninety-nines method of the previous problem ultimately gives either 0
or a two-digit number with both digits equal.

It is a fact that 4 176204 105 = 105 — 204 + 176 — 4 = 73(mod 1001).
Prove the result that this suggests; we shall call it ““casting out one
thousand and ones.”

Suppose that the method of casting out one thousand and ones of the
previous problem ultimately reduces n to the three (or less)-digit number
m. Prove that 7|n if and only if 7|m. Prove that 11|n if and only if 11|m.
Finally, show that 13|n if and only if 13|m. [t may be useful to know that
1001 =7-11-13.

In the proof that a polynomial of degree greater than or equal to one
never gives only primes, where did we use the fact that the degree is
greater than or equal to one? [We had better have used it someplace ;
the result is not true for polynomials of degree zero, for example,
S(x) = 3]

Show that for infinitely many n, 43|(n®> + n + 41).

What is involved in checking an arithmetic operation (mod 10)?

Show that if a,,...,a, have the property that no two of them are con-
gruent (mod n), then they form a complete residue system (mod n).

Find («,26) given that ¢'® = 10(mod 26).
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33. Show that if n* + 2 and n? — 2 are both primes, then 3|n.

34. The polynomial x? + 1 cannot be factored. Does this contradict the
fact that not all numbers of the form n? + 1 are primes?

35. Under the present calendar system, every fourth year is a leap year.
There are three exceptions to this rule every 400 years. If a year number is
divisible by 100, then it is a leap year if and only if it is divisible by 400.
Thus 1800, 1900, 2100 are not leap years, but 2000 is a leap year. The
beginning of the twentieth century, January 1, 1900, was a Monday.
Show that although Sunday begins every week, it will never begin a
a century.

36. Show that anybody born between 1901 and 2071 will celebrate his
twenty-eighth birthday on the same day of the week as the day he was
born.

3.3. Linear Congruence Equations

An equation of the form
7) a\x, + a,x, + --- + ax, = b(mod n),

with unknowns x,, ..., x,, is a linear congruence equation in k variables. A
solution to this equation is a set of integers which satisfies the equation. The
definition of congruence shows that equation (7) is equivalent to the Dio-
phantine equation

8) a\ Xy + azx, + -+ ax, — hxgy, =b

with £ + | unknowns. Equation (8) either has no solutions or it has infinitely
many. Thus the same is true of (7). In the case that k = 1, we know exactly
how to find the solutions to (8) (when they exist) and hence (7). In dealing
with (7), we wish to know how many solutions there are (mod n). By this we
mean that two different solutions of (7) are the same (mod n) if the different
values of x; are congruent (mod n) for all j. Thus we say that the solution
x=1y=22z=3to

X+ y+z= —1(mod7)

is the same (mod 7) as the solution x =8, y = —35, z = 17 but different
(mod 7) from the solution x = 1, y = 3, z = 2. In particular, when there is
only one solution to (7) (mod n), we say that the solution is unique (mod n).

Theorem 3.6. The equation
9) ax = b(mod n)
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has solutions if and only if d|b, where d = (a,n). If d|b, then the solution is
unique (mod n/d). If (a,n) = 1. then (9) always has a solution and it is unique
(mod n).
Proof. If x = x; 1s a solution to (9), then there is an integer y, such that
axg = b + nyy;
that is, the equation
(10) ax —ny=b
has a solution. If x = x4, y = y, 1s a solution to (10), then
axy = axy — hyy = b(mod n),

and thus (9) has a solution. Therefore, (9) has solutions if and only if (10) has
solutions and further, any solution for x in (10) gives a solution for x in (9).
By Theorem 2.18, (10) has solutions if and only if d|b. Thus (9) has solutions
if and only if d|b. Suppose that d|b, so that (10) has a solution. Let x = x,,
y = yo be a solution to (10). By Theorem 2.18, every solution of (10) is then
of the form

n a
x=x0+t—J, y=,"o+t2,

where ¢ is an integer. Thus every solution to (9) is of the form
+ tn
X =X —.
¢ d
Since

+zn dn
X - = Xp|mod
L d

)

we see that all solutions to (9) are congruent to x,(mod n/d) and hence the
solution to (9) is unique (mod n/d). The last statement of the theorem follows
from the first two. A

We developed a systematic process in Chapter 2 for solving (10) and as a
result (9). Usually, one can shortcut the Euclidean algorithm by taking
advantage of situations as they arise. If in (9), d = (a,n) > 1, then it is best
to divide everything through by d using Theorem 3.3. We are then left with
an equation of the same type as (9) but with (q,n) = 1. We give several
illustrations. The equation

14x = 13(mod 21)
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has no solutions since (14,21) = 7 and 7./ 13. We now solve the equation
(1) 9x = [5(mod 21).

Here (9,21) = 3 and 3|15. Thus the equation will have a unique solution
(mod 7). We first divide everything by 3, by Theorem 3.3,

3x = 5(mod 7).
Therefore,
3x=5+7=12(mod 7)
and since (3,7) = 1, Theorem 3.3 says that
(12) x = 4mod 7).

The original equation was (mod 21); we may wish to know the solutions
(mod 21) also. This is easily done. In any complete residue system (mod 7),
there is a unique solution to (11) and it can be found from (12). Thus in
the set 0,1,2,3,4,5,6, x = 4 is the unique solution to (11); in the set
7,8,9,10,11,12,13, x = 11 is the unique solution to (11); and in the set
14,15, 16,17, 18, 19, 20, x = 18 is the unique solution to (11). These three
sets combined give a complete residue system (mod 21). Thus there are 3
solutions to (11) (mod 21). They are

(13) x = 4, 11, 18(mod 21).

Equations (12) and (13) are two ways of saying the same thing. In like
manner, the equations

x = 7(mod 8), x =7, 15,23, 31, 39(mod 40)
are equivalent. In general, the congruence
x = a(mod n)
has the m solutions (mod mn) given by
x=a,a+na+2n...,qa+ (m— ln(mod mn).

Let us illustrate the systematic and nonsystematic ways of solving the
equation

(14) 8x = 7(mod 13).

The systematic method involves using the Euclidean algorithm to find
(8, 13). All x satisfy

13x = 13(mod 13).
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Subtracting (14) from this gives
(15) 5x = 6(mod 13).
Subtracting this from (14) gives
(16) 3x = I(mod 13).
Subtracting this from (15) gives

2x = 5(mod 13).
Subtracting this from (16) gives

= —4 = 9(mod 13).

We already know that (14) has a unique solution (mod 13); this must be it.
In contrast to the systematic method, the nonsystematic methods usually
take advantage of the possibility of dividing both sides by common factors.
When the coefficient of x is small, it is usually possible to arrange for a
common factor by inspection. This is what we did in deriving (12). As another
example, (14) may be written

8x =7 + 13 = 20(mod 13)
and, since (4,13) = 1,
2x =5=5+ 13 = 18(mod 13)
and thus, since (2,13) =1,
x = 9(mod 13).

The unexpected may naturally occur when one proceeds in a nonsystem-
atic manner. The following example is particularly instructive. Since
(7,39) = 1, the equation

(17) 7x = 22(mod 39)
has a unique solution (mod 39). Subtracting equation (17) five times from
39x = O(mod 39)
gives
4x = —110 = — 110 + 3-39 = 7(mod 39).
We subtract this from (17) and get
(18) 3x = 15(mod 39).
Here we have the opportunity to divide both sides by 3. But since (3,39) = 3,
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Theorem 3.3 says that the result is not necessarily

x = 5(mod 39)
but only

x = 5(mod 13).
This is equivalent to
(19) x = 5,18, 31(mod 39).

We seem to be claiming that (17) has three solutions (mod 39) instead of a
unique solution as guaranteed by Theorem 3.6. Of course, this is not true.
We have merely shown that if x is a solution to (17), then x satisfies (19) also.
Thus two of the ““solutions’” in (19) will be extraneous solutions that will not
satisfy (17); the other will be our desired solution. In this instance,

x = 31(mod 39)

is the correct solution; the obvious x = 5(mod 39) is not a solution and
neither is x = 18(mod 39).

What has happened above is not that unusual in mathematics. It is very
easy to get extraneous solutions to equations. For example, we may solve
the equation

(20) Vx4 x—2=2
by successive squarings:
x + \/x —2=4,
\/x —2=4—x,
x—2=16 — 8x + x2,

x2 —9x + 18 =0,

(x=3)(x -6 =0,
(21) x =3,6.

Again, we have not shown that x = 3 and x = 6 are solutions to (20) but
only that if x is a solution to (20), then x = 3 or x = 6. Infact, x =3 isa
solution to (20) while x = 6 leads to \/§ = 2, which is absurd. Thus x = 6
is an extraneous solution to (20) (which is a kind way of saying that it is not
a solution at all). One should always check one’s answer with the original
problem. There are times when it is legal (but not advisable) to sidestep the
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checking procedure. Sometimes an existence theorem (such as Theorem 3.6)
will tell you that a certain equation has a unique solution ; then if you find
only one possibility, you know that you have indeed found the unique
solution—assuming you made no arithmetic mistakes.

We will now discuss the subject of several equations in one unknown.
Sometimes they are inconsistent, as in the two equations

x = 2(mod 4), x = 1(mod 6).

The first equation requires x to be even while the second requires x to be odd,
and thus there is no common solution to both equations. Another way we
can see the inconsistency of the two equations is to look at them both (mod 2)
[a congruence (mod mn) is also a valid congruence (mod n)]. Then we see
that a common solution satisfies both

x = 2(mod 2), x = I(mod 2),

which is false since 2 # 1(mod 2).
There are other times when two such equations do have a common
solution. For example, consider the equations

x = 2(mod 4),
(22)
x = 3(mod 5).
which have the common solution x = — 2. Let us find all the solutions of (22).

The first equation is satisfied by x if and only if
x =2 + 4t,
where ¢ is an integer. We put this in the second equation and get
(23) 2 + 4t = 3(mod 5),
4t = 1{mod 95),
t = —1 = 4(mod5).

—t

Equation (23) has a unique solution (mod 5), this is the only possibility and
hence is the unique solution to (23). Thus t is a solution to (23) if and only if
t can be written

t =4 + 5k,

where k is an integer. Thus x satisfies both of equations (22) if and only if
there is an integer k such that

x = 4(4 + 5k) + 2 = 20k + 18.

[It is easily seen that this really is a solution to both of equations (22).] The
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common solution to equations (22) is unique (mod 20). The situation in (22)
is perfectly general.

Theorem 3.7. If (m,n) = 1, then the equations

x = a(mod m),
(24)
x = b(mod n)

have a unique common solution (mod mn).

Proof. An integer x satisfies the first equation if and only if there is an
integer t such that

(25) X =a + mt.

This satisfies the second equation if and only if

(26) mt = b — a(mod n).

Since (m,n) = 1, this last equation has a unique solution (mod n), say,
t = ¢(mod n).

Thus ¢ satisfies (26) if and only if there is an integer k such that
t=rc+ nk.

We put this in (25) and find that x is a common solution to equations (24) if
and only if
x =a + m(c + nk)

= (a + mc) + mnk.

Hence equations (24) have common solutions,a + mcis one, and all solutions
are congruent to a + mc(mod mn). Thus the common solutions to (24) are
unique (mod mn). A

Theorem 3.7 is a special case of a more general result which was known to
to the ancient Chinese.

Theorem 3.8 (Chinese Remainder Theorem?). Let my, ..., m, be positive
integers which are relatively prime in pairs. Then the k equations

x = a,(mod m,)
27) :
x = a,(mod my)

have a unique solution (mod m;m, - - - my).

2 More rarely known as the Formosa Theorem.
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Proof. We use Theorem 3.7 (k — 1) times. By Theorem 3.7, the first two
equations have a unique solution (mod m,m,); let this solution be given by

(28) x = b,(mod m;m,).
The third equation is
(29) X = az(mod mj).
By hypothesis,
(my,m3) = (my,m;) =1
and therefore, by Theorem 2.7,
(mymy,m;) = 1.

We can now apply Theorem 3.7 to (28) and (29). There is a unique solution
to (28) and (29) (mod m;m,m;); in other words, there is a unique solution
to the first three equations of (27). Let that unique solution be

(30) x = bs(mod m;m,m;).
Consider the fourth equation of (27),
(31 x = du(mod my).
Since
(my,my) = (my,my) = (my,my) = 1,
we see that
(mmomy,my) = 1.

Thus there is a unique solution to (30) and (31) (mod m m,m;m,) and it is
the unique solution to the first four equations of (27). We continue in this
manner. After (k — 1) applications of Theorem 3.7, we will arrive at the fact
that there is a unique solution (mod m;m, - - - m) to

X = bk, l(mod mmy;---m,._ |)
and
x = a,(mod my);

this solution also provides the unique solution (mod m;m, ---m,;) to the k
equations in (27). A

If for each j, we restrict u; to the range from 0 to m; — 1, then the existence
part of the Chinese remainder theorem may be putin the form;ifm,,..., m,
are pairwise relatively prime, then there exists an integer x such that for each
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j(j =1,2,...,k), x leaves the remainder a; when divided by m,. This explains
the name of the theorem. (It also explains how a theorem about congruences
could be known before congruences were invented : we have merely put an
old theorem in modern form.)

The reader is no doubt wondering why we restricted our attention in
Theorems 3.7 and 3.8 to equations having the coeflicient of x equal to one.
Consider the set of equations

(32) a,x = b (modn,),...,ax = bimod n,).

If there is a common solution, then cach equation is individually solvable.
This means that d|b,, where d, = (a;, n)), and this is true for i = 1, 2, ..., k.
We know what the solutions to the individual equations of (32) look like,

x = ¢ (mod m,),...,x = ¢,(mod m,)
where the m; are given by the formulas

ny
Laomy = -

m; =
d,

_Al
d.’
Thus if for all i, d||b, and if the numbers m,, ..., m, are relatively prime in
pairs, then equations (32) have a unique common solution (mod m m, - - - m,).
Thus Theorem 3.8 is sufficient for the theoretical purpose of proving that
under certain conditions, (32) has a unique solution (mod mm, - - - m;). When
actually solving a specific problem, it is a complete waste of time to first
solve each of (32) individually and then find the common solution. It takes
only half the work to simply solve the first equation of (32), put the solution
of the first equation into the second equation of (32) and solve, put the
common solution of the first two equations in the third, and so on.

We now touch briefly on the subject of linear congruence equations with
more than one unknown. We will content ourselves with examining the
simplest case of two equations and two unknowns ; the result, however, will
be very useful in Chapter 4.

Theorem 3.9. Suppose (¢f — de, n) = 1. Then the equations
(33) cx + ¢y = a(mod n),

dx + fy = b(mod n)
have a unique common solution for x and y(mod n).

Proof. Let us suppose that there is a solution to (33) and attempt to find
it. We multiply the first equation by f, the second equation by ¢, and subtract ;
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the result is
(34) (¢f —de)x = af — be(mod n).

We multiply the first equation by d, the second equation by ¢, and subtract
the first from the second : the result is

(35) (¢f — de)y = be — ad(mod n).

Since (¢f — de,n) = 1, Theorem 3.6 says that there is a unique x(mod n)
satisfying (34)and a unique y(mod n)satisfying (35). Hence if there is a solution
to (33), it is unique (mod n).

Unfortunately, the fact that (34) and (35) have solutions does not mean
that the original equations (33) have solutions. It is clear how we should
proceed, however. We take the solutions to (34) and (35) and show that they
do satisfy (33). There is a slight hitch in this. We cannot just divide both sides
of (34) and (35) by (¢f — de), because we have not defined congruences for
rational numbers.” But we can find an integer which does the same job
(mod n) as 1/(cf — de). Since (¢f — de, n) = 1, Theorem 3.6 says that there is
an integer : such that
(36) z(cf —de) = 1(mod n).

We use the integer z to solve (34) and (35). If x and y satisfy (34) and (35), then

. x = z(¢f — de)x = z(af — be)(mod n),

G0 y = zlef — de)y = z(b¢ — ad)(mod n).

Now we can verify that (33) does have solutions. Let x, y, and z be given by
(36) and (37). Then

cx + ey = czlaf —be) + ez(be — ad)(mod n)

= czaf — ezad (mod n)
= az(cf — de) (mod n)
=ua (mod n)
and

dx + fy = dz(af — be) + fz(be — ad)(mod n)
= —dzbe + fzbc (mod n)
= bz(¢f — de) (mod n)
=b (mod n).

31t may be useful to remind the reader that the solutions to two equations in two
unknowns with integral coefficients are usually not integers but only rational numbers.
Herc we are looking for integers which satisfy the equations (mod n).



76

NUMBER THEORY

Thus there are integral solutions to (33); we have already shown that they
must be unique (mod n). A

EXERCISES
In problems 1-13, either find all integral solutions (all common integral
solutions, if more than one equation) or show that there are none.

14.
15.
*16.

17.
18.

19.

20.

21.

22.

XNV AL

. Solve: 5x = I(mod 7).
. Solve: 14x = 5(mod 45).
Solve: 14x = 35(mod 87).
Solve: 3x = 2(mod 78).
Solve: 6x = 10(mod 14).
Solve: 9x = 21(mod 12).
. Solve: x = 2(mod 3), x = 3(mod 4).
. Solve: x = 7(mod 9), x = 13(mod 23), x = 1(mod 2).

. Solve: 2x = 3(mod 5), 4x = 3(mod 7).

Solve: 6x = 8(mod 10), 15x = 30(mod 55).

. Solve: 5x + 4y = 6(mod 7), 3x — 2y = 6(mod 7).

Solve: 2x + 7y = 8§(mod 13), 5x + 10y = 7(mod 13).

Solve: x + 2y + 3z = I(mod 11), x + S5y + 6z = 3(mod 11),
x + 4y + 7z = 5(mod 11).

Find all solutions (mod 7): 3x + 4y = I(mod 7).

Find all solutions (mod 8): 3x + 7y = 2(mod 8).

Show that if (¢,n) = (b,n) = 1, then the equation

ax + by = ¢(mod n)

has exactly n different solutions (mod n).
Find all solutions (mod 6): 2x + 3y = 1(mod 6).
Find all common solutions (mod 12) (or show that there are none) to

4x + y = 6(mod 12), x + 4y = 2(mod 12).
Find all common solutions (mod 12) (or show that there are none) to
4x + y = 6(mod 12), x + 4y = 9(mod 12).

Find all positive integers less than 1000 which leave the remainder 1
when divided by 2, 3, 5, and 7.

A multiplication has been performed incorrectly, but the answer is
correct (mod 9), (mod 10), and (mod 11). What is the closest that the
incorrect result can possibly be to the correct result?

The following multiplication was correct, but unfortunately the printer
inserted an x in place of a digit in the answer

172 195572 167 = 98 524 2x6 565.
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Determine x without redoing the multiplication.

23. Show that an integer is divisible by 4 if and only if the number left when
all digits other than the last two are eliminated is divisible by 4. Use
this rule to find conditions for divisibility by 12.

24. Show that every integer satisfies at least one of the following six con-
gruences: x = O(mod 2), x = O(mod 3), x = 1(mod 4), x = 1(mod 6),
x = 3(mod 8),and x = 11(mod 12).

25. Prove Theorem 3.8 by induction.

3.4. Reduced Residue Systems and Euler’s ¢ Function
We see from Theorem 3.6 that the equation
ax = 1(mod n)

is solvable (in integers) if and only if (a,n) = 1. The numbers that are relatively
prime to n have other interesting congruence properties. In this section we
single these numbers out for special attention.

Definition. Let S be a complete residue system (mod n). The set S’ con-
sisting of those members of S which are relatively prime to n is called a
reduced residue system (mod n).

If b = a(mod n), then we may write bin the form b = a + kn. By Theorem 2.4,
(h,n) = (a + kn,n) = (a,n).

Thusifa = b(mod n), then a is relatively prime to nifand only if bis relatively
prime to n.

Theorem 3.10. Let S’ be a reduced residue system (mod n). If (a,n) = 1,
then a is congruent (mod n) to a unique member of §'. If $” is another
reduced residue system (mod n), then S’ and S” have exactly the same
number of members and, in fact, if a,, ..., a, are the members of §’, then
the members of S” can be listed in such an order, say b,,..., b, that
a, =by,...,a, = by(mod n) [thatis, (mod n), S” is simply a rearrangement
of 8.

Proof. Let S be a complete residue system containing S’. By the definition
of S, there is a unique integer b in S such that
a = b(mod n).

Since (a,n) = 1, (b,n) = 1 also. Therefore, by definition, b is in S'. Since b is
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unique in S, it is certainly unique in S’. This takes care of the first part of the
theorem.

It follows from the first part of the theorem that each element of S” is
congruent to a unique member of S’. No two members of a complete residue
system (mod n) are congruent {(mod n). Therefore, no two members of S” are
congruent (mod n) to the same member of S', and since different members of
S” are congruent (mod n) to different members of S', we see that S’ has at least
as many members as S”. But everything done thus far is equally valid with S’
and §” interchanged. Thus S” has at least as many members as S’. This
combined with the previous statement says that S” and S’ have exactly the
same number of members. Let k be the number of integers in each set. The
last part of the theorem is now clear: Since different members of S” are
congruent (mod n) to different members of S" and since each has k members,
the sets S’ and S” are the same (mod n) except for the order of the
elements. A

Definition. For n > [, let ¢(n) denote the number of integers in a reduced
residue system (mod n). [By Theorem 3.10, ¢(n) does not depend on which
reduced residue system (mod n) is chosen.] This function of n is called
Euler’s ¢ function. (It is also sometimes called Euler’s totient function.)

Itis interesting to note that although the function was invented by Euler, the
present notation was given by Gauss. The following theorem is often used
as the definition of ¢(n).

Theorem 3.11. If n > 1, then the number of positive integers which are
less than or equal to n and relatively prime to n is ¢(n).

Proof. The numbers 1,2,...,n form a complete residue system (mod n).
Thus the positive integers which are less than or equal to n and relatively
prime to n form a reduced residue system (mod n). Their number is thus
$(n). A

A few examples are shown in Figure 3.3 (we take as our complete residue
system (mod n), the numbers 1, 2, 3,.. ., n). Since (n,n) = n, we see that n is
in a reduced residue system (mod n) if and only if n = 1. Thus for n > 1,
¢(n) is the number of positive integers which are less than n and relatively
prime to n. Every positive integer less than a prime p is relatively prime to p
and hence

olp)=p— 1
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n 1 2 3 4 5 6 7 8 9 10
A reduced 11 L2 L3 1,234 1,5 1,23, 1,357 1,2, 1,379
residue system 4,5,6 4,5,
mod (1) 7,8
) 12 2 4 2 6 4 6 4
Figure 3.3

The next theorem gives another simple property of numbers relatively
prime to n.

Theorem 3.12. Suppose (a,n) = 1. If the numbers a, ..., a, form a com-
plete residue system (mod n), then for all b the numbers aa, + b, ...,
aa, + b also form a complete residue system (mod n). If the numbers
as,...,dyumformareduced residue system (mod n), then so do the numbers
aay,...,aaq.

Proof. Since (a,n) = 1, by Theorem 3.6, there is an integer ¢ such that
ac = 1 (mod n).

Suppose that a,,...,a, gives a complete residue system (mod n). If d is an
integer, then there is a (unique) k such that

c(d — b) = a(mod n).
But then
d — b= acd - b) = aa,(mod n) or d = aa, + b(mod n).
If
d = aa; + b(mod n) and d = aa, + b(mod n),
then
c(d — b) = aca; = afmod n), cd — b) = aca, = a,(mod n),

which is false if j # k. Thus every integer is congruent to exactly one of the n
integers ad, + b,...,aa, + b, and thus this set is a complete system of
residues (mod n). If a,, . .., ayw form a reduced residue system (mod n), then
they are distinct elements of a complete residue system, and thus by the first
part of the theorem with b = 0, aay,...,da,, are distinct elements of a
complete residue system (modn). A reduced residue system has exactly
¢(n) elements; therefore, we need only show that each of the numbers
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aa,, ..., ddq is relatively prime to n and we will have found all ¢(n) elements
of a reduced residue system (mod n). Since (a,,n) = 1 for all k and (a,n) = 1,
we see from Theorem 2.7 that (aa,,n) = 1 for all k, k = 1,..., ¢(n). A

The preceding theorem has a remarkable consequence.

Theorem 3.13 (Euler’s Theorem; also known as the Euler-Fermat
Theorem). If (a,n) = 1, then a®" = 1(mod n).

Proof. Let a,,...,au, be a reduced residue system (mod n). Then the
numbers aa,,...,ad,, are also a reduced residue system (modn). By
Theorem 3.10, the numbers aa,, . .., aag,, are just a rearrangement (mod n)
of the numbers a,, ..., d,u), and thus the products of all the numbers in the
two systems are the same (mod n):

(38) (aa,)(aay) - - (aay,) = a,a; - aym(mod n).

Since each «, is relatively prime to n, it may be canceled from both sides
of (38). When we do this for each k, we are left with

a®™ = 1(mod n). A

Theorem 3.14 (Fermat’s Theorem; also known as the Little Fermat
Theorem). Suppose p is a prime. Then for all q,

a’ = a(mod p).
If pta, then
a’~!' = I(mod p).

Proof. When pla, both sides of the first congruence are congruent to
O(mod p) and hence congruent. When pfa, then the first congruence is a times
the second, and thus it suffices to prove that the second congruence is valid.
Since p is a prime, pfa is equivalent to (a,p) = 1. This combined with the
fact that ¢(p) = p — 1 makes this theorem a corollary of the previous
theorem. A

Historically, Fermat’s theorem was stated in 1640, and it was generalized
by Euler in 1760 to the form that if (a,n) = 1, then n|(a®™ — 1). A special
case of Fermat’s theorem is that if p is a prime, then

pl2? = 2).

The ancient Chinese knew this fact and also believed that the converse is
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true. The converse states that if n > [ and
nl(2" - 2),

then nis a prime. It is probable that the Chinese observed this experimentally
and never thought of proving their conjecture. In any event, they were
wrong. For example,

341](2%4 — 2),

even though 341 = 11-31. The theory of congruences makes it possible to
check this without having to find 2**' (a number of 103 digits). Since 11 is a
prime, Fermat's theorem says that

2'9 = 1(mod 11).
Therefore,
2A4l = 2(21())34 = 2(1)‘14 = 2(m0d 1])
and hence
11](2*4! = 2).
Also,

2° = 32 = I(mod 31)
and therefore
2% =2(2°)°% = 2(1)°* = 2(mod 31)
and therefore
31274 = 2).

Since 11 and 31 are relatively prime, their product divides (2**' — 2); that
18,
341]2%4! — 2),

Thus the ancient Chinese were wrong. In honor of their mistake, we say
today that a composite integer n such that

n(2" — 2)

is a pseudoprime. The first two pseudoprimes are 341 = 11-31 and
561 = 3-11.17. There are infinitely many pseudoprimes. In fact, there are
infinitely many even pseudoprimes, but they are harder to find. The first
known example of an even pseudoprime is

161038 = 2-73-1103,
which was found in 1950 by D. H. Lehmer.
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EXERCISES

1. Find a reduced residue system (mod 20) and give ¢(20).

2. Find a reduced residue system (mod 30) and give ¢(30).

3. Give two examples to show that when 2 is added to every member of a
reduced residue system (mod n), the result may or may not be a reduced
residue system (mod n).

4. Show that 561 = 3-11-17 is a pseudoprime.

. Show that, in fact, for all integers a, a*®' = a(mod 561).
6. Show that3® = —4(mod 31)and use this to show that 3'® = — 6(mod 31).
Use this result and Euler’s theorem to show that

w

3341 # 3(mod 31)

and therefore

3341 =% 3(mod 341).

7. Find a composite number n such that n|(3" — 3). (Hint: There is such a
number less than 10.)

8. Show that if (¢,561) = 1, then a®° = 1(mod 561). [Note: Do not try to
find ¢(561), as it is greater than 300.]

9. Show that if p is a prime, « is an integer, and k is a nonnegative integer,
then

a'*Mr=1 = g(mod p).
10. Show that if n is odd and « is an integer,

a” = a(mod 3).

3.5. More on Euler’s ¢ Function

We see that if we are going to apply Euler’s theorem in a particular
problem, then we must be able to calculate ¢(n) from n. If n is small, it is
fairly easy to find all the numbers less than or equal to n which are relatively
prime to n, and then we immediately have ¢(n). But what if we wish something
like ¢(1776)? In this section we develop a formula for ¢(n) in terms of the
prime factorization of n. The key to this result will be a proof of the fact that
¢(n) is multiplicative.

We first illustrate the proof that ¢(n) is multiplicative by showing that
@(30) = ¢(5)- P(6). We first write the numbers from [ to 30 in a rectangular
array as in Figure 3.4. We note that a number is relatively prime to 30 if
and only if it is relatively prime to both 5 and 6. Thus n(1 < n < 30) is
relatively prime to 30 if and only if it is one of ¢(5) numbers in ¢(6) columns
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Figure 3.4. Numbers relatively prime to 6 are in the large
vertical rectangles, numbers relatively prime to 5 are in circles.
Numbers relatively prime to 30 are in both the large vertical
rectangles and circles. The numbers from | to 30 that are relatively
prime to 6 are in the first and fifth columns [¢(6) columns in all]
and each column contains exactly four [which equals ¢(5)]
numbers relatively prime to 5.

(the first and fifth). There are ¢(5)- ¢(6) such numbers and thus ¢(30) =
¢(5)p(6). The situation here is perfectly general and leads to a proof that ¢(n)
is multiplicative.

Theorem 3.15. ¢(n) is multiplicative.

Proof. Suppose m and n are positive integers with (m,n) = 1. We put the
first mn positive integers in a rectangular array with m columns and n rows
as in Figure 3.5. The numbers in the jth column are m-0 + j, m-1 + j,
m-2+j,....,mn— 1) + j. By Theorem 2.4,

(ma + j, m) = (j,m),

1 2 m
m+ 1 m+ 2 m+ m
2m + 1 2m + 2 2m +m
m—1m+1 m—1Im+2 -~ (n—1m+m

Figure 3.5
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and thus either every element of the jth column is relatively prime to m or
no element of the jth column is relatively prime to m. Therefore, exactly ¢(m)
columns contain numbers relatively prime to m and every entry in these ¢(m)
columns is relatively prime to m.

Since (m,n) = 1, by Theorem 3.12 the n numbers in the jth column form a
complete residue system (mod n). Thus by definition, the jth column contains
exactly ¢(n) numbers relatively prime to n. Hence in each of the ¢p(m) columns
containing the numbers relatively prime to m, there are ¢(n) numbers
relatively prime to n, and these are the only numbers relatively prime to
both m and n. That is, there are exactly ¢(m)@(n) numbers in the array of
Figure 3.5 thatare relatively prime to both mand n. Butan integer is relatively
prime to mn if and only if it is relatively prime to both m and n. Therefore,

P(mn) = p(m)p(n). A
After Theorem 3.15, we can evaluate ¢(n) if we can find ¢(p“), where pisa
prime. This is an easy task and the result is

Theorem 3.16. Let the prime factorization of n be

= pi'ps - pi.
Then
o) = n(l — 1/p)(1 — 1/py)---(1 — 1/py).

Proof. We begin by finding ¢(p®), where pisa primeand a > 1. A number
is relatively prime to p“ unless it is divisible by p. The numbers from 1 to p*
which are divisibleby pare 1 - p,2-p,..., p* ' . p. Thus exactly p®~ ' positive
integers less than or equal to p? are divisible by p, and therefore there are
exactly p® — p?~! positive integers less than or equal to p* which are not
divisible by p. Hence

o(p*) = p* — p*~' = p“(l = 1/p).
But now, by Theorem 3.15,

d(n) = (p1)P(p7) - - - Ppi)

SRR [ L Rt U

1 P1p2 P e

1

SR

P Pk

T
Pk
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As an example, let us answer the question that started all this, and find
¢(1776). We need to factor 1776 first ; fortunately, we see that there is a factor
of 2 and 3 (casting out nines reduces 1776 to 3) to get us started. We then
find without much trouble that

1776 = 2%-3.37.

Thus
$(1776) = 1776(1 — 3)(1 — 5)(1 — 34)
=24.3.37-4-2.3¢
=2%.36
= 576.

This is considerably simpler than examining the first 1776 positive integers
to see which have factors of 2, 3, and 37 and which do not.

There are other methods of deriving the crucial Theorem 3.15. Two of
them are given in the miscellaneous exercises. We have now been able to
evaluate three different functions from the knowledge that they are multipli-
cative [d(n), a(n), and ¢(n)]. In the next theorem, we again make use of the
knowledge that a function is multiplicative in order to find it.

Theorem 3.17. If n > 1, then

Y ¢(d) = n.
d|n
Proof. Let
f(n) =3 ).

d|n

Since ¢(n) is multiplicative, Theorem 2.15 says that f(n) is also multiplicative.
Thus we first wish to find f(p“), where p is a prime and ¢ > 1. Here we have

) = Y ¢(d)

d|p

#(1) + d(p) + d(p?) + --- + d(p*)

1
1 — -
p

|
1 — -
p

=l+(p-D+@-p+@E -+ +@" —p""
= p,

1
| — =
p

+...+pa

+ p?

=1+p
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with all the other terms canceling each other. Therefore, if n factors as
n = p‘;xplzlz"'pﬁkl
then

f) = fef0?) - f(pi)
= pi'p%--- P
=n. A

EXERCISES

Find ¢(n) for n = 20, 60, 63, 341, and 561.

Show that if n is odd, ¢(2n) = @(n).

Show that if n is even, ¢(2n) = 2¢(n).

What goes wrong with the proof of Theorem 3.15 if (n, m) > 1?
Does Theorem 3.16 give ¢(1)?

Verify Theorem 3.17 for n = 30.

Let x be the smallest positive integer such that 2* = 1(mod 63). Find x
and verify that x|$(63).

*8. Repeat problem 7 with 63 replaced by 105.

*9, Find the last three digits of 799%°.

Nk LN —

3.6. Polynomial Congruences

Definition. Let f(x) and g(x) be polynomials with integral coefficients. If
the coefficients of each power of x are congruent (mod #n), then we say that
f(x)and g(x) are congruent as polynomials (mod n) and we write

f(x) = g(x)(poly mod n).
For example
5x* — 6x + 3 = x* + 2x — 1(poly mod 4),
X+ 4x? — 2x + 1 = 3x* + 4x% + x2 — 8x + 22(poly mod 3),
x> — 1 = (x — 1))(poly mod 3),
x? + 2x + 1 # 6x% + 3x + 6(poly mod 5),
x® # x(poly mod 5).

Missing powers of x are assumed to have the coefficient 0. Thus in the second
example, we may assume that the polynomial on the left is

Ox* + x> +4x2 — 2x + 1



CONGRUENCES 87

and in the third example the polynomial on the left is
x4+ 0x? +0x— 1.

The fifth example is extremely instructive. The polynomials x* and x are
not congruent as polynomials (mod 5) since the coefficients of x are incon-
gruent (mod 5). This is true in spite of the fact that by Fermat’s theorem (3.14)

x* = x(mod 5)

for all integers x. Thus it may happen that two polynomials may be incon-
gruent as polynomials (mod n) and still be congruent (mod n) for all integral
values of the variable. This is a situation which does not occur with equalities.
Two polynomials f(x) and g(x) are the same if and only if f(x) = g(x) for all
integers x. Thus when we write f(x) = g(x), it does not matter whether we
think of the equality as saying f and g are the same polynomials or fand g
give the same values for all values of x; the two concepts are the same.
This is our reason for distinguishing between f(x) and g(x) being congruent
as polynomials (mod n) and just being congruent (mod n). When we write

(39) Jx) = g(x)(mod n)

we simply mean that (39) is true for all integral values of x. There is yet a
second meaning of (39) and that is the meaning of solving an equation. This
is a situation that occurs with equalities. For instance,

(x+ 1) =x+2x + 1
is an identity, true for all values of x, while
(x + 1) = 2x% + 2x

is true only for certain values of x which can be found by solving the equation.
The reader should be able to distinguish between the two meanings of (39),
particularly since they will usually be accompanied by a phrase such as *‘for
all integers, x,”” or “solve.”™*

The following result, although trivial, is sufficiently fundamental to be
called a theorem.

4 It should be noted that the notation
J{x) = g(x)(poly mod n)

is unique with this book and is presented as a public service to help minimize confusion.
Other books and articles customarily use (39) for this purpose also and leave it to the
reader to figure out which meaning is being used. (The kind author will attach a phrase
such as ““congruent as polynomials,”” but he is under no compulsion to do so and
usually does not.)
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Theorem 3.18. If
f(x) = g(x)(poly mod n)
then for all integers x,

f(x) = g(x)(mod n).

Proof. The result follows from the definition of
f(x) = g(x)(poly mod n)

and Theorem 3.2 (the theorem on sums and products of congruent numbers
being congruent). A
As the example

x® = x(mod 5)

shows, the converse of Theorem 3.18 1s not necessarily true. Thus the state-
ment

f(x) = g(x){poly mod n)
contains more information than the statement
f(x) = g(x)(mod n).

Let us give an example of how much more information the first statement
can carry. It is easy to show that if p is a prime, then

(40) xXP—x=x(x+ 1)x+2)---(x + p— 1)(mod p)

for all integers x. By Fermat’s theorem (3.14), the left side of (40) 1s congruent
to O(mod p) for all integers x. Since the numbers 1,2, ..., p form a complete
residue system (mod p), given an integer x, there is an integer j in the range
from 1 to p such that

x = j(mod p).
But then the factor [x + (p — j)] in the right side of (40) is congruent to 0:
x+p—j=j+p—Jj=0modp),

and thus the right side of (40) is congruent to O(mod p) for all integers x. This
proves the relation (40). Equation (40) is not very useful as it stands, but it
so happens that (40) is also true as a congruence of polynomials; that is,

41) xP —x =x(x + 1)(x + 2)---(x + p — 1)(poly mod p).

We will prove this later in this section. If we accept this as true, then the
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coeflicients on each side of (41) are congruent (mod p). [This is precisely the
difference between (40) and (41).] If we equate the coefficient of x on both
sides of (41), we get

(42) —1=(p— 1)!(mod p).

Thus from (40) we get nothing, but (41) is full of information [and (42) is just
the result of equating one coefficient of (41)]. As examples of (42),

(1t + 1), 5/(4! + 1), 716!+ 1), 101[(100! + 1).

The reader can verify the first three of these easily enough, but the fourth
might take a few days (100! has 158 digits).
By Fermat’s theorem, the congruence

xP — x = O(mod p)

has the roots 0, —1, —2,..., — (p — 1) (among others). With ordinary
equality, roots lead to factors and thus, by analogy, (41) seems quite reason-
able. This 1s, in fact, how we will eventually derive (41). In the meantime, we
prove several preliminary theorems on polynomial congruences familiar to
the reader as equalities.

Theorem 3.19. If
fi(x) = f3(x)(poly mod n),
g1(x) = g,(x)(poly mod n),
then
Ji(x) + g,(x) = fa(x) + ga(x)(poly mod n),
fix)g (x) = f2(x)g2(x)(poly mod n).
Proof. Coefficients of sums and products of polynomials are determined
as combinations of sums and products of the coefficients of the original
polynomials. Therefore, changing the coefficients of the original polynomials

to congruent numbers (mod n) changes the coefficients of the answer to
congruent numbers (mod n). A

Theorem 3.20. If f(x) is a polynomial with integral coefficients and
f(a) = O(mod n), then there is a polynomial g(x) with integral coefficients
such that

f(x) = (x — a)g(x)(poly mod n).
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Proof. Let us divide f(x) by (x — a). The result is a quotient g(x) with
integral coefficients and a remainder b:

f(x) =(x — a)g(x) + b.

Therefore,
fla)=(a —a)gla) + b =>b
and hence
b = f(u) = 0O(mod n).
Therefore,
J(x) = f(x) = b = (x — a)g(x)(poly mod n). A

For example, let f(x) = x* + x + 1. Then
f(1) = 0(mod 3).
When we divide f(x) by x — 1, we get the result

x +2
x— 1x? +x+ 1
x? —x
2x + 1
2x — 2

3

X2+ x+1=(x-1)(x+2)+3.

(The reader acquainted with synthetic division may perform the calculations
quicker and easier.) Hence

x2+ x4+ 1 =(x— 1)(x + 2)(poly mod 3).
Since
x + 2 = x — I(poly mod 3),
this may be written
x4+ x + 1 =(x — 1)*poly mod 3).
If we were told that
S(x) = (x = a)g(x),
Jb) =0, b +# a,
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then we would deduce that
(b — a)g(h) =0, b—a#0
and hence
gb) = 0.

From this we see that there is a factor of x — b in g(x) and this gives factors
of (x — a)(x — b)in f(x). This is the process used in showing that successive
roots of the equation

Jx)=0

correspond to successive factors of . We wish to imitate this process for
congruences, but we immediately find that there are difficulties. Consider
the example

(43) x? — 1 = 0(mod 8).
Since
x = I(mod 8)
is a solution, there is a factor of (x — 1)in x? — 1:
(44) x? — 1 =(x — 1)(x + 1)(poly mod 8)
But now
x = 3(mod 8)

is another solution to (43), in spite of the fact that x + 1 does not have a
factor of x — 3(mod 8). If we substitute x = 3 into (44), we find the trouble,

0 = 2-4(mod 8).

The proof above that two roots of an equation correspond to two factors
depends on the fact that if the product of two numbers is zero, then one of
the numbers is zero. This does not always happen for congruences, as is seen
above. Arithmetic (mod n) does not behave sufficiently like ordinary arith-
metic to enable us to show that two distinct roots of a congruence equation
correspond to two distinct factors of the polynomial.®

3 The question at issue is whether the polynomial can have both factors simultaneously.
For example, x> — 1 does have a factor of (x — 1) (mod 8), and it also has a factor of
(x — 3)(mod 8):

x2 — 1 =(x — 3)(x + 3)(poly mod 8),

but x?> — 1 does not have both (x — 1) and (x — 3) as factors simultaneously.
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There is an instance that the “"product of two numbers is zero implies one
of them is zero’’ theorem carries over to congruences. If p is a prime and

dydy---ap = 0(mod p),
then for some j,
a; = O(mod p).

This follows immediately from the definition of congruence and Theorem 2.8.
Thus when we have a polynomial congruence (mod p), there is hope that we
can proceed as with equalities. This is, 1n fact, true, and for the rest of this
section we will restrict ourselves to prime moduli.

Theorem 3.21. If f(x) is a polynomial with integral coefficients and if
a;,d,,...,a; are pairwise incongruent integers (mod p) (where p is a
prime) which are solutions of the congruence equation

f(x) = 0(mod p),
then there is a polynomial g(x) with integral coefficients such that
Sx) =(x —a)x — az)- - (x — a)g(x){poly mod p}.

Proof. By Theorem 3.20, there is a polynomial g,(x) with integral co-
efficients such that

S(x) = (x — ay)g(x)(poly mod p).

We now proceed to give a proof by induction. Suppose that there is a poly-
nomial g;(x) with integral coefficients such that

(45) S(x) = (x —a)x —az)---(x — a;)gx)(poly mod p).
(As we have just seen, this is true for j = 1.) Then
0 Ef(a_,'+1) = (aj+1 - al)(aj+1 - az)"'(aj+1 - aj)gj(a_,-+ 1)(m0d p)-

By hypothesis, none of the numbers «;,, — ay,u;4) —as,...,a;,y —a,is
congruent to O(mod p) and therefore

g/a;,,) = 0(mod p).

Thus, by Theorem 3.20, thereis a polynomial g, ,(x) with integral coefficients
such that

gix) = (x — d,;+1)8j+ 1(x)(poly mod p).
By Theorem 3.19, we may insert this into (45) and get

JX)=(x —a)x —ay)--(x — dj+1)g;+1(x)(poly mod p).
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This completes the inductive step. Since (45) is possible for j = 1, itis possible
forj = 2and thenj = 3, ..., and finally, j = k. A

Thus far, we have said nothing about the degree of a polynomial. It will
be necessary to use this concept in the near future.

Definition. Letf(x) = a;x* + a;_;x* ' + --- + a;x + a,beapolynomial
with integral coefficients. We define the degree (mod n) of f(x) to be the
largest number d such that

ay # 0(mod n).
If d < k this means that

Qg+ = Ayey = -+ = a, = 0(mod n).

It is possible that every coeflicient of f(x) is congruent to O(mod n), and
then we say that the degree (mod n) of fis undefined.

Thus the degree (mod n) of a polynomial f(x) is undefined if and only if
f(x) = 0(poly mod n).
For example, if
f(x) = 30x* — 60x* + 12x? — 6x + 3,
then
the degree (mod 12) of f(x) = 4,
the degree (mod 7) of f(x) = 4,
the degree (mod 35) of f(x) = 2,
the degree (mod 6) of f(x) =0,
the degree (mod 3) of f(x) is undefined.
Theorem 3.22. Let p be a prime and let f(x) be a polynomial with integral

coeflicients and let the degree (mod p) of f(x) be defined and equal to n.
Then the equation

(46) f(x) = O(mod p)

has at most n distinct roots (mod p).

Proof. Suppose the integers a,,d,,...,a,,, are pairwise incongruent
(mod p)and are also solutions to (46). By Theorem 3.21, there is a polynomial
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g(x) with integral coefficients such that

(47) J(x) = (x —a)x —az)- - (x — a,.)gx)(poly mod p).

It is clear from the definition of degree (mod p) that two polynomials, which
are congruent as polynomials (mod p), have the same degree (mod p). Thus,
since the degree (mod p) of f(x) is n, the degree (mod p) of the right side of (47)
is defined and equal to n. If the degree (mod p) of g is not defined, then

g(x) = O(poly mod p),
and it follows from (47) that
f(x) = O(poly mod p).

This is false, since it would imply that the degree (mod p) of f(x) is undefined,
whereas it is part of the hypothesis that the degree (mod p) of f is defined.
Thus the degree (mod p) of g(x) is also defined. Let k be the degree (mod p)
of g(x). By the definition of degree (mod p),

k=>0.
Let b; be the coefficient of x/ in g(x). Thus
b, # O(mod p).

It is possible that there are powers of x higher than the kth in g(x), but all
their coefficients are congruent to O(mod p) by the definition of k. Therefore,

g(x) = bx* + by x* ! 4+ «-+ + bo(poly mod p)
and thus
(48)  (x —a)(x —az) - (x — dps)gx) = (x —a)(x —ay)---
< (x = dpy 1 )(biX* + -+ + bo)(poly mod p).

Hence the right side of (48) also has n as its degree (mod p). But this is absurd,
since the coefficient of x"* ! ** on the right side is

bk E3 O(mod p).

This contradicts our supposition that (46) can have n + 1 distinct roots
(mod p). It follows that (46) cannot have more than n + 1 distinct roots
(mod p) and hence must have at most » distinct roots (mod p). A

As the example

x? — 1 = 0(mod 8)

[with distinct roots (mod 8) of 1, 3, 5, 7] shows, the restriction to primes in
Theorem 3.22 cannot be eliminated.
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Theorem 3.23. Let p be a prime, f(x) be a polynomial with integral co-
efficients and degree (mod p) defined and equal to n. Suppose that b is the
coeflicient of x" in f(x) and suppose that the n integers u,,d,,....q, are
distinct (mod p) solutions to the equation

f(x) = 0(mod p).
Then
S(x) = b(x — a;)(x — az)---(x — a,)(poly mod p).

Proof. We could prove this substantially the same as we proved Theorem
3.22. But instead, we will illustrate a typical application of Theorem 3.22 in
this proof. Let

glx) = b(x —a))(x —ay)---(x — a,),
h(x) = f(x) — g(x).
We will use Theorem 3.22 to show that
h(x) = O(poly mod p),

and this is obviously equivalent to the result of the theorem. Clearly
gla;) = O for each a; and by hypothesis f(a;) = 0(mod p) for each a;. There-
fore, the distinct (mod p) integers a,, d,, ..., a, are solutions to the con-
gruence equation

h(x) = O(mod p).

Thus by Theorem 3.22, either the degree (mod p) of h(x) is defined and greater
than or equal to n or the degree (mod p) of h(x) is undefined. But g(x) has no
terms involving powers of x higher than the nth power and hence, if k > n,
the coefficient of x* in #(x) is the same as the coefficient of x* in f(x), which is
congruent to O(mod p) by the definition of n. Also, by the definition of b, the
coeflicient of x" in h(x) is 0. Hence the degree (mod p) of h(x) cannot possibly
be defined and greater than or equal to n. Thus, by Theorem 3.22, the con-
gruence
h(x) = O(mod p)

has too many solutions to allow the degree (mod p) of h(x) to be defined.
Therefore, the degree (mod p) of h(x) is not defined and therefore

h(x) = O(poly mod p). A
We illustrate the application of Theorem 3.23 by proving the result in
(42). It is more convenient to derive this from the factorization of x”~! — 1

than from (41).
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Theorem 3.24 (Wilson’s Theorem). If p is a prime, then

(p — D!'= —1(mod p).
Proof. By Fermat’s theorem (3.14), the p — 1 pairwise incongruent
(mod p) numbers — 1, —2, —3,..., —(p — 1) satisfy the congruence
xP~1 — 1 = O(mod p).
Clearly the degree (mod p) of x*”! — 1is p — 1 and the coefficient of x"~!
in xP~ ' — 11s 1. Therefore, by Theorem 3.23,
49) xP"l -1 =(x+ )(x+2)---(x + p— 1)(poly mod p).

Hence the constant terms (the coefficient of x°) on both sides are congruent,

—1=1-2-3---(p — 1)(mod p). A

EXERCISES
1. Factor x> — 3x — 3 into linear factors (poly mod 5).
Factor 2x* — 3x — 2 into linear factors (poly mod 7).
Factor x? + 1 into linear factors (poly mod 13).
Factor x? + 1 into linear factors (poly mod 17).
Factor x* + x? + 4x + 1 into linear factors (poly mod 7).
Factor x* + 4x? + 3x + 6 into linear factors (poly mod 7).
Is it allowable to divide both sides of (40) by x and then substitute x = 0
in the resulting congruence to prove Theorem 3.24? Explain.
8. Use the fact that

N U AW

p —Jj = —j(mod p)

to show that if p is an odd prime, p = 2k + 1, then

_ 2
(p— 1)l = (—1){(”7‘) 1] (mod p).

9. Use the result of problem 8 to show that if p is a prime, p = 1(mod 4),
then [(p — 1)/2]!is a solution to the congruence equation

x2 + 1 = O(mod p).
10. If n > 4 is a composite number, show that n|(n — 1)! Conclude that
(n — 1) 2 —1(mod n).

(This shows that Wilson’s theorem can be used as a proof of primality.
It is unfortunately not practical for large numbers.)
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What s the result when the coefficients of x” 2 are equated on both sides
of (49)? Is your result valid for p = 2?7 Explain.

What is the result when the coefficients of x” 3 are equated on both
sides of (49)? Separate the casesof p = 2, p = 3, p > 3. Prove the result
for p > 3 without the use of polynomials. The formulas

. _nn+1) o, _nh+ D2n+ 1) Loy e+ )7
j=y— L= o Z/—[ 3 ]

J=1 J=1

may be helpful.
Find all distinct solutions (mod 5) or show there are none:

x? + x + 3 = 0(mod 5).

Find all distinct solutions (mod 5) or show there are none:
x? + 2x 4+ 3 = O(mod 5).

Find all distinct solutions (mod 15) or show there are none:

x? = 4(mod 15).

Find all distinct solutions (mod 8) or show there are none:
x? + x + 4 = O(mod 8).

Find all distinct solutions (mod 11) or show there are none:

x3 4+ 2x? + 5x + 6 = O(mod 11).

Use the coefficient of x on both sides of (49) to prove that if p > 3, then
pla, where
a 11 1

G oot _
b t2t3 Ry

. Use the congruence equation x* — 1 = O(mod p) to show that if

(a,p) = 1, then
a?~ 2 = 4 1(mod p).

Primitive Roots

We have seen that if (a,n) = 1, then

a?™ = 1(mod n).

In this section we investigate the twin problems of finding the smallest
positive power such that a to that power is congruent to I(modn) and
finding those a for which this power is actually ¢(n).
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Definition. Suppose that (4,n) = 1. We define the order of a(mod n) to be
the smallest positive integer, call it b, such that

a® = 1(mod n)
and we write
b = ord,(u).
For example, ord, 3(5) = 4, since
5! = 5(mod 13), 52 =25 = —I(mod 13),
5% = —5(mod 13), 5* = —25 = 1(mod 13).

Thanks to Euler’s theorem (3.13), if (¢,n) = 1, we are guaranteed that there
is a power to which a can be raised to be congruent to 1{mod n) and thus there
really is such a thing as ord,(a). It also follows from Euler’s theorem that if

(a,n) =1,
ord,(a) < ¢(n).
On the other hand, if (a,n) > 1, then the equation
(50) ax = l(mod n)
has no solutions, by Theorem 3.6. Thus for b > 1,
a® = 1(mod n)
is impossible, since it would provide the solution x = a®~! to (50). Thus if

(a,n) > 1, it is impossible to define the order of a(mod n).

Definition. If (a,n) = 1 and ord,(a) = ¢(n), then we say that g is a
primitive root of n.

Unfortunately, the analogous situation in equalities is worded differently:
If * =1, but o™ # 1 for 0 < m < k, then it is said that « is a primitive kth
root of unity. By analogy, if ord,(¢) = ¢(n), then

a®" = l(mod n), but a™ # 1(mod n) for 0 < m < ¢(n),

and at the very least we would expect something like “a is a primitive root of
unity (mod n).”” But this is never said. As an example, 3 is a primitive root of
10, since ¢(10) = 4 and

3! = 3(mod 10), 32
33 = —3(mod 10), 3%

9 = — I(mod 10),
—9 = I(mod 10).
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As another example, there are no primitive roots of 8, since ¢(8) = 4 and a
reduced residue system is given by the numbers 1, 3, 5, and 7 with

1" = 1(mod 8), 32 = 1(mod 8),
52 = 1(mod 8). 7% = 1(mod 8).

We will shortly show that there are primitive roots mod p if p is a prime.
In the meantime, we prove a result that will help us limit the possible values
of ord,(u).

Theorem 3.25. If b > 0, ¢ > 0, d = (b,¢), and

a’ = 1(mod n), a“ = 1(mod n),
then

Proof. By Theorem 2.2, there are integers r and s such that
d = br — cs.
This means that for all integers ¢,
d = b(r + ct) — (s + bt),
and since if we take ¢ sufficiently large, bothr + ¢tand s + bt will be positive,
we may as well assume that r > 0, s > 0. But then
a’ = 1'a? = (@)u’ = a4 = 4" = (") = 1" = I(mod n). A

We worried about making r and s positive because otherwise the mul-
tiplications in the last step would be divisions and we have not even defined
a/b(mod n), let alone prove any results about it. As an example of the last
theorem, we show that x = 1(mod 29) is the only solution to the congruence

(51) x!? = i(mod 29).

Suppose x = « is a solution to (51). Then (a,29) = 1. If follows from Fermat’s
theorem (3.14) that

a*® = 1(mod 29).
But since (13,28) = 1, Theorem 3.25 says that
a' = 1(mod 29)

also. [It is easily seen that this is a solution to (51).] As another example of
Theorem 3.25 at work, we have the result,
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Theorem 3.26. If («,n) = 1 and for some b > 0,
a® = 1(mod n),
then ord,(u)|b. In particular, ord,(a)|@¢(n). Conversely, if ord,(a)b, then

a® = 1(mod n).

Proof. Let
d = (ord,(a),b).
Then
(52) d < ord,(«)
and also, by Theorem 3.25,
a® = 1 (mod n).

But by the definition of ord,(«), this means that

d > ord,(u).
This, combined with (52), says that
ord,(u) = d.

By the definition of d, d|b, and hence ord,(u)b. Conversely, if ord,(u)|b, then
for some k,

b = k-ord,(u)
and hence
ab = [uurdn(a)]k = l(mOd p) A

Theorem 3.26 lightens the labor when we attempt to find ord,(a), since it is
now only necessary to check the divisors of ¢(n). As an example, let us find
ord,;(2). Since ¢(23) = 22, we see that ord,;(2) is one of the four divisors of
22:1,2,11, 22. The numbers 1 and 2 are obvious failures. [In fact, ord,(a) = 1
if and only if ¢« = 1(mod n).] Thus we need only look at 2''(mod 23). If we
make no mistakes, we will come up with 2!'! = + 1(mod 23) (see problem 19
of Section 3.6), but this remark is meant to serve only as a check. The useful
thing is that we do not have to look at each power of 2 in getting up to 2'".

2 = 4(mod 23),
2% = 4% = 16 = —7(mod 23),
28 =(—7)? = 49 = 3(mod 23),



CONGRUENCES 101

210 = 28 .22 = 3.4 = [2(mod 23),
211 =219.2 = [2.2 = I(mod 23).

Thus ord,;(2) = 11.

At this point we will restrict ourselves to prime moduli. As the example of
n = 8 showed, not all n have primitive roots. The next theorem will aid us in
showing that all primes have primitive roots.

Theorem 3.27. If pis a prime and d|(p — 1), then the congruence equation
x? = 1{mod p)
has exactly d distinct solutions.

Proof. We already know that the equation
x?~' — 1 = O(mod p)

has exactly p — 1 distinct solutions (mod p) (this is Fermat’s theorem,
3.14). Since d|(p — 1), let kd = p — 1. Then

xPTl 1 =xM |
= (x4 — [k 4 xdh=2) g oy dk=3) 4o x4 1.
Therefore, there are (p — 1) distinct solutions to the congruence
(53) (x4 — x4 4 x4 4 o4 x? + 1] = 0(mod p),

and since p is a prime, every solution to (53) is a solution of at least one of the
two congruences

(54) x4 — 1 = 0(mod p),
(55) xAk=1 g xdk=2) 4 x4 4 | = O(mod p).

By Theorem 3.22, (55) has at most d(k — 1) distinct solutions (mod p). Since
there are p — 1 distinct numbers (mod p) that satisfy at least one of (54) and
(55), and at most d(k — 1) of them satisfy (55), at least (p — 1) — d(k — 1)
distinct integers (mod p) satisfy (54); that is, (54) has at least

(p—0 —dk—-1)=[p—1)—dk] +d=d
distinct solutions (mod p). By Theorem 3.22, (54) can have no more than d

solutions and thus has exactly d solutions. A

Theorem 3.28. Let p be a prime and let d|(p — 1). Then there are exactly
¢(d) distinct integers (mod p) whose order (mod p) is d. In particular, there
are exactly ¢(p — 1) primitive roots of p.
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Proof. Since any solution of the equation
x?! = 1(mod p)

must be relatively prime to p [recall that the definition of order (mod p) had
this condition], we need only show that there are ¢(d) solutions to this
equation that do not satisfy similar equations with smaller d. We will give a
proof by contradiction (which in this case is a means of avoiding a proof by
induction). Let us suppose that the theorem is false. Then there is a smallest d
for which the theorem is false and we will let n be that smallest value. Thus
ifd < nand d|(p — 1), there are exactly ¢(d) distinct numbers (mod p) whose
order is d. Let us look at the solutions to

(56) x" = l(mod p).

By Theorem 3.26, x = a is a solution of (56) if and only if ord (a)in. Thus the
number of solutions to (56) with order (mod p) less than n is

Y (number of distinct integers (mod p) whose order (mod p) is d)

e
dlznd’(d) — ¢(n)
=n — ¢(n),

by Theorem 3.17. Thus the number of solutions of (56) with order (mod p)
equal to nis

n—[n— ¢(n)] = ¢(n)

This contradicts the definition of n, thereby proving the theorem. A

Shown in Table 2 at the end of the book are the smallest primitive roots
of each p < 500. As we noted earlier, there are no primitive roots of 8. To
satisfy the reader’s curiosity, an integer n has primitive roots if and only if n
is one of the five categories

n=l, n=2, n=4, n=pk, n = 2pk

where p is an odd prime and k is a positive integer. Thus 7*7,2- 1012, and 10
have primitive roots (the last was verified earlier) while 8, 16, 15, and 20 do
not. This result is left to miscellaneous exercises 37 at the end of the chapter.
The result that there are ¢(p — 1) primitive roots of p is sometimes written :
There are ¢(p( p)) primitive roots of p. This is the more general form, since it
can be shown that if there is a primitive root of n, then there are exactly
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¢(¢p(n)) primitive roots of n which are distinct (mod n) (problem 11 at the end
of the section).

We conclude the chapter with two applications of the above theorems.
Another application to decimal expansions of rational numbers will be given
in Chapter 6. As our first example, we investigate the question as to when the
equation

x* 4+ 1 = 0(mod p)
has solutions. This is the equation for equality that resulted in the invention
of complex numbers. Here the situation is different, as there are sometimes
already integral solutions to the congruence equation.
Theorem 3.29. Let p be a prime. The equation
(57) x? = —1(mod p)
has solutions if p = 2 or if p = 1(mod 4) but does not have any solutions
if p = 3(mod 4).
Proof. When p = 2, x = 1 is a solution. Suppose that p = [(mod 4). Then
4|(p — 1). By Theorem 3.28, there is an integer « such that
ord,(u) = 4.
In particular,
@®> = Y@* + 1) =a* — 1 = 0(mod p)
and hence either
a? — 1 = 0(mod p)
or
a? + 1 = 0(mod p).

The first case cannot happen since ord,(¢) = 4 and therefore

a? + 1 = 0(mod p).

Hence « is a solution to (57).
Suppose that p = 3(mod 4). Then

2(p = 1), but 44(p — 1)
and hence

(58) (p—14)=2
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Suppose that

(59) a’ = —I(mod p).
Then
(60) a* = (@*)* = (—1)’ = I(mod p)

[it follows that (a,p) = 1] and by Fermat’s theorem (3.14),
(61) a?~! = 1(mod p)

also. Hence, by (58), (60), (61) and Theorem 3.25,

(62) a’ = 1(mod p).
It follows from (59) and (62) that
1 = —1(mod p)
and hence
2 = 0(mod p).
This is impossible, since it says that an odd prime divides 2. Therefore, (59)
is untenable and hence (57) has no solutions when p = 3 (mod 4). A

The next theorem is a simple corollary of Theorem 3.29, but it will be used
in Chapters 5 and 8.

Theorem 3.30. If p is a prime = 3(mod 4) and a and b are integers such
that
a’ 4+ b? = 0(mod p),
then
a = b = 0(mod p).
Proof. We first show that b = O(mod p). If b 2 0(mod p), then there exists
an integer ¢ such that
bc = 1(mod p),
and then
(ac)® = a’c* = —b*c* = —(bc)* = — l(mod p).
But this is impossible by Theorem 3.29. Therefore,
b = 0(mod p)
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and hence
a’? = a? + 02 = a? + b* = O(mod p)
so that pla?, and thus pla; that is,
a = 0(mod p). A

We turn now to a completely different area. Gauss showed that if o is a
primitive kth root of unity (that is, o* = 1 but o™ % 1if 0 < m < k), then

k if k= 1(mod4),
Al i 2 B 0 if k= 2(mod 4),
PO i if k= 3(mod 4),

ka4 if k= 4(mod 4).

This is difficult to check in particular cases because of the nature of o (a
complex number with irrational real and imaginary parts when k > 12).
Owing to the great similarities between the theory of congruences and
equalities, we might suspect that a similar result is true for congruences. We
have noted one major difference between arithmetic (mod n) and equalities:
If n is composite, then 0 is congruent (mod n) to the product of two nonzero
(mod n) integers. This made a great difference when we dealt with poly-
nomial equations (mod n). Since Gauss’s result certainly deals with poly-
nomial equations, it seems best to investigate Gauss’s result for congruences
(mod p), where p is a prime. The analogue of a primitive kth root of unity
is an integer whose order (mod p) is k. Thus we may conjecture that if p is a
prime and

ord,(u) = k,
then
k(mod p) if k= 1(mod4),
o )2 0(mod if k= 2(mod4),
63) Y o ) _ (mod p) . - ( )
o —k(mod p) if k= 3(mod 4),

2kad*mod p)  if k = 4(mod 4).

Let us check this conjecture for k = 3. We cannot choose any prime that
comes to mind ; by Theorem 3.26,

ord,(a)l(p — 1),

in this case, 3|(p — 1). If 3|(p — 1), then by Theorem 3.28, there will be
integers whose order (mod p) is 3. Let us pick p = 13 for our example. The
next question is: Can we find a number whose order (mod 13) is 3 without
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proceeding by trial and error? The answer is yes, if there is a table of primitive
roots available. We see from Table two at the end of the book that 2 is a
primitive root of 13. Thus

2'2 = 1(mod 13), but 2" # 1(mod 13) for 1 <n<ll.
It follows that
(2%)® = 1(mod 13), but (2% # l(mod 13) for m=1,2.
Thus by definition,
ord,;(16) = 3.

For our calculations, it will be best to replace 16 by the congruent number
3(mod 13) and thus we let ¢ = 3. Then

2 2
( Y 31“’) = (3° + 3' + 3*)? (mod 13)
= =(1 4+ 3+ 3'-3)’ (mod 13)
=( +3+3)?% (modl3)

=72 (mod 13)
=49 — 4-13 (mod 13)
= -3 (mod 13),

as predicted by (63).

This example is instructive for two reasons. First it has illustrated several
of the theorems of this chapter at work in a numerical example. Second,
the conjecture itself (assuming it is true) is likely to have a proof that parallels
the proof of Gauss’s result for equalities. Here, as in much of this chapter,
we have taken proofs from results on equalities and adapted them to con-
gruences. In other circumstances, we might have to readapt these proofs
once again. This illustrates the great advantage of the modern axiomatic
method. Starting from a certain set of axioms [in this case, the so-called field
axioms, satisfied by the rational numbers, the real numbers, the complex
numbers, congruences (mod p), and other systems] one derives certain
theorems. The resulting theorems are then true for everything that satisfies
the axioms, which results in a great saving of needless duplication of proofs.

EXERCISES
1. Did this section prove the conjecture in (63) for k = 3?
2. How many distinct solutions (mod 102) are there to the equation

x8% = 1(mod 102)?
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. Suppose that («,n) = 1. Prove that

a® = a‘(mod n)

if and only if
b = ¢(mod ord,(u)).

. Show that if (4,15) = 1, then

a2 = [(mod 15)

and hence 15 has no primitive roots. [Hint: Examine the congruence
(mod 3) and (mod 5).]

. Show that 21 has no primitive roots (see problem 4).
. Show that 35 has no primitive roots (see problem 4).
. Show that if g is a primitive root of n, then the numbers

2 gZ‘ gl’ o gq)(n)
form a reduced residue system (mod n).
Show that if p is a prime, p = 1{mod 4) and g is a primitive root of p,
then g V' # is a solution to the equation

x? = —I(mod p).

. There are four solutions to the equation

x? + 1 = 0(mod 65).

Find them by solving this equation (mod 5) and (mod 13) and then using
the Chinese remainder theorem.

Given that 3 is a primitive root of 31, show that 3° 3'¢,3'3 320 325 apd
339 are the six distinct roots of the equation

x® = 1(mod 31).
Since
xX—1=03 =D+ 1)=0x— )2 +x+ x4+ )2 —x+ 1),
the six numbers above satisfy the equation
(x — D2 + x + D(x + D(x?* = x + 1) = 0(mod 31).

Which solution goes with which factor? (Do this without substituting
the solutions into the factors, if possible.)

Show that if »n has a primitive root, then n has exactly ¢(¢(n)) primitive
roots. (Hint: Use the result of problem 7 and decide which powers of
g give the primitive roots of n.)
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12. Find all solutions to the equation
x'% = I(mod 14).

13. Verify the conjecture in (63) for k = 5 and whatever values of p and a
that you find convenient.

14. Repeat problem 13 with k = 6.

15. Repeat problem 13 with k = 7.

16. Repeat problem 13 with k = 8.

MISCELLANEOUS EXERCISES

1. Show that if p and g are different odd primes, and if (a,pq) = 1, then

a®®'? = 1(mod pq).

2. Show that if n > 2, then 2|¢(n).

3. Use the ideas in problems 1 and 2 to show that if n = ab, where a > 2,
b > 2, (a,b) = 1, then n has no primitive roots. Show that the only
numbers which can possibly have primitive roots are those of the form
1, 2, 4, p*, and 2p*, where p is an odd prime.

4. Suppose p is an odd prime, k and g are positive integers. Use the bi-
nomial theorem to show that

(g + p)¢(p“) = gcb(p“) _ pkgd’(pk)_l(mod pk+1).

This result is false if p = 2 (try g = 1, k = 2). Where does your proof
use the fact that p is odd?

5. Show that if p is an odd prime and n is a positive integer then there is a
primitive root of p". [Hint. Suppose g is a primitive root of p*. Use
problem 4 to show that either g or g + p (or both) is a primitive root
Of pk+ 1.]

6. Show that if p is an odd prime, n > 0, then there is a primitive root of
2p". [Hint: Let g be a primitive root of p" (such a number exists by
problem 5). Show that either g or g + p" is a primitive root of 2p".]

7. Show that if g is a primitive root of p?, then g is a primitive root of p"
for all n = 2. [Hint: By problem 5, there are primitive roots of p" and
problem 11, page 107, there are exactly ¢(p(p")) such primitive roots.
Investigate how these are related to the ¢(¢(p?)) primitive roots of p2.]

8. The Fermat numbers are defined as

F,=22"+1.

Raise the congruence

22" = —1(mod F))
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to the (22"~ ™th power and use your result to show that every F, is
either a prime or a pseudoprime. The Polish astronomer Banachiewicz
has conjectured that Fermat knew this fact and that this is one of the
reasons Fermat conjectured that every F, is prime after having verified
only that Fy, Fy, F,, F3, and F, are primes (recall that in Fermat’s time,
the Chinese conjecture that there is no such thing as a pseudoprime was
still believed). Thus when Euler showed in 1732 that F5 was not a prime,
he had actually produced a pseudoprime 87 years before the first
announced example of one.

Let

F,=2"+1
and suppose that p|F,, where p is a prime (possibly F, itself). Show that
22" = I(mod p)
so that ord,(2)12"* . Use this to show that
ord,(2) = 2"*!

[first show that ord,(2) is a power of 2]. Since ord,(2)|(p — 1), show that
there is an integer k such that

p=k-2"" 4 1.

In the next two problems, we will see that if n > 1, then k is even.

. Suppose p = 8m + 1 is a prime. Show that

24 (dm)! =2-4-6---4mlp — (4m — )][p — (4m = 3)]---[p — 1]
and use this to show that
2:4.6---8m=2-4-6---4m[—(4m — 1)][—(4m — 3)]---[—1](mod p)
=(—1)"2-4-6---4m(dm — 1)(4m — 3)---(1)(mod p)
= (4m)'(mod p).
Use this to prove that
2P~ 12 = 1(mod p).

. Use the results of problems 9 and 10 to show thatifn > 1 and pisa prime

divisor of F,, then

p—1
ordp(z)(z)



110

NUMBER THEORY

and thus there is an integer ¢ such that
p=1t-2""2 4+ 1.
As an example, if n = 5, then any prime divisor of Fs5 must be of the
form
p =128t + 1.
When t = 5, we get the prime p = 641, which does divide F5:
Fs = 641-6700417.

This was done in 1732 by Euler, who, in addition, announced that
6700 417 was a prime so that Fs could be factored no further. If p is a
prime divisor of 6 700 417, show that there is an integer t such that

p =128t + 1.

Given that (12821 + 1)> > 6700417, show that if 6700417 is com-
posite, then it is divisible by a prime among one of the twenty numbers

128t + 1, 1 <t <20.
The primes in this list are 257(t = 2), 641(t = 5), 769(t = 6), 1153(t = 9),
and 1409(t = 11), none of which divide 6 700417. Thus 6 700417 is a
prime.
Show that every integer of the form

4-14% 4+ 1, k>1

is composite. (Hint : Show that there is a factor of 3 when k is odd and a
factor of 5 when k is even.)

. Show that every integer of the form

521-12% + 1, k>1

is composite. [Hint - Show that there is a factor of 13 when k is odd, a
factor of 5 when k = 2(mod 4), and a factor of 29 when 4|k.]
Show that every integer of the form a - 2* + 1, where k > 1 and

a = 2935363 331 541925 531,
is composite. You may assume that
a = l(mod FoFy F,F3F,py), a = —1(mod p,),
where

p1 = 6700417, p, = 641,
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and

pip2 = Fs.

[Hint: Consider separately the cases k = I{mod?2), k = 2(mod 4),
k = 4(mod 8), k = 8(mod 16), k = 16(mod 32), k = 32(mod 64), and
k = 64(mod 64).] This result was first proved in 1960 by Sierpinski, who
compared it with the unsolved problem of whether or not there are
infinitely many primes of the form 1-2*¥ + 1 (when k = 2" we have F,).
Sierpinski also noted that if 1 < a < 100, then there is at least one prime
of the form a - 2* + 1.
The Mersenne numbers, M,,, defined by

M, =2"—1
have been well known since 1644 when Mersenne made an incorrect
conjecture on the primality (or lack of primality) of all M, with m < 257.
Show that if m is a prime, then M,, is either a prime or a pseudoprime.
Show further that if m is a pseudoprime, then M,, is a pseudoprime.
Conclude that there are infinitely many pseudoprimes. The number
M, = 23-89is a pseudoprime and thus there was a number well known
to Fermat available as an example of a pseudoprime 175 years before the
first announced example of one.
Suppose p is a prime = 1{mod 8). Use the result of problem 10 to show
that 2 is congruent (mod p) to an even power of a primitive root of p
and hence show that the equation

x2 = 2(mod p)

has solutions.
Suppose that p is a prime and (a,p) = 1. Show that the equation

x? = a(mod p)
has solutions if
a'?~ Y2 = 1(mod p)
and does not have solutions if
a?~ 2 = —[(mod p).
Determine whether or not 945 827 is a prime, given that
a = 149 762(mod 945 827),

where a is the product of all the primes less than 1000.
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Show that if p is a prime and ord,(a) = 3, then

2 2
Y ajz) = —3(mod p).
=0

Show that if p is a prime and ord (a) = 4, then

3 2

3 ajz) = 8a(mod p).
i=0

Show that if p is a prime and ord (a) = 6, then
5

Y @ = O(mod p).

=0

Show that for all integers a and b,
ab(a®* — b?)(a® + b?)

is divisible by 30. When showing that 2, 3, or 5 divides this number, do not
break the problem up into cases (such as, for example, case 1: one of a
and b even; case 2: both of a and b odd).

Show that

l' nk+1
m
k—* o0 O'(nk)

= ¢(n)

and use this equation to prove that ¢(n) is multiplicative. (Of course, the
way we have done things in this chapter, this equation could not be
derived without the knowledge that ¢(n) is multiplicative.)

The Mobius function is defined as

1 ifn=1,
ay = {(—D*  ifn=pipepl, @ =ay = =a =1,
0 ifn =p{'p%?---pi*, somea;> 2

Show that u(n) is multiplicative and that

1 ifn=1,
Y wd) = ,

dln 0 ifn>1.

Since d|(j, n) if and only if d|j and d|n, use the result of problem 24 to show
that

B = ¥ ¥ uld) = y S uid) = 3 Sud) = n 3 M
ji= ldlj "j|;1 d|n d|
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and use this to show that ¢(n) is multiplicative. Show also that this result
gives ¢(p®) when pis a prime and a > 1.

There is a general connection between Theorem 3.17 and the result of
problem 25, which is known as the Mébius inversion formula. Use the
result of problem 24 to show that

f(n)y =73 gd)

d\n

for all » if and only if

gln) = E}:f(n/d )(d)
dln
for all a.
After problem 26, the result of problem 25 follows immediately from
Theorem 3.17. Prove Theorem 3.17 directly by showing that

n

n=>% Y 1=Y ¢n/d).

din j=1 din
(my=d

From a given date we may calculate how many days have passed (or will
pass) between then and today. This number of days (mod 7) will tell us
the day of the week of the given date (assuming we know what day it is).
This principle allows us to determine the day of the week of any date in
history. Let the days of the week be represented by the numbers
0.1,2,3,4,5, 6 (Sunday being 0 and Saturday being 6). Suppose that the
Oth of a given month and year (that is, the last day of the previous month)
falls on the weekday M. Show that the dth day of the month falls on the
day w of the week given by

w=M + dimod 7).

We can find M from the weekday Y which represents the Oth day of the
year (that is, the last day of the previous year). Unfortunately, for March
and later months, M will depend not only on Y but also on whether or
not the year involved is a leap year. Most perpetual calendars get around
this problem by defining the beginning of the year to be March 1. Thus
in calculating the day of the week of February 28, 1970, we would use the
year 1969 in our calculations. From this point on, we assume that January
and February belong to the year containing the previous December. Thus
Yis the day of the week of March O [that is, February 28 or 29, according
as to whether the year before (ending in February) is a normal or a leap
year].
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Day w Month m

Sunday 0 March 0
Monday 1 April 3
Tuesday 2 May 5
Wednesday 3 June 1
Thursday 4 July 3
Friday 5 August 6
Saturday 6 September 2
— October 4
November 0
December 2
January 5
February 1
Show that

M =Y + m(mod 7),

where m is given in the accompanying table (30 days hath September,
April, June, and so on). Let y be the last two digits in the year (for example,
in January 1900, y = 99 in April 1914, y = 14). Let ¢ be the weekday of
March Oth of the first year of the century containing the date in question.
Show that, (mod 7), a normal year has one day and a leap year two days
and hence prove that

¥

J (mod 7),

YE<’+y+|:

where [y/4] indicates that any remainder in v/4(}, 2. 3) is thrown out (it is
useful to note that the right-hand side usually increases by 1, but every
fourth y, starting with 4, the right-hand side increases by 2). Combining
all the equations, we have

w=m+d+y+ I:;i| + ¢(mod 7).

For example, on January 19, 1944, we have

w

5+ 19 +43 + [43] + ¢(mod 7)
= c(mod 7),

and assuming that in 1900, ¢ = 3, we see that January 19, 1944 is a
Wednesday. Use today’s date and day to show that in 1900, ¢ = 3.
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Century ¢
1500
1600
1700
1800
1900
2000
2100
2200

periodic

N O MW O N e

Since March 0, 1900 (w = ¢ = 3) was the same day as February 28,
1900 (m = 1,d = 28, y = 99), show that in 1800, ¢ = 5. Verify the values
given of ¢ in 1500, 1600, 1700, 2000, 2100, and 2200 (1600 and 2000 are
the only leap years among these : a year divisible by 100 is a leap year
only when it is divisible by 400).

Our present calendar, the Gregorian calendar, was introduced by Pope
Gregory XIII in 1582 to correct a slight error in the Julian calendar
(introduced by Julius Caesar in 46 B.c.) which was gradually accumulating
into a significant error. The Julian calendar is the same as the Gregorian
calendar, except that every year (such as 1900) divisible by 100 is a leap
year. Thus the Julian calendar has three extra days every four centuries.
In 1582, the Julian calendar was in error by 10 days : thus October 5, 1582
(Julian calendar) was converted to October 15, 1582 (Gregorian calendar).
In the notation of the previous problem, show that the Julian calendar ¢
of 1500 is ¢ = 6. Show that in the Julian calendar, ¢ decreases by one

Century ¢

1400
1500
1600
1700
1800
1900
2000

periodic

— R AN D —

(mod 7) each century. The Gregorian calendar was adopted in 1582 by
France and Spain, but England and her American colonies waited until
1752 to adopt it and Russia did not adopt it until after the revolution in
1917.
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30. On what days of the week did the following events occur (see problems

31.

28 and 29)?

August 6, 258 (A.D.)

August 6, 1637
August 6, 1644

August 6, 1660
August 6, 1759

August 6, 1811

August 6, 1848
August 6, 1890

August 6, 1930

August 6, 1939
August 6, 1945

August 6, 1966

(Julian calendar). The martyrdom of Pope
Sixtus 1L

(Julian calendar). Ben Jonson, dramatist, died.
Louise de la Valliere, mistress of Louis XIV,
born.

Diego Velasquez, Spanish painter, died.

Eugene Aram, English scholar and murderer,
hanged.

Peter Barlow readies for print his book, An
Elementary Investigation of the Theory of
Numbers with Its Applications to the Indeter-
minant and Diophantine Analysis, the Analy-
tical and Geometrical Division of the Circle and
Several Other Curious Algebraical and Arith-
metical Problems, containing a proof of Fer-
mat’s last theorem which depends on an in-
correct corollary on page 20.

H.M.S. Daedalus sights a sea serpent.

First successful operation of an electric chair,
State Prison, Auburn, New York.

Judge Crater, justice on the New York Supreme
Court, disappears.

The author’s birthday.

The first wartime use of an atomic bomb.
Hiroshima.

The President’s daughter’s marriage on an in-
auspicious day.

Show that if f(x) is a polynomial with integral coefficients and

f(a)

fa) = f"a) = -+ = fa) = 0(mod n),

(rtn) =1,

then there is a polynomial g(x) with integral coefficients and degree
(mod n) equaling the degree (mod #) of f(x) minus (r + 1) such that

f(x) = (x — a)* 'g(x)(poly mod n).

Apply this result with a = 3 to the polynomial equation

x* + 6x3 + 2x% + 4x + 2 = 0(mod 11).
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32. Suppose that (r!,n) = 1 and let the numbers aq, a,, ..., a, be defined by
the equations

(ja; = l(mod n), j=0,1,...,r
Suppose that f(x) is a polynomial with integral coefficients and degree
(mod n) equal to r. Show that if a is an integer, then

r

f(x) = Y a;f9a)(x — ay(poly mod n).

j=0

There are times that this problem overlaps problem 31. Apply the result
here with a = 3 to the polynomial of problem 31.



Chapter 4

MAGIC SQUARES

4.1. The Uniform Step Method

An n x nsquare with n? entries is said to be a magic square if the sum of
the entries of any row or column is always the same. This common sum is
called the magic sum. Figure 4.1 is a famous example of a4 x 4 magic square.
In 1693 De la Loubére gave a method (illustrated in Chapter 1) of finding
magic squares for any odd #. In 1929 D. N. Lehmer investigated by means of
congruences a generalization of Loubére’s method called the uniform step
method. Both Loubere and Lehmer gave a rule for placing the b% consecutive
integers 1,2,...,n% inan n x nsquare so as to make it magic. We will find
it convenient to use the numbers 0,1,2,...,n% — 1; this simply involves
subtracting 1 from every entry in the Loubére or Lehmer squares and thus
subtracting » from each row and column sum.

Each of the n? possible locations for a number in our square will be called
a cell. We may give the cells coordinates as illustrated in Figure 4.2. We let
x;and y; be the X and Y coordinates of the cell containing j. For example,
the cell containing 0 has coordinates (4,3) and the cell containing 7 has co-
ordinates (2,5) and thus (xg,y0) = (4,3), (x7,y7) = (2,5). As another example,

Vi =Y7 = Y13 = Y19 = Y20 = 3.

We first develop the equations of the uniform step method for a particular
example. We consider a 5 x 5 square. We place 0 in any cell whatsoever, say
(x0.y0) = (4,3). We no longer restrict ourselves to going one to the right and
one up for the next entry. For our example this time, we go over one to the
right and up two for consecutive entries. Thus

As with the Loubére method, we soon leave our square if we follow these
equations. The cure in the Loubére method was to subtract 5 as often as

118
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16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Figure 4.1. This square is in the engraving “Melancolia” by
Albrecht Diirer (1514). The sum of the four numbers in any row
or column is 34, as is the sum of the four numbers on either of
the two diagonals or the central four numbers or the corner four
and others. Also the sum of two symmetrically placed numbers
about the center is 17.

necessary so as to stay in the original square. In other words, x; and y; are
given by congruences (mod 5) rather than equalities:

(1) X;=4 +jmodS).  y =3+ 2jimod 5).

These congruences are enough to determine x;and y;in the range from 1 to §,
and this is all we desire. This gives us the positions of 0, 1, 2, 3, and 4 in the
square of Figure 4.2.

When we come to inserting 5 in the square, however, we find that S is
assigned the same cell as 0. This happened with Loubére’s method also ; his
cure was to place 5 in another vacant cell. Loubére chose to place 5in the cell
that was one to the left and two down from the cell containing 0, but this is
not necessary. This time, we arbitrarily put 5 in the cell one to the right and
three up (mod 5) from the cell containing 0. Then we continue going one to
the right and two up as before. Thus for j > 5, instead of (1), we use the
congruences

(2) x; =4+ j+ 1(mod 5), yi =3 + 2j + 3(mod 3).
Y
5 13 1
4 9 22
3 0 18
2 21 14
1 17 5
—— —o—X
4 5
etc.)

Figure 4.2.

a ¢ e) = (4 ! l), n = 5. This square is filled,
b d f 3 23

magic, diabolic, and symmetric. (This and later figures will be
referred to several times in the course of the chapter. The strange
words and notation will be defined before the last referrals.)
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This suffices to place 5, 6, 7, 8, and 9 in the positions shown in Figure 4.2, but
10 is assigned to the same cell as 5. Again, we make use of the additional step,
one further to the right and three up. Thus, forj > 10, instead of (2), we use the
congruences

(3) x;j=4+j+ 1-2(mod 5), y, =3+ 2j +3-2(mod 5).

This same problem will arise when we come to placing 15 and 20. If we are
to avoid having to deal with five separate sets of congruences, each valid for
only five values of j, then we are going to have to find functions of j which
remain constant for five consecutive values of j and then change, always by
the same amount.

We define a function which will help solve the problem just raised.

Definition. If « is a real number, then we define the greatest integer function
of a, [a], to be the greatest integer less than or equal to «. In other words,
[¢] = a, where a is the unique integer satisfying the inequality,

a<a<a-+l

Thus, forexample, [7.2] = 7,[n] = 3,[—n] = —4,[2] = 2,and [-8] = —8&.
The greatest integer function is just what we need ; consider the function

of j,
10) = [’g]

Forj=0,1,2.3,4,f(j) = 0. Forj = 5,6,7,8,9, f(j) = 1. For j = 10, 11, 12,
13, 14, f(j) = 2;and so on. Thus f(j) has the property that for five consecutive
values of j it remains the same and then it changes by one. This enables us
to write all the x;and y; in one congruence equation: For 0 < j < 24,

x; =44+ [jg.](mod 5),
(4) ,
yy=34+2+ 3[%}(mod 5).

These equations give the square shown in Figure 4.2. For most values of j
(namely those j that are not one less than a multiple of 5), [j/5] remains the
same when we change j to j + 1, and thus equation (4) states that the cell
containing j + 1 has x coordinate one greater than that containing j and
y coordinate two greater than the cell containing j; that is, j + 1 is one
cell to the right and two cells up from j(mod 5). But for certain values of j



MAGIC SQUARES 121

(namely those values of j that are one less than a multiple of 5: 4,9, 14, 19),
[j/5] increases by one as we change from j to j + 1; without this addition
change, j + 1 would go in the same cell as j — 4, but with it j + 1 is moved
an additional cell to the right and three cells up (mod 5).

We now define the general uniform step method.

Definition. Let a, b, ¢, d. e, and f be integers and let n be a positive integer.
The uniform step method for an n x n square puts the n? numbers j = 0,

1.2...., n? — 1in the cells with coordinates (x;,y;). where
x;=a+c+ el:j;:|(mod n),

(5) ,
y=b+dj+ f[ﬂ(mod n).

The uniform step method thus has the potential to furnish a great many
n x nsquares, depending on the parameters a. b, ¢, d, ¢, and f. When n = 5
anda=4b=3,c=1,d=2 e¢=1, and f = 3, we have the square of
Figure 4.2.

The uniform step method places 0 in the cell with coordinates (a.b). Each
successive integer is then placed in a cell ¢ units to the right and 4 units up
from the preceding integer except that after every » steps an additional step
of e units to the right and funits up is called for. If any of the numbers ¢, d, e,
and fare negative, then the words “right’” and “up” should be replaced by
“left”” and “down’’ in the appropriate places (for example, ¢ = —1 corres-
ponds to one cell to the left). The square in Figure 4.2 is a magic square (and
a few other things also) but this does not guarantee that the uniform step
method always gives magic squares. Nor does one example guarantee that
the uniform step method always actually fills the square. Rather than worry
about it, we give two examples to show that the uniform step method is not
perfect.

a c e) (311
b 4 f 1 -1 2

filled, this square is magic in the rows, columns, and negative

diagonals. It is also symmetric.

Figure 4.3.

], n = 3. Although not
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As seen in Figure 4.3, there are times that the uniform step method does
not completely fill the square but rather n> numbers are put in fewer than n?
cells, with some cells thus receiving more than their share.

Definition. The uniform step method will be said to fill an n x n square
if each of the n? cells in the square has exactly one entry.

The sum of the entries in any row or column in Figure 4.3 is always 12.
We will find it convenient to call this square magic also. This is not the usual
terminology ; magic squares as usually defined will be in our terminology,
both magic and filled. The two properties are separate and are best treated
separately.

The square in Figure 4.4 is filled, but it is not magic since the sums of the
numbers in the first and second rows are different. The reader may picture
the square that results if we take ¢ =d = ¢ = f = 0. Every number goes
in the cell with coordinates (a,b). Such a square is neither filled nor magic.
Thus we clearly need some sort of conditions to be placed on ¢, d, ¢, and fif the
square is to be filled or magic. We shall give these conditions in Section 4.2.

3 5 11 13
4 10 12 2
9 15 1 7
14 0 6 8
Figure 4.4. (a ¢ e) = (2 -l .n =4, This square is
b d f 11 =2
given by the Loubére method. It is not magic, but it is column
magic.
EXERCISES

In problems 1-6, find the square given by the uniform step method from the
given parameters and state whether it is filled, magic, both. or neither.

a c e 21 2

1. = , n=23.
b d f 31 1
a c e 1 1 1

2. = R n=4.
b d f 1 1 3
a c 2 1 -1

3 = , n=>5
b d f 31 =2
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a < e) 1 1 2)
= n=3
b d f 301
a ¢ (’) 1 1 2)
= , n=6.
b d f 5 —1 1
a ¢ e 2 1 2)
= , n=>,5
b d f 2 2 1

. The following square is given by the uniform step method. Find
a,b,c,d e and f.

5 17 4 11 23
21 8 15 2 14
12 24 6 18 0
3 10 22 9 16

19 1 13 20 7

. Show that the Loubére method is always given by c =1, d =1,¢ = — 1.
and f = —2.

. Can the numbers 0 through S be inserted in a 2 x 3 rectangle (two rows

and three columns) in such a way that the sums of the entries of the two

rows are equal?

The numbers 0 through n*> — 1 are placed in an n x n square in such a

way as to make it magic (the process used is not necessarily the uniform

step method). What is the magic sum? (Hint : Consider the sum of every

number in the square and how this total is related to the magic sum.)

. Suppose m and n are positive integers, m # n. Can the numbers

1,2,...,mnbeinserted into an m x nrectangle in such a way as to make

the sums of the entries of all rows and columns the same?

Show that if 0 < j < n* — n — 1, then the uniform step method places

j + nin the cell e units to the right and f units up (mod ») from the cell

containing j.

4.2. Filled and Magic Squares

In this section we find conditions that ensure that the uniform step method

gives filled and/or magic squares. We first present a preliminary theorem
which will prove very useful. For the rest of the chapter, we assume that
n > 2, since the case n = 1 is of no interest.
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Theorem 4.1. Let j be an integer in the range 0 < j < n?> — 1. There are
unique integers u and v such that

6) O<u<n-—1, O<v<n-—1,
and

Jj=vn+u.

These integers are completely determined by (6) and the conditions

Jj = u(mod n), |:l:| = .

Proof. Thereis a unique integer v in the range of n numbers0,1,...,n — 1
such that

Jj = u(mod n).

By the definition of congruence, there is an integer v such that

Jj=u+ nv.
Since
0<j<n®—1, O<u<n-—1,
we see that
0O-(n—1 j—u (n*-1)-0
-1 < < n,
n n n

and since (j — u)/n = v,
-1 <v<n.

But v is an integer and therefore
O0<v<n-—1.

This shows that the representation of j in the theorem is possible.
Suppose that
Jj=vuvn+u,

where u and v satisfy inequalities (6). Therefore,

Jj = u(mod n),
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and this along with the inequality
O<u<n-—1

completely determines u. Using this inequality again, we see that

j—u j+(n—u

n

v =

=v+ 1.

S~

<
n

Thus, by the definition of the greatest integer function,

and thus v is also uniquely determined. We have also incidentally proved
the last part of the theorem. A

The inequality 0 < v < n — 1 was verified but never actually used in the
course of proving Theorem 4.1. Its use will be in the applications of the
theorem. In the case that n = 10, the whole theorem is nothing more than
an obvious statement about the representation of a number in the decimal
notation. The condition 0 < j < 10? — 1 says that j has a maximum of two
digits. Inequalities (6) and the equation j = v- 10 + u say that u is the units’
digit and ¢ the tens’ digit. Any positive integer is congruent to its unit digit
(mod 10) and if j > 0, [j/10] is clearly what is left when the units digit is
erased (try all this out, for example, on j = 97). In like manner, this theorem
is a statement about two digit numbers written in the base n.

Ifforjin theinterval0 < j < n* — 1, we putjin theform given by Theorem
4.1; then the uniform step method puts j in the cell (x;, y;) given by

Xj

Vi

a + cu + ev(mod n),

(7
b + du + fv(mod n).

We will use this form of the uniform step method in our proofs.

Theorem 4.2. The uniform step method fills the » x » square if
(cf —de,n) = 1.

[Remark: The converse is also true; if the square is filled, then
(¢f — de, n) = 1. However, the proof is more difficult and will not be given.]

Proof. The uniform step method places n? numbers in n? cells. Thus the
only way that the square would not be filled is that some cell contains more
than one entry. Thus if we can show that no cell contains two different
entries, it will follow that the square is filled. We give a proof by contradiction.
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Letj, and j, (j, # j, and both in the range from 0 to n* — 1) be placed in the
same cell so that

Xjp = Xjy» Yie = Via-

By Theorem 4.1, we may put j; and j, in the form
J1 = vin + uy, Ja = van + u,,
where u,, vy, u,. v, are in the range 0 through » — 1. Thus
a+ cuy + evy = a+ cuy + ev,(mod ),

b + du1 +_fl71 b + duz +fl‘2[m0d n)

or

@) cu; + evy = cuy + ery(mod n),
dul +fl71 = dllz +ﬁ’2(m0d n).

Equations (8) may be thought of as two congruence equations in the two
unknowns u; and v,. By hypothesis, the determinant of the coefficients,
¢f — de, is relatively prime to » and thus, by Theorem 3.9, there is a unique
solution to (8) for u; and v, (mod »). But clearly

u; = uy(mod n), vy = vy(mod n)

is a solution to (8) and hence must be the unique solution to (8). Since
uy, Uy, vy,and v, are all in the range O through n — 1, it must be that

Uy = Uy, Uy = Uy
and thus
J1=1J2-
This is a contradiction and thus different numbers go in different cells. A
As an example, whenc = 1,d = 1,e = —1,f = —2(the Loubére method),

we see that (¢f — de, n) = 1 for all n and thus the Loubére method fills every
n x n square. The following theorem gives the key to finding conditions
that guarantee that a square is magic.
Theorem 4.3. Let g, r,and s be integers and
(g.n) = (r,n) = 1.
Then there are exactly » integers in the range

0<j<n®—1
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that satisfy the congruence

q + rl:j] = s(mod n),

n

and the sum of these n integers is n(n*> — 1)/2.

Proof. For each j in the range 0 < j < n* — 1, there are by Theorem 4.1
unique integers u and v such that

9) O<u<n-—1, O0<v<n-1,

and
j=vn+ u.

Conversely, given integers u and v satisfying the above inequalities, the

number
j=vn+u

satisfies the inequality
0=0-n+0<m+u<m—Dn+m—-1)=n—1.

Thus each j in the range O to n* — 1 determines unique u and v in the range
from 0 to n — 1 and conversely. In terms of u and v, our congruence is

(10) qu + rv = s(mod n).

Our first task is to show that there are exactly » pairs of numbers u, v which
satisfy (9) and (10).

Since (r,n) = 1, Theorem 3.6 tells us that for a given u, v is the unique
solution to

rv = s — qu(mod n).
There are n values of u in the range 0 < u < n — 1, and each of these deter-

mines a unique v in the same range such that the pair u, v satisfies (10). Hence
there are » values of j in the range 0 < j < n? — 1 satisfying

qj + rlii:| = s(mod n).

Let these n values of j be jg, ji,....j,—1,and let the corresponding values of
uand v be uy, vo, Uy, Uy,..., U,—1.Vs—1. We have already noted that the u,
assume each value in the range from 0 to n — 1 exactly once. The same can
be said for the v,. Given a value of v, there is a unique u satisfying the equation

qu = s — rv(mod n),
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since (q, n) = 1. Therefore, every number v in the range O to » — 1 has a
corresponding u in that range such that the pair u, v satisfies (10). Thus the
vy also give each value in the range 0 to » — 1 exactly once. In other words,
the numbers u,, uy,...,u,_, are simply a rearrangement of the numbers
0,1,...,n — 1 and the same is true of the numbers vy, vy,...,0,_, (the
rearrangement is undoubtedly a different rearrangement, but this does not
matter). Therefore,

n—1 n—1 n—1 n—1
Y=Y m+uw=n) v+ Y u
k=0 k=0 k=0 k=0

1 n—1
=n ) k+ Y k
k=0 k=0
n—1
=(n+1) Y k
k=0

PR U

_n(n® — 1)
= 5 . A
Let us illustrate the last part of the proof of Theorem 4.3. Take » = 5 and

let the congruence equation be

J

(11) 2j+3[5

] = 2(mod 5)

or, in terms of u and v,

2u + 3v = 2(mod 5).

The five solutions to (11) with O < j < 24 arej = 1,7,13,19,and 20. The u, v
representations of these numbers are

1=5-0+1,
T7=51+2,
13=5-2+ 3,
19 =5-3+4,

20=5-4+0.
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Their sum is

1+ 7+134+19420=50+1+2+3+4+(1+2+3+4+0)
=5 0+1+24+3+4)+0+1+2+3+4)
=60 +1+2+3+4
= 60.

Equation (11) is actually the equation of the top row of the square in
Figure 4.2. The top row there is given by the equation

Yi = S,
and y; is given by

yi=3+2+ 3[ﬂ(mod 5).

These two equations give equation (11). The sum of the elements in the first
row in Figure 4.2 is 60. We see that this must be true of the other rows also:
their equations are the same as (11) except that the number on the right side
changes from row to row. The numbers change from row to row but their
sum will always be

50 +1+2+34+4)+0+1+2+3+4)=060.

We can perhaps better appreciate the proof of the previous theorem and
its application to magic squares if we take the magic square of Figure 4.2
and write its entries not in the decimal system but in the base S (Figure 4.5).
(Ordinarily, a number such as 4 would be written 4 and not 04 : we add the
0 just to make a point.) The reader can see at a glance that in any row or
column, the units’ digits (the u’s of Theorem 4.3) are always 0,1,2.3.4
(rearranged), and the fives’ digits (the ¢’s of Theorem 4.3) are also always
0, 1,2, 3,4 (rearranged). Thus the sum of the numbers in any row or column
is always (base 10)

SO+1+24+3+4)+O0O+1+2+3+4)=060.
As a result, the square is magic.

34 12 40 23 01
20 03 31 14 42
11 44 22 00 33
02 30 13 41 24
43 21 04 32 10

Figure 4.5. The square of Figure 4.2 with entries written base 5.
[For example, the number in the upper left hand corner is (base 10)
3:5+4=19]
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We have not yet formally defined what we mean by magic; we remedy
this oversight now.

Definition. Suppose n? different integers are put in various cells of an
n x n square (not necessarily filling it). If the sum of the entries of each
row is always the same, we say that the square is row magic. If the sum of
the entries of each column is always the same, we say that the square is
column magic. If the square is both row magic and column magic, then we
simply call it a magic square. The sum that results in each of these cases
is called the magic sum.

As we noted earlier, other authors will add to this definition the condition
that the square be filled. The reader should be aware of this if he should ever
read other books or articles on the subject. Almost all authors insist, as we
do, that the »?> numbers in the square be different. Some authors go even
further and insist that the entries be consecutive integers; other magic
squares are not quite legitimate to them. We have not made this extra
requirement part of our definition, but of course when we deal with the
uniform step method, we are satisfying such a requirement, like it or not.

Theorem 4.4. Suppose that the numbers 0. 1,. ... n* — 1 are put in an
n x nsquare by the uniform step method in equation (5).

If (c.n) = (e.n) = 1, then the square is column magic.

If (d.n) = (f.n) = 1, then the square is row magic.

If (c.n) = (d.n) = (e,n) = (f,n) = 1. then the square is magic. In each case
the magic sum is n(n> — 1)/2.

(Remark : The conditions above are actually both necessary and sufficient
in each case. but we prove the theorem as stated.)

Proof. Suppose that (c,n) = (e,n) = 1. The number j is inserted in the kth
column if and only if x; = k. Since

xX;=a+cg+ e[ﬂ(mod ny,

we see that j is put in the kth column if and only if

¢ + e[{l = k — a(mod n).
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By Theorem 4.3, the sum of such j in the range we are considering,
0<j<n—lis

nn® —1)

2

Thus the sum of the elements in every column is n{n*> — 1)/2. Therefore, the
square is column magic with magic sum a(n®> — 1)/2.

Suppose now that (d,n) = (f.n) = 1. The number j is placed in the kth
row if and only if y; = k. Since

yvi=b+di+ fl:i:l(m()d n),

we see that j is put in the kth row if and only if

dj + fl:;] = k — b(mod n).

Thus, by Theorem 4.3, the sum of the numbers in the kth row is

nn? — 1)

2

Hence the square is row magic and the magic sum is (n? — 1)/2. The third
part of the theorem follows from the first two parts. A

Examples of Theorems 4.2 and 4.4 at work can be seen in Figures 4.2, 4.3,
and 4.4. Note that the converse of Theorem 4.2 does hold in Figure 4.3 and
the converse of Theorem 4.4 holds in Figure 4.4.

EXERCISES
1. Find [] if « = 9.76, /2, —81. —./3, and 472.
2. Find [2%/4] without resorting to tables or slide rules.
3. Give an example of an unfilled 2 x 2 magic square using the numbers
0,1,2,and 3.
4. Show that there is no 2 x 2 filled magic square (this will depend upon
a technicality in the definition of magic).
In problems 5-9, determine whether the square given by the uniform step
method is filled, column magic, row magic, or magic. You may assume that
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the converses of Theorems 4.2 and 4.4 are true.

a c e 7 4 1
5. = R n=11.

b d f 3 25
a ¢ e 7 4 1)

6. = , n=9
b d f 3 2 4
a c e 1 4 1)

7. = n=15
b d f 2 1 10

a ¢ e I 1 -1
n = 101.

b d f 11

10. Show that the Loubére method gives a filled column magic square for
all n and that if n is odd, the square is magic.

11. Assuming the converse of Theorems 4.2 and 4.4, show that the uniform
step method never gives a filled magic square when n is even. (Hint:
Show that ¢, d, e, f. and ¢f — de must all be odd and derive a contradic-
tion.)

12. A 6 x 6 square is found by the uniform step method. Find a, b, ¢, d, e,
and f from the following facts. The square is filled and row magic. The
numbers 10 and 11 are in the cells with coordinates (6,2) and (1,3),
respectively. The x coordinate of the cell containing 12 is 6. You may
use the converses of Theorems 4.2 and 4.4 if necessary.

43 Diabolic and Symmetric Squares

An n x n square has two main diagonals. The diagonal consisting of the
cells running from the lower left corner to the upper right corner is given by
the equation y = x. The diagonal consisting of the cells running from the
upper left corner down to the lower right corner is given by the equation
x + y = n + 1. These diagonals can be given equally well by the respective
congruences,

y = x(mod n), x + y = l(mod n).

But in addition to the two main diagonals, there are 2n — 2 other diagonals,
the broken diagonals. The n positive diagonals are given by the congruences

x + y = k(mod n)
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(a) (b
Figure 4.6. (a) The positive diagonals x + y = k(mod 3); (b) the negative diagonals
v = x + k(mod 3).
and the n negative diagonals are given by the congruences
y = x + k(mod n).

The six diagonals of a 3 x 3 square are shown in Figure 4.6.

Definition. Suppose that n? different integers are put in various cells of an
n x n square (not necessarily filling it). If the sum of the entries of each
positive diagonal is always the same, we say that the square is magic in the
positive diagonals. If the sum of the entries of each negative diagonal is
always the same, we say that the square is magic in the negative diagonals.
If the square is magic in both the positive and negative diagonals, then we
say that it is diabolic. The sum that results in each of these cases will be
called the diabolic sum.

As was the case with our definition of magic, other authors require in their
definitions that the square be filled.

Theorem 4.5. Suppose that the numbers O, 1,...,n%? — | are put in an
n x nsquare by the uniform step method in equation (5). If
(c+dn=(+fin=1,
then the square is magic in the positive diagonals. If
(c—d.n)=(e—fin)=1,
then the square is magic in the negative diagonals. If
(c+dn=(—dn=(+fin)=(—fin)=1;
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then the square is diabolic. In each case, the diabolic sum is
n(n* — 1)
2

(Remark : These conditions are actually both necessary and sufficient.)

Proof. Suppose that
(c+dn=(+fin)=1.
The equation of a positive diagonal is of the form
x + y = k(mod n).
The number j will be in this diagonal if and only if
x; + y; = k(mod n);

that is,

(c +d)j + (e +f)[rll] =k — a — h(mod n).

Therefore, by Theorem 4.3, the sum of the numbers on this diagonal is

nn? — 1)
2

Thus the square is magic in the positive diagonals and n(n®> — 1)/2 is the
diabolic sum.
Suppose now that

(c—dn=(—fin=1.

The equation of a negative diagonal is of the form

x — y = —k(mod n).
The number j will be in this diagonal if and only if

x; — y; = —kimod n);
that is,

(c—d)+ (e —f)[ﬁ:l =bh — a — k(mod n).

Therefore, by Theorem 4.3, the sum of the entries in this diagonal is

nn? — 1)
—
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Thus the square is magic in the negative diagonals and n(n®> — 1)/2 is the
diabolic sum. The third part of the theorem follows from the first two
parts. A

The reader may check this theorem against the examples in Figures 4.2,
4.3, and 4.4. Note that the converse of Theorem 4.5 holds in Figure 4.3,
where the square is not magic in the positive diagonals, and in Figure 4.4,
where the square is not magic in either the positive or negative diagonals.

The last type of square that we shall discuss here is the symmetric square.

Definition. Suppose that n? different integers are placed in an n x n
square (not necessarily filling it). If there is an integer s such that for each j
in the square, s — j is also in the square and the numbers j and s — j are
symmetrically placed about the center of the square, then we say that the
square is a symmetric square and s is its symmetric sum,

For example, the squares in Figures 4.1, 4.2, and 4.3 are symmetric squares
with symmetric sums 17, 24, and 8, respectively. The usual definition of a
symmetric square includes the condition that the square be filled. In this
case, there is a unique number symmetrically placed about the center from
any given entry and thus the definition is usually phrased: A square is
symmetric when the sum of any two symmetrically placed elements about the
center is a constant (which is called the symmetric sum). When n is odd so
that there is a center cell and the square is filled, the integer in the center is
symmetrically placed about the center with only itself and thus the symmetric
sum is twice the central entry (see the square in Figure 4.2 as an example).

Theorem 4.6. Suppose that a symmetric square is made up of the n?
numbers 0, 1,2,...,n* — 1. Then the symmetric sum is n? — 1.

Proof. Let s be the symmetric sum. Since O is in the square, (s — 0) is in
the square (symmetrically located about the center from 0). Since n* — 1 is
the largest entry in the square,

(12) s=s—0<n?—1.
Likewise, s — (n? — 1) is in the square and since the smallest entry is 0,

s—(m*=-1=0
or

(13) s>n?— 1.
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There is only one number that satisfies both (12) and (13),
s=n%—1. A

Theorem 4.7. The uniform step method of equation (5) gives a sym-
metric n x n square if and only if

2a = ¢ + e + 1(mod n),
2b =d + f + 1(mod n).

The proof is fairly simple and is sketched in miscellaneous exercises 9,
10, and 11. The squares in Figures 4.2, 4.3, and 4.4 furnish examples of this
theorem. If we combine Theorems 4.2, 4.4, 4.5, and 4.7, we see that if

(ne) = (nd)=(ne) = (nf)=(nc +d)=(nc — d
= (me+f)=(ne—f)=(ncf —de=1,
2a = ¢ + ¢ + 1(mod n), 2b =d + f + 1(mod n),

then the square produced by the uniform step method is filled, magic,
diabolic, and symmetric. We have given nonstandard definitions of these
words so that the reader could better see which condition was responsible
for which property.

EXERCISES

In Problems 1-5, which of the following properties do the squares possess:
filled, magic (or just row or column magic), diabolic (or just magic in the
positive or negative diagonals), symmetric? You may use the converses of
Theorems 4.2, 4.4, and 4.5.
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6. When n is odd, in what cell should O be inserted so that the Loubére
method makes the resulting square symmetric?

7. Show that when n is even, the Loubére method never gives a symmetric

square.

Give an example of a filled, diabolic, and symmetric 4 x 4 square.

9. Show that the uniform step method never gives a magic symmetric

square when n is even. You may use the converse of Theorem 4.4.

10. For which values of n > 1 does the uniform step method give a symmetric
square if

o

(a c e) (25 —59 —63
b d fl \100 —99 —101)

11. Suppose that the uniform step method has produced a symmetric (not
necessarily filled) square where n is odd. Show that one of the occupants
of the central cell is (n? — 1)/2. Since there is no central cell when n is
even, your proof must fail when n is even. Where does your proof use the
condition that n is odd?

12. Given a symmetric square, not necessarily produced by the uniform
step method and not necessarily consisting of consecutive integer
entries, with r and r being the smallest and largest entries. What is the
symmetric sum?

13. Show that the uniform step method cannot produce a magic diabolic
square when n is either even or divisible by 3. [Thus, if the uniform step
method gives a magic diabolic square, then (n,6) = 1.] You may use the
converses of Theorems 4.4 and 4.5.

4.4. Historical Comments

The concept of a magic square is an extremely old one; the uniform step
method square given by a=2,b=1,c=1,d=2,e=2,f=2,n=3
(actually every element was increased by 1) was seen in 2200 B.C. by the
Chinese emperor Yu on the back of a Divine Tortoise. Many of the modern
methods of constructing squares were introduced to Europeans in the
Middle Ages by travelers who had learned of them in Asia. For instance,
De la Loubére brought his method back with him from Siam, where he had
been the ambassador of Louis XIV in 1687-1688. As one may judge by the
terminology, the subject was once shrouded in mysticism and astrology.
For example, it was once thought that a magic square engraved on a silver
plate and worn around the neck would ward off the plague. A diabolic
square originally meant what we call here a filled magic diabolic square.
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Other less interesting names still used for this type of square are perfect
squares and pandiagonal squares.

While magic and diabolic squares have been studied for several centuries,
McClintock in 1897 was one of the first authors to discuss symmetric
squares. McClintock gave the example of the 7 x 7 square given by the
uniform step method with

(a ¢ e) (5 1 l)

bd /Wt =2 3)

In addition to being a filled, magic, diabolic, symmetric square, it has the
property that a knight placed on the cell containing 0 may make 48 con-
secutive moves, according to the rules of chess, in such a way as to land in
order on the cells containing 1,2, 3,...,48 (it is assumed that the first and
seventh rows and columns are adjacent in this knight’s tour). The reader

should reconcile the values of e and f with a knight’s move.
There is one other type of square worth mentioning.

Definition. Suppose that the numbers 0, 1,...,n? — [ are inserted in an
n x nsquare in such a way as to fill it. Suppose further that the entries are
written, not in the decimal system, but in the base n notation. If the square
has the property that in each row and column, the n digits 0, 1,.. ., n—1
each appear exactly once among the units’ digits and among the n’s
digits, then we say that the square is regular.

For example, the square of Figure 4.2 (written in base 5 in Figure 4.5) is
regular. When the numbers 1,2,...,n? are used, the square is said to be
regular if the square that results when 1 is subtracted from every entry is
regular. A regular square is always a (filled) magic square. The square in
Figure 4.1 is an example of a filled magic square which is not regular. When-
ever the uniform step method gives a filled magic square, that square is
regular. These are some of the simple facts about regular squares. For hun-
dreds of years, methods have been known that would produce regular n x n
squares whenever n is odd or even and divisible by 4. After extensive trials,
Euler conjectured in 1782 that there are no regular squares when
n = 2(mod 4). This is trivial for n = 2. Euler’s conjecture for n = 6 was
verified by G. Tarry in 1900 by the exhausting method of systematically
trying all possibilities. Tarry’s ‘““‘method”” is out of the question whenn = 10;
the number of possibilities is so great that 100 hours on a computer (which
failed to find any 10 x 10 regular squares) did not even scratch the surface
of the possibilities involved. It was not until 1959 that anything new was
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00 47 18 76 29 93 85 34 61 52
86 11 57 28 70 39 94 45 02 63
95 80 22 67 38 71 49 56 13 04
59 96 81 33 07 48 72 60 24 15
73 69 90 82 44 17 58 0l 35 26
68 74 09 91 83 55 27 12 46 30
37 08 75 19 92 84 66 23 50 41
14 25 36 40 51 62 03 77 88 99
21 32 43 54 65 06 10 89 97 78
42 53 64 05 16 20 31 98 79 87

Figure 4.7. A 10 x 10 regular square. Note the 3 x 3 magic subsquare in the lower-
right-hand corner. The preceding seemingly minor comment is of great importance to
projective geometers who are searching for finite projective planes of order 10!

learned. In that year R. C. Bose, S. S. Shrikhande, and E. T. Parker destroyed
Euler’s conjecture. Parker gave the 10 x 10 regular square (n = 10 is
convenient, as then base n means base 10) in Figure 4.7. [t was shown a year
later that Euler was wrong for all n > 6; that is, n x n regular squares exist
for all n with the exceptions n = 2 and n = 6.

In other terminology, a regular n x n square (written base n)is often called
a Greco-Latin square. In this terminology, what is emphasized is not the
fact that the entries are integers (and, in fact, usually the units’ digits are
replaced by n different letters and the n’s digits are replaced by n other
different letters) but the pattern of the entries. Greco-Latin squares have been
found to have wide applications in controlled experiments in various fields.
Itisnot at all improbable that the 5 x 5square of Figure 4.5 has had agricul-
tural applications. Perhaps the word “magic’’ is not too poor a description
at that.

MISCELLANEOUS EXERCISES

1. Prove that a regular square is magic.

2. Prove that a filled magic square given by the uniform step method is
regular.

3. Show that Theorems 4.2, 4.4,4.5, 4.6, and 4.7 remain true if one is added
to each entry after a uniform step method square is constructed, the
only exceptions being that the new magic sum is n(n?> + 1)/2 and the
new symmetric sum is n? + 1.

4. A9 x 9 square may be split up naturally into nine 3 x 3 squares as
shown in Figure 4.8. Using the numbers from 0 to 80, construct a filled
magic square such that each of the nine 3 x 3 squares is also magic.
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5. All the usual laws of arithmetic are satisfied by the set of four elements
10, 1, o, B} with the operations of plus and times shown in Figure 4.9.
The mathematical name for this is a “‘field of four elements.” One way
this field arises is as follows : The equation

x4+ x 4+ 1 =0(mod 2)

has no solutions (mod 2); thatis, x = Oand x = 1 both fail. We therefore
invent the solutions o and §:

(x —a)(x — f) = x2 + x + [(mod 2).

Then assuming that the usual laws of arithmetic hold,

a4+ pf=—1= l(mod2),
aff = 1(mod 2).
Also

= —lo+)=lla+DH=a+1

and in like manner

[325[)7-1—1.
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XY 0 1 a B XY 0O 1 a B
0| 0|1 a | B 0O(0]O0]|]O0]|O
1 | 0| B | a 1]0 1 a | B
a | al| B| O 1 a | 0| a | B |
Bl B| «a | 0 g 10| 8|1 o

X+Y XY
Figure 4.9

Further,
a+l=a-1=-f=(-1)f=1)B =8

If we continue in this way, every entry in the above tables can be found.

(If all this seems unnatural and if it is unclear that such an invention
of solutions to equations will result in the usual laws of arithmetic
holding, then you can appreciate why the ancients gave the name
“imaginary” to complex numbers. For the complex numbers are given
by exactly the same process of inventing solutions to the equation
x% 4+ 1 = 0 where previously there were none.)

Use this field to construct a 4 x 4 regular square as follows. Let

Xyp = U+ U,
Yy = 0u + fo.

Using the plus and times tables of Figure 4.9, assign each of the 16
possible pairs u, v (u and v run independently through the four field
elements 0, 1, o, B) to a position in the square shown in Figure 4.10.

Yuw
B

0 | o B X,
Figure 4.10
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For example, x, o = 1, y, o = . Note that in each row and column,
each of the four possible values of u and v occur exactly once. Replace
o by 2, B by 3, and erase the commas; you should then have a 4 x 4
regular square written in base 4 notation. Convert your square to the
decimal system; it should use each of the integers from 0 to 15. Notice
that several (but not all) of the 2 x 2 subsquares have the same total
sum.

A problem for the student who is familiar with fields and their proper-
ties. Problem 5 should be worked first. Let F be the field of four elements
given in problem 5. Suppose the entries of the square in problem 5 are
determined by the equations

Xy, = a+ cu + ev,
Vup =b +du + fo,

where a, b, ¢, d, e, and f are elements of F. Show that the square is filled
by the sixteen possible pairs u, v if ¢f — de # 0. Show that in each row,
the four possible values of u and v each occur exactly once if d # 0,

f # 0. Show that if

¢f —de #0, ¢ #0, d#0, e£0, f#0,

then we may replace a by 2 and ff by 3 and get a regular magic square
with entries written base 4. (This problem can be generalized to any
finite field and to the even more general systems of finite commutative
rings.)

Let
. "_ 7]
. J J
X; = 1+ Q] — |:§:| — _5— (mOd 3),
_ | [J ]
y}-:2—j+ g +0L§—(m0d3),
. i1 1]
z;=2—j+ 0[3] + _54 (mod 3).
Use these congruences to insert the numbers 0, 1,2,...,26ina3 x 3 x 3

cube (this can be done by using three adjacent 3 x 3 squares, the first
square representing z = 1, the second representing z = 2, and the third
representing z = 3). You should have a filled, magic, symmetric cube;
the row, column, and vertical sums are 39 and the symmetric sum is 26.
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3. Let

X, =a+dr+ g[ﬁ:l +j[%](mod ny,
n n
r r
b+ er + hl::| + kl:j:l(mod n,
n n
r r
zZ,=c+ fr+ t[:l + I[ZJ(mod n.
n n

Suppose the numbers r = 0,1,...,n* — 1 are inserted inann x n x n
cube according to these congruences. Let

r

d g j|
m=‘e h k
i

and let D, E,F,G,H,I,J, K, and L be the 2 x 2 minors (determinants)
corresponding to d, e, f. g, h, i, j, k, and [, respectively. Show that if

(D,n) = (E,n) = (F,n) = (G,n) = (H,n) = (I,n)
= (J,n) = (K,n) = (L,n) = (mn) = 1,

then the cube is filled and magic.

9. Show that j and k are symmetrically placed about the center of ann x n
square if and only if x; + x, = y; + y» = n + 1. Since 2 < x; + x, (or
y; + yi) < 2n, show that j and k are symmetrically placed about the
center of an n x n square if and only if

x; + x, = 1(mod n), y; + ¥ = l(mod n).

10. Let 0 < j < n* — 1 and let the u-v representation of j given by Theorem
4.1 be j=tn + u. Show that 0 < n?> — 1 —j < n? — 1 and that the
u-v representation of n> — 1 — j is

n—1l—j=n—-1—vn+mn-1-u.

11. Use problems 9, 10 and Theorem 4.6 to prove Theorem 4.7.

12. Use problems 9 and 10 to prove the following refinement of Theorem 4.7
The uniform step method gives a symmetric square if and only if there
exists at least one j, 0 < j < n? — 1 such that j and n> — 1 —j are
symmetrically placed about the center of the square.
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13. Show that there are exactly eight different triplets of three distinct
numbers between 1 and 9 that add to 15 (1,4,9 and 9,1,4 would be counted
as the same triplet). Mr. X and Mr. Y play the following game: They
alternately choose numbers from 1 to 9 (a number once chosen cannot
be chosen again); the first person to get precisely three numbers adding
to 15 is the winner. This game is known by you. What is it?



Chapter 5

DIOPHANTINE EQUATIONS

5.1. Introduction

The Greek Diophantus (somewhere in the period from the first to the third
century) was the first to consider a whole class of problems having as their
common feature the fact that there were more unknowns than equations.
Diophantus was content with finding a solution, rather than all solutions,
and he allowed the solution to be rational rather than integral. But still, he
had the fundamental idea of restricting his solutions to particular types of
numbers, and thus it is entirely fitting that the subject should be named for
him. No great advancement was made in the subject during the 14 to 16
centuries between Diophantus and Fermat. Fermat’s interest in the subject
wasaroused by reading Bachet’s 1621 edition of what remained of Diophantus’
work. It is with Fermat that the modern topic of Diophantine analysis (and,
in fact, much of modern number theory) had its beginning.

We have already mentioned Fermat’s last theorem (also called Fermat’s
great theorem). Fermat stated that he had a proof of the fact that if n > 3,
there are no solutions to the equation

X"+ Yy =2z"
in nonzero integers. If a and b are positive integers and the equation
x4yt =z
has no solutions in nonzero integers, then the equation
(") + O = (),

being a special case of the first, has no solutions in nonzero integers. Since
(u®)* = u®, this means that if Fermat'’s last theorem is true for n = a, then it
is true for n = ab also. Since every number greater than 2 is either divisible
by an odd prime or is a power of 2 greater than the first power and hence is

145
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divisible by 4, it follows that if Fermat’s last theorem is true in the cases that
nis an odd prime and the case n = 4, then Fermat’s last theorem is true for
all n > 3. Fermat left a proof in the case of n = 4, and it is essentially this
proof that we present in Section 5.4. It remains, then. to prove Fermat's last
theorem for all odd primes. Euler was the first to publish anything; he
established the theorem for the case that n = 3 (his proof had a gap, but it
was filled later), but even this case is too complicated for inclusion in this
book. In dealing with the equation

xl’ + vl’ = -r

where p is an odd prime, it has been found convenient to consider two cases.
The first case of Fermat’s last theorem is that p divides none of the numbers
x, y, and z. This is the easy case ; the theorem has been proved in this case
for all p less than 253 747 889. In the second case of Fermat’s last theorem,
p divides one of the numbers x, y. and z. The theorem has been proved in this
case for all p less than 4001.

It is thought that Fermat was probably mistaken in thinking that he had
a proof for the general theorem, but the more romantic still cling to the belief
that Fermat was correct. In this regard, it may be worthwhile to mention
the fate of a conjecture of Euler. On the basis of everything known at that time,
Euler conjectured in 1778 that for n > 3, no perfect nth power can be ex-
pressed as the sum of fewer than n nth powers of positive integers. Fermat’s
last theorem is an immediate corollary of Euler’s conjecture (if true).
Although no real progress had been made on Euler’s conjecture, it was
widely believed until 1966 that it was correct. In 1966, a computer search
by L. J. Lander and T. R. Parkin found the example

27° + 84° + 110° + 133° = 1443,

which disproved Euler’s conjecture. This is the second example we have seen
of a conjecture of Euler which was widely believed to be true for almost
200 years but was ultimately disproved. This is why mathematicians insist
on proofs of statements, no matter how reasonable they seem.

Since Fermat was the originator of the modern subject of Diophantine
equations, it is not surprising that others of his time did not always realize
what was involved in solving such equations. The English mathematician
John Wallis (1616-1703)! provides an example. For example, when Fermat

! He was one of Newton's teachers at Cambridge. The reader may have seen Wallis’
infinite product for 7:

— N
u-A
LJI.A
LJI“O‘
\I.O‘
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challenged the English mathematicians to solve the Fermat-Pell equation
x2—dy? =1,

Wallis produced the solution x = 1, y = 0. It is customary today to call this
the trivial solution to the Fermat- Pell equation ; more generally, solutions
to equations that are visible at a glance (particularly if they involve 0) are
called trivial. In answer to Fermat’s challenge to solve the equation (rational
numbers allowed)

2y =ad + b3,
Frenicle (1605 -1675) computed a few examples, such as
9% +10° = 1° + 127, 9% +15% = 23 + 16°.
Wallis thereupon gave the solutions
27° 4 30° =37 + 36°. (41 +(7H) = 17 + 8%,

and others. In each case, Wallis had merely taken a solution of Frenicle and
multiplied it by some rational number. Frenicle pointed out that Wallis
had merely made a trivial alteration of known solutions. but Frenicle was
not that much better off. What Fermat desired was a general solution to his
problem and not just isolated computations.

On another instance, Fermat announced that the equation

x2 4+ 2= }.3
has only x = 5, ) = 3 as a solution in positive integers and the equation
x? 4+ 4=

has only x = 11, y = 5 as a solution in positive integers. Wallis replied that
such negative theorems have no interest and that one could easily give many
other such results. He then gave four examples, of which the equation

x* 49 =2

is representative. Apart from his opinion on such theorems, the untrained
eye may not notice anything particularly different between Fermat’s equa-
tions and Wallis’. Nevertheless, there is an important difference between the
equations: All Wallis” equations could be factored in such a way that they
could be solved instantly. We illustrate by finding all solutions of Wallis’
equation in positive integers. We see that Wallis’ equation may be written
in the form
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or
(v+x3)(y - x3)=0.

Since we are interestedin y > 0, x > 0, the factor y + x? is positive ; thus the
other factor y — x?is positive since the product of the two factors is positive.
There are only two ways of factoring 9 into a product of positive integers,
9 = 1-9 = 3-3. Thus we have only three possibilities:

@ v +x2=1, y—x2=09,
(b) v+ x2 =3, y— x2 =3,
©vr+x2=9 y—x2=1.

In each of the cases, there are two equations and two unknowns ; the problem
is thus reduced to an algebra problem. In case (a), we find x = J_r\/—4,
which is not an integer. In case (b), we find x = 0, which is not a positive in-
teger. In case (c), we find y = 5, x = £2, and hence the only solution to
Wallis® equation in positive integers is x = 2, y = 5.

It would be very interesting to know Fermat’s proofs of his theorems (as
with almost everything else he stated, he did not make his proofs public).
The two equations x? + 2 = y* and x? + 4 = y* can be solved fairly easily
using the ideas of quadratic fields developed two centuries after Fermat's
announcement. The reader interested in more historical details is referred
to Bell’s very readable history, The Last Theorem.

In the remainder of this chapter, we present three of the elementary
methods that have been most used in solving Diophantine equations. It
should be understood that when we say, “solve a Diophantine equation,”
we mean that we should find all solutions to it in integers.

EXERCISES

1. Find all solutions in positive integers to x2 + 12 = y* (Wallis).

2. Find all solutions in positive integers to x> + y* = 20 (Wallis).

3. Find all solutions in positive integers to x* — y* = 19 (Wallis).

4. Find all solutions to x2 — dy? = | when d is a perfect square.
*5. Show that 2 is the only prime which is the sum of two positive cubes.

The word positive is necessary and hence must play a role in your proof:
consider the examples 7 = 2* + (—1)%, 61 = 5% + (—4)>.

5.2. The Use of Congruences in Solving Diophantine Equations

Congruences often provide an easy way of showing that certain Diophan-
tine equations have no solutions. As a first example of this method, we
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consider one of the Fermat—Pell equations. The Diophantine equations
x? —dy? =1, x? —dy? = —1

in the unknowns x and y are called the Fermat-Pell equations. These equa-
tions are often just called Pell’s equations, but this seems to have been a
historical error of Euler which has been handed down. In fact, Pell never did
anything with these equations, and they should really have been called the
Fermat equations. The Fermat-Pell equations are important in many areas
of number theory; we will encounter them again in Section 5.4 as well as in
Chapters 7 and 8.

Consider the equation x* — 7y? = —1. Suppose x = X, ¥ = yo is a
solution to this equation. Then

x3 = x§ — 7y = —1(mod 7),

which is impossible by Theorem 3.29 since 7 is a prime = 3(mod 4). Thus
the equation x> — 7y2 = —1 has no solutions. The same thing can be done
for a large number of d’s.

Theorem 5.1. Suppose that d is divisible by a prime p = 3(mod 4) or that
d is divisible by 4. Then the equation x*> — dy* = —1 has no solutions.

Proof. Let x = x4, y = yo be a solution to the equation x? — dy? = —1.
Suppose that p = 3(mod 4) and p|d so that d = O(mod p). Then
x4 = x3 — dy3 = — I(mod p),
and this is impossible by Theorem 3.29. In like manner, if 4/d, then
x3 = x§ — dy = —1(mod 4),

which is also impossible since x3 = 0 or 1(mod 4) [that is, x, = 0,1, 2, or
3(mod 4) and therefore, x3 = 0%, 12,22, or 32 = 0 or 1(mod 4)]. Thus our
assumption that the equation x? — dy? = —1 has a solution has led to a
contradiction and therefore the equation has no solutions. A

A close look at the above reveals that it is not really necessary to replace
x by x, and y by y,. The main idea is that if a Diophantine equation has no
solutions (mod n), then it certainly has no solutions. For example, the equa-
tion
(1) x2 -5y =2
leads to the congruence equation x? = 2(mod 5); this latter equation is
impossible since the squares (mod 5) are 0%, 12,22,3%,4%2 = 0, 1, or 4(mod 5).
Thus there are no integral solutions to equation (1).
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Let us take a slightly more complicated example. We shall show that the
only integral solution to the equation

(2) x? — 5y = 322

is x = y = z = 0. Suppose there is an integral solution with not all three of
x, y, z equal zero. Let d = (x,y,z) and then set

x = dxg, y=dy,, z =dz,

so that not all three of x, yq, z, are zero and (xg.Vg.2) = 1. Also, by dividing
equation (2) by d?, we get

x2 — 5y} = 3z2.

Therefore,

3z3 = O(mod 3).

x§ + 93 = x3 - 513
By Theorem 3.30, x, = y, = O(mod 3). Therefore, 3|xo, 3|vo. 9x3, 9|y and
thus
9(x3 — Sy3); thatis, 9|3z2.

Thus 3|z3 and 3|z,. In other words, 3|x4., 3|0, 3|2 €ven though (x4.V0,20) = 1.
This is a contradiction. Thus equation (2) has only the trivial solution
x=y=2z=0.

If Theorem 3.30 was not available, we could still show that if

x3 4+ y3 = O(mod 3),

then xo = y, = O(mod 3). One way would be to notice that the squares
(mod 3) are 0> = O(mod 3) and 1% = 22 = 1(mod 3), so that

O(mod 3) if xo = yo = O(mod 3),
x3 + y3 = { 1(mod 3) ifxo =0, vy Z00r xg # 0, yo = 0(mod 3),
2(mod 3) if xo # 0, yo Z 0(mod 3).

If 3 was replaced by a much larger prime p, there would be too many squares
(mod p) to use this method effectively. The amount of work could be con-
siderably reduced by reducing the problem to one of the equations

t2 = —l{mod p) or yo = 0(mod p)

in the same manner used in the proof of Theorem 3.30.
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EXERCISES
1. In solving equation (2), we assumed that there is a solution with x, y, =
not all zero and arrived at a contradiction. Why is this contradiction
not achievable when x = y = - = 0 is used?
2. Show that equation (2) can also be solved by using congruences (mod 5).
3. Can the equation x* — 11y? = 3 be solved by the methods of this
section using congruences (mod 3) and, if so., what is the solution?
(mod 4)? (mod 11)?

4. Same as problem 3 with the equation x? — 33?2 = 2. (mod 3)? (mod 4)?
(mod 8)?

5. Same as problem 3 with the equation x2 + 3y% = 2z2. (mod 3)? (mod 4)?
Same as problem 3 with the equation x* + y* = 13z*. (mod 4)? (mod 5)?
(mod 8)? (mod 13)?

Solve: x? + 7y? = 3.

Solve: x? — 7y? = 322,

Solve using congruences (mod 3): 11x2 + 10x — } +2=0.
Solve using congruences (mod 4): 11x2 + 10x — 2 + 2 = 0.
Show that 7 is not the sum of two rational squares.

=)

— O 0 o~

5.3. Pythagorean Triples

Many Diophantine equations can be solved by using Theorem 2.12. We
illustrate the application of Theorem 2.12. by finding all Pythagorean
triples, that is, all right triangles with sides and hypotenuse having integral
lengths. Similar triangles are not very interesting. Thus from the 3,4,5
triangle come an infinite number of similar triangles 6,8, 10; 9,12, 15;
12,16,20;.... For this reason, we seek only the primitive triangles, in other
words, those triangles x, v, z with (x,y,z) = 1. We adopt the convention that
in the triangle x, y. z, the hypotenuse is z. However, the triangle x, y, z is the
same triangle as y, x, z. We show that if (x,y,z) = 1, then exactly one of x
and yiseven :then we may assume that yis even without losing any triangles.
If x and y are both even, then 2|(x? + y?) and thus 2|z2 so that z is even:
thus 2|(x.y.z), which is false. If x and y are both odd, then

2=x24+3y =1+ 1=2mod4),

which is also impossible. Therefore, exactly one of x and y is even, the other
is odd. We assume that x is odd and y even.

Theorem 5.2. There are infinitely many solutions to the equation

(3) x* 4yt =17
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with (x,y,z) = |, yeven, x > 0, y > 0, z > 0. These are given by
4) x=u?—1% y=2ur, z=u*+rv?

where u and v are any integers whatsoever satisfying the conditions that
u>r>0,(uv) =1, and one of u and v is even. (Example: u =2, v = 1,
then x,y,z=3,4,5;u=3,v=2,thenx,y,z =5,12,13)

Proof. Since x is odd and y even, it follows that z2 = 1 + O(mod 4) and
thus z is odd. Thus z + x and z — x are both even:

2|(z + x), 2|(z — x).
It follows from (3) that
(z + x)(z — x) = y?

z+x\[z-x}  [y?
2 2 2]
where (z + x)/2, (z — x)/2, and y/2 are all integers. We will now show that

(z + x)/2 and (z — x)/2 are relatively prime positive integers and then we will
use Theorem 2.12. Note that if x and z have a common prime factor, then y

or

also has that factor and this contradicts the fact that (x,y.z) = 1. Therefore,
(x,z) = L. Let

Z+X z—X

d= —
2 2 )
Then
d(z-;x+z; ) that is, d|z

and

QU

5 ; thatis, d|x.

z+x_z—x
2

Hence

d|(x, z); thatis, d|1.

Thus d = 1. Since x? < x? 4+ y? = 7z, it follows that x < z and therefore
(z + x)/2 and (z — x)/2 are positive. Since they are also relatively prime, it
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follows from Theorem 2.12 that there are positive integers u and v such that

zZ+ X 5 zZ—X 2
— = u-, = v°.
2 2
Thus
+ z—
S
7+ 1/2 _ 1/2
y=2 ZX) (ZTX) = 2uv,

_Zz+x  z—X
-T2 T
If d|u, dv, then d?|x, d?|y, d?|z and thus (u,v) = 1. If u and v are both odd or
both even, then x is even ; since x is odd, it follows that one of the pair u,v is
even and the other odd. Finally, since x > 0and u and v are positive, it must
be that u > v > 0.

We now show conversely that if x = u?> — v?, y = 2uv, z = u? + v? with
u>rv>0, (uv) =1, and one of u and v is even and the other odd, then
x2 4+ 3y =z withx >0, y>0,z>0, yeven and (x,y,2) = 1. It is easily
checked that

=u? + 1%

-
V4

u? — v?)? + Quv)? = (u? + v

Also u? — 12 > 0, 2uv > 0, u?> + v? > 0 and 2uv is even. It remains only to
show that (u? — v2, 2uv, u®> + v?) = 1. Suppose that (u? — v2, 2uv, u? + v?) =
d > 1. Then there is a prime p dividing d and therefore p|(u? — v?), p|2uv,
pl(u? + v?). Therefore,

pll® + v?) + 2uv]; thatis, p|(u + v)?
and
pll(u? + v?) — 2ur]; thatis, pl(u — v)
By Theorem 2.8, p|(u + v), p|(u — v). Therefore,
pll(u + v) + (u — v)] or pl2u,
pll(u + v) — (u — v)] or p|2v.

As a result p|(2u,2v) = 2(u,v) = 2. Therefore, p = 2. But since one of u and ¢
is even and the other odd, u? + v? is odd and 24(u*> + v?). This is a con-
tradiction, and therefore d is not greater than 1. Therefore, d = 1. A
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Just as in Section 1.1, we were able to get solutions to y* = (z + x)(z — Xx)
by letting z + x = 2u?, z — x = 2v?. Mathematicians are not really happy
with infinitely many solutions to an equation; the feeling is that while it is
nice to know whether or not a given Diophantine equation has infinitely
many solutions, it is nicer still to know all the solutions. When one is just
trying to show that a given equation has solutions, any procedure or assump-
tion, no matter how unjustified, that leads to solutions is legitimate. On the
other hand, in trying to show that one has all the solutions to the equation,
these procedures and assumptions must be justified. In this regard, the key
to showing that (4) gives all the solutions to (3) is clearly the part of the proof
that showed that (z + x)/2 and (z — x)/2 were relatively prime positive
integers and then the use of Theorem 2.12 to prove that (z + x)/2 and
(z — x)/2 must be squares.

To again illustrate the difference between infinitely many solutions to an
equation and all solutions, consider the equation (geometrically it is the
problem of finding a rectangular box with integral sides and diagonal)

% x2 4+ 3y + 22 =wk

Again, we may assume that (x,y,z,w) = | and that x, y, z and w are positive.
(If w =0, then x = y =z =0, if any of x, y, z are 0, then we are left with a
Pythagorean triplet.) To find solutions, let us assume that

(6) w=x+ ¥

Then (5) becomes
z?2 = 2xy,

which is much simpler. Clearly, z is even, so we put z = 2u and then we get
2u? = xy.

Thus at least one of x and y is even. Say x is even, x = 2v. Then
2

u® =y
We let
(7 v=a?’ y=bhi
This gives as a solution to (5),
(8) x = 2a?, y = b2, z = 2ab, w = 2a% + b2

Thus there are infinitely many solutions to (5). Does (8) give all the solutions
to (5)? In a trivial sense, certainly not. For instance, (8) gives the solution
(x,y,z,w) = (8,1,4,9) but not (1,4,8,9). There are, in fact, six rearrangements
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of any given solution to (5) found simply by interchanging the positions of
x, y and z. We agree to call two solutions of (5) the same if they differ only in
the order of x, y, and z. With this meaning, does (8) give all solutions to (5)?
If so, then our two assumptions, (6) and (7), must be justified. Assumption (6)
says that the sum of two of the x, y, z equals w; since the order of x, y, and z
does not really matter, we let x + y = w. This assumption was made because
it converted equation (5) to one much simpler. But it is impossible to justify
the assumption. For example,

x =3, v =4, z=12, w=13

gives a solution to (5) in which w is not the sum of two of the x, y, z. Thus we
have shown only that (5) has infinitely many solutions ; we have not found
all of them [see problem 1 for another infinite family of solutions of (5)
found by assuming that two of the x, y, z are equall].

EXERCISES

1. Find all solutions to the equation x? + 2y? = w? with x >0, y > 0,
w > 0.

2. Find all solutions to the equation x? + 3y? = z? with x > 0, y > 0.
z> 0.

3. Find all solutions to the equation x? + py* = z2 with x >0, y > 0,
z > 0 where p is a fixed odd prime.

4. Find all solutions to the equation x> + 2 = 4z2withx > 0,y > 0,z > 0,
(x,y.2) = L.

5. We have given one geometrical interpretation of equation (5) in the text.
Here is another. Let 0A, OB, and OC be three mutually perpendicular
line segments. Let x, y, z, and w be the areas of triangles 0AB, 0AC, OBC,
and ABC, respectively. Show that the relation between x, y, z, and w is that
of equation (5).

6. Show that all solutions to (5) with the restriction (6) and the assump-
tions that x > 0, y > 0, z > 0, w > 0, (x,y,z,w) = 1, 2|x are given in (8),
where we restrict a and b so thata > 0,b > 0, (a,b) = 1, and b is odd.

7. Find all solutions to the equation x? + y* =z%, x>0, y >0, z > 0,
(xy.2) = 1.

5.4. Fermat’s Method of Descent

Another method often used in Diophantine equations is the method of
descent employed originally by Fermat. The main idea is to show that one
solution to a Diophantine equation leads to another *‘smaller’ solution
to the same equation, which then leads to a still “‘smaller’” solution, and so
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on. Thus one gets an infinite sequence of ever “‘smaller” solutions to the
equation and this is often impossible; for instance, there is no infinite
sequence of positive integers each less than the preceding one. We illustrate
Fermat’s method by showing that there are no solutions to the equation

9) x* 4+ y* =24, x#0, y#£0 z#0.

Actually, we prove even more. Since any fourth power is also a square, the
following theorem shows that equation (9) has no solutions.

Theorem 5.3. There are no solutions to the equation

(10) x* 4yt = 22 x#0 y#£0 z#0

Proof. Ifx = x4,y = yo.2 = zgisasolutionto(10),thensoisx = |xo| > O,
Y = |yol > 0,z = |zo] > 0. Thus it suffices to show that (10) has no solutions
with x, y, and z all positive. Suppose there is such a solution. Again we wish
to make the assumption that (x,y) = 1, but since the powers of x, y, and z in
(10) are different, we cannot just divide out the fourth power of (x,y) without
a word of justification. Let d = (x,y). Then put x = dx,, y = dy, so that

d*(xt + 1) = 2%,

and therefore (z/d?)* = x} + y%is an integer. Since z/d? is a rational number
whose square is an integer, Theorem 2.13 then tells us that z/d? is an integer,
say z/d?> = z,. Thus

xt+ 0yt =1zi
with (x;,y;) = 1 and x,, y,, and z, all positive integers.

Thus if (10) has any solutions at all; then it has a solution with x, y, z all
positive and (x,y) = 1. Let x = x;, y = y,, z = z; be such a solution. We
will now show how it leads to another solution x,, y,, z,, all positive, with
(x;,y2) = 1and 0 < z, < z,. This is the key to the method of descent. We
note that

(xD? + 1) = 21

Alsoifa prime p|x{and p|yi,then p|x, and p|y, , whichisfalse since(x,,y;) = 1.
Therefore, (x{,y}) = 1, and thus x},y?,z, is a primitive Pythagorean triplet.
In such triplets, exactly one of x? and y? is even, since the order of x, and v,
does not matter, we assume y? is even and x? is odd. By Theorem 5.2, there
exist positive integers u and v with

(11) x? =u? — 2 y? = 2up, z; = u? + v?,
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where (u,v) = 1, uis odd and v even or u even and v odd. It follows from (11)
that

xi + v =,

and since (u,v) = 1, (x;.,0,u) = 1 and so x,.v,u is a primitive Pythagorean
triplet also. Since x is odd, v is even (and thus u is odd). Therefore, there exist
positive integers a and b such that

(12) a’ + b* =u, 2ab = v, (a,b) = 1.

Since u is odd, (4,2v) = d is odd and thus since d|2v, d|v. Therefore, d
divides both v and v and thus d = 1; that is, u and 2v are relatively prime.
Since by equation (11),

yi = u(2v),
Theorem 2.12 says that u and 2¢ are both squares of positive integers, say
u=z3, 2v = c2

Since ¢ must be even, we set ¢ = 2d and then v = 2d2. Thus
_UV_
ab = 5 d=.

But (a,b) = 1 and therefore Theorem 2.12 says that there are positive in-
tegers x, and y, such that

a=x% b=yl
Since (a,b) = 1,(x,,y,) = 1. Replacing a, b, and u by x3, y3, and z3, equation
(12) becomes
x3+yi =1z

We have already shown that x,, y,, and z, are positive integers with
(x,.y,) = 1. Finally, since z, and v are positive integers,

0<z,<zi=ur<u?®+0v?=z.

The key parts of this inequality are 0 < z, < z;. This completes the descent
part of the proof. Now what?

We have shown that if x,, y,, z; provide a solution to (10) with x,, y,, z,
all positive and (x,.y,) = 1, then there is another solution x,, y,, z, to (10)
with x,, y,, z, all positive, (x,,y,) =1, and 0 < z, <-z;. Repeating the
descent argument, there is another solution xj.ys;,z3 with x3,y;3,z; all
positive, (x5,y;) = 1,and 0 < z; < z,. We repeat the descent again and get
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X4.Va,Z4 and then x5, y5, z5 and then x¢, v6, 2, and so on. Each solution
leads to another solution and, in particular, we get an infinite sequence of
positive integers

Zy > Zy > 23> 24 > 25 > Zg > e

This is impossible, since there are exactly z; — 1 positive integers between z,
and 0; the sequence must end after at most z; terms. Thus the assumption
that (10) has a solution has led to a contradiction. Therefore, equation (10)
has no solutions. A

The method of descent is an ingenious one. It is clear that the major
difficulty isin finding the descent ; the rest is duck soup. Sometimes the descent
works just so far and then the inequalities cease to be correct. In this case,
one may have to check a certain range of numbers to see that there are no
solutions in that range. It may also happen that a descent turns into an ascent.
We illustrate this with equation (5) of Section 5.3. In order to find solutions
to (5), we make the assumption (unjustifiably in viewof x =2,y = 6,z = 9,
w = 11) that two of the x, y, z form the first part of a Pythagorean triplet.
Since the order of x, y, and z does not matter, we assume that x,y,t is a Pythag-
orean triplet. Then

2+ 22 =x2+y* + 22 =w?
and thust,z,wisalsoa Pythagorean triplet. In order to be able to use Theorem
5.2, we further assume that x,y,t and t,z,w are primitive triplets. Thus we
shall attempt to find solutions (or show that there are none) to the equations
2 2 2 2 2 __ 2
(13) X+ y°- =15 t“+ z-=w*,
(x.pt) = (tzw) = 1, t>0, x>0, y>0, z>0, w>0.

We begin by attempting a descent. Since x,y,t is a primitive Pythagorean
triple, ¢ is odd ; one of x and y is even and since the order does not matter,
we let x be odd and y even. One of 1 and z is also even and since ¢ is odd.
z is even. Thus, by Theorem 5.2, there exist integers r, s, u, and v such that
(rs)=(wpv)=1r>s>0,u>0v>0, exactly one of r and s is odd and
exactly one of v and v is odd, and

x =r*—s, y = 2rs, t=r*+s,

t =u? — v z = 2up, w =1+ 2.

The important part of these equations is the part involving t,

t=r?+ 5% =u? - >
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As a result,
2+ s? 4+ 02 =u?,

with r >0, s >0, v > 0, u > 0. Also, (r,5,0,u) = 1 since (r,s) = 1. Finally,
u < u? < u?* + v?> = w. Thus we have gone from one solution to equation
(5) to another with a smaller last variable.

Further, it should be clear how to go in the other direction. For instance,

12 422 4 2% =32,
Put u = 3. Since now v must be even, we let v = 2. Sincer > s, we let r = 2,
s = 1. The values r, s,u,v = 2, 1, 3, 2 give
x =3, y =4, t =35, z =12, w= 13
as a solution to equation (13) and thus incidentally,

32 +4% + 122 =132

as another solution to equation (5). Now let u = 13. Since v is now even, we
put v = 12 [v = 4 leads to (r,s) = (12,3) # 1]. Since r > s, we let r = 4 and
s = 3. We then get

x =17, y =24, t =25, z = 312, w =313

as another solution to (13), which then gives another solution to (5), and so on.
Thus (13) has infinitely many solutions.

Geometrically, equation (13) (without the g.c.d. conditions) is describing
arectangular box with integral edges with a diagonal on one ofthe rectangular
faces being an integer and the diagonal of the box being an integer. We have
just shown that there are infinitely many such boxes. It is interesting to note
that this brings us very near an unsolved problem. It is known that there are
infinitely many boxes whose edges are integers and the diagonals of all the
faces are integers (an example is the box with edges 44, 117, and 240), but it
is not known if there are any such boxes such that in addition the diagonal
of the box itself shall be an integer. In equations, we are asking for a solution
in integers to the four equations

x4y =12,
x2+22=s,
v+t =0t
x2 4y + 22 = w2,

with x # 0, y # 0, z # 0. When nothing is known about equations such as
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this, it is no wonder that higher-degree equations drive mathematicians to
the same despair to which homework problems drive the student. There
seems to be no way of distinguishing between the trivially solvable problem
and the extremely difficult problem, between the problem solvable by
advanced techniques and those solvable using elementary methods. Indeed,
it has happened more than once that an extremely difficult solution to what
was thought to be a hard problem has later been replaced by a trivial ele-
mentary solution (trivial, that is, after it has been read).
As another example of a proof by ascent we have

Theorem 5.4. Suppose d is a positive integer. If there is one solution to
the Fermat-Pell equation

(14) x2 —dy* =1, x>0, y>0,

then there are infinitely many solutions. If there is one solution to the
Fermat-Pell equation

(15) x2 —dy?* = —1

with x and y positive, then there are infinitely many solutions to both (14)
and (15).

Proof. Suppose there are integers a and b,
(16) a®> — db? =, a>0, b>0,

where ¢ will shortly be chosen to be + 1. Suppose further that for somen > 1
there are integers x, and y, such that

17 x2 — dy? = ", x, >0, y,>0.
When n = 1 this is possible with x; = a and y, = b. Set

Xp+1 = aXy + dby,,  Yp+1 = ay, + bx,.
These values are legal since

X3+ — dviey = (@®x} + 2dabx,y, + d*b*y}) — d(@®y; + 2abx,y, + b*x})
= a®x? + d*b*y? — da?y? — db*x2
(@ — db*)(x7 — dy7)

=c-c"

— Cn+1
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and

(8) Xpey1 = ax, +dby, > 1-x,+d-0-y, = x,(>0),

Vne1 = aYn + bxn > 1 *Vn + O-X" = yn(> 0)
Thus we have shown by induction that if (16) is possible, then (17) is possible
for all n > 1 with the values of x, and y, increasing with n by (18) (so that
there are infinitely many distinct pairs x, and y, involved).

When ¢ = 1, we have just shown that if (14) has one solution in positive
integers, then it has infinitely many solutions. When ¢ = — 1, we have just
shown that if (15) has one solution in positive integers, then both (14) and
(15) have infinitely many solutions. [The solutions to (14) having n even and
the solutions to (15) having n odd.] A

We have already seen in Theorem 5.1 that there are instances when (15)
has no solutions. On the other hand, we will show in Chapter 7 that (14)
always has solutions when d is not a perfect square and give a method of
finding them.

EXERCISES

1. In this section we descended from one solution x, y, z, w to equation (5)
with x, y, z,w all positive and having no common factor to another
solution r, s, v, u, again all being positive with no common factor, and in
addition w > u. Why does this not lead us to an infinite descent and a
resulting proof that equation (5) has no solutions with none of x, y, z, w
being zero?

2. The attentive reader will have noticed that in our proof that (13) has
infinitely many solutions, we failed to show that one solution to (13) leads
to another with the restrictions that x,y,t and t,z,w are primitive Pytha-
gorean triplets. Complete the proof by showing that given one solution to
(13), one can always pick r, s, u, and v from this solution in such a way that
the resulting new solution does have (x,y,t) = (t,z,w) = 1.

3. Show that the equation

X 4dyt =22 x#0, y#£0, z#0

has no solutions. It may be helpful to reduce this to the case that x > 0,
y >0,z >0,(x,y) = 1, and then by dividing by 4 (if necessary) to further
reduce this to where x is odd.

4. Show that there is no right triangle with integral sides whose area is a
perfect square by showing that it suffices to work with primitive triangles
and with them, one is led to the equation of problem 3. (Hint: Do not
use Theorem 5.2.)
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5. Suppose x = xo > 0, y = yo > 0 is a solution to
x? —3y* =6.

Show that x, = 2xy + 3yo, V1 = Xo + 2yo Is also a solution to the

equation with x; > x4 > 0, y; > y, > 0. Find one solution to the equa-

tion experimentally and show as a result that the equation x*> — 3y? = 6

has infinitely many solutions. Give the next three solutions in the ascent.
6. Suppose n is a fixed integer (positive or negative) # 0 and suppose

xz —3yi=n

with xg = 0, yo = 0. Let x; = 2x¢ + 3y¢, V1 = Xo + 2yo. Show that

x2 —3y? =n, X, >X020, y; > yo=0.

Conclude that the equation x?> — 3y? = n either has no solutions or
infinitely many solutions.

7. Suppose n is a fixed integer # 0 and d is a positive integer not a perfect
square, and suppose

2 2
xp — dys = n,

where xo >0, yo > 0. Let x; = axo + bdyy, y; = bxy + ay,, where
a>0, b>0 provides a solution to the Fermat—Pell equation,
a®* — db* = 1. Show that

xi —dyi =n, X1 >x020, yy>ys=0.

Conclude that the equation x2 — dy? = n either has no solutions or
infinitely many solutions.
8. Show that there are infinitely many solutions to the equation

x2 + y? = 24, x>0, y>0 z>0 (x,y2 =1

MISCELLANEOUS EXERCISES
1. Show that x = y = z = 0 is the only solution of

3x5 4+ 5y° = z°,

2. There are infinitely many pairs of nonzero integers such that the sum of
their squares is a square ; there are also infinitely many pairs of nonzero
integers such that the difference of their squares is a square. Show that
these two sets do not overlap; that is, show that there is no pair of non-
zero integers such that both the sum and difference of their squares are
squares.
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A right triangle ABC has integral sides with AC > BC > AB. The
bisector of /_ABC meets AC at D. E is the projection of A upon BD
(that is, AE L BD) and F is the midpoint of AC. Show that there are
infinitely many such triangles with EF = 49 and give three explicitly.
(It may be helpful to let G be the midpoint of 4B and show that GEF
is a straight-line segment.)

Find a connection between problems 3 and 9 of Section 5.2.

If x3 + y® + 2 = 0, show that

(x +y+2)?° =3x+ yx + 2)(y + 2)

Use this relation to show that 3 must divide one of the numbers x, y, z.
This proves case 1 of Fermat’s last theorem when n = 3.

If x>+ 33 +2z* =0 and (x,y,z) = 1, use the relation of problem 5 to
show that

x+ypx+z2)=x+ny+2)=Kx+z,y+2)=1

and that one of the numbers x + y, x + z, y + z is nine times the cube
of an integer while the other two are cubes of integers.

The number ¢, =1 + 2 4+ -+ + n is called the nth triangular number
(so called because ¢, dots may be inserted in an orderly fashion in an
equilateral triangle ; the fourth triangular number is familiar to bowlers).
Some triangular numbers are also squares (which means that the dots
may be rearranged into a square), for example, tg = 6%, 1,4 = 35%. Show
that there are infinitely many numbers that are simultaneously triangular
and square.

. Show that if a and b are integers, not both zero, and

a® + 2(a + b = a* + b3,

then o is irrational. Fermat had trouble with this problem—this was
before he became interested in Diophantine equations.

. If xq, yo. and z, are integers which satisfy the equation

x? 4+ y* + 2% = 3xyz,

then x; = xo, V1 = Vo, 21 = 3XoYo — Zo are also solutions. Show how
this can be used to find infinitely many solutions in positive integers
starting with the solution 1, 1, 1.

Show that if x> + y*> + z°> = 0, then

Ax +y+2° =5x + Wx + 2y + )x + y + 2> + x> + y> + 2%].

Use this to show that 5 divides one of the numbers x, y, z, thus proving the
first case of Fermat’s last theorem when n = 5.



Chapter 6

NUMBERS, RATIONAL AND IRRATIONAL

6.1. Rational Numbers'

Up to now, we have mainly considered properties of integers. In Chapters
6.7, and 8 we are going to enlarge our horizons. Theorem 2.13 has shown us
that not all real numbers are rational, an example of an irrational number

being ﬁ The fact that there are irrational numbers came as a great shock
to the Greeks, and it necessitated a complete revision in similarity theory to
account for irrational ratios of lengths. In this section we will be primarily
concerned with the decimal expansions of rational numbers. We will, how-
ever, learn more than enough here to be able to construct some irrational
numbers through their decimal expansions.

Consider the decimal expansions of several sample rational numbers,

1 =333333...,

L= 1666666 ...,

1 = .12500000. . .,

2 = 285714285714285714 .. .,
83

® = 11216216216216....

In each case, there is a digit or group of digits which repeat, seemingly
forever. Assuming that this is true, we will write

1=23 Lt=.16 §=.1250, %=.285714, &3 = 1.1216.
The digits under the bar are called the period of the expansion and the number
of digits in the period is called the length of the period. Ordinarily, the

! This is a good point to note that mathematicians use the term “rational number” in
place of “fraction.” Technically there is a fine distinction ; for example, § and % are
different fractions that both denote the same rational number.

164
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expansion of § is written .125 and is said to terminate, but it will be con-
venient shortly to think of § as an infinite decimal with all zeros from the
fourth decimal place on.

It is natural to conjecture that all rational numbers have periodic decimal
expansions. To prove this, we must examine the division process. For
example, two key steps in the expansion of £ into a decimal are

1.1 1.1216
74)83.000000, 74 )33.000000000
74 74
90 90
74 74
16 160
148
120
74
460
444
16

Now we see why the expansion of §3 is periodic. We have reached the remain-
der 16 twice. We know what happens when a remainder of 16 is reached : We
bring down a zero, divide by 74, and get a remainder of 12, bring down a
zero, divide by 74, and get a remainder of 46, bring down a zero, divide by 74,
and get a remainder of 16. The whole sequence then repeats and then repeats
again, and so on. Thus the expansion of §3 repeats because two remainders
in the division of 83 by 74 are equal. Why should there be two equal remain-
ders? Because there are only the 74 possible remainders 0,1,2,...,73.
After at most 75 divisions, we must have two equal remainders; it has hap-
pened much earlier here, but this was due to the choice of rational numbers.

Before we prove the general result, it will be convenient to convert the
division algorithm into symbols. Let the rational number involved be m/n,
where m and n are positive integers. As we are not really interested in the
integer to the left of the decimal point, we simply indicate that much of the
division all at once,

m=gqgn+ a,, 0<a <n-1,

where ¢ is the integer to the left of the decimal point and a, the remainder
(and hence the inequality on a,). We now examine separately the divisions
leading to each digit to the right of the decimal point. We will let the digits
to the right of the decimal point be ¢,, g, g3, 44,..., where possibly all
g;’s past a certain point are zero. To find q;, we bring down the first zero to
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the right of the decimal point, place it at the end of a,, and divide by n. In
symbols, this means that we divide 10a, by n,

10a, = gq,n + a3, 0<a,<n-—1,

where a, is the remainder in the division. To find ¢g,, we bring down the
second zero to the right of the decimal point, place it at the back of a,,
and divide by n. In symbols, this is,

10a, = g,n+a;, O0<ayz<n-—1

This process is continued indefinitely ; we thus get the sequence of equations

m=gqn+ a,, 0<a <n-1,
10a, = q\n + a,, 0<a,<n-1,
(1) 10a, = q,n + as, O<az<n-—-1,
10a; = gsn +a,, O0<a,<n-—1,
10a, = q4n + as, O<as<n-—1,....

If g; = 0, then
qj:()’qj+1 :O»qj+2 =0,....

This is a special case of the decimal expansion of a;/n,

a.
(2) ;j = -9i9j+19j+29j+3 """ -

For example, in the expansion of 82 above, we get

£ = .1216216216...(j = 1),
16 — 216216216...(j = 2),
12— 162162162...(j = 3),
48 — 621621621...(j = 4),
18 = 216216216...(j = ).

These are in agreement with (2). In the case of the second and fifth of these,
we have

4249344 = .454697-

Theorem 6.1. Let m and n be positive integers. Then m/n has a decimal
expansion which either terminates or is periodic.
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Proof. A terminating decimal will be considered as a periodic decimal
with period, 0. Thus we need make no further mention of terminating
decimals in the proof. After the above discussion, it is clear that we must
show that g; = g, for some jand k (j # k). [If a; = q, then 10g; = 10q,, the
quotient of these (equal) numbers by n, will be g; = g, with remainders
a;4+; = x4+, and so on.] Each g; is one of the n numbers 0,1,2,...,n — 1.
Thus two of the n + 1 numbers a,,a,,...,a,,, must be equal, as other-
wise there would be n + 1 different values of the a;’s. A

It follows from the proof of Theorem 6.1 that the length of the period of
m/n is at most n. We will learn much more about the length of the period in
the next theorem. If the period starts with the first digit to the right of the
decimal point, the expansion is called purely periodic. For example, the
expansions of § and £ on page 164 are purely periodic, while the others are
not.

Theorem 6.2. Suppose that (m,n) = (10,n) = 1, where m and n are positive
integers. Then the rational number m/n has a purely periodic decimal
expansion and the length of the period is ord,(10).

Proof. We will show that there is an integer s such that a; = a,,. If we
can accomplish this, then clearly the block of digits q,, ¢, , - . . , gs repeats and
hence the expansion of m/n is purely periodic. We will then worry about
whether the period length is actually s or if it is smaller.

In terms of congruences, equations (1) are

m = a,(mod n),

3) 10a, = a,(mod n),
10a, = az(modn),....
In particular, for all t > 0,
4) a4+, = 10a, = 10%a,_; = 10%°a,_, = --- = 10'a,(mod n).

(Note that the subscript goes down one as the exponent goes up one; the
subscript went down t altogether and thus the final exponent is r.) Let

s = ord,(10).
Then by (4) and the definition of ord,(10),
a; 4+ = 10°%a, = a,;(mod n).

But by (1) a, ., and a, are both members of the complete residue system
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(modn): 0,1,2,...,n — 1; being congruent, they must therefore be equal,
Ay 45 = 4ay.

Thus the decimal expansion of m/n is purely periodic.
Suppose now that r is the length of the period, so that

(5) r<s
and the first and second complete periods are ¢,,¢,,...,4, and ¢, .+,
4r+25--- 542, respectively. Since the second period is just a duplicate of the

first period, we see from (2) that

al_ _ _ar+1
7 =192 "4y = Gr+14r42 " YG2r =

n
and hence
(6) .1 = ay.
By (3), (4), and (6),

10'm = 10"a, = a,+, = a; = m(mod n),
and Theorem 3.3 allows us to divide out the m,

10" = 1(mod n).
By Theorem 3.26 and the definition of s,
s|r
and thus
r>s.
Combining this with (5), we see that
r =s = ord,(10). A

For example, since

17 = .0588235294117647
has a period of 16 digits,
ord,,(10) = 16.
Hence 10 is a primitive root of 17. This is, in fact, the quickest method of

seeing whether or not 10 is a primitive root of n when n is relatively small
(assuming the availability of a desk calculator that divides). One simply
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finds the first ¢(n) digits of the decimal expansion of 1/n. Either this block of
digits is the period of the expansion (and 10 is a primitive root of n) or this
block is broken up into several copies of a smaller block (and 10 is not a
primitive root of n). As an example, ¢(21) = 12 and the first digits in the
expansion of 47 are

2 = 047619047619 ...

We see that the block of 12 digits breaks up into the block of six digits,
047619, repeated twice. Hence

Jr = 047619

and 10 is not a primitive root of 21 (which is in line with the result stated
earlier that 21 has no primitive roots). The converse of Theorem 6.2 [if
(mn) = 1 and m/n has a purely periodic decimal expansion, then (1,10) = 1]
is considerably easier and is left as an exercise for the reader (problem 9).

EXERCISES

1. In the notation of (1), prove that if g, is the first of the remainders to be
repeated among later remainders and if g, ;. is the first of the remainders
after g, to equal q,, then the first full period in the decimal expansion of
m/nis qui+1 - qe+r—1 and its length is r.

2. Verify the result of problem | for the rational numbers

35, 13 TrirT

3. Find the rational number (as a fraction) which has the decimal expan-
sion . 1. (Hint: T=10"'+10"2+ 1073+ 107* + -.-. Use the for-
mula for the sum of a geometric progression.)

4. Find the rational number which has the decimal expansion .027. [Hint .
027 =271073 + 1078 + 107° + 107 !2 + .. 3]

5. Find the rational number which has the decimal expansion .2713. [Hint:
2713 = &5 + 13(107% + 107¢ + 1078 + .. ]

6. Leta = .g;q2- qx-149x- - qr+r- 1. Use the ideas in problems 3, 4, and 5
to show that « is rational.

7. What rational number is .97 Does this suggest any difficulties about
decimal expansions of numbers?

8. Since

7 = .3, +r = .047619,
Theorem 6.2 does need the restriction that m and n are relatively prime

(otherwise the period length of 75 and 41 would be the same). Where does
the proof of Theorem 6.2 use this fact?
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9. If m/n = .q,q, - q,, show that

m_ 4424,
n 10" — 1
(the numerator is a number of the r digits, g,.4>,....q, and not the

product of g,.q5.....q,), and use this to show that if (m,n) = 1, then
(10,n) = 1.

10. If (m,n) = (10.n) = 1, why do the first ¢(n) digits in the decimal expansion
of m/n constitute an integral number of copies of the period as opposed
to, for example, 34 copies of the period?

6.2. Irrational Numbers

We may use Theorem 6.1 to show that there are irrational numbers. For
example, the number

o =.10110111011T10111110L111110...

(blocks of 1,2,3,4,... ones separated by single zeros)

is irrational. For if « were rational, its decimal expansion would be periodic
and have a period of length r starting with the kth digit of the expansion. But
by the very nature of «, there will be blocks of r digits, all 1, in this expansion
after the kth digit and the periodicity would then guarantee that everything
after such a block of r digits would also be all ones. This contradicts the fact
that there will always be zeros occurring after any given point in the expansion
of . Hence « is irrational.

On the other hand, Theorem 6.1 is of no use in deciding whether or not ﬁ
or w are irrational. Both numbers are irrational, but since we do not know
the complete decimal expansion of /2 or x,2 Theorem 6.1 cannot be used
to say that they are irrational. In the number o above, we know that there
are arbitrarily many ones with no intervening zeros; we know no such fact
about V/i or n. Thus, while it is easy to produce irrational numbers, it is
harder to prove that particular numbers are irrational. The following
theorem shows that if we know one irrational, we may find infinitely many
others.

2 By now, somebody may well have programed a computer to find the first million
digits of the expansion of =, but this would not show anything, as the period (if there
were one) could have 1 trillion digits.
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Theorem 6.3. If « is irrational and a and b are rational with b # 0, then

!

a + ba,
o
are irrational also.
Proof. Let
X =a + ba.
Then

Hence, if x is rational, x — a is rational, (x — a)/b is rational (the division
being allowed since b # 0). But « is irrational, and hence x must be irrational
also. Let

y=-
o

(1/a is defined since O is rational, and hence o # 0). Then y # 0 and since

o would be rational if y were rational. Therefore, y is irrational. A

Theorem 6.4. Suppose a and b are rational and « is irrational. If a + ba
is rational, then b = 0. If a + ba = 0, thena = b = 0.

Proof. If b # 0, then, by Theorem 6.3, a + ba would be irrational and
therefore b = 0. Since 0 is rational, a + ba = 0 implies that b = 0; therefore,
a=a+0x=a+ba=0

also. A

EXERCISES
In problems 1--3, do not use Theorem 2.13.

I. Given that J2 is irrational, are 3 + £/2 and [(1 + /2)2 + /2))/
(4 + 3., 2) rational or irrational?
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2. Given that \/2 is irrational, show that (1 — 2\/2)/(3 + 4\/5) and \/m
are irrational.

Given that /6 is irrational, show that \/2 + \/3 is irrational.

4. Find the rule of formation of the number

.123456789101112131415161718192021 . ..

el

and show that it is irrational.

*6.3. Liouville’s Theorem and Transcendental Numbers

We may split the set of irrational numbers into two sets - the (real) irrational
algebraic numbers and the real transcendental numbers.

Definition. A number, real or complex, is said to be algebraic if it is the
root of an equation of the form

1

doX" + ay X"+ -+ dy X+ a,=0,

where aq. 4. ..., a, are integers, a, # 0. If a number is not algebraic, it

is said to be transcendental. (Clearly rational numbers are algebraic.)

Just as it was by no means obvious that irrational numbers exist, so it was
by no means obvious that transcendental numbers exist. Liouville in 1844
was the first to prove the existence of transcendental numbers. He proved
that real algebraic numbers cannot be too closely approximated by rational
numbers. This enabled him to construct transcendental numbers.

Before we prove Liouville’s theorems, we should note one theorem from
outside that we will use. This is the

Fundamental Theorem of Algebra (first proved by Gauss in 1799). If
S(xX)=aox" + a;x""' + - + a,

is a polynomial with complex numbers as coefficients, a, # 0, then there
are complex numbers a,,...,a, (not necessarily distinct) such that

S(x) = aplx — oy} (x — o3)- - (x — a).

Theorem 6.5 (Liouville). Suppose that « is a root of the equation
apx"+ a;x" '+ -+ a,=0,

where aq,...,qa, are integers, d, # 0. There exists a number 4 > 0
(dependent upon g, and the roots of the equation but independent of
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everything else) such that for any rational number p/q # «, q > 0, we have

lo — p/al > é/q".

(Note: If a is irrational, the hypothesis p/q # « is automatic.)

Proof. For convenience, set
f(x) =aox" + -+ + a,,
which factors by the fundamental theorem of algebra as
(7) Sf(x) = ag(x — 0)’(x — o) -+ (x — o),

where o, ay,...,a, are all distinct and b, by,...,b, are their respective
multiplicities. Let

(8) B = 3 minimum of j& — ay],..., ] — o,

and our first requirement on § will be

©) s<B.
Thus if
14
b q' > B,

then automatically,

)

p >85> T

q q

Hence we will now restrict our attention for the rest of this proof to those p/q

for which

pw
o — —

q

Our choice of B in (8) is such that any such p/q is as close (or closer) to a as
it is to any of the other «;’s and in particular it cannot equal any of the «;.
In terms of inequalities, for any i, | < i <'r,

a—BHZ
q

Since p/q is not a root of the equation f(x) = 0, we see that

qf(p/q) # 0,

<858 - #a.

= (a— o) — o — o —

{p

a—ZIZZﬂ—B=/3>O.
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but
qa’f(p/q) = app” + ap" g+ -+ aq"
is an integer and hence

lq"f(p/g)l = 1.
Therefore, by (7),
b b 1
> by by n°
laol -Ip/g — oul”* -+~ Ip/q — a,I™q

We now wish to get an upper estimate on the denominator. Let

14

(10) «—=

Y = maximumof|oe — o],..., ¢ — o,].
Thus

ot

it follows from (10) that

+lo—ol <7+ B;

p + (@ — )

S)g—a
q

pl 1

i b b n
gl laoltr + By & + By -q
If in addition to (9), we now also require that

(12) 8 < [laolly + B+ *or 71,

then we see from (11) that

o —

(11)

p é

0
o — —| > n > e A
J "’ " q

Theorem 6.5 not only allows us to prove that there are transcendental

numbers but it allows us to exhibit some. As an example we have

(13)

Theorem 6.6. The number
o0
o = Z 2—k!(= 2—1 + 2—2 + 2—6 + 2—24 + 2—120 + )
k=1
is transcendental.

Proof. Suppose « is algebraic. Then there is a positive integer n and a
number § > 0 such that for any rational number p/q # a,q > 0,

)
a—B}>—.

(14) "
q| 4
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We will now choose a rational number (# «) that violates this inequality.
Let

K
(15) qg=2%p= 3 287",
k=1
so that
K
p k!
A
q kgl

The number K is still open to be chosen. We will ultimately choose it to be
rather large. We now wish to estimate « — p/q. We have
(16) a-P= vy 2k<c ¥ 2m
qd k=K+1 m=(K+1)!
This last sum is a geometric progression and hence we can evaluate it,
D -(K+1)
oLt
g 1-3

Now by (16), « — p/q > 0 (and hence p/q # a), so that

=2.27K+DE _ 5 OK)=(K+D) _ 2q~ K+,

2 -1 2 . 2—1(.’
‘a . ‘ S 227
q q q
This contradicts (14) if K > n and simultaneously K is chosen large enough
that

2.27K <5

(this being clearly possible since 27X — 0 as K — o). Hence « is indeed
transcendental. A

As with irrational numbers, it is usually easier to construct a transcendental
number than to prove that a given number is transcendental. For instance,
e and n are both transcendental but the proofs are considerably more difficult
than the proof of Theorem 6.6. The interested reader may find proofs in
Chapter 11 of Hardy and Wright. The fact that \/n is transcendental is
sufficient to show that the classical Greek problem of constructing (with
straightedge and compass) a square with area equal to that of a given circle
cannot be solved. This is because the problem is equivalent to constructing
a line segment ﬁ times the radius of the circle in length. But through
analytic geometry, we find that only algebraic multiples of the radius can be
constructed (and not even all of them). A discussion of this and other classical
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problems can be found in the book by Courant and Robbins (see the Biblio-
graphy).

Theorem 6.5 is of interest in another way. Theorem 1.1 shows us that given
a real algebraic number «, there are infinitely many p/q such that

a-Pl<c
q| 2q

In Chapter 7 we will improve this: For real irrational algebraic a,

|

q
is true for infinitely many different p/g with g being arbitrarily large. But
yet for each irrational algebraic a, there is an integer n and a positive d such
that

(18)

o —=|>-
q q
is true for all rational p/q (here n is the degree of the equation satisfied by «).
It is of some interest to close the gap between (17) and (18). In this vein, we
may ask:
If a is an irrational algebraic number, for which 6 does there exist § > 0
(depending on « and 6) such that for all rational numbers p/q(qg > 0)

n

pl_ &

d
q q
Many people have worked on this problem. The main historical results
are:

6=>n (Liouville, 1844),
0> g +1  (Thue, 1909),

0>2/n (Siegel, 1921),
6>2 (Roth, 1955),

are all answers to this question. As we see from (17),if # < 2 then there cannot
be any such 8. The problem of whether or not § = 2 is an answer to this
question is still open (except for n = 2, when Liouville’s result already
answers the question in the affirmative). It is conjectured that 6§ = 2 does
not answer the question (except if « is the root of a quadratic equation).
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An interesting fact about the later results of Thue, Siegel, and Roth is
that while they say for certain values of 6 there exist values of §, their proofs
do not allow one to determine values of . It is only recently that there has
been any hope of giving explicit values of ¢ for the general irrational algebraic
number (with n > 3) and values of 0 < n:; however, this seems (as of now)
still possible only for values of ) very close to n. These results have interesting
implications in the theory of Diophantine equations (for a glimpse of these.
see miscellaneous exercises 9 and 10).

EXERCISES
1. If b > 1, then the result of equation (13).

l“ - P] > g/b

i q, (
is a better inequality than the result of Theorem 6.5. Show that if n is the
smallest number such that there is an equation of degree n (integral co-
efficients) satisfied by « then b = 1. [Hint: Let f(x) = 0 be the equation
and suppose b > 1. Show that x is a root of /"(x) = 0 also.] (Clearly what
is desired is the minimum of n/b. It can be shown that this minimum occurs
with the minimum n and b = 1).

2. In Theorem 6.5, if f(x) factors as f(x) = ag(x — «)". then the proof must
be modified. Show that the theorem holds with & < |ao| ™ '™

3. By examining the coefficient of x" !, show that the situation of problem 2
arises only if o is rational.

4. It can be shown that sums, differences, products, and quotients of algebraic
numbers are algebraic. Use this result to show that if « is transcendental,
B is algebraic and not 0, then o + f, aff, and o~ ' are transcendental.
Show further that for all positive integers n, o'/" is transcendental.

5. Suppose a is transcendental. Show that if k is a positive integer, then o*
is transcendental. (Hint . Suppose o* is algebraic and write an equation for
a*. Show how this gives an equation for a.)

6. Use the results of problems 4 and 5 to show that any nonzero rational
power of a transcendental number is transcendental.

MISCELLANEQOUS EXERCISES
1. Suppose that (n,10) = 1. Show that 15 has a periodic expansion in the
base n of period length 1, 2, or 4 according to whether n = 1(mod 10),
n = 9(mod 10), or n = 3, 7(mod 10).
2. In each of the expansions

1 = 142857, ir = .09, 17 = .0588235294117647,
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the first half of the period plus the second half of the period gives all
nines. Show that if pis a prime and the length of the period of the decimal
expansion of 1/p is even, then the sum of the first and second halves of the
period has all nines.

. Find all primes p such that the period of the decimal expansion of 1/p

has exactly six digits.

. If (mn) = 1 and n = 295°n, with (n,,10) = 1, show that the period in

the decimal expansion of m/n begins with the jth digit after the decimal
point and has length ord, (10), where j = | + max(a.b). (Hint : Multiply
m/n by appropriate powers of 10 and use problem 9, Section 6.1.)

. Suppose the number ¢ = Z:’:O 1/n! is rational, say ¢ = p/q. Show that

this implies that the number
q
= q!(e -y l/n!)
n=0

is an integer. Show that, in fact, 0 < a < 1, so that ¢ is irrational.

. We have seen in problem 7, Section 6.1, that not every number has a

unique decimal expansion; for example, § = .125 = .1249. This fact
temporarily negates the proof that « = .10110111011110. . .isirrational,
since o may have another decimal expansion which is periodic. This
problem will show, among other things, that the decimal expansion of
o is unique. Show that a number f has a unique decimal expansion unless
p has a terminating decimal expansion. Show further that if § has a
terminating decimal expansion, then there is exactly one other decimal
representation of f and it is periodic with period, 9. (Hints: Let
B=>bbbyby...=ccicc5..., where 0 <b; <9,0<¢; <9 for all
Jj = 1. This means that

p=b+ ¥ o= +Z10'

Show that if not all the b’s and ¢’s are the same, then the problem can be
reduced to consideration of the above equation with b > 1, ¢ = 0 by
multiplying by an appropriate power of 10 and subtracting an appro-
priate integer. Show that if b > 1 and ¢ = 0, then

C;

b+
10

> 1 Z

s

b;
Of

“M8

with equality if and only if b = 1, h; = 0,and ¢; = 9 for all j.)

The remaining problems are related to Section 6.3.
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Show that if a is transcendental, then so is \/&. [Hint : Suppose f(x)is a
polynomial with integral coefficients and f(\/&) = 0. Show that

g(x) = _/'(\/§)_/'( - \/x) is also a polynomial with integral coefficients and
gla) = 0.]

(For those students familiar with complex numbers to complex powers.)
The Gelfond-Schneider theorem states that if « and 8 are algebraic
numbers, x # 0, « # 1, Birrational, then o is transcendental (no matter
which value of the logarithm is used to define o). Correct to ten decimal
places,

™13 = 262537412640768744 . 0000000000.

Show that, nevertheless, e'®3 is not an integer.

. It follows from the result of Thue that for all rational p/q, g > 0.

P o
\3ﬁ_’{>T<F5

q q

for some 6 > 0. Given an integer »n, show that the Diophantine equation

x> =2y =n

has only finitely many solutions. [Hints: The other two cube roots of 2
are

—1 /3 -1 -iJ/3
% =\aﬁ( +21\£) °‘2=‘3/§(21\/)'
both of which have imaginary parts greater than | in absolute value.
Show as a result that

3|

p
P’ —2¢* =4’ - —
| q

-lp — az. > 8q04.]
a

p 3
g _ 3.
AR

(See problem9.) We now know that there are only finitely many solutions
to the equation

x* =2y =n

How do we find them? Suppose we are prepared to check every value of
y in absolute value less than Y and see if there is an integer x that corres-
ponds to it. What value of Y is safe; in other words, for what value of Y
can we guarantee there are no solutions with |y| > Y? We sadly cannot
answer this question from problem 9 without knowing the value of ¢
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involved and unfortunately, Thue’s proof of his result does not enable
one to calculate a value of 8. His proof is an existence proof only. Baker
showed in 1964 that § = 10~ willdo in problem 9. Use this to show that
if
[x* — 2y < 10,
then
I < 10136,

It is now feasible to use computers to check this range of y. To learn how
this would be done, see miscellaneous exercise 25, Chapter 7.

. Set x; = .123456790, x, = .101112...969799000102...0809,

x5 = .100101102...996997999000001002...008009, etc. Show that

o 10" 110" = 1) + 1
" (10" — 1)?

[Hint: Multiply x, by 10" and subtract x, from this; the result should be
(10" — x, = 10""' + .00...01, where there are n — 1 zeros in the
period.] Set

o= .123456789101112131415161718192021... ..

We have seen in Problem 4 on page 172 that « is irrational. Here we
shall learn more. Let N, be the number of digits in o through 10" — |
(for example, N, = 9, N, =9 + 2-90 = 189). Show that N, > ION,,_,.
Show that 10¥"- 1« and x, agree after the decimal point for more than
8N, _, digits. Let g, = 10¥-1(10" — 1)2. Show that g, < 10?"-'. Show
as a result that there is an integer p, (p; = 10,p, = 123456 789 - 992
+ 991) such that

< -

q
Show that Theorem 6.5 implies that « is not the root of a quadratic,
cubic, or quartic equation with integral coefficients. Show that the result
of Roth on page 176 implies that « is, in fact, transcendental.

1
4.5
n




Chapter 7

CONTINUED FRACTIONS FROM A
GEOMETRIC VIEWPOINT

7.1. Introduction

The goal of this chapter is to develop a method for finding ‘“‘good”
fractional approximations to a given real number. As we will proceed
geometrically, we will first give precise definitions of some intuitive notions.

Definition. Let the point P have coordinates (b,a)' and suppose that (b,c)
is the intersection of a line L with the vertical line x = b. If a > ¢, then we
say that P is over, or above, L, while if a < ¢, we say that P is under, or
below, L.

Definition. Let the point P have coordinates (b,a) with b ## 0. We say that
a/b is the slope of P. In other words, the slope of P is the slope of the line
passing through the origin, (0,0), and P.

Definition. The first quadrant is the set of points with positive x and y
coordinates.

Theorem 7.1. Let L be a line passing through the origin having the slope
o > 0. If P is a point in the first quadrant, then P is above L if and only if
slope P > a, Pison Lif and only if slope P = a, P is below L if and only if
slope P < a.

Proof. Let the coordinates of P be (b,a). The equation of L is

y = ax,

! We will not use the greatest common divisor notation in this chapter.

181
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and thus the intersection of L with the line x = b is the point (b,ab). Since
b > 0 (P is in the first quadrant), we see that

a > ba if and only if—g > a,
. o da

a = ba if and only 1fB = a,
. .. a

a < ba if and only le < a.

The theorem follows from the definitions of over, under, and the slope of
P. A

Let o be a positive real number and L be the line y = ax. Let the point
P = (g,p) be in the first quadrant and let L' be the line through the origin
and P (see Figure 7.1).

It seems intuitively clear that the closer the point (g,p) is to the line L, the
closer p/q (slope of L') will be to « (slope of L). We make this intuitive feeling
precise in the following theorem.

Theorem 7.2. Let a be a positive real number and Lbe the line y = ax.
Suppose that the point(g,p) has integral coordinates, is in the first quadrant,
and has the property that if (n,m) is also a point with integral coordinates
and 0 < n < ¢, then the distance from (g,p) to L is less than or equal to

Figure 7.1.
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the distance from (n,m) to L. Then

for all points (n,m) with 0 < n < g [in other words, « — (p/q) is numerically
smaller than o« — (m/n)].

Proof. If the point (g,p) is on L (so that p/q = o), then the result of the
theorem is obvious. So we may as well assume that (g,p) is off the line L and
then we let d > 0 be the distance from (g,p) to L [measured along the per-
pendicular line from (g,p) to L]. Let P be the point (g,p). P is either above or
below L. Figure 7.2 shows the case where P is below L it is this case that we
consider now. Let L, be the line through P which is parallel to L ; thus the
distance between L, and L is d. Let L, be parallel to L and at the distance
d from L but on the other side of L from L, . Let Q and R be the intersections
of the line x = g with L, and L, respectively. Finally, let 4 and B be the
points on L such that AP and BQ are perpendicular to L. Thus AP| BQ, and
therefore /_ APR = /_BQR. Thus AAPR =~ ABQR (by the angle, side, angle
theorem) and hence QR = RP. The x coordinate of R is ¢, and since R is
on the line y = ax, we see that R = (g,qa). Now we can find the coordinates
of Q. The x coordinate of Q is q. Since QR = RP, the y coordinate of Q
satisfies the equation

y—qu=qx—p,

Figure 7.2.
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and therefore

0 = (9, 2qa — p).

The slopes of OP and OQ are p/q and (2qx — p)/q = 2¢ — (p/q), respec-
tively. Suppose now that

m
o0 — —
n

s

«-2[>
q

where C = (n,m) has integral coordinates, 0 < n < gq. As shown in Figure
7.2, slope L > slope OP, so that « > p/q and thus |« — (p/q)l = a« — (p/q).
One of the numbers a — (m/n) and (m/n) — a is the positive number
| — (m/n)|, the other is negative and therefore

From the first of these inequalities, it follows that
slope C = n > P_ slope OP,
n q
and from the second,
slope 0Q = 2a — 2 > rs = slope C.

Thus C is above OP and below OQ, so that C is between the lines OP and 0Q
(and not on either). Also since we are assuming that 0 < n < ¢, we see that
C is actually inside the triangle OPQ (or on the edge PQ, but C # P and
C # Q, since C is not on OP or 0Q). Therefore, the distance from C to L
is less than d and this contradicts our hypothesis that this does not happen.
Therefore,

as asserted. A

We have of course only proved Theorem 7.2 when P is under L. In this
and later theorems where we have the two choices of putting a point over or
under a line, we will take one of the choices and leave the other choice for the
reader. As expected, the proofs are practically identical with the modifications
usually restricted to the words ““‘over” and ‘“‘above” being interchanged with
“under”” and “‘below”. There are also occasional changes of directions of
inequalities and changes of sign.
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We see from Theorem 7.2 that if we wish to find “good” fractional ap-
proximations to a, then it might well be useful if we could find the points
(g,p) with the property in Theorem 7.2.

Definition. Let L be the line y = ax. We define the set of points closest to
L to be the set of all points (g,p) such that g and p are integers, g > 1, and
having the property that if n and m are integers, 0 < n < q, then the dis-
tance from (g,p) to L is less than or equal to the distance from (n,m) to L
with these distances being unequal if n < q.

For example, when o = \/§ the first few members of the set of points
closest to L are the points (1,2), (3.5), (4,7), (11,19), (15,26) (see Figure 7.4).
When a = 7, the first two closest points to L are (1,3) and (7,22) (we will
verify this later). This to some degree shows why 27 is used as an approxima-
tion to m: by Theorem 7.2, 2* is closer to = numerically than any fraction with
smaller denominator. In fact, anyone who wishes to waste time can discover
that there is no point (n,m) with integral coordinates in the range | < n < 100
that is closer to the line y = nx than the point (7,22). This brings up the
question as to whether the set of points closest to L is finite or infinite. When
o is rational, the set of points closest to L is finite (see problem 5), but when
a is irrational, it is not clear what happens. We will see later that when a is
irrational, the set of points closest to L is infinite.

EXERCISES

1. Complete the proof of Theorem 7.2 by considering the case that P is
above L.

2. Is the proof to Theorem 7.1 valid when o < 0 and P is in the first or fourth

quadrants?

. Find the set of closest points to the line y = 3x.

4. Show that if there are two different integral points with x coordinate 1
equally close to the line y = ax, then « is a rational number with de-
nominator 2.

5. Show that if « is rational and L is the line y = ax, then the set of points
closest to L is a finite set.

6. Show that if (s.r) and (u.t) are distinct points with integral coordinates
(s > 0,u > 0) which are equally close to the line L:y = ax, then either
(s + u,r+t)or(s— ur — t)is on L. Use this to show that « is rational.

w

7.2. The Continued Fraction Algorithm

After Theorem 7.2, it is desirable to find an algorithm for locating points
closetotheline L : y = ax,infact, the closer the better. In this section we shall
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describe an algorithm which by its very definition is producing points closer
and closer to L. Thus it will be obvious from the start that we will be getting
“good” fractional approximations to o. It will turn out that our algorithm
actually produces the set of points closest to L and hence gives the “best”
fractional approximations to o.

It is assumed that the reader is familiar with the material on vectors in
Appendix A. Our notation for a vector is the same as our notation for a point,
and we will use the two concepts interchangeably. It is for this reason that
we will not use the customary boldface print or arrowheads in our drawings.
In fact, we would not even introduce the word “*vector™ if the reader were
familiar with the idea of adding points. When we seem to be adding points,
the reader may interpret the points as vectors and add them by the usual
method of vector addition. The final sum may then be reinterpreted as being
a point. Thus we add points by adding their respective coordinates.

Our algorithm is based on the following theorem.

Theorem 7.3. Given a line L passing through the origin and points U,
and U, on opposite sides of L, there is a unique integer a such that either
U, +aU,ison L or U; + aU, and U, + (a + 1)U, are on opposite
sides of L. The point U, + aU, is closer to L than U, and if it is not on
L, then U, + aU, is on the same side of L as U,. Further, if U, is closer
to L than U,, then a = 0 while if U, 1s as close or closer to L than U,,
thena > L

Proof: Figure 7.3 makes the theorem obvious, but we sketch the proof
anyway. Let A be the point on L such that AU, | L. Let L, be the line
through U, which is parallel to L and let B be the point on L, such that
B(U, + U,) 1 L,. The parallelogram rule of adding vectors says that OU,
is parallel to U (U, + U,) and has the same length. Thus since L| L,

L U,04 =/ (U, + U,)UB.

It follows that the right triangles U,0A4 and (U, + U,)U, B are congruent.
Thus
AUZ = B(Ul + UZ).

Let d, and d, be the distances of U, and U, from L. Then the length of
B(U, + U,)isd, and thusifd, < d,, the point U, + U, will be on the other
side of L from U, (this is the situation in the theorem of a = 0). If d, = d,,
then the point U, + U, willbeon L, and ifd, > d,,then U, + U, will be
on the same side of L as U but at a distanced, — d, from L. In the same way,
we see that U; — U,, U; — 2U,,... are all on the same side of L as U,
(and are actually at a distance d, + d,, d; + 2d,,... from L). Also, the
points U, + U,, U, + 2U,,... get successively closer to L, the distance
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U, - U,

Figure 7.3. As illustrated here, a = 2.

from L being reduced by d, each time, until we reach a point U, + aU,

which is either on L or on the same side of L as U, but within d, of L (and

hence closer to L than U,) while U, + (a + 1)U, 1s on the other side of L

from U,. The points U, + (a + 2)U,, U, + (a + 3)U; are then all on the

U, side of L (and are successively d, units further from L). A
Theorem 7.3 allows us to make the following definition.

Definition. Let o be a positive real number. The following process will be
called the continued fraction algorithm for approximating a. Let L be the
liney = axandlet V_, = (1,0), V-, = (0,1). We let

Vo =V_2 + aoV-, = (Lay),

where a, is the unique integer such that V_, + aoV_ is either on L or on
the same side of L as V_,, but V_, + (ap + 1)V_; is on the opposite
side of L from V_,. If V is on L, the process terminates at V. If 1 is not
on L, the process is repeated. In general, if we have already defined V, _,
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and V,_, (and V,_, is not on L), then we let
(1) V;:=V;|—2+anVn-ls

where a, is the unique integer such that V,_, + a,V,_ is either on L or on
the same side of L as V,_,, but V,_, + (a, + 1)V,_, is on the opposite
side of L from V,_,. If ¥, is on L, the process terminates at V,. If V, is not
on L, the process is continued.

Notation. For the rest of this chapter, it will be assumed that « is a
positive real number, Lis theline y = ax, and that the numbersagy. a;.a,,...
and the points V_, = (1,0), V_, = (0,1) ;. V. V,,...are given by the con-
tinued fraction algorithm for approximating a. We will soon wish to use
the coordinates of V,, and thus we let them be given by the letters g, and

P
V., = (qn. Py)-

It is the slope of V,. p,/q,. that is our (hopefully good) approximation to a.

Theorem 7.4. Although a, may be 0. a,>1 for n> 1. Further,
Vo, Vi, Va,...are successively closer to L and V,, V,, V,. ... are all below
L while Vy, V5, Vs, ...all above L (unless, of course, the continued fraction
process terminates with some V,, in which case it is on L).

Proof. By Theorem 7.3 and the definition of Vj, it is on the same side of
L as V_, (namely, below L) and is closer to L than V_,. Thus V_, and ¥,
are on opposite sides of L and, by Theorem 7.3, V; is on the same side of L
as V_, (namely, above L), V; is closer to L than V,, and since V,, is closer to
L than V_,, it follows that a; > 1. But now ¥, and V; are on opposite sides
of L and, by Theorem 7.3, V, is on the same side of L as V;, (namely, below L),
V, is closer to L than V;,and a, > 1. Figure 7.7 shows the general situation.
The rest of the theorem follows in the same manner (that is, it follows by
induction). A

Our algorithm may well go on indefinitely and if « is irrational, the al-
gorithm certainly does not terminate, since the V,’s have integral coordinates
and if some V, were on L, then L would have a rational slope.

Let us present an example of the algorithm in action with o = \/@ (see
Figure 7.4). We start with V_, = (1,0) below L and V_, = (0.1) above L.
Since V_, + 1V_, = (1,1)is below L while V_, + 2V_, = (1,2) is above L,
we see that a, = 1 and V, = (1,1). Now V_, + 1V, = (1,2) is above L while
Vo1 + 2V, =(2,3) is below L and thus a, = 1, V; = (1,2). Continuing,
Vo + 2V; = (3,5)1is below L while V, + 3V, = (4,7)is above L. Thusa, = 2
and V, = (3,5). Repeating, V; + 1V, = (4,7)isabove L while V; + 2V, = (7,12)
is below L. Thus az = 1 and V3 = (4,7). Now V, + 2V; = (11,19) is below L
while V, + 3V; = (15,26) is above L. Therefore, a; = 2 and V, = (11,19).
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0 2 4 6 g8 10 12 14X

Figure 7.4. L is the line y = x\/i. The bigger dots represent
those members of the set of the closest points to L with x
coordinate <15.

Last, V3 + 1V, = (15,26) is above L while V3 + 2V, = (26,45) (not in the
figure) is below L (see problem 4 at the end of the section). Hence as = 1
and Vs = (15,26). To summarize,

a():l, alzl, a2=2, a3:1, a4=2, a5:1,

Vo=(1,1), Vi =(1,2), V, =(3,5), Vs =(47), Vo=(11,19), Vs = (15.26).
By Theorem 7.4 the points V,, V;, V5, V3, V,, and Vs are successively closer
to L (and, of course, on alternating sides of L). In this case, when we throw
away V,, we come up with all the points with x coordinate < 15 in the set of
points closest to L. We will see soon that this is no accident. To three decimal
places, \/§ = 1.732 and ¢ = 1.733. The closeness of this approximation can
best be appreciated by looking at some other denominator of roughly the
same size, for example 10, where the best we can do is 1§ = 1.700.

Since the points V,, V4, V5,. .. are successively closer to L, we have every
reason to believe after Theorem 7.2 that the fractions p,/q, are giving
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excellent approximations to a. Two questions arise. How good are these
approximations and can we do better or are the V, the set of closest points
to L? We leave the second question to Section 7.4 ; the next two theorems
will help to answer the first question.

Theorem 7.5. Let U, and U, be two points with nonnegative x and y
coordinates, neither at the origin, and having different slopes. If a > 0,
then the slope of

U3 = U1 + aU2
is strictly between (not equal to either) the slopes of U, and U,.

Proof. We will consider the case that slope U, < slope U, (see Figure 7.5),
the other case is virtually identical to this one (with the inequalities reversed,
however) and is left as an exercise. Let L’ be a line parallel to OU , and passing
through U,. The point Uj is on this line and hence below the line OU,
extended (or to the right of OU, extended if U, is on the positive Y axis).
Since a > 0, aU, is on the same side of OU, extended as U,, namely, above
OU, extended. Thus Uj is above OU, extended and hence U3 is inside the
angular sector U,0U, extended. Therefore, by Theorem 7.1,

slope U, < slope U; < slope U,. A

Theorem 7.6. Let xq, x{, X3, X3,... be a sequence of real numbers and
let U*Z = (190)3 U*l = (0’1)7

Uy=U_, +x,U_,, U =U_, +xU,,...;

5

U, U, +aU,=U,

(4] /Ul

Figure 7.5.



CONTINUED FRACTIONS 191

In general, if U,_, and U, _, are already defined, let
U,=U,_5, +x,U,_;.
If we let (s,,r,) be the coordinates of U, then for all n > 0,
Ta-18n-2 = Fa—28p—1 = (=1
Proof. The proofis by induction. Since (s_,,r_,)} = (1,0)and (s_,,r_;) =
(0,1), we see that
rois—y —r_ys_y = (1)(1) = (0)(0) = 1 = (—1)°,

so the theorem is true for n = 0. Now suppose that the theorem is true for
some particular value n = k > 0, so that we are assuming that

T 18k-2 — Fe—28k—1 = (— DX
We then wish to show that
MSk—1 — Te—1S = (=1L
By the definition of U,,
(Sir) = (Sk—2k-2) + XilSe—1:7k—1)s
so that
Sk = Sg—2 T XiSk—1, Pk = Th—2 + Xilp—1.
Therefore,
MeSk—1 = Ti—15k = (Me—2 + Xl 1)Sk-1 — Fe—1(Sk-2 + XiSi—1)

—(Fk-1Sk—2 — T4—25c—1)

= —(—1)

= (- 1)k+ 1
Thus if the theorem is true for n = k, then it is true for n = k + 1. Since we
have verified the theorem for n = 0, itis trueforalln > 0byinduction. A

Another proof (see problem 3 at the end of this section) of the inductive
step in Theorem 7.6 can be given using the properties of determinants along
with the fact that

Sn—2 Fn—2
Fn—1Sn—-2 — Th-25-1 =

Sn—1 Fn-1
Theorem 7.7. Suppose that n > 0 and V, is defined. Then

(2) dn = qn-2 + Adn—1> Pn = Pn-2 + AuDp—1-
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The coordinates, p, and q,, of V, are integers. Further,
Pn-14n-2 = Pn-2qn-1 = (—1)".
It follows that p, and g, are relatively prime. Last,
l=q0o<q1 <92<93 < " <qu-1 <

and if « is irrational (so that the continued fraction algorithm does not
terminate), then

lim g, = + 0.

n—+ o

Proof. The first part of the theorem is simply the defining equation for V,,
Vn = Vn—2 + anVn—ls

written in terms of coordinates. Since q_,,9_,,p_,,p_, are integers and
since the q, are also integers, we see from (2) that g, and p, are integers and
then that g, and p, are integers, and continuing this way, we see inductively
that g, and p, are integers for all n.

If in Theorem 7.6 we put x, = a,, then U, = V, and as a result

Pn-19n-2 — Pn-29n-1 = (_l)n

When we replace n by n + 1 in this last result, we get

n+ 1

Prdn-1 — Pn-14n = (_1)

Therefore, if d|p,.d|q,, then d|(—1)"*! and thus d = +1. Therefore, p, and
q, are relatively prime.

We have already noted that g, = 1. We recall from Theorem 7.4 that if
n > 1, then a, > 1. Thus

qi =q-1 + a1go = a1q0 =2 go 2 1,
and then

qd> = qo + axqy > aqy = qy,

and, in general, if for some k > 2, g, > ¢~ = 1 (this is true for k = 2), then

Ge+1 = k-1 T Qe+ 19k > A+ 19k = Gi-

Therefore, by induction, if n > 2,
qn > dn-1 = 1.
Using just the g, > ¢,_, part of this, we see that

Gn > Gn-1 > Gn-2 > -+ > 43 > ¢y = qo = 1.
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Last, if the continued fraction algorithm for « does not terminate, then we
have an increasing sequence of integers, g, < q; < g, < g3 < --- and thus
as n gets large, g, increases without bound; that is, the sequence tends to
infinity. A

Theorem 7.8. Suppose that « is irrational. Then the continued fraction
algorithm does not terminate and

@<&<p74<&<...<a<...<&<&<&<&.

do 42 4a (Ye 47 4s 43 4

In particular, if n > 0, then « is strictly between p,/q, and p,+1/qn+1-

Proof. By Theorem 7.7, the denominators of the above fractions are
positive and the fractions are therefore defined. Recall that the slope of V,, is
Pu/qn- Vo, Vi, and V, meet the hypothesis of Theorem 7.5 and thus p,/q, is
strictly between po/qo and p,/q, . Since V,, is below L while V, is above L, we
see that py/q, < p1/q: and therefore

(3) Po P2 Py,

do 42 1

Now we apply Theorem 7.5 to V;, V,, and V; and find that p;/q; is strictly
between p,/q, and p,/q,. When we insert this into (3), we get

Po P2 _Ps Py
do 42 43 41

Again by Theorem 7.5, ps/q, is strictly between p,/q, and ps/q;, and it
follows from (4) that

(4)

Po _P2 _Ps_Ps _Pr
do 42 dqa 43 G
The next step gives us
Po P2 _Ps _Ps_Ps _P1
do 92 44 4s 43 4,
If we continue in this manner, we get the sequence of the theorem except that

o has not yet been placed in the sequence ; we have only

Po P2 _Ps Pe_ . P _Ps _Ps P

do 42 4a4 (Yo 47 45 43 {41
But, by Theorem 7.4, V,, is below L while V,,,, is above L. Therefore, the
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slopes are ordered as follows:

Pan <a< P2n+1'

92n 92n+1
Thus o occupies the spot claimed in our inequality.
Last, by what we have just proved, either n + 1 is odd and

& <a <pn+717’

dn dn+1

or n + 1 is even and
Prot o < Pn,
qn+ 1 qn
In either case, o is strictly between p,/q, and p, . 1/qu+1- A

Theorem 7.8, while interesting, still does not give us any real information
on how close p,/q, is to a. We now answer this question.

Theorem 7.9. Suppose that « is irrational and n > 0. Then

. 1
_ b _
‘ 4n qndn+1
It follows that
y 1 1
o — p— < S 3.
dn An+19n dn
Further,
li Dn
m-—=u«
n—=wo gy

Proof. By Theorem 7.8, a is strictly between p,/q, and p,,1/q,+.. Thus
the numerical difference between a« and p,/q, is less than the numerical
difference between p, . 1/q,+ and p,/q,; that is,

a_& < Put1 _ Pn| _ | Pn+19n = Prln+1
qn dn+1 4n dndn+1
_ |Pn+1Gn = Prlin+1l
qndn+1
I(=1)"*?
et

1

- ann+l'
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We have used Theorem 7.7 in the above inequality with the n of Theorem 7.7
replaced by n + 2.
By Theorem 7.7,
n+1 = 4n-1 + Ap 4+ 14n = An+14n-

and therefore

P, 1 1 1 1
&= = R )
dn qndn+1 dn An+14n An+19n dn

the last inequality follows from the fact that a,.; > 1 since n + 1 > 1 for
n = 0. By Theorem 7.7,

<

A
1
IA

1
lim — = 0.

n=o gy

It is now clear that lim,_, , p,/q, = «, but we give the formal proof anyway.
Given ¢ > 0, we must show that there is a number N such thatifn > N, then

L
Gn

[ed < é&.

Since 1/g2 — 0 as n — oo, there is a number N such that if n > N, then
1

<&
3 .
qn

1
=0—

)
n

This number (N) will do fine, since if n > N, then

1
o — & <53 <é.
4n 4n
Thus, by the definition of limit, lim,_, ,, p,/g, = a. A

The last part of Theorem 7.9 is the reason that p,/q, is often called the nth
convergent to a. Theorem 7.9 demonstrates that p,/q, gives a considerably
better approximation to o than that guaranteed by Theorem 1.1. For example,
in approximating ﬁ by a fraction with denominator 15, Theorem 1.1
guarantees only that with the proper choice of numerator, we will come
within 45 of \/3 On the other hand, we have seen earlier that when o = ﬁ,
Vs = (15,26) and thus Theorem 7.9 shows us that ¢ is within z3s of \/3. It
1s a fact (and one that the reader will soon be able to check for himself) that
Ve = (41,71), and hence we can even guarantee by the first part of Theorem
7.9, without having to calculate the difference, that ¢ is within 15 of \/3.
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EXERCISES
1. Show that the statement, “If s; and s, are positive and ry/s; < r,/s,,
then for any positive q,

ry ry + ar, ry”
— < [ — =

.
Sy Syt as; s,

is nothing more than Theorem 7.5.

2. Prove Theorem 7.5 when slope U, > slope U,.

3. Suppose that s, = s,_3 + XSk—1. Fx = Fx—2 + Xirx—1. Using the pro-
perties of determinants, show that

Sk—1 Fr-1 Sk—-2 Tk-2

Sk Fy Sk—1 Tk-1

Do not actually evaluate any of the determinants.

4. Verify that 3-262 > 452, Use this to show that the point (26, 45) is below
the line L:y = x./3.

5. Use Figure 7.6 to find all V,, with g, < 12, in the continued fraction
algorithm for « = (1 + ﬁ)/Z What are the corresponding a,?

6. Same problem as 5 with a = \/5

7. Same problem as 5 with « = m — 2 (the 2 is here just to keep things in
the picture).

8. Same problem as 5 with « = 37, except find all ¥, with g, < 17.
9. Show that
1 Pn 1
(an+1 + 2)‘13 ‘ dn ap+ 143

(when everything is defined). Loosely speaking, this says that the larger
a,+ 1, the better the approximation of p,/q, to a.

10. Give the induction argument referred to at the end of the proof of
Theorem 7.4,

7.3. Computation of g,

If we are lucky enough to be given a (correctly drawn!) graph of the line
y = ax, then we can fairly easily find a few good fractional approximations
to a from our geometric algorithm. But what happens if we desire more
good approximations or we do not even have a graph provided? The defi-
nition of V¥, involves knowing a,, and a, depends on the relative distances
of V,_, and V,_, from L. Let d, be the distance of V, from L. Then (see
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Y
70 <1+\/5_>
e e e e y= B X

26

y=xy2

y=(m-2)x

0 2 4 6 g8 10 12 14 16 X
Figure 7.6.
Figure 7.7)
&) dy =dp_3 — Gpdy_y,
and since V, is closer to L than V,_,,
(6) dyy > dy_y — aydy_y 2 0.

It follows from (6) that

1 >d"'2 —a,>0;
dn—l
that is,
a, < dn-Z
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Vi d, Vpea #3Vq s Vo tayv, 1 Va2 ta, + DV,
0 = )
dy_a anZ +2V,
|
Vaa v Vi 3dy | = T andy
BY N
dnfl nl - ]
anl
Figure 7.7.
but
d,_
a, +1>"=2,

n—1

Thus, by the definition of the greatest integer function (page 120),

a. = dn—2
" dn—l '

To simplify this result, we define for n > 0,

(7
so that
(8)

o = dn—2
" dn—l
a, = [an]-

Further, it follows by dividing both sides of (5) by d,,- ; that

dn—Z dn
d,—1 dp-

or, if ¥, is not on L (so that d, # 0 and «,, , is defined),

(6))

1

o, = a, + .

Xyt 1

When V, is on L, d, = 0 and «, = a,. Thus the process terminates with V,,
if o, is an integer and continues otherwise.

If we can find a simple expression for «,, then it will be a simple matter
to find the a,’s from (8) and (9). The key to everything lies in the following

theorem:

Theorem 7.10. o, = a. Thus the numbers a, may be calculated from the
following formulas: For n > 0, if a, is defined, then

a, = [a,],
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and if o, is not an integer, then a, ., is defined and can be found from the
equation

1

Apt1

o, = a, +

Proof. After the previous discussion, it is clear that we need-only show
that o, = a. Recall that

=i
We could use the general formula for the distance from a point to a line, but

it is not really necessary here. Let 8 be the angle from the x axis to L (see
Figure 7.8) so that

Xo

o = slope L = tan 6.
Then / OV_,A = 8 also. Hence

. BV_2 d_z AV—I d—l
== — = - 0= = —= —
sin § ov_, ] d_,, cos ov_, i d_,

and, therefore,

d_z sin @

= —=——=tanf = a. A
7 d_, cos@
L
(1, )
Vi =1(0.1)
d_,
0
A
B
d_,
0
o V_,=(1,0)

Figure 7.8.



200 NUMBER THEORY

The next theorem will be used to help justify naming our algorithm “‘the
continued fraction algorithm.”

Theorem 7.11. Let L’ be the line y = fx. Suppose we are given a sequence
of real numbers by, by, b,,.... We define a sequence of numbers

Bo, B1i,B2,... by letting Bo = B, and if B, is already known and B, # b,
then we let B, ; be defined by

1
ﬁn+1‘

(10) Ba = by +

(If B, = b,, then the sequence B, fi;, ... is terminated at §,). Let
U_, =(1,0), U_,=(01)
and if U,- and U,_, have already been defined and n > 0, then we let
U,=U,_, +bU,_;.

If n > 0 and B, is defined, then U,_, + B,U,_;ison L’

Proof. We give a proof by induction. When n = 0,

U_z + BoU-; =(1,0) + BO,1) = (1.5)

is on L'. Suppose that for some k > 0, U,_, + BU,_ 1 ison L' and B, is
defined. Then

Uiy + Ber iUk = Uy + B i(Ui—z + b U, —y)

= B+ 1 Uk + (Bus1be + DU,

1
= ﬁk+l|:Uk 2 + ( ﬂk+1)Uk 1:|

= B+ 1(Uk—2 + BUx-1)

is also on L' (and is, in fact, B, times further from the origin than
Ui-s + B U,- ). Since the result is true for n = 0, it is now true for
all n. A
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Theorem 7.12. For each n > 0 such that V, is defined,

a = dy + 1
a, + 1
as + 1
dt 1
+
' ap—1 + R
n 1
B‘ = dy +
n 1
a, + 1
as + R 1
a
3 1
dy + 1
g+ —.
Proof. The first part is simple. By Theorem 7.10,
1
cx=a0+—=a0+ 1=ao+ 1 =
! a, + — a, +
o3
a, + —
o3
1
= da, + 1
a, +

-+ —.

n

For the second part, we use Theorem 7.11 with L’ being the line y = (pn/qy)x,

the sequence of b,’s being given by b, = a, and the ,’s defined by (10) with

Bo = pn/qn- Then

p—N=a0+l=ao+ : <= ag + :

N b a; + —1— a; +
& a +
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and thus our task is to show that fy = ay. The U, of Theorem 7.11 are
clearly our V, [see the defining equation (1) for ¥,] and thus by Theorem
7.11, the point

W2 + BaVw—1 = Uy-2 + BvUy -y
ison L'. But
(@n.py) = W = Va2 + axVy-y
is certainly also on L'. Let L” be the line through Vy_, with the slope of
Vy_ (see Figure 7.9). The slope of L’ is the slope of Wy, which is different
from the slope of L”, and thus L’ and L” have exactly one point of intersection

and this point is Vy = Vy_, + ayVy_, or, alternatively, Vy_, + BxVn-1-
Hence

V-2 + avWVy_1 = Va_s + BaVa-1s
anVy-1 = BnWy-1
and since Vy,_; # (0,0),

ay = PBy. A

Theorem 7.12 gives the explanation for naming our algorithm the con-
tinued fraction algorithm. The name continued fraction seems very approp-
riate for the two expressions in Theorem 7.12. In fact, the subject of con-
tinued fractions is usually introduced by defining #y = « and then defining
the later a,’s and the a,’s by equations (8) and (9). The number p,/q, is then
defined by the expression given in Theorem 7.12. One can even find p, and g,

Figure 7.9.
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by reducing the fraction to lowest terms with the denominator being positive ;
the numerator is then p, and the denominator is g,,.

The expressions in Theorem 7.12 are rather unwieldy, and thus it is
customary to compactify them. We let

{ag,ay,a3,..., 4,
stand for
1
do+ g
a, +
4 +
' [P + —
and
{ag. ay, dz,...»
stand for
N 1
a ——
0 1
ay + —

1
ap + ——

We will write

(11) a=<ag,ay,dz,...»

This is deserving of some interpretation, as it is not even immediately clear
how to evaluate the infinite continued fraction on the right-hand side. By

n = 3.14159265...
we mean that 7 is the limit of the sequence
3,3.1,3.14,3.141, 3.1415, 3.14159, .. ...

Thanks to Theorem 7.9, we may interpret (11) in the same way. Since

==y, Ay lyy

and
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we may write

o = lim <{ag, dy.. .., au,
and this is the meaning to be attached to the equality of (11).

After Theorem 7.10, we can now find the V,’s from a without resorting to an
illustration. It may seem tempting to find p,/q, from the expression in
Theorem 7.12, but it is just as fast to find it from V,, which is calculated from
our definition (1). The latter method has the additional advantage that one
gets all the earlier V,’s at the same time. We give three examples to illustrate
the process. For our first example, we let « = $5. Then

oo = 32 =0+ 42, ap =0,
o, =43=1+5, a, =1,
w, =8 =2+ 2, a, = 2,
a3 =13 =1+ 13, ay =1,
a, =4 =4, a, =4,

and the algorithm terminates.
The arrangement shown in Figure 7.10 makes it very simple to calculate
V, from V,_, and V,_,; V, is simply a, times the row above it plus the row

o=% o= \/3 a=n a=n

n a'l q’l p’l a'l q" p" a'l q'l p" a'l q" p"
-2 1 0 1 0 1 0 1 0
—1 0 1 0 1 0 1 0 1

0o} 0 1 0] 1 1 1 3 1 3 3 1 3

1 1 1 1 1 1 2 7 7 22 7 7 22

212 3 22 3 S| 15 106 333 | 15 106 333

3 1 4 3 1 4 7 1 113 355 1 113 355

41 4 19 14 2 11 19 1292 33102 103993 (288 32650 102573

S 1 15 26

6 2 41 71

7 1 56 97

8 2 153 265

Figure7.10. The complete continued fraction expansion of 2 and the beginnings of the
expansions of \/3 and n. In the last column. the result of each calculation was rounded
off 1o eight decimal places before the next calculation was made.
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above that. Since a4 = a4, V, = (19,14) is on the line y = (42/57)x. This
shows incidentally that $% is not reduced and can be simplified to 4§, which is
reduced. We have found that the continued fraction expansion of %% is

22 = (0,1,2,1,4>.
For our second example, we let o = \/§ = 1.7 (so that a, = 1),

% =/3=1+(3-1,
1 J3+1 27

a1=ﬁ_1= > 5 a; =1,
J3+1 J3-1

oy = 2 =] 2 )

oy, = 2 =J/3+1=x27 a, =2

2_\/>_1_ L dy 2 = 4

0 =2+(/3-1),
1 J3+1

o3 = =

_\/3_1_ 5

A very curious thing has just occurred, namely a3 = a;. Therefore,
as = [a3] = [alj =da. Thus

1 1

— =03 —d4d3=0 — a4y =—,

oy oy
so that a, = a,. Then a4 = a, and then a5 = a3 = a;. Then we get as = a;
and g = a,. This can be continued indefinitely. We have thus found the con-
tinued fraction expansion of /3,

V3=L12,12,1212,12,...5.

Several of the V, are given in Figure 7.10; needless to say, the results here
agree with the results obtained from Figure 7.4.
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For our third example, we let & = n = 3.141592653589793 . ... Here we
have

oo = 3.14159265. .., ap =3,

oy =W = 7.06251330..., a; =7,

oy = W = 15.99659440. .., a, =15,

a3 = 99651W = 1.00341723..., as =1,

oy = W = 292.63459101.. ., a, = 292, etc.

The corresponding V, are given in Figure 7.10.

Each of the three previous examples is instructive. In the first, we un-
intentionally found that (42,57) = 3. In fact, the whole process of our first
example is very reminiscent of the Euclidean algorithm. This is because the
process is the Euclidean algorithm in a slightly different form (see problem
14, page 26). In this form, the Euclidean algorithm can be used as a test
for irrationality: If the algorithm for o terminates, then « is rational and
otherwise « is irrational.

The second example is very interesting because of the periodicity of the
a,. Once we found that o3 = o, , we were enabled to calculate as many of
the 1/, as we desired. This in turn enables us to find extremely good rational

approximations to ﬁ relatively easily. Thus for example, by Theorem 7.9,

97 1
\[_56 < 5153 = ‘000116

Thus if we did not already know the decimal expansion of \/5 (which we
actually do not; no one knows what the one billionth digit of the expansion
is), we could now say that with an error of about 1 ten-thousandth or less,
the square root of three is 2. This happy circumstance arose because of the
periodicity of the a,. To indicate periodicity, we shall put a line over the
block of a,’s that repeat. Thus, for example,

V3 =12

and
2,3,1,4,2,5,7,4,2,574,2,574257,...5,
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where the block 4, 2, 5, 7 is repeated indefinitely, is abbreviated as
{2,3,1,42,5,7>.

Needless to say, if the sequence of a, becomes periodic, then we know far
more about « than if we merely know the first hundred a,’s. We will show
in Section 7.6 that the continued fraction expansion of « becomes periodic
if and only if « is an irrational root of a quadratic equation with integral
coefficients.

In the third example, the situation is worse. The complete sequence of a,’s
is not known. In order to calculate later a,’s, it is necessary to know the
decimal expansion of « ever more accurately. In our example, we have given
the correct values of the «,’s (or at least eight places past the decimal point
of correct values). Suppose we only knew that 7 = 3.14159265 was rounded
offin the last place. We present here the same calculations with the stipulation
that after each calculation, we round off at the eighth decimal place. The
results are then (the equal signs are thus actually only approximations)

oo = 3.14159265, ao =3,

o = ._—141519265 = 706251348, a, =7,

2 = m = 1599654986, a, = 15,

oy = m = 100346208, a3 =1,

oAy = .003%5 = 288.84370090,  a, = 288, etc.

Again the corresponding V,’s are given in Figure 7.10. When we compare
these numbers with our earlier numbers, we find that the roundoff error has
crept forward so fast that a, is already incorrect. This is explainable since
if a, were correct we would be claiming that

‘ 102 573 1 10-°
™7 32650 ‘ < 326502~

even though we were starting only with the knowledge that = is contained
in a given interval of length 10~ 8, Since our calculations made no use of any
properties of m other than it being 3.14159265 + 5- 10~ °, we cannot possibly
guarantee the accuracy of a, = 288 (nor can we say that a, = 288 is in-
correct without further information). All this does not really matter if all one
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wants is a fraction that is a very good approximation to the first eight decimal
places of 7. Then we simply crank out the continued fraction expansion of
3.14159265 and take whichever p,/q, we wish. In this case there is no use
taking any n > 4, since all n > 4 will give 3.14159265 when rounded off and
the correct next place is unknown anyway.

Our example also shows why 22 is used so often in place of 7. In fact,

22 1 1

T T <7106 " 742

This is a far better approximation to n than can be obtained by any other
fraction with denominator near 7. We have also been helped along by having
a, being large. Again, since a, = 292, p3/q; gives an excellent approximation
tom:

<3.1077

T

355 - 1
113 113-33102
The continued fraction expansion of = is

n =<3,7,151292,...>;

the next several a, are known, but no formula is known that gives all the a,.

The situation is thus different from what happens with \/5, where all the a,
are known.

EXERCISES

Find the continued fraction expansion of 33. Give all the V, also.

Find the continued fraction expansion of (1 + \/3)/2.

Find the continued fraction expansion of \/5.

Find the continued fraction expansion of /7.

Give a fraction with denominator < 100 which is within 1074 of
e =27182818....

Show that if a and b are integers with b > 0 and « is real, then

l:a Z a] _ l:a er[oz]]

This is useful in calculating continued fraction expansions of roots of
quadratic equations.
7. Let the decimal expansion of o be

b, b, by b
TR TR T A T

AW

o
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where 0 < b, < 9 for all n. Suppose that for some convergent p,/q, we
have ¢, = 100. Prove that either by = b, = 0 or b3 = b, = 9.

Find p,/q, if @ = 172 = 1.05946309.... This number is important in
music. (There is an interesting ad related to this problem on page 88 of
the March 1967 issue of Scientific American.)

Suppose the continued fraction expansion of « is

a = {ag,a1,d2,435. ...

What is the continued fraction expansion of «,?

. (a) If a and b are rational numbers greater than 1 and ¢ > 0, show that

1/log,b = log,a and that (log,a) — ¢ = log,(a/b).

(b) Use the relations of problem 10(a) and the following inequalities to
find the first five convergents (that is, find p,/q, for 0 < n < 4) of the
continued fraction expansion of log,(2;

10° < 2 < 10,
8 =23 <10 <24,
125 10\ 3 10)4
— == <2<|=],
64 8 8
128\° < 5 < 128\1°
125 4 125} °
528 2 128 528 3
(iﬁ <125 < (2) '
. Using the method of problem 10, find p,/q, for & = log; 6. Given that
2.341 5 2-34§2
5 <35 )

54 1 234 54 2

23 <75 S {2E)
(22 . 39) 32 54 22 . 39] 33
2 b

5T 235 5|5

find ps/qs for a = log, 6.

7.4. The Best Approximations

In Section 7.1 we saw that the set of closest points to the line L:y = ax

gives the best fractional approximations to a. In the next two sections we
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developed a simple algorithm which gives excellent fractional approxima-
tions to «. We may well wonder whether we are in fact finding the set of
closest points to L or are there even better fractional approximations to «
available than the ones we get from our algorithm? In this section we will
show that our algorithm gives the best approximations to o We first give
two preliminary results which will be very useful later on.

Definition. Let U, and U, be nonzero vectors with different slopes. Let
L,(n=0,+1, £2,...)betheline through nU, whichis parallel to U, ,and
letl,(m=0,+1, +2,...) be the line through mU, which is parallel to U,
(see Figure 7.11). The set of points of intersection of the L, with the /,, is
called the lattice generated by U and U, ; this set is also the set of vertices
of the parallelograms formed by the L, and L,,.

For example, the lattice generated by (1,0) and (0,1) is the set of all points
with integral coordinates.

Theorem7.13. Let U, = (s;.,r)and U, = (s,,r,) haveintegral coordinates
and r,s; — r;5; = 1. Then the lattice generated by U, and U, is
merely the set of all points with integral coordinates.

Proof. The lattice generated by U, and U, is the set of points of the form
nU, + mU,, where n and m are integers. Since U, and U, have integral

Figure 7.11.
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coordinates, any point of the lattice has integral coordinates. Thus our
problem is to show that any point with integral coordinates is a point of the
lattice. Let (h.a) be a point with integral coordinates. If we set

XU] + .VUZ = (h,a),

then in terms of coordinates, we get the two equations

s1x + S,y = b,
rlx + rzy = a,
and thus
br, — as, as, — br,
X=——"——", y=_—
FS) — F1§; F281 — Sz

Since br, — as, and as; — br, are integers and r,s; — rys, = +1 by
hypothesis, x and y are integers, and thus (h.a) is a lattice point. A

Theorem 7.14. Suppose that 4 = (s,.,r;) and B = (s,.r,) are in the first
quadrant. Then

area AOAB = }|r,s, — ris,).

Proof. Since

[rasy — risy| = | =(rys) — ri83)| = |risy — 18,

’

the result is the same when the subscripts, 1 and 2, are interchanged. There-
fore, we may assume (after interchanging subscripts if necessary) thats, < s,.
Let C be the intersection of OA and the line x = s, (see Figure 7.12). B is

—————————— A

0

N =5, N= 8

Figure 7.12.
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either above or below C, and we examine the case with B above C. Since BC
is a vertical line, the altitudes of triangles OBC and ABC to BC are horizontal
and hence have lengths s, and s; — s,, respectively. Further, the equation
of 04 extended is y = (r,/s,)x and since the x coordinate of C is s,,

riS;
C = [s:.7%2).
St

Thus
BC = r2 - rli%
S
Therefore,
area AOAB = area AOBC + area AABC = 4BC)s, + {BC)(s; — s,)

1,
2

1 r.s 1
(BC)(sy) = 5("2 - —;—2‘)51 = E("251 — r1S7).

1

When B is under C, the proof is the same except that we come up with

ris;

BC = (y coord of C) — (y coord of B) = T rs,
1
which gives
area AOAB = i(r;s, — rys)).
Whether B is above C or below C, we get
area AOAB = '21’|r251 — r152|. ‘

Theorem 7.14 is actually true without any restrictions on the locations of
A and B the reader familiar with vector cross products has probably seen
a simpler proof covering all cases. The essence of our claim that the V,’s
essentially give the set of closest points to L is the following theorem.

Theorem 7.15. Suppose that « is irrational and 0 < g, < g, (in other
words, eithern > 2orn > land a, > 1). Let U = (s,r), where U # V,_,,
U # V,,and 0 < s < g,. Then U is further from L than V,_,.

Proof. We consider the case that the slope of V,, is greater than the slope
of V,_;. The proof is the same for the other case except that the roles of the
words above and below are reversed. By Theorem 7.7,

Prdn-1 — Pn—149n = ils
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and hence the lattice generated by V,_, and V, is the set of points in the
XY plane with integral coordinates. The lattice generated by V,_, and V,
is shown in Figure 7.13. We have subscripted the lines L; and I, so that the
intersection of L; and I, is the point jV,_; + kV,.

Since U has integral coordinates, there are integers j and k such that

U :jVn—l + kVn-

We now investigate the various possibilities for j and k, always remembering
that U is to the right of the line x = 0 and either on or to the left of the line
x =gq,. Ifj <0, then U is on one of the lines L_,,L_,,L_5,.... In the
range 0 < x < g,, these lines are all above L. In addition, since the slope of
L; is greater than the slope of L, as we move from the Y axis along L; (j < 0)
in the direction of increasing x, we get further from the line L. Thus U is
further from L than the intersection of L; and the Y axis, this point being
farther (j < —2) or at the same distance from (j = —1) L as the intersection
of L_, and the Y axis, and this point is further from L than —V,_,, which
is as far from L as V,_,. In other words, if j < 0, then U is further from L
than V,_,.

Now suppose that j > 2. If k > 1, then s, the x coordinate of U, satisfies
the inequality

S=jqn—1 +kqn >qn—l +qn >qna

A
=

ot P

x;0 x =4q,

Figure 7.13.
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and thus U would be to the right of the line x = ¢,,. Since this is outside the
desired region, it follows that k < 0. But again, U is on L; and the slope of
L;is greater than the slope of L, so that as we move from U in the direction
of increasing x (which is the same thing as increasing k) along L;, we get
nearer to L. Thus jV,_  isasclose to L as U (and, in fact, closer unless k = 0)
and this is j times farther from L than V,_,. Since j > 2, U is further from
Lthan V,_,.

This leaves us with j = Oand j = 1. On the line L, the points of the lattice
are either at 0 and to the left of x = 0 or at V, and to the right of x = gq,,.
Since U # V,, U is not on the line Ly so j # 0. On the line L, , we note that
V,_1 — V, has a negative x coordinate and V,_, + V, has an x coordinate
greater than g,. Thus the only lattice point on L with an x coordinate in
the range 0 < x < g, is V,_,. Since we are supposing that U # V,_,, we
see that U is not on L;. Thus wherever U is in the region 0 < s < g,, U is
farther from L than V,_,. A

Theorem 7.16. If « is irrational, then the set of closest points to L is an
infinite set and in fact is either the set of points V, (n > 0) witha, > 1 or
the set of points V, (n > 1) witha, = 1.

Proof. Whena, =1,q, = qo = 1 while 0 < g, < ¢q,. Thus, by Theorem
7.15, V; is closer to L than V, and hence the first member of the set of
closest points to Lis V;. Whena, > 1,0 < g, < q,, and thus Vj is the first
member of the set of closest points to L. Theorem 7.15 shows that no point
is closer to L until we come to the next V,, and then no point is closer until
we come to the one after that, and so on. Thus the set of closest points to
L and the set of V, (n > 0) are the same except that we throw out V, when
a, = 1. A

Theorem 7.15 can naturally be put in terms of symbols ; since the distance
from a point to L is a somewhat messy expression, it is customary to use the
vertical distance from a point to L.

Theorem 7.17. Suppose that « is irrational and
0< dn-1 < qn

(thatis,n>1landa; >lorn>2anda, =11 V=(p),V=+V_,.
V # V,,and 0 < g < q,, then the vertical distances of V,_, and V from
L satisfy

|gn- 10 — pu-1l <lga — pl.
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L:y=oax
Vv :'(q,p) B A = (q,q2)
d d
% V=1(q.p)
A =(4,qa)
0 N M

0]

Figure 7.14. Shown are the two cases of V above and below L.

Proof. The number |go — p| is actually the vertical distance from (g,p) to
L (see Figure 7.14). We let A be the intersection of the lines x = gand y = ax,
so that 4 = (q,qo). Thus
VA = |qa — pl.

Let B be the point on L such that VB | L and let d be the distance of V' from
L so that
d=VB.

Finally, we let 0 be the angle between the x axis and L. Since V4 L x axis
and VB L L, it follows that
/ AVB = 6.

(The geometry theorem actually says: If the initial sides of two angles are
perpendicular and the terminal sides are perpendicular, then the angles are
equal.) Therefore,

d VB

_— = = 9
qu—p _ va_

or
|ga — p| = d sec 6.

In words, the vertical distance of a point from L is a positive constant (sec §)
times the distance of the point from L. The theorem now follows immediately
from Theorem 7.15. A

We shall devote the rest of the section to the following question: How
close to L does a point have to be before we can guarantee that it is a member
of the set of closest points to L? Another way of looking at this question is:
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“The set of closest points to L give excellent fractional approximations to
o but these points are sometimes widely separated (for example, a = 7).
Perhaps there are other fractions which also give very good approximations
to a.”” We will examine this problem from the second viewpoint.

After Theorem 7.9, it seems reasonable to start by asking if the inequality

p 1

a—=- <=
a, 4

implies that p/q = p,/q, for some n. The answer is no; there are sometimes

fractions other than p,/q, which can give this good an approximation to o.

Since we have already considered the example of « = \/§ in some detail,

we furnish the example

\/_ J— E < J,

7 7%
even though 42 is not one of the p,/q,. This inequality can be easily checked
by means of Figure 7.4, where we see that (7,12) is below L while (15,26) is
above L. Thus

F<V3<it
and therefore
\/— 12<26 B_2<2_1

7 15 7 15-7 " 14.7 7%

On the other hand, we have better approximations from our algorithm
when a,, ; is large. It follows from Theorem 7.9 thatifa,, , > 2, then

This is a better approximation to o than 1/g2, and it is actually this level of
approximation that guarantees that p/q = p,/q,. In the case of
a=01+ \/5)/2, every a, = 1 and it is possible that there is no fraction
p/q within 3q? of a. The theorem, “If p/q is within 3¢2 of a, then p/q = p,/q.
for some n,” would then be meaningless. We therefore prove two results.
The first will state that there are V, which give

and, in fact, if a is irrational, there are infinitely many such V,. The second
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result will show that if

then p/q = p,/q, for some n.

Theorem 7.18. Suppose that n > 2 and « is irrational. Then either

pn— 1 1 pn 1
o — or o —<
Gu-1|  247-, 4.| 247
(or, of course, both).
Proof. We suppose that both
pn— 1 1 pn 1
0= 2 s [ A 4
Gu-1| 297, 4n| 241

and derive a contradiction. After multiplication by g,_, and g,, our sup-
position can be written

|qna - pnl =

(12) 1Gn- 1% = Pn-1l 2 .
We will take the case that V,_, is under L and V, is over; the proof in the
other case is identical, the figure being the only thing that changes. Let 4
be the intersection of L and x = g,_,, B be the intersection of L and x = g,
and C be the intersection of L and V,_,V, (see Figure 7.15). Since n > 2,
Theorem 7.7 guarantees that

0< dn-1 < {gn-

This means that V,_,V, is not a vertical line and hence C is strictly between

Figure 7.15.
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A and B. Since

Prdn-1 — Pn-14n = £1
(Theorem 7.7), we see from Theorem 7.14 that
(13) area AOV,_,V, = 1.

Our contradiction will be that the inequalities (12) require a larger area for
AOV,_V,. The lengths of AV, | and BV, are the vertical distances from
V,_1and ¥V, to L. Thus

|
2qn*1’

AV i =gy & — pp_i| =

1
BV, =|q.0 — pdl = 5
29,

Since AV, _, and BV, are vertical, the altitudes of triangles OA4V,_, and
OBV, from O are q,-, and q,, respectively. Therefore,

(14) area AOAV,_, = 34, ((AV, 1) = 3,

(15) area AOBV, = 14q,(BV)) > L.

Since AV,_, and BV, are parallel, triangles AV, _;C and BV,C are similar;
the triangle with the greater altitude (from corresponding vertices) will
therefore have the greater area. The continued fraction algorithm gives

V, closer to L than V,_,, and thus the altitude of AAV,_,C from V,_, is
greater than the altitude of ABV,C from V,. Therefore,

area AAV,_,C > area ABV,C

or

(16) area AAV,_C — area ABV,C > 0.
When we add (14), (15), and (16), we get

areca AOV,_V, = area AOAV,_, + area AOBV,
+ (area AAV,_,C — area ABV,C)

>i+140,

and this contradicts (13). Thus the assumption (12)is in error and this proves
the theorem. A
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Theorem 7.19. Suppose that p and g are integers and g > O so that p/q

is defined. If « is irrational and

then, for some n,

Proof. Since qo = 1, and

lim g, = + o0,

n— o

we may define n by the condition that

(17) n £ q < Gns1.

We will prove that for thisn, p/q = p,/q,. Suppose p/q # p./q,. By multiplying
through by gq, and transposing, we may put our assumption in the form

(18) Pdn — qpn # 0.

Let V = (q.p). Since pq, — qp, is an integer,
|pgn — qp 21

and thus, by Theorem 7.14,

(19) area AOVV, > 1.

The idea of the proof is that the hypothesis

q

says that V is very close to L; by (17) and Theorem 7.15, V, is even closer to

L, thus triangle OV V, will be too thin to enclose an area as large as 3.

Let A be the intersection of L with the line x = g, B be the intersection
of L with the line x = g,, C be the intersection of L with V'V, and D be the
intersection of the lines OV and x = g, (see Figure 7.16). The proof is the same
whether V, is above or below L, but the pictures differ markedly according
as to which of the numbers, slope L, slope V,, slope V, is between the other
two. Before considering each of the three possibilities, we make two general

remarks. First, the hypothesis
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0 0
(a)

(@) p/q < Pulgn < o5 (B) Pa/qn < p/q < @5 (C) Pu/qn < @ < p/q.
Figure 7.16.

may be rewritten

1
(20) AV =ag — p| < —.
2q

Second, since AV and BV, are vertical, the altitudes of triangles OAV and OBV,
from O are horizontal and thus have the lengths g and gq,, respectively.

The first case is that of the slope of V, being between the slope of V' and the
slope of L [see Figure 7.16(a)]. Since g, < g, V, is either inside AOAV or on
the edge AV and thus

area OVV, < area OAV = 3q(AV) < &,

by (20). This contradicts (19).

The second case is that of the slope of V being between the slope of V, and
the slope of L [Figure 7.16(b)]. Since DV, is vertical, the altitudes of triangles
ODV, and VDV, from O and Vare g, and q — q,, respectively. Thus

area AOVV, = area AODV, + area AVDV,

= 14,(DV,) + 3(q — 4,)(DV,)
= 3q(DV,).

But clearly,
DV, < BV,
and, by (17) and Theorem 7.17,
BV, < AV.
Therefore, by (20),
area AOVV, = 3q(DV,) < 3q(4V) < 4,

which contradicts (19).
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The third case has the slope of L between the slopes of V and V,. This is
the only case that makes full use of the inequality in the hypothesis; the
other cases can be proved with just

-2 < ql
We see from (20) that
(21) area AOAV = 1q(AV) < L.
It follows from (17) and Theorem 7.17 that
BV, < AV;
(17) also says that
dn = q

and therefore, by these inequalities and (20),

(22) area AOBV, = 1q,(BV,) < iq(AV) < }.

Triangles ACV and BCV, are similar, and since it follows from (17) and
Theorem 7.15 that the altitude of AACV from V is greater than or equal to
the altitude of ABCV, from V,, we see that

area AACV > area ABCV,
or
(23) area ABCV, — area AACV < 0.

When we add (21), (22), and (23) we see that
area AOVV, = area AOAV + area AOBV, + (area ABCV, — area AACV)

<i+3i4+0

which contradicts (19). A

EXERCISES
1. When a, > 1, 0 < g < q; and the proof of Theorem 7.18 holds as
given for n = 1. Prove Theorem 7.18 when n = 1 and a, = 1.
2. Prove Theorem 7.15 for the case that V, is under L and V,_ is over L.
3. Use Theorems 7.16 and 7.17 to prove Theorem 7.2 when « is irrational.
4. Find a point, other than (0,0), with integral coordinates whose distance
from the line 21y = x,/7 is less than .001.
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5.

*6.

10.

11.
12.

NUMBER THEORY

If V,ison L and q > q,, show that

D 1
a—=|<-—=
q, q’
implies (g,p) is on L also.
Show that if
p 22
q 7
and 0 < g < 50, then
22 p
- = T ——|
n 7 q

(In other words, 2% is closer to m than p/q.) Does your method allow the
bound of 50 to be increased and if so, to what?

. Find the first four points in the set of closest points to the line y = ax

when o« = . /231.

. Repeat problem 7 with o« = 11 + ,/130.
. Suppose that « is rational, 0 < g,-; < g, and V, is off L. Verify that

Theorem 7.15 and its proof hold as given. Show, however, that if V, is
on L, then there is one exception to Theorem 7.15; it is with
U=V,— V,_,,and in this case the distance from U to L is equal to
the distance from V,_, to L and ¢,-; < s < ¢,-

Prove thatif p > 0,q > 0,d > 4 and

p*—dg® = +1,
then there is a V, in the continued fraction expansion of \/c_i such that
V. = (a.p).
Hint : Use the relation
i
4| qlp + 9/d)
Same as Problem 10 except d = 2 or 3.

It can be shown (miscellaneous exercise 17) that if d is a positive integer
which is not a perfect square, then there are infinitely many n such that

a,11 = 2[/d]. Show that if d > 7 and a,,, = 2[,/d], then
pr —dgr = (—1y*%
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Hint : First show that |p? — dg?| < 2 by means of the equality

sl 2]

and the inequality

2/d+1 2 /d+1 ]
< .
AJ/d] 2 /d -2
13. Same as problem 12 except with d = 2, 3,5, 6. The inequalities must be
refined.

7.5. A Commentary on Proof by Picture

There are many pitfalls in proving things from pictures. This is the reason
that we used so much space in Section 7.4 justifying the way the figures were
drawn. In this section we give two illustrations of what can happen when
one argues from an incorrect picture. We begin by proving that every tri-
angle is equilateral! Actually, if we can prove that sides AB and AC of
triangle ABC are equal without any extra conditions, then we can also show
AB = BC by the same method ; we therefore content ourselves with showing
that in any triangle ABC, AB = AC. The proof follows.

Let M be the midpoint of BC and let D be the intersection of the perpen-
dicular bisector of BC and the angle bisector of / BAC (see Figure 7.17).
Let E be the point on AB such that AB 1 DE and let F be the point on AC
such that AC L DF. Now BM = CM by construction, / BMD = / CMD
(= 90°) by construction and DM = DM. Therefore, triangles BMD and
CMD are congruent (angle, side, angle theorem). Thus BD = CD and

A

Figure 7.17.
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/_ MBD = / MCD (corresponding parts of congruent triangles are equal).
Next, DE = DF (a point on an angle bisector is equidistant from the sides)
and / BED = / CFD by construction. Therefore, triangles BED and CFD
are congruent (two right triangles with two equal sides and equal hypotenuses
are congruent—or, by the Pythagorean Theorem, the other sides are also
equal and then we can use the side, angle, side, or the side, side, side theorems).
Therefore, / DBE = /_DCF (corresponding sides of congruent triangles are
equal). Thus
/ MBE = / MCF

(sums of equals are equal). This says that AABC is isosceles with equal
angles at B and C and thus the sides opposite these angles, AB and AC, are
equal. Q.E.D.2

The error in the previous argument is not in any of the steps or reasons
given but rather in Figure 7.17! Figure 7.17 is incorrectly drawn and the
result has been an absurdity. It is commonly stated that the error consists
of the fact that D is drawn above BC, whereas D is actually below BC. Thus,
the reader may enjoy proving that AB = AC from Figure 7.18 (the letters
have the same meaning as before). The proof is practically identical to the
one given using Figure 7.17.

I leave to the reader the joy of discovering the correct picture. Also left
to the reader is the problem of finding the correct picture for the following

“proof”’ that all angles are zero.
y

\

B c
A '
D
Figure 7.18.
2 This comes from the English, Quite Easily Done.




CONTINUED FRACTIONS 225

Given /_A. we pick B and C on the sides of / A so that AB = AC. We
will show that / CAB = 0 (see Figure 7.19). Let ABED be a rectangle so
that AB = DEand / ADE = / DAB = 90°. Let the perpendicular bisectors
of AD and CE meet at F. Then AF = DF and CF = EF (a point on the
perpendicular bisector of a line segment is equidistant from the end points
of the line segment). Therefore, triangles ACF and DEF are congruent (side,
side, side theorem). Thus

[ FDE = / FAC

(corresponding parts of congruent triangles are equal). But since AF = DF,
triangle AFD is isosceles and therefore / FDA = / FAD. Subtracting
equals from equals gives

/[ ADE = / DAC

or
90° =90° + / CAB
and thus
/ CAB =0,
as claimed. Q.E.D.

It is perhaps because of difficulties such as these that most mathematicians
avoid arguing from pictures. One picture is worth a thousand words, pro-
vided one uses another thousand words to justify the picture. This is the
spiritin which we presented Section 7.4. The usual development of continued

B

E

F
Figure 7.19.
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fractions has no need of pictures; however, it takes some time by the usual
method before one sees that the algorithm for « gives decent approximations
to a. Further, the ideas involved seem simpler when pictures are used as aids.
The reader wishing to compare the various methods of development can
find the usual presentation in almost all the number theory texts listed in
the bibliography.

*7.6. Periodic Continued Fractions

In this and the next section, it will be assumed that the reader is familiar
with the material in Appendix B on matrices. We begin by putting the
continued fraction algorithm in matrix notation (the earlier notation is
given on page 188 and in Theorem 7.10). For n > 0, let

0 1
AII:( )7 Ml‘l=
1 a,

dn-2 DPn-2
qn—l pn—l

s Yn = qn-2 + 0pqn-1.

In this and the following section, the letters 4,, M,, and y, will always have
the above meaning.

Theorem 7.20. Suppose that « is irrational. Then for all n > 0,

M, = AM,,

Ml = (L) M,,,
o # 0,

det M, = (—1),

Mn+1 = AnAn—l o AIAO'
Further, M, ! is a matrix of integers and, last, if M, = M,,, then n = m.

Proof. 1t follows from the definition of matrix multiplication and Theorem
7.7 that

A,,M,, — (0 1 )(‘In—z pn—Z) — (qn—l DPn-1
1 Anf \gn-1  Pn-1 qn-2 + Gldn-1 Pn-2 + ApPn -1

- (qn—l pn—l) — Mn+1-
qn DPn

If, in Theorem 7.11, we put § = a, b, = a,, then the conclusion of Theorem
7.11 says that the point V,_, + o,V,_, is on the line y = ax. Thus the
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coordinates of V,_, + a,V,_, satisfy the equation

pn—Z + anpn—l = a(qn—Z + anQn—l)'
Therefore,
(LM, = (12 )(""‘2 ””)
qn—l pn—l

= (‘In—z + %Gn-15DPn-2 + anpn—l)
= (qn—Z + anqn—l)(l’a)
= ya(1,2).
Since o is irrational, o, is also irrational. Thus
Gn-2 + 0qn-1 = 0

implies by Theorem 6.4 that g, _, =¢,-, =0. Butgq_,=1,9q_, =0, and
g, = 1 for n > 0. Thus it is impossible for two consecutive g,’s to be zero

and hence
Yo =Qqn-2 + 0qn- # 0.

Next, by Theorem 7.7 and the definition of M,,,
det Mn =Pn-19n-2 — Pn-29n-1 = (_1)"

NN

we see from the first part of the theorem that

Since

Mn+l = AnMn
= AnAn—an—l
=AnAn—1"'A1M1
= AnAn—l "'AIAOMO
= A"A"_l "'AIA().
Since det M, = (—1)",
[ Pn-1 —Dn-2
" detMn —qn-1 qn-2
— (_1),.( Pn-1 —Pn—z)’
—4n-1 qn-2
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which is a matrix of integers. Finally, suppose that n # m but M, = M, ;

that is,

(qn—z Pn—z) _ (qmz Pm—z)

qn—l pn—l qm—l pm*l
Therefore,

n-2 = q9m-2- qn-1 =qm-1-
Since

q.1=0<1=g9 ,=q<q <q2 <"+,

we see that n — 2 equals either —2, 0, or 1, so that n equals either 0, 2, or 3.
Likewise n — 1 equals either —2, 0, or 1, so that n equals either —1, 1, or 2.
Hence n = 2. In like manner, m = 2 and thus n = m. A

Let us now give an example of the method of finding « from its periodic
continued fraction expansion. Suppose we are given

a=<{41318) =<4,13,181318,...)

Then
a; = (1,3,18,13,18,...> = (13,18,
a, = (3,1,.8,13,1,81,...> = (3181,
ay = (1,8,1,3,1,8,1,3,...> = (1,81.3)
a, = (8,1,3,18,1,3,1,...> = 8131
as = (1,3,1,8,13,1,8,...> = (13,18

In other words,

0(5 = 0.

We now calculate M, and M5 by first finding V,, through V, by our usual
process:

noa, 4n Pn

-2 1 0
—1 0 |
0 4 1
11 1 S
23 4 19
3.1 5 24
4 8 44 211
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Therefore,

M=‘13P3=5 24
S VR 44 211)

and also,

By Theorem 7.20,
Y1) = (Lo )My, ys(la) = (Las)Ms.
From the first of these equations,
(Loy) = [(LaM M =y, (La)M T,
and thus the second equation gives (since a5 = o),
y5(1,0) = (Las)Ms = (La )Ms = y,(1,0)M7 ‘M,

or, letting § = ys5/y,,

e (M M — 1 (—4 1)(5 24)_1)(24 115)
(o) = QMM = (el oy gy =00 5 o)

This says that
0 =24 + Sa, oa = 115 + 24aq,
and thus
(24 + Sa)a = do = 115 + 240
Therefore,
240 + Sa? = 115 + 24aq,
or, in other words,
o = 23.

Thus a is a root of a quadratic equation. In this case,

a=i\/2_3
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and since
[a] =4ap = 4,

we see that « > 0 and thus a = \/2_3

The previous example illustrates the major idea in the proof of the fact
that if the continued fraction expansion of o becomes ultimately periodic,
then a is the root of a quadratic equation with integral coefficients. There is
one detail that creeps into the general case that never shows up in any
numerical examples. Suppose we end up showing that

ae? + ba + ¢ =0,

where a, b, and c are integers. Does this mean that a is the root of a quadratic
equation? Of course, but the equation may end up being the identity

002 +0a+0=0

satisfied by all real numbers a. Thus we will have to show that the coefficients
in the equation are not all zero or we will have proved nothing. We will
actually show that the coefficient of «? is not zero. The next two theorems
will be used for that purpose.

Theorem 7.21. Suppose n > 0 and j > 0. Let

. r s
Mn M"+j= ¢ .

u
Then
r s
( ) #rl.
u
Proof. Suppose
Mn_ lMH+j = rI.

Then
M, ;= M[M;'M, ;] = M(r]) = rM,.
When we equate the first rows of M, ; and rM,, we get
Gn+j-2 = Tqn-2, Pntj-2 = I'Pn-2.

Therefore, r divides the relatively prime numbers g,.;_, and p,,;_, and
hence r = +1. Since M, , ; has no negative entries, r = 1. Thus M, = M, ;
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and therefore, by Theorem 7.20,n = n + j. Butsincej > 0, this is impossible.
Therefore, M, 'M, . ; # rl, as advertised. A

Theorem 7.22. Suppose o is irrational, r, s, t, and u are integers and §is a
real number such that

r s
5(1,0) = (l,oz)(t u).

If t = 0, then

rl.

e
~ %
S ©»
—_——
Il

Proof. Whent = 0, we have

r s
(6,00) = (l,a)( ) =(r,s + ua).
0 u

Thus
d=r, oo =S5 + ua
The last equation therefore becomes
re =5 + ua
or
s+ u—ra=0.
Therefore, by Theorem 6.4,

and hence

(r s) (r 0) p N
= =rl
t u (V4
Theorem 7.23. Suppose that the continued fraction expansion of « is

ultimately periodic. More exactly, suppose that there are numbers N > 0,
j > Osuch that for alln > N,

Anyj = Qp.

Then « is an irrational root of a quadratic equation with integral co-
efficients and the coefficient of a? is not 0.
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Proof. By hypothesis

AN+j = <aN+j,aN+J+1,---,aN+2,,‘—1>

= <aN,aN+1,...,aN+j_1> = 0y.

Hence « is irrational since its continued fraction expansion does not
terminate. By Theorem 7.20,

wn(le) = (Lan)My,  ynv+f1.0) = (Low s Y My ;.
From the first of these equations,
(Lay) = [(Loan)MyIMy " = ya(Lo)My ",
and thus the second equation gives (since oy 4+ ; = ay),
v+ L) = Loy )My 1 j = (Lay)My s = n(1L.)My ' My,

or, letting 8 = yy ;/yn (the division is legal since yy # 0),

(24) 8(1w) = (Lo)My '‘My . ;.
Let '
. ros
(25) My My, ;= >
r u

where r, s, t,and u are integers since My ' is a matrix of integers. Since a is

irrational, Theorems 7.21 and 7.22 tell us that
(26) t #0.

Equation (24) may be rewritten
Fos
(8,00) = (l,a)(t ] =(r + to, s + ua),
u

and therefore
6 =r+ ta,
do = s + uo
Thus
(r + ta)oe = dot = s + ua,
so that

27 te? + (r — wa —s = 0.
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Thus « satisfies a quadratic equation with integral coefficients and the
coefficient of & is not zero. A

Now we shall tackle the converse of Theorem 7.23. This is the more
interesting and more difficult result, first proved around 1766 by Lagrange,
thatif o« is an irrational root of a quadratic equation with integral coefficients
(leading coeflicient # 0), then the continued fraction algorithm for « repeats.
There are several proofs of this theorem, but they all are based on the same
ideas. The goal is to prove that for some n > 0 and j > 0, ,,; = «,. The
periodicity follows immediately from this, since then a,.; = a,, %+ j+1 =
o,+1, and so on. The method of showing that for some n and j, o, ; = a,
is to show that the set of numbers o, a;, &, ,. .. is actually a finite set. This
means that there are repetitions in the sequence oy, @y, ..., and this is what
we desire to prove. It will be shown that each a,, satisfies a quadratic equation
with integral coefficients, the coefficient of &2 not equaling zero. Thus if we
can show that there are only finitely many such equations, then since each
equation has only two roots (we use here the fact that the coefficient of «?
is not zero so as to avoid the equation Oa2 + Oa, + O = 0), there will be only
finitely many «,,. Since the coefficients of the equations for the a, are integers,
if we can show that the absolute values of the coeflicients are bounded (for
example, if they are all less than 1 billion), then there will be only a finite
number of possibilities for each of the three coefficients and hence only a
finite number of equations for the «,. This is what the proof does.

Since we will be dealing with matrices, we introduce a symbol for measuring
the size of the entries.

Definition. Let

We define the norm of 4 by

b

|A|l = the maximum of the four numbers |al, |bl, |, |d|.

)

.|b| < ||4]|, and so on. As an example, if

(1 -5
A=
4 2

then |A| = 5. We use the notation | 4| instead of | 4] because many authors
reserve |A| to mean the determinant of A.

It follows that |a] < | A|

)
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Theorem 7.24. If A, B, and C are 2 x 2 matrices, then

I4 + Bl < 4]l + IBIl, |AB| < 2|4l - [|Bl,
IABC| < 4|l Al - | B]| - [ C]l.

Proof. Let
4 = ag 012)’ B = (bll blz)’
az1 QA by bis
A+ B= diy dl?.)’ AB=(€11 6’12).
dyy dj; €21 €22

Thenfori=1lor2,j=1or2,
ldijl = lai;; + byl <la;jl +1b;) < Al + | BII,
and thus since all four numbers |d,|,|d;,l,|d24l,|d,,| satisfy the above
inequality,
|4 + Bl < [[A] + ||B].
Alsofori=1lor2,j=1or2,
€;; = a;1byj + aiaby;,
and thus
le;] = laiby; + aizbyj < lanl-1byjl + lail - 1,
< Al -IBIl + Al - IBIl < 2| Al - | BI.

We may use the result for the product of two matrices to get the result for
the product of three matrices:

IABC| = I(AB)C|| < 2|lAB] - IICIl < 2-2||4]l-|IB] - IC]. A
Theorem 7.25. Suppose that a, b, and ¢ are integers, a # 0, and « is a posi-
tive irrational number satisfying the equation

ao? + ba + ¢ = 0.

Then the continued fraction expansion of a is ultimately periodic.
(Remark : This theorem is true for negative a also, but we have not con-
sidered the continued fraction expansions of negative numbers.)

Proof. Since ae® = —ba — ¢,

0 —c¢
ao(1,0) = (ax,a0?) = (ao, —c — bo) = (l,oc)( )
a -b
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Let
-
B = ,
a —b
so that
(28) ao(l,0) = (1,0)B,

We now find the quadratic equation satisfied by «,. By Theorem 7.20,
Pn(1,0) = (Lay)M,,

it follows from this and (28) that

(29) ao(t,a,) = aa[(1.a,)M, M, !

aay,(1o)]M, !

yalac(1,0)]M ;!

al(1e)BIM ;!

[yu(1.0)]BM !

= (1,0, )M, BM .

Let

t

n n

M BM ' = (’" S"]-

1

this is a matrix of integers since M,, B, and M, ' are matrices of integers.

Then
rﬂ Sﬂ
(ao,axa,) = (1,0,) = (ry + 1,0, Sy + Usdy),
tn un
so that
(30) ac =r, + t,a,, aoa, = S, + u,0,.

It follows from (30) that
(r, + t,0)0, = aoa, = S, + u,a,
and hence
tao2 + (r, — u)ot, — s, = 0.

Therefore, «, satisfies a quadratic equation with integral coefficients and
further t,, the coefficient of 2, is not zero since ¢, = 0 implies [see (30)] that
o = r,/a is rational, which is false.
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Thus, given the matrix M,BM, !, there are only two possible choices for
the number «, and hence if the set of matrices M,BM, '(n =0,1,2,...) is
finite, then so is the set of o, (n = 0,1,2,...) and then for two different
subscripts n # m, we would have «, = «,, and the continued fraction expan-
sion for o« would be ultimately periodic. Therefore, it suffices to prove that
the set of matrices M,BM, ! is finite. Let

(31) 0 =laal + 41 + |af)- |B — aol|
and set
k = [0].
Note that 0 is a number independent of the variable n. Suppose we can show
that for alln > 2,
IM,BM,; 1| < 6.

Then by definition of the norm of a matrix, the numbers r,,s,, t,,u, are
between — 0 and 0. Thus there are 2k + 1 possibilities for each of the numbers
Fni Sys 1y 4, and hence (2k + 1)* possibilities for the matrix M,BM ! (n > 2).
Thus the set of matrices M,BM, ! would be finite as desired (the reason for
using n > 2 instead of n > 0 is that we will be using 1/g,_, and 1/g,_, in
the course of the proof and g_; = 0). Thus our theorem will be proved if
we can show that for n > 2,

IM,BM; || < 0.
Let

0 Pn-2 — q"—Za)
0 pnoi = Gn1

£~

By Theorem 7.9, if j > 0, then

; 1
o — P ‘ <-
q; qdidj+1
or
lg0 — pjl <
j+1

so that, for n > 2,

’qn72a — Pn 2’ <

n—1
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and
1
Ign—10t — pn—q) < — < :
qn qn— 1
Therefore,
(32) 1E.| <
n—1

The matrix E, enters into our calculations as follows:

qn-2 Pn-2

qn—l

_ [9n-2 4n- za) i (0 Pn-2 —qn—zaJ
Gn—-1 qn-1% 0 Pn-1 — 4n-1%

qn-2 0 a
= E,.
0 q,,_l)(l aJ + En

It follows from (33), (28), and (33), again, that

(33) M, =

_» 0 1
MB = |2 *|B+ E,B
0 n-1 1 o
qn-2 0 1 od
= . E.B
0 %Ja41a+"
dn-2 0 1«
= E,B
* 0 qn—l)(l OC) +
=ax(M,—- E,) + E,B
= aaM, + E, (B — aal).
Therefore,
M, BM, ' = aaM M, ' + E (B — aal)M !

It

aol + E,(B — ac)M, 1.
As a result, it follows from Theorem 7.24 that
(34) IM,BM; || < |laal| + |ENB — ax)M, '
<lao| + 4|E,| - |B — aal|| - | M, "]l.
We have already found an estimate on || E,||. Since

M"_l =(_1),,( Pn-1 _Pn—z)
—q4n-1 n-2
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and since for j > 0,

Ipjl = lag; + (p; — aq;)l < logj + |(p; — og;)l

< lalg; + < ladg; + q; = g1 + |af),

j+1
we see that, for n > 2,
Pn—2l < gn-2(1 + [o]) < gp—1(1 + ),
1Pn—1] < gn-1(1 + [ad).
Therefore,
M7 < gu-q(1 + ).
If we put this and (32) into (34), we get our desired result:

IMBM, | < laa] + 4- B — aod| - g, (1 + |ol)

n—1
= laa + 4(1 + |of)- | B — aol||
= 0. A

EXERCISES
1. The main difficulty in Theorem 7.25 is to prove that |M,BM, | is
bounded by something independent of n. What is wrong with the
following argument ?
“By Theorem 7.24,

IM,BM | < 4IM,| - | Bl - | M, |

=4|M,| - B - = 4| B|,

1M,

which is independent of n.”
In problems 2-10, find « from its continued fraction expansion.

2 a=<4L1L1.

3. a = <10,,51,1,1,1,1,2,1,20).
4. o =<12312).

5 o =<0,1,1,2>.

6. o = <1,1,1,1,.8,1,18>.

7. 0 =<1,2,1212.3.4).

8. a = <0,6,14).
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9. o = <0,18,1,12).
10. o = ¢2,2,43,22353>.

In problems 11-15, find the continued fraction expansion of a.

11.oc=~1—+—\/ﬁ.
4

NG

5

9
12. a=—+

13. a = lﬁ;ﬁ
2
14, o« = ‘_‘7;62\/5.

15. o = Lﬂk/ﬁ
34

16. Let k and n be positive integers such that k|n. Find the continued fraction
expansion of all numbers of the form

n? + k.

In your answer, can the restriction that kln be relaxed (or even
eliminated)?

*7.7. The Fermat-Pell Equation and the Continued Fraction Expansion of
Jd

In this section d will stand for a positive integer which is not a perfect square.?
Thus ﬁ is irrational. The Fermat—Pell equation

(35) x2 —dy? =1
has the trivial solutions x = +1, y = 0 while the Fermat—Pell equation
(36) x2 —dyt = —1

has no obvious solutions.

3When d is a perfect square, the methods of Section 5.1 are sufficient to solve the
Fermat-Pell equations. See problem 4, page 148.
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In particular instances (for example, d = 2), it is easy to find solutions to
each equation by inspection. In other instances (for example, d = 3), it is
easy to find solutions to (35) by inspection but not (36). In still other instances
(for example, d = 67), it is safe to say that the reader will not find solutions
to either equation by inspection [other than the trivial solution to (35)].
Yet (35) always has an infinite number of solutions. Sometimes (36) has no
solutions (as we have already learned in Theorem 5.1); other times it also
has infinitely many solutions. The smallest solutions to these equations
can be amazingly large. For example, the smallest nontrivial solution to

x2 — 67y =1

is given by |x| = 48 842, |y| = 5967. This happens even though when d = 66,
we have a solution with y = 8 and when d = 68, we have a solution with
y = 4. The solutions to (35) and (36) are intimately bound up with the con-

tinued fraction expansion of ﬂ

Theorem 7.26. The Fermat—Pell equation
x2 —dy? =1

has infinitely many integral solutions. If the length of the period in the
continued fraction expansion of\/a is odd, then the Fermat—Pell equation

x2 —dy? = —1

has infinitely many integral solutions.

Proof. Let the continued fraction expansion of \/c_i be given by

ﬂ =<{ay,a,,0d2,...).

By Theorem 7.25, this expansion is ultimately periodic; thus there are
integers N > 0 andj > 1 such that forn > N,

(37) tye; = Gy

Here j represents the length of the period. But it follows from (37) that for
any positive integer k,

(38) Ap+xj = Q-

If we did not already know that

<00,---,aN—1,aN,---,aN+kj-1> = ﬁ,
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we could find this out by using the method of Theorem 7.23. We shall do
this anyway. As shown in equations (24) of Theorem 7.23, there is a real
number J, such that

§(1./d) = (1/dDMy "My ;.
Further, if we put
Ty Sk)

4 _
My My ;= ,
Iy Uy

as in (25), we get the equivalents of (26) and (27),

LA + (re — w)/d — 5, =0
with
tk # O

In this case, our equation simplifies to

(dty — sp) + (re — uk)\/a = 0.

Since ./d is irrational, it follows from Theorem 6.4 that

U = I, S, = dt,.

Thus, in the expansion of \/(;

(39) My My = (: ft)

Therefore,

(@0) r¢ —dt} = det(M,;‘MNH]-)': (det M'N)"‘(det My i)
= (="M= = (—DM.

There are infinitely many values of k involved in (40). When j is even,
(—1y* = 1forallk;if jis odd, then (—1y* = 1foralleven kand (—1)* = —1
for all odd k. Thus our theorem is proved if we can show that different values
of k give different pairs of numbers r, and t,. Suppose

Then, by (39),
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and, therefore,

MN+kj = MN(M)UIMNH,') = MN(MﬁlMN+mi) = MN+mi'
Thus
N +ki=N + mj, k=m. A

As an example, let us consider the case of d = 3. The expansion of \/3 is
V3 =1 = AT121D)
= (L12,1212)
LI212.12.12)

Here we may take N = 1, j = 2. A short calculation gives

0 1 B (-1
My=Mi=\ ) M=M= o
12
MN+j=M3= 3 5»
4 7
Mz =Ms =1, o)
15 26
MN+3j=M7= 41 7 .
56 97
Myrag=Mo =153 265
Thus
B -1 1\[1 2y [2 3
MN MN+j= 1 0 5
B —1 1 7 (7
My Mye2i=1 g 19) |4
B -1 1\{15 26\ (26 45
My Myeai={ | 71 15 26/
[ S ) ( 168]
VNS 1 ofl1s3 265 s6 971
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Since j is even, we are led to solutions of
23yt =1,

the first four being x =2, y=1:x=7,y=4; x =26, y =15; x = 97,
y = 56.
As another example, we let d = 13. Here

J13 = GILLLLE) = BILLLLELLLILE) = - --
We may take N = 1 and j = 5. We quickly find that

Me — M (0 1) Mal — ppt (—3 1)
AR P A A

.....

(180 649)
" N1189 4287

Therefore,

o= 15 13- (211

-3 1)( 180 649) (649 2340)
1 o/\1189 4287/ 180 649/

This time j is odd and there are infinitely many solutions to both Fermat—Pell
equations. We see from the above that

M;lMN+2j = (

x=18,y=35 is a solution to x2 — 13y? = —1
and that
x =649,y = 180  is a solution to x2 — 13y? = 1.

A computationally more difficult example is d = 1141. This is because the
period in the expansion of /1141 is rather long (but the expansion is
periodic):

V' 1141 = (33,1,3,1,1,12,1,21,1,1,2,5,4,3,7,5,16,1,2.3,

1,1,1,2,1,2,14,1,8,14,1,2,1,2,1,1,1,

3,2,1,16,5,7,3,4,52,1,1,21.1,12,1,1,3,1,66).
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Here we may take N = 1 and j = 58. The matrix My ' My, ; gives a solution
to the equation

x? — 1141y* =1,
which is rather large:
x = 1036782394 157223963237 125215
and
y = 30693 385322765657 197 397 208.

If you think this is large, when d = 1 000 099, the smallest value of y that
comes out of this method has 1115 digits!

The examples of d = 1141 and 1000099 make it questionable that our
method is giving all solutions to the Fermat--Pell equations. Indeed, we may
well wonder if we are even always getting the smallest solutions. Amazingly
enough, our method does give all the solutions to the Fermat—Pell equations.
(More exactly, it gives all positive solutions. All other solutions come by
merely changing signs.) Thus the equation x> — dy?> = —1 has no solutions
unless the length of the period in the continued fraction expansion of \/3
is an odd integer.

In Table 3 at the end of the book we have given the continued fraction
expansions of all \/;1 with d in the range 2 < d < 100. In all the expansions
listed there and in all examples given thus far in the text, the continued
fraction expansion of /d has always been of the form

(41) Jd = a0, a1, 83, ap.

This is, in fact, what always happens; the periodic part of the continued
fraction expansion of ﬁ begins with a;. The reader may have already
noticed two other things which always occur. In the expansion (41) of \/d,
it is always true that

a,- = 2a0.
Further, if j > 1 and we delete a; from the period,
al,az,...,ai,

then what is left reads the same forward as backward. The proofs of all these
facts are left to miscellaneous problems 16-18. )

The fact that the periodic part of the continued expansion of \/d begins
with a, (so that in our previous discussion N = 1) has an important
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consequence. Let e = [\/3] = a,, so that

0 1
MN = Ml = .
1 e
If My ' My ., gives the solution x,, y, to
x* —dy? = (=1

then we have seen that

_ X, dy
MNIMN+kf= . }k)-
Y o Xk
Therefore,
M1 = My(My "My )
{0 T} [xk dyk
el x
_ Yk Xk
42) X+ ey dyi + exy)
Thus

Vii-1 = (DoXi):

(Compare this with the examples of d = \/3 andd = \/E presented earlier
in this section.) As a result, our solution to the Fermat-Pell equation can be
found directly from the process of finding the various V,. If j is large, then
we have to wait awhile before we reach V;_,, the components of which are
naturally large.

EXERCISES
In problems 1-5, find two positive solutions to the equation x? — dy? = 1.

1. d=6,.6=<224.
2.d=11,/11 = (33.6).
3.d=23,./23 = (413.1.8).
4. d =14, /14 = (3,1.2,16).
5.d=155= Q3.
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In problems 6-10, find a solution to x* — dy? = —1.
6. d=29,./29 = (52,1,1,2,10).

7.d =58,./58 = <TLI1,1,1,1,14).

8 d =173,/73 = (81,1.5.51,1,16.

9. d = 106, /106 = <10,3,2,1,1,1,1,2,3,20).

10. d = 97,/97 = 9,151, 1,I,,1.1.5.1,18).

In problems 11-15, find a solution (with x and y both positive) to one of the
equations x?> —dy? = +1 and state to which equation your solution
applies.

1. d = 10, /10 = <3.6).
12. d = 53, /53 = <73.1.1,3,14).

13. d = 46, /46 = <{6,1,3,1,1,2,6,2,1,1,3,1,12>.
14. d = 130.
15. d = 125.

MISCELLANEOUS EXERCISES
(Problems marked with an asterisk are in some manner related to the last
two sections.)
1. If p and g are positive integers, show that the inequality
22
n<l<Z
q 7
implies that g > 113.
2. Suppose that a is a positive real number and ry, r,, s,, and s, are
positive integers such that

r ry
—<oa <=, F28y — ryS, = L.
S1 S2

Prove that either /s, or r,/s, is a convergent in the continued fraction
expansion of o. (The example, 22 < /3 < 7, shows that there are times
when not both r/s; and r,/s, are convergents.)

3. Let S be the set of points (x,y) such that x and y are integers, 2|x, 3|y,
and 0 < x < 1000. Find the closest point in the set S to the line,
y = x\/18. How is it related to the set of closest points to the line
y = x\/g?
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Find polynomials p(n) and g(n) such that
p(n)* — (169n% + 198n + 58)q(n)? = —1.
It may be useful to use the relation
169n% + 198n + 58 = (13n + 7)* + (16n + 9).

It may also be helpful to assume that » is large until the final answer is
reached.

Find polynomials p(n) and g(n) [with g(n) not the zero polynomial]
such that

p(n)? — (9n% + 8n + 2)q(n)? = 1.
It may be useful to use the relation
2 +8n+2=0C3Bn+ 12 +Q2n+ 1)
Suppose that a, b, and ¢ are integers, (a, b, ¢) = 1 and the roots of
ax? +bx +¢c=0

are real irrational numbers. Use the method of Section 7.7 to show that
the equation
x2 —bxy + acy? = 1

has infinitely many integral solutions and give a condition that ensures
that the equation

x? — bxy + acy* = —1
has infinitely many integral solutions. Make a change of variable to
show that there are infinitely many pairs of integers x and y such that

ax? + bxy + ¢y? = a.

. Let the continued fraction expansions of « and f be given by

oa=<al,bcd,..>,
B=<al+bcd,..0,

where it is presumed that both continue in exactly the same manner.
There is an extremely simple equation relating o« and f. Find such a
relation and show that it is correct.
We have actually assigned two different uses to the notation
{ag,...,a,>. For example, the third convergent in the expansion of
mis

355/113 = (3,7,15,1),
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but the continued fraction expansion of 355/113 is
355/113 = (3,7,16).

In fact by Theorem 7.3, no finite continued fraction expansion ends
with a one. Show that if gy, a,,....a,,by,by,....b, are integers with
a;>landb; > 1ifj > 1 and n > mand

g, A1y ayy =<bg,by,....b>
then either
n=manda; = b; for all jin therange 0 < j < m
or
n=m+1,a;=b; for0<j<m-1, a,=b,—1, a,+1 =1

Problem 8 brings to mind the question as to whether there is an infinite
sequence of a,’s with a, > 1 for n > 1 such that

{ag,ays...)
is not the continued fraction expansion of any real number. This and the
next problem answer this question. Suppose x,, x;, x5, x3,... are real

numbers such that x, > 1ifn > 1. Let
U—Z = (1,0), U—l = (0~1)~ Un = Un—2 + XnUn—l-
Set U, = (s,.r,). Show that

lim s, = + 0.

n— oo

Show that

Fo ¥y Fq r Fq
L2l T 2¢

rs s Iy
- < —.
So Sy S4 Se S7 Ss S3 S

Thus the sequence ro/sg. r,/s,,... is an increasing sequence bounded
above by r,/s,. Therefore,

exists. Likewise,

n=0c0 Syp+1
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exists. Let
. I . Tans
o = lim =, f = lim 21,
n=oe Sap n= Szp+ 1
Show that
Fan+1 _ an _ 1

S2n+1 San S2nS2n+1

and let n —» o0 to get the result

B=a
Show that
:A: = {X0s XgnneesXp)
Use this to show that
Iim {(xg,Xx;...., X,

n— oo
exists. We define (x4, x;....> to be this limit. Show that for all n > m,
X0 Xgne s Xy St tnee ey Xppp = {XgaXqnnnsXpp.
Let n — oc in the above to show that

<X0.X1 ..... xm,<xm+1,xm+2,...>>=<X0,XI,X2,...>.

Suppose that xq, x;,... are integers and that x, > 1ifn > 1. Let

o0 =<{Xp,X1+...)
and let the continued fraction expansion of « be given by
o =<ag, 01,02, . ..
Show that x,, = a, for all n. (Hint.: For n > 0, let
By = {Xps Xp 15000
Show that for n > 1, f, is positive and that
Bno1 =Xp-q + L
n-1 n—1 ﬁ .

Show as a result that for all n > 0,

Xy < P < x, + 1.
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Thus [B8,] = x,. Starting with B, = a, prove that x, = a, for all n by
induction.)
In any of the remaining problems, the reader should feel free to use the results
of problems 9 and 10 if he desires.

Problems 11, 12, and 13 are related.
11. Let

o= (412372,18921.7,...),
B =<4,1237219821,7,.. .,
y = <4,1,2,3,7,2,1,8,1020.7,.. 5,

where each of the numbers may or may not continue further and they
may not continue in the same manner (but any further entries are
positive integers). Which of the three numbers is largest and which is
smallest?

12. Let the continued fraction expansions of o and f be

o0 =<ag,A1sen.yOyye. .,
ﬁ: <b0,b1,...,b",...>,

where either expansion may terminate at or after a, or b,. Suppose
ay = by, ay =by,...,a,_, =b,_, and a, > b,. One of the following
istrue, o > for f > a; which is it? Does your answer depend on n?
13. A certain number, «, rounded off to six decimal places is 3.141593 (= is
such a number, but « may not be n). Thus the only thing you know about
o is
3.1415925 < o < 3.1415935.

Find the continued fraction expansion of « as far as possible and give
the best possible bounds on the first doubtful a,. Prove that 333 =
<3,7,16> = <3,7,15,1) is a convergent in the expansion of « and that

385 1
* T 113 T 1351132

*14. Let the continued fraction expansion of « be

o = <a0,a1,a2,...>.

Let by, by,. ... b, be integers with b; > 1if 1 <j < n. Let

N R AR S
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and let

_aoc—b

B

T d-—ca

(we assume that d — ca # 0). Prove that § > 1 is a necessary and
sufficient condition that

ay = bg,a, =by,...,a,=b,.
*15. Let p, g, P, and Q be nonnegative integers with
Q>q>0,
qgP — Qp = £1.

Show that there is a unique sequence of integers ay,...,a, such that
a>1if1 <k <nand

q p 0 1 0 113)(0 1
VY R P R
[Hints: Show that the only solution to Py — Qx = Pq — Qp with
Q>y=>0is x=p, y=gq. Let the continued fraction expansion of
P/Q be
P
— =<bo by, by =<bg. by, by, by — 1,1
Y
Show that V,, = (Q,P) in the first expansion and V,,.,; = (Q,P) in the
second expansion. Show that either in the first expansion det M, ,
= gP — Qp or in the second expansion det M, ,, = gP — Qp (the
two determinants have opposite signs). Conclude that there are
integers ag, . . ., a, and, in fact, either n = m and ay = by, ..., a, = b,
orn=m+ 1,

a0=b0’---7am—l=bm—1’am=bm_1’am+1=1'
To prove the uniqueness of the a;’s, suppose that
g p)_ (01 0 130
Qo Pl a, 1 ay\1
1

1
(29
0 1

e
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where g; > 1and 4; > 1ifj > 1. Let
o =<ay,ay,...,0,, 1,2.34567,...>,
o =< A9, A1...., AN, 1.2,34.56,7,.. ).

’

Let V,, V4, ... be the points found in the expansion of x and Vg, V', ...
be the points found in the expansion of «’. Show that for all j > 0,

’
Vn+j—1= VN+j—1'

[Use induction and note that V,_, = Vy_; = (q.p), V, = Vy = (Q,P).
Use Theorem 7.9 to show that « = o’ and hence show that N =
and

AO = ao,Al = al,...,A" = a".]
Starting with the equality
(244)* — 135(21)2 =1,

we find the matrix on the right side of equation (42) on page 245 to be

( 21 244)
1475 5519)°
Find a sequence of integers (see hints to problem 15) ag, a,,...,a,
with g, > 1 for 1 < k < n such that
M= 0 1} (0 1}f0 1 _

1 a, 1 af\l ag
Let

x = <a07a19'--aan>

(by problem 10, this is actually the continued fraction expansion of «).
Use the method of Section 7.6 to show that

o= ./135.

Suppose that d is a positive integer which is not a perfect square and
suppose that x and y are positive integers such that

x2 —dy? = 1.
Lete = [\/3] and let

M =

y x )
x +ey dy+ex|
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Use the result of problem 15 to show that there is a sequence of in-
tegers day,...,a, with g, > 1if 1 < k < n such that

0 1 0 11}/0 1
la,, lao.

1 a
Let « = {aq,a;,...,a,> (by problem 10, this is the continued fraction
expansion of a). Our goal is to show that

.t

this will show that the periodic part of the continued fraction expansion
of\/d does begin with a, and further that every solution to the Fermat-
Pell equation is given by the method of Section 7.7. (It also follows that
if the length of the period in the expansion ofﬂ is an even integer, then
x? — dy? = —1 has no integral solutions.) To achieve our goal, it will
be necessary to know a,. Prove that a, = e. There are two cases here.
If y > 1, then first show that

M =

X
e<-<e+ 1.
y

[Remember, (x/y)> =d + (1/y*) and e? <d < (e + 1)>]If y = 1 and
x? —dy* = —1,showthat x = e,d = ¢ + 1, and

(0 1 )(0 1
M =
1 2e/\1 e
if y=1and x> —dy> =1, show that x=e +1,d=(e + 1)> — 1,
and

(0 1 ) 0 1) (0 1)

M= .

1 2e/\1 1/\1 e
Use the method of Section 7.6 to show that « = \/3 Show also that
a, = 2e. (When y = 1, you have done this above; when y > 1, show

that
a" = [X + ey} = 26).
y

Let d be a positive integer which is not a perfect square. By problem 17,
the continued fraction expansion of \/3 is

’

\/3=<e,a1,...,aj_1,2e>,
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where e = [ﬂ] and j is the length of the period. Let us suppose that
J > 2, so that the period consists of more than just 2e. [Thus besides the

perfect squares, numbers d of the form d = ¢ + 1 (\/3 = <e,$>) are
not being considered.] By the method at the end of Section 7.7, we see
that

TR E A I

where x? — dy? = (—1). Let

0 1 0 110 1
1 a;, 1 ay\l a)

Find A in terms of x, y, e, and d. Show that

y X
x + ey dy+ex

>

A=

A = A’ (A transpose).
Use problem 15 to show that for | <k <j — 1,
Gj-k = G-

This says that the period—with the 2e term removed—reads the same
forward and backward.

*19. Let a4, 4ay,...,a, be positive integers and let
- _ 0 1 0 1}/0 1
M"+1= dn-1 Pn-1 — )
dn Pn 1 ay 1 a, 1 ao
Show that
Dn
= <anwan—l ~~~~ al*a0>
Pn-1
and that
qn
——=<an’an—17"-7al>'
qn-1

(Hint: Look at M, ., .)
Problems 20, 21, and 22 are related.

20. If an interval, I, of length /, is contained in the interval I from O to 1,
we shall say that 1 is the probability that a randomly chosen real
number in [ is also in I, . Let « be a randomly chosen number in I and
let the continued fraction expansion of a be

o =<0,ay,a;,as,...>.
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What is the probability that a; > 1?7 What is the probability that
a,; > 27 What is the probability that a; = 1? What is the probability
that a, = m, where m is a given positive integer?

If the intervals I,, I,,... of lengths 4,, 4,,... are all contained in the
unit interval I from O to 1, and if no two of the I,’s overlap, then we
shall say that the probability that a randomly chosen real number from
I is also in one of the I,’s is

oc
>
n=1
Let « be a randomly chosen real number in I and let the continued
fraction expansion of « be

o= <0’a19a25a35"'>'

Let m be a given positive integer. Show that the probability that a, > m
is

o 1
a; =1 a,(ma; + 1).

Check that

| 1 |
——=m|-— - .
a(ma; + 1) (mal ma, + 1)
Use this relation to show that the above infinite series “telescopes”

when m = 1 and, in fact, the sum is 1. Why is this expected beforehand?
Show that when m = 2, the series turns into

140

N

W-t+i-i+

=)

This has as its sum 2(1 —In2) =.
a,=1is1 —.61...=.38....

The notation is that of problem 21. Show that the probability that
ay > mis

1.... Thus the probability that

1
1 (ala2 + 1)(a1a2m +m+ al)‘

az

2
a;=1
When m = 1, what should this sum turn out to be and why? Use the

relation

1 _ am + 1 . as
(a;a, + D(aja;m + m+ ay) aam+1)+m aa;, + 1
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to evaluate

al |

ai=1(ayay + Diajaym + m + ay)

when m = 1, Use this result to evaluate the sum of the double series.
It should agree with your predicted answer.

Show that (3, 1,1,3) = (2,164).

Suppose that x, y, and d are positive integers and

x3 —dy? =n

Show that if y > 8|n|/(3d%/3), then x/y is a convergent in the continued
fraction expansion of d'/3. (Hint : Show that

E B d1/3 _ x3 _ dy3

y 3| (X 11/32 %2/3.
y[(y+2d +4d

The continued fraction expansion of 2!/ begins
213 = (1,3,1,5,1,1,4,1,1,8,1,14,1,102,14,12,23.2, .. .>.

Here Vg = (1070524 477, 1 348 776 323).
Use problem 24 to help find all positive integral values of x and y with
y < 10° such that

)

Ix* — 2% < 10.

(Note : It is possible to do this problem without calculating any V, past
V5. With a computer, it is perfectly feasible to do this problem with all
positive y < 10'3®. See miscellaneous exercise 10, Chapter 6, for the
method of covering the infinite range y > 10'3¢))



Chapter 8

QUADRATIC FIELDS

8.1. Introduction

One thing that is done time and again in solving Diophantine equations
is to take some expression and factor it, preferably into linear factors. For
example, in solving the equation

X3+ 3 =23

we would like to write it in the form

(x 4+ V(x + ay)(x + by) = 23

and then, hopefully, we could set each of x + y, x + ay, x + by equal to
cubes and solve the equation. Unfortunately,

I e I P
—_— A . _f‘

a 2

and thus our factorization into linear factors has been too rash, and we are
seemingly forced to beat a hasty retreat to the more awkward

(x + Y(x? = xy + yH) =2

Nevertheless. we would have solved the equation x*> + y* = z3 by exactly
the method outlined above if the book had not been cut. Here we will give
a brief illustration of the ideas involved by *‘solving’* an equation considered
in Chapter 5,

x?2 +yr =z

We factor the left-hand side into linear factors and get
(x+y/—Dx —y /=1 =z~
Thus, by analogy with what we did in Chapter 5, we set (x + ./ —1) and
257
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(x — y/ —1) equal to squares. But, squares of what? Well, since we are
dealing with numbers of the form v + v/ — 1. we put

x+y/—D=Ww+r,/—1)72

or, multiplying out the right side,

x + y\/TI = (u? — v?) + (21417)\/?]_

Therefore,

and this gives

z=u? 4+ v2

This is exactly the result given in Theorem 5.2. Amazing, is it not?

The reader will notice that we got the primitive triplets without making
the assumption that (x,y,z) = 1. But this should not be too shocking: in
order to set (x + y/—1)and (x — y./ —1) equal to squares, we wish these
numbers to be relatively prime—whatever that means. It is the purpose of
this chapter to justify these outrageous manipulations and at the same time
provide a bare introduction to one of the most thriving branches of modern
number theory, the theory of algebraic numbers.

EXERCISE

1. Find solutions to the equation x? + 2y? = w? by using numbers of the
form x + y,/ —2. Compare your answer with that of problem I, Section
5.3.

8.2. Quadratic Fields and Quadratic Integers

It has become customary to let Q denote the set of rational numbers and Z
the set of integers. Two numbers of Q can be added, subtracted, multiplied,
and divided (providing that the divisor is not zero) and the result is again a
number in Q. These are several of the properties that make Q a field.! We
will now consider a larger collection of numbers in which addition, sub-
traction, multiplication, and division again lead to answers in the original
collection.

Definition. Let d be a fixed rational number which is not the square of a
rational number. We let Q(ﬂ) denote the set of numbers a + bﬁ, where

! The reader interested in seeing exactly what a field is should refer to Appendix C.
We will not use anything from Appendix C in this chapter.
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a and b are arbitrary rational numbers. We call Q(\/ d) a quadratic field;
if d> 0, we call it a real quadratic field: if 4 < 0, we call it a complex
quadratic field or an imaginary quadratic field.

Thus for example, 3 + 4./2,§ + $5/2.5 =5 + 0/2,/2 = 0 + 1/2,and
/32 = 0 + 4,/2 are all members of Q(/2). Since any rational number a
can be written in the form a + 0\/d, the set of numbers Q(ﬂ) contains the
set of rational numbers Q. If d is itself the square of a rational number, then
a+ bﬂ is rational when a and b are rational and thus Q(\/d) is just Q
itself. It is for this reason that the definition of a quadratic field excludes the
case of d being the square of a rational number ; we get nothing new in this
case. In this chapter, ordinary small Roman letters (with the possible ex-
ception of x, y, z) will always stand for rational numbers. Numbers in quad-
ratic fields will be denoted by small Greek letters, «, 5, y,4,. ... The letter d
will always be restricted to a rational number such that \/c_i is not rational.

Theorem 8.1. a + b\/a =c+ e\/d if and only if a=c and b =e. In
particular, a + b\/d = O if and only ifa = b = 0.

(Remark : This theorem would be false if \/3 were rational : it would also
be false if a. b, ¢, and e were not restricted to Q.)

Proof. Since \/d is irrational. the special case that ¢ + b\/;i = 0 implies
that a = b = 0 is a consequence of Theorem 6.4. Now, for the general case.
If

a+ hV/u' =c + e\/:i,
then
(@—¢)+(b—e/d=0,

where (a — c¢)and (b — e)are bothin Q. Therefore,(a — ¢) = 0and (b — ) = 0
ora=cand b =e. A

Theorem 8.2. Let « and f be in Q(\/E). Then « + f, o« — f8, afs, and, if

B # 0, a/B are also in Q(\/E).

Proof. Letoa =a + b\/d and f§ = ¢ + e./d with a, b, ¢,e in Q. Then
oc+/f:(a+c)+(b+e)\/;i,
a—f=(a—c)+(b—el/d

aff = (ac + bed) + (ae + b(-)\/;i
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are all in Q(\/;i) since the six numbers (a + ¢), (b + ¢), (a — ¢), (b — e),
(ac + bed), and (ae + bc) are all rational. In addition, if § # 0, then not both
of ¢ and e are 0 and thus the number ¢ — e\ﬂi;é 0 therefore,

ct—e*d=(c+ e\/:i)(c - e\/c?) #0,

since neither of the factors are zero. Therefore,

g_(a-l-b\/g)(c—e\/a): (ac—bed) N (bc—ae)\/a
B (c+ e/d)(c — e\/a) c? —e’d 2 — eld

is also in Q(ﬂ), since the numbers

ac — bed bc — ae
2 — e}’ 2 — ed
are quotients of rationals with nonzero denominators and hence are
rational. A
Thus far, we have restricted d to being a rational number such that \/c_i

is not rational. But we can further restrict d without losing any of our
quadratic fields. For example,

a+b\/§=a+(§)\/6

and thus Q(\/g) = Q(\/g): that is, Q(\/sﬁ:) and Q(\/E] consist of exactly the

same numbers. In exactly the same way

Q(/? ) = Q(/rs),

and thus we need only consider integral values of d. But we can go even
further. For example,

a+b/12 =a+(2b)/3
and thus Q(V@] = Q(\/g). In like manner, Q(/r%s) = Q(\/E). Thus we

need only consider integral values of d that have no square factors greater
than one (such a number is said to be square-free). For the rest of this chapter,
d will denote an integer other than 0 or 1 without square factors greater than
one. (Since d # 0 or | and d has no square factors greater than one, d is not a
perfect square and thus \/2 is irrational.) The first few positive admissible
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values of d thus restricted are 2, 3,5,6,7,10, 11, 13, . ... The first few negative
admissible values of d thus restricted are —1, —2, —3, —5, —6, —7, — 10,
—11, —13,....

The numbers of Q(\/;i) are solutions of quadratic equations with integral
coefficients. The number a + b./d is a root of the equation

x? — 2ax + (a® — b¥d) = [x — (a + by/d)][x — (a — b /d)] =

which has rational coefficients; if we multiply the equation through by a
common denominator for the rational numbers (2a) and (a? — b2d), then
we get a quadratic equation with integral coefficients. The two roots of this
equation, a + bﬁ and a — b./d, are said to be conjugates of each other.

Definition. If « = a + b,/d, then we define the conjugate of a to be the
number & = a — b./d.

If d < 0, this definition should be familiar to the reader as the definition of
the ordinary complex conjugate of a complex number. As a result, the follow-
ing theorem should not be too surprising.

Theorem 8.3. If « and B are in Q(f) then (@) = «, (o + _=
(x = B)=a— B, (af) = @B, and if B # 0, then B # 0 and (a/p)
Further, « = & if and only if « is rational.

x+ B,
= a/p.

Proof. Letoc=a+b\/:iand/3=c+e d. Then

@ =(a—b/d)=a+bd=a
C+Pp=[a+)+b+edl=(@+c)—(b+eJd=a+p,

«—P=[a-+b-eJdl=(@—c—b-e/d=da—p

(@P) = [(ac + bed) + (ae + bc)\/c_i] = (ac + bed) — (ae + bc)ﬂ = ap.

If « = &, then a + bﬂ = a — b/d and thus (by Theorem 8.1) b = —b,
whence b = 0 and o = ais rational. Conversely, if &« = a + 0\/3 is rational,
then d = a — oﬁ = a. We can use the parts of Theorem 8.3 proved thus
far to simplify the arithmetic in the remaining part. If  # 0, then not both
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candeareOandthusf = ¢ — e\/g # 0. Therefore, since 1/(88) = 1/(c* — °d)
is rational,

(o) 1 [1) = 1 &
N=ls=aBl=|=|aB)=-5ap=-= A
B (Bﬂ ) (ﬂB) Bb B

We return for a minute to the quadratic equation satisfied by a number & of
Q(\/E). We have seen that « satisfies a quadratic equation with integral

coefficients, say,
(N ax? + bx + ¢ =0.

Since a satisfies this equation and since a, b, and ¢ are rational,
a@)? + ba + ¢ = a(0?) + b + ¢ = (ao?) + (ba) + ¢

(ae® + ba +¢c) = 0) = 0.

In other words, if « is a root of (1), then so is & If « is irrational, then o # &
and we have thus found the two roots of (1). Since roots of quadratic equations
correspond to factors, when « is irrational,

ax? + bx + ¢ = alx — a)(x — X).

Thus when « is irrational, there are infinitely many quadratic equations
with integral coefficients satisfied by «, but they are all multiples of one
another. By dividing equation (1) through by the greatest common divisor
of a, b, and ¢ and then multiplying by —1 if necessary, we get a unique
quadratic equation for a.

Definition. If « is an irrational number in Q(\/;i), then the equation
ax? + bx + ¢ = 0 is called the defining equation for « if o satisfies the
equation and q, b, and c are integers, (a,b,c) = 1,and a > 0.

For example, the number (3 + /17)/4 satisfies the equations
8x? —12x —4 =0, —10x24+15x +5=0, —2x2+3x+1=0.

They are all multiples of the equation 2x* — 3x — 1 = 0, which is the de-
fining equation for (3 + \/ﬁ)/4.

As an example of conjugation and defining equations, let us show that
an irrational number can be in at most one quadratic field (in other words,
the intersection of two different quadratic fields is Q). Suppose that the
irrational number

cx=a+b\/3=a1+b1\/d'1
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18in Q (\/d) and Q R/di). The other root of the defining equation for « is,
on the one hand, a — bﬂ and, on the other hand, a; — b,./d,. In other
words, & 1s the same in both fields:

&:a_b d=al—b1,/d1.

Hence

b/d = “7;1 b, J/d,.

and a slight alteration of this gives (b # 0 since « is irrational)

b,d
i, =03

Thus /dd, is rational and, by Theorem 2.13, \/ﬂl 1s an integer. But since
d and d; are square-free, the unique factorization theorem guarantees that
the only way that dd, could be a perfect square is that d and d, both have the
same sign and are composed of the same prime factors. Thus d = d,, as
desired.

The combination a& is used sufficiently often that it is convenient to give
it a name.

Definition. If « is in Q(ﬁ), we define the norm of « to be the number
N(o) = aa.

Theorem 8.4. N(a) = a% If a is in Q(ﬁ), then N(«) is rational, N(x) = 0
if and only if &« = 0, and if d < 0, then N(z) > 0. If f is also in Q(\/;i),
then

N(aB) = N(@)N(B)
and, if B # 0,

o N(a)
Nl = —=.
(ﬁ] N(B)
Proof. Since aisrational,a = aand thusN(a) = aa = a®. Ifa = a + bﬂ,
then

N(@) = ad = (a + by/d)(a — b\/d) = a* — b*d = a* + (—d)b?,

which is a rational number, and, if d < 0, then a2 > 0, (—d) > 0, b?2 > 0,
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and thus N(«) > 0. The fact that N(«) is rational could have been proved by
noting that .
N(a) = (2&) = @ = ad = N(),

so that N(«) is rational by Theorem 8.3. Clearly N(0) = 0 and, if o # 0,
then @ # 0 and thus N(«) = a& # 0. Therefore, N(x) = 0 if and only if
o« = 0. Next,

N(@p) = (2B)(@B) = apap = («&)(BB) = N()N(p)
and, if § # 0, then

(/3) (ﬂ)(ﬂ) ‘ﬁ (B)) 4

The 1den\t/nJv N()N(f) = N(xff) may seem trivial, butif we puta = a + bf

B =c+ e /d, thenit ledds to the identity
2) (a® — db?)(c?* — de?) = (ac + bed)® — d(ae + bc)>.
The special case of d = — 1 says that if two numbers can be written as the

sum of two squares, then so can their product. Thus the identity N(af) =
N(2)N(B) has more content than one might suspect at first glance.

Now that we know something about arithmetic in quadratic fields, it is
time to decide just which elements of Q( \/:1) we wish to call integers. To
begin with, a rational number should be an integer in Q(\/ if and only if
itis already an integer. Otherwise, the word “‘integer’’ would create too much
confusion to be tolerated. But since Q(f consists of numbers other than
Q, it seems reasonable to require that the integers of Q( \/_) consist of more
than just the ordinary integers. But what? If we think back over the properties
of the ordinary integers, we find a theorem that says that if x" is an integer
and x is rational, then x is an integer. This has been a very useful property
and it seems like one that we should desire to keep. In our case, it means
that if x" is an integer and x is in Q(\/;I), then x should be an integer. In
particular, since d is an integer and \/d is a root of x> = d, we will define \/21
to be an integer. We want sums and products of integers to be integers. If a
and b are ordinary integers, then we wish b\/a and as a result a + b\/Zi to
be integers also. It would be nice if we could stop here, but there are many
advantages to going further For example, the number (—4) + (3)/—3is a
root of the equation x* =1 and hence it seems desirable to make
(-9 + (%)\/j3 an integer even though it is not of the form (ordinary
integer) + (ordinary integer) ./ — 3.

We have thus far been defining integers by the equations they satisfy.
What is it about the equations that distinguishes an integer from a non-
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integer? The deﬁnmg equatlon for \/:i is x> — d = 0. The defining equation
for (=3 + 3)/—3isx> + x + 1 = 0. The deﬁmng equation for 5 + 7f
(which we have agreed shall be an integer) is x2 — 10x — 73 = 0. What, if
anything, do these equations have in common? They all begin with x2, not
2x% or 3x? or 71x?, but just x2. Could this be the key to our definition?
Let us test the idea on rational numbers. If a/b is a rational number with a
and b integers, (a,h) = 1 and b > 0, then the defining equation for a/b is
bx — a = 0. The integers are exactly those numbers with b = 1, in other
words, any rational such that the coefficient of x in its defining equation is
one. Thus, by analogy with the ordinary integers and with what we have
already seen, the following definition seems to be in order:

Definition. A number « of Q(\/?d) shall be called a quadratic integer, or
just integer for short, if either « is rational and is in Z or if « is irrational
and the coefficient of x2 in the defining equation for « is 1. The numbers in
Z will be called rational integers.

Hence, by definition, a quadratic integer that is rational is a rational integer :
we have introduced no new integers among the numbers of Q. Note also
that since the defining equations are the same, & is an integer whenever « is.
We have attempted to motivate this definition somewhat, but in the end, it
will stand or fall on its usefulness and not on its motivation You may ask:
“Why should (—1 + \/7_12 (defining equation x? + x + 1 = 0) be an
integer and not (—3 + 6,/ —3)/2 (defining equation 4x* + 12x + 117 = 0)?
That doesn’t seem natural.”” One might also ask: “Why should — [ be an
integer?”” The second question does not occur to anyone anymore since they
have been brought up to believe that —1 is an integer. The first question
would not occur to anyone either if he had been brought up on our definition.
A definition should not be condemned just because it is unnatural. One
should not pass judgment on it until one sees if it leads to new results and
clarifies old ones or rather, as in some of the “‘new math,”” it leads to excess
verbiage that does little except obfuscate the clear concepts at the foun-
dations.

The integers of Q(\/;i) satisfy the fundamental properties that the sum,
difference, and product of two integers is again an integer. Before we prove
this, however, it is useful to learn how to recognize an integer without having
to find its defining equation.

Theorem 8.5. If d # 1(mod 4), then the integers of Q(\/;i) are exactly
those numbers of the form a + b\/ZI where a and b are rational integers.
Ifd = ](mod 4), then the integers on(\/ ) are those numbers of the form
(a + by )/2 where a and b are rational integers, both even or both odd.
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[Remark: It follows that if a and b are rational integers, then a + bV/;i
is always an integer ; if d = 1(mod 4), this is because such a number can be
expressed as (2a + 2b\/d)/2, where 2g and 2b are both even.]

Corollary. If d = 1(mod 4), a number of Q(\/:i) is an integer if and only
if it can be written as a + b[(l + \/3)/2], where a and b are rational
integers.

Proof of Theorem 8.5. If a = a + b\/;i. where a and b are rational, then
o 1s rational if and only if b = 0. Thus « is a rational integer if and only if a
isin Z and b = 0 and then it is in the form

cx=a+bﬂ (aand binZ)

_2a+2b/d

7 (2a and 2b both even numbers in Z).

For the rest of the proof we suppose that o« = a + b\/;i is irrational.
If a and b are in Z, then « satisfies the equation

x? — 2ax + (a* — b%d) = 0,

where (—2a) and (a®> — bd) are in Z. In this equation, the coefficients
obviously have no common factors other than 41 (since 1 is a coefficient),
and thus this is the defining equation for a. Therefore, « is an integer. If
d = 1(mod4) and a« = (a + b\/Zi)/2, where a and b are both odd numbers
in Z {(a and b both even reduces « to the previous case), then « is a root of
the equation
2 2
xz—ax-f- (a4bd) =0,

where —a and (a® — b2d)/4 are in Z. The latter number is in Z. since if a
and b are both odd, then

a* —b’d=1—-1-1=0(mod4)

and there is a factor of 4 in the numerator. Thus « is an integer.
Conversely, suppose that the irrational number « in Q(\/E) is a root of the
equation

x2 4+ bx + ¢ =0,

where b and c are in Z. Thus « is an integer in Q(\/E). There are two cases
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to consider here. Suppose first that b is even and let b = 2a. Then « is one of
the two numbers

—a+ Ja*? — ¢

If we put a2 — ¢ = e2d’, where d’ has no square factors greater than 1 (and
d’ is not 0 or I, since a is not rational), then « is one of the two numbers
—ate/d =(-2a+ 2eﬂ)/2 in Q(\/c?), where —ag and +e are in Z,
—2a and +2e are both even numbers in Z. In the second case, we suppose
that b is odd and then « is one of the two numbers

—b+ /b —4c
5 .

Since b is odd,
b? —4c =1 — 4¢ = 1(mod 4).

Let us put b2 — 4¢ = e*d’, where d’ has no square factors > 1 (and d’ # 0
or | since « is irrational). Then e is odd since b?> — 4c is odd and thus

d =1-d =e*d =b? — 4c = 1(mod 4).

Hence « is one of the two numbers

—b + e /d
2
in Q(ﬂ). where d' = 1(mod 4) and —b and +e are both odd. In each of
these cases, d’ = d, as we have already shown on page 263. A

Proof of the Corollary to Theorem 8.5. We naturally use Theorem 8.5. If
aand b are in Z, then

s b(] +2\/J) _(a+ b)2+ h\/ﬁ’

where 2a + b = b(mod 2) and thus (2a + b)and b are both even or both odd.
Also if a and b are in Z, both even or both odd, then

a+bd _ a;b)+b(1+2\/3)’

2

where (a — b)/2 and b are in Z, the former since a = b(mod 2),
a — b = 0(mod 2), and so 2|(a — b). A
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Theorem 8.6. If o and f are integers in Q(\/:i), then « + B, « — f, and
. . /S
aff are also integers in Q(./d).

Proof. We can prove the theorem for both cases d # I(mod4) and
d = 1(mod 4) by slightly complicating the notation. Let
NZ ifd # 1(mod 4),
’ ]izL/E ifd = I(mod 4).
Theorem 8.5 and its corollary show that for a number y of Q(\/E) to be an
integer, it is necessary and sufficient that y can be written
(3) y = (rational integer) + (rational integer)w.
Since « and f§ are integers in Q(\/E), we can write
a=a+ bw, p=c+ ew,
where a, b, c, e are in Z. Thus
a+ B=(a+c)+ (b +ew,
xa—f=(@—c)+ (b —ew
are both in the form of (3) and hence are integers. We may write
w? = sw + 1,

where s and ¢ are in Z; in fact, if d 2 1(mod 4), then s = 0, t = d, and if

d = 1(mod 4), then s =1, t =(d — 1)/4 with t being an integer since

d = 1(mod 4). Thus
af

ac + (ae + bo)w + bew?
ac + (ae + bc)w + be(sw + t)
= (ac + bet) + (ae + bc + bes)w,

which is in the form of (3), and thus «f is an integer. A

We know that the norm of a number in Q(ﬂ) is a rational number. Can
we say more about the norm of an integer? The answer is yes, and the result
will be extremely useful in later sections ; indeed, the concept of norm would
be much less valuable without the following theorem.

Theorem 8.7. If « is an integer in Q(\/c_i), then N(«) is a rational integer.

Proof. When « is an integer, & is also an integer (this follows from either
the definition of integer or from Theorem 8.5), and thus by Theorem 8.6,
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N(a) = aais an integer. But N(«) is also rational, and hence N(a) is a rational
integer. A

Theorem 8.7 could also be proved for irrational « (it is obvious for rational
a) by observing that the defining equation for « must be of the form

x4+ bx+c=0,

where b and ¢ are in Z, and since the two roots of this equation are « and &,
the left side must factor as

x2 +bx 4+ c=(x— a)x — ).

If we multiply out the left-hand side of the above equation, then we see that

o+ &= —b, al = c.

Thus « + & and N(x) = a& are rational integers. Theorem 8.7 may also be
proved directly from Theorem 8.5.

EXERCISES
1. Which of the following numbers are quadratic integers in some quadratic

field: 9 + /7.1 — 2,/=7,10, 1,

1+3 9+15/-7 94+15/-7 10+./-108 3+2/6,
2 2 6 4 -6

2. Ineach of the following two equations, one rootis 3 + 2,/ —2. What is the
other root? 3x%2 — 18x + 51 = 0, and

(1 +3/=-2x*+2—-13/-2)x + (13 +20,/—-2) = 0.

3. If we let « = 3 + 4,/ —1, then the equation N(x) = 52 is another way of
expressing the fact that 3,4,5 is a Pythagorean triplet. Using the identity
N(®") = [N(«)]", with n=2 and 3, find two other triplets. Let
B =5+ 12,/ —1 so that N(B) = 132 Find a triplet with hypotenuse 65.
Using y = 12 + 5,/ —1, find another triplet with hypotenuse 65.

4. Show that the roots of the equation x? = 37 + 12, /7 are in Q(ﬁ). Are
the roots integers in Q(\ﬁ)?

5. Give three examples of nonintegers whose norms are rational integers.
Does this contradict Theorem 8.7?

6. If a is an integer, show that a® + (&) is a rational integer.

7. Show that if « is in Q(\/d), then « can be written as the ratio of two in-
tegers in Q(ﬁ). (Hint : The denominator can even be taken from Z.)
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8. It was claimed on page 262 that if « is an irrational root of the equation
ax? + bx + ¢ = 0, then

ax? + bx + ¢ = alx — a)(x — ).
Let
alx —a)(x — &) =ax? + ex + f
Show that e and f are rational and that
(ax? + bx +c)—(ax? +ex+ f)=b—e)x +(c —f)

is 0 when x = «. Use this to prove thate = band f = c.
9. Prove Theorem 8.7 directly by using Theorem 8.5.

8.3. Divisibility and Factorization into Primes

We now begin to build up some of the theory of divisibility of integers of
Q(\/E) analogous to what was done for the rational integers in Chapter 1.

Definition. If « and § are integers in Q(\/c_i), with « # 0, we say that «
divides f and write «|f if there is an integer y in Q(\/:i) such that 8 = ay
(in other words, «|f if B/a is an integer). Whenever we write «|8, it is
assumed that a and B are integers in Q(ﬂ) with a # 0 (and, of course,
that B/a is an integer).

We recall that if « and f are rational integers, we already had a definition
of a|f. Fortunately, in this case the two definitions are the same : 8/« should
be a quadratic integer in the new definition and a rational integer in the old;
in either case B/a is a rational number and, by definition, a rational number
is a quadratic integer if and only if it is a rational integer. Our definition of
divisibility leads to the analog of Theorem 1.2, and the proof is also the
same.

Theorem 8.8. If «|f and |y, then &|B and for any integers  and ¢ in Q(\/:i),
o/(Bé + ye). [Special cases include «|(f + y) with 6 = ¢ = 1, af(B — ) with
0=1lande = —1,a|fd withe = 0.]If «|f and B|y, then «fy.

Proof. By definition, there are integers { and # such that 8 = a{, y = an.
Then g = & and
Bo + ye = ald + ane = (LS + ne).

Since  is an integer,  is an integer ; since &, 1, ¢ are also integers, Theorem 8.6
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says that {6 + ne is an integer. Thus, by definition, &8 and o|(8 + ye). If
o/ and fly, then there are integers { and # such that 8 = a{, y = pn. There-
fore, y = aln and hence «fy. A

Now we are ready to look at the problem of factoring the integers of
Q(ﬁ) into other integers. Notice that we didn’t say, ““factoring the positive
integers of Q(\/E) into positive integers,” which is all that we considered in
Z. One reason for this is that when d < 0, the numbers of Q(ﬂ) are complex
numbers and thus are neither positive nor negative, these being concepts
which were defined for real numbers. The more creative student may well
ask : *“You have just made a definition that makes certain complex numbers
integers ; why don’t you define positive and negative for complex numbers?”’
This is a good question and one worth answering. Any definition of positive
and negative should have at least the following properties:

1. Every nonzero complex number shall be either positive or negative
but not both.

2. If «a is positive, then —oa shall be negative; if a is negative, then —«
shall be positive.

3. If « and B are positive, then af is positive.

Without these minimal properties, the words positive and negative would
be too much in conflict with their usual meaning to be of any use. Unfortu-
nately, when d < 0, these properties are self-contradictory; it is impossible
to make a definition of positive and negative which has all three of these
properties. Since this fact is of no importance in the rest of this book, we
leave it for the reader as an exercise at the end of this section. Since we will
be factoring all the numbers of Q(\/:i), it may be worthwhile to consider
what happens in Z when we factor numbers of Z into products of numbers
in Z and not just factor positive integers into products of positive integers.

As an example, we factor the number 12 in several manners:

12=2-23,

12=2-3-2,

2=1-1-1-1-2-2-3,

12 = (=2)(2)(-3),

12 = (= D(=2)(=2)(-3),

12 = (= D(=DH(=DH(=DH(=2)B)(=2).

The first three factorizations are familiar ; the first two factor 12 into the same
primes except for order, and the third illustrates why it was advantageous
not to call 1 a prime number. The last two factorizations show that it is
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equally advantageous not to call —1 a prime. The two integers, 1 and —1,
share the property that any number of them (actually only an even number
of minus ones) can be introduced into a factorization. It is thus convenient
to consider the two integers 1 and —1 as neither primes nor composite
numbers but something else. This something else is called a unit; 1 and —1
are the units of Q. Except for 0 and the units + 1, the other integers of Q are
called primes or composite numbers according to the way they factor. Any
integer can always be factored into a given unit such as (—1) and another
integer, for example 2 = (— 1) - (—2). Thus a rational prime is one in which
whenever it is written as the product of two rational integers, one of those
integers is a unit. What about unique factorization? In the old sense, we no
longer have it. For instance, the first and fourth factorizations of 12 above
factor 12 into products of different primes. Yet they are not really that differ-
ent. One factorization can be turned into the other by appropriate use of
the unit —1. The primes 2 and —2 are associated by the fact that either
equals the other multiplied by the unit —1. If p is a rational prime, then —p
is also; any factorization containing p as one of the factors can be turned
into a factorization containing — p as one of the factors and vice versa. The
numbers p and —p are called associated primes or just associates. The
unique factorization theorem for positive integers can now be replaced by
the slightly more complicated unique factorization theorem for rational
integers:

Theorem 8.9. If nis a nonzero rational integer, then any two factorizations
of n into primes are the same except possibly for the order of the factors
and primes being replaced by their associates.

We will not use this theorem in this book and hence we leave its proof to
the reader as an exercise at the end of the section. The factorizations of 12
show that the extra complications in the theorem are necessary.

If the complications of units and associates are necessary in Z to give
unique factorization, we can certainly expect these complications to appear
in Q(ﬂ). If ¢ and 6 are integers in Q(\/E) and &6 = 1, then ¢ and § can be
added to any factorization as often as desired. For example, if a, 8, and y are
integers in Q(\/H) with y = af}, then we also have

y = edaf = (£)(e)(9)(0)(5p),

and so on. Thus ¢ and J play the same role in Q(\/E) as —1 does in Q. Since
&6 = 1 with ¢ and J being integers is another way of saying ¢|1, we make the
following definition:
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Definition. An integer ¢ in Q(\/d) is called a unit if ¢|1. In particular, 1 and
—1 are always units in Q(\/_d).

The following facts about units will be useful.

Theorem 8.10. If ¢, and &, are units in Q(\/d), then &, £,&,, £/¢, (in
particular 1/g,) are also units in Q(\/J). Further, an integer ¢ of Q(ﬂ) 1s
a unit if and only if N(g) = +1.

[Remark : The restriction that ¢ be an integer is necessary. For example,
NG + %JT]) =1 but ¥+ ‘5‘\/—] is not an integer in Q(\/TI) and
hence not a unit.]

Proof. Since ¢, and ¢, are units, they are integers and there are integers
d; and d, in Q(\/g) such that ¢,6, = ¢,6, = |. Then &, £,¢,, 8,. and 6,6,
are integers and

£0, =(6,0)=1=1,
(£182)(010,) = (£101)(£20,) = 1,
so that ¢, and ¢,¢, are units. Further,
£ €10,
&2 €202
is an integer and (&,/¢,)(¢,0,) = 1 with £,5, also being an integer. Thus ¢,/¢,

is also a unit. Finally, if ¢ is an integer and N(¢) = +1, then £ and —¢ are
also integers and either N(g) = 1, so that

¢ = N(g) =1
or N(¢) = — 1, so that
8 —& = —N() = 1.
In either case, we see that ¢ is a unit. Conversely, suppose ¢ is a unit. Then
there is an integer o such that ¢6 = 1 and thus

N(e)N(9) = N(ed) = N(1) = 1.

Since N(¢) and N(J) are rational integers and their product is 1, either
N(g) = N(3) = 1 or N(¢) = N(6) = — 1. In any event, N(¢) = +1. A

Now that we know how to recognize a unit, the next question to be asked
is: What are the units in Q(\/E)? We will answer this question only for the
complex quadratic fields and settle here for a knowledge of how many units
the real quadratic fields have.
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Theorem 8.11. If d < 0,d # —1,d # —3, then Q(\/E) has exactly two
units, namely +1. Also Q(,/ — 1) has exactly four units, +1and +./—1:
Q(./ —3)hasexactly six units, +1, +(—1 + / —=3)/2, +(—1 — / =3)/2.
Ifd > 0, then Q(ﬂ) has infinitely many units.

Proof. Suppose thatd < 0 and d # [(mod 4). Then the integers on(\/c;)
are of the form o« = a + b\/g, where a and b are in Z. If « is a unit, then
N(a) = +1 and, in fact, N(a) = 1, since norms are not negative whend < 0
(Theorem 8.4). We recall that

N(o) = a® — b?d = a® + b¥(—4d).
Ford < —2 (and therefore — d > 2), we have N(a) > a® + 2b%,and ifb # 0
(so that b> > 1), then
Noy>a’>+2-1>2

and hence « is not a unit. Thus if « is a unit and d < —2, then b = 0 and
N(a) = a* = 1. Therefore,a = +1 and therefore « = +1. Thus ford < —2,
d # 1(mod 4), the only units of Q(ﬂ), are + 1. Suppose thatd = —1. Then
1 = N(o) = a® + b?, assuming that « is a unit. It is quickly seen that

a®> + b? > 1 unless |al < 1, |bl < 1 and, of these choices, a> + b*> = | only
fora= +1,b=00ra=0,b = +1.This gives +1and +./ —1 as the only

units in Q(/ —1).

Now suppose that d < 0 and d = 1(mod 4). In this case, the integers a of
Q(\/E) are of the form

a_a+b\/2
-2

where a and b are both odd or both even integers in Z and here
N(o) = az%z(_d).
Again since d < 0, « is a unit if and only if N(x) = 1; that is,
a* + b*(—d) = 4.
Ford < —7(and thus —d > 7)and b # 0,
@+ b(—d)>a*+Th*=2a>+7-1>7> 4,

and hence « a unit implies that 5 = 0. In this case, 4 = N(a) = a2, so that
a= t2and a = +1. Thus if d < —7 and d = 1(mod 4), the only units of
Q(/d)are +1.1fd <0,d = I(mod 4) and —7 < d, thend = —3. So now
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assume that d = —3. In this case « a unit implies
a* + 3b* =4

Iflbl > 2,thena® + 3b? > 12and thusifa® + 3h? = 4, then the only choices
forbareb = +1,0.1fb = 0,thena = +2anda = +1.Ifb = 1,thena= +1
anda = (+1 + /—3)2.1Ifb = —1,thena= +landa = (+1 — /—3)/2.
Thus, the only units of Q(\/f3) are +1,(+1 +/—=3)/2, (1 — /—3)/2,
and these are the six units of the theorem.

Now let us suppose that d > 0. We will show that there are infinitely many
units of the form

oc=a+b\/3,

where a and b are rational integers. This is, of course, what we must do if
d # 1(mod 4), but when d = 1(mod 4), we are throwing away potential units
of the form (¢ + ev/c_i)/l where ¢ and e are both odd rational integers. In
fact, we will show that there are infinitely many such units & with N(x) = 1;

we thereby ignore whatever units there may be of norm —1. So suppose
N(«) = 1. This happens if and only if
a®> —db? = 1.

But this is the Fermat-Pell equation. Since \/(3 is irrational, Theorem 7.26
says that there are infinitely many solutions to this equation in integers a
and b. Each of these solutions leads to a unit of norm +1; hence Q(ﬁ)
has infinitely many units. A

Thus when d < 0, the unit situation in Q(V/;i) is exactly the same as in Q
except whend = — 1 and — 3, when the situation is slightly complicated. On
the other hand, the situation in Q(\/ﬁ) with d > 0 is considerably more
complicated. But it is still a finite process to determine if two factorizations
of a number differ only by unit factors. For example, in Q(ﬁ) we have

= (1 4+ /6)(—1 + /6) = (71 +29./6)(=T1 + 29,/6).

Once we prove Theorem 8.12, the reader may return and see that the numbers
(1 4+ /6 (=1 + J6).(71 + 29./6).(—71 + 29,/6)are all primes in Q(,/6).
Does this destroy the hope for unique factorization in Q(\/é), or is it just a
more complicated example of something like 6 = (2)(3) = (—2)(—3)? To
see if one of the two factorizations can be turned into the other by insertion
of unit factors, we wish to know if either (71 + 29\/6)/(1 - ﬁ) or
(=71 +29./6)/(1 + V/E) is a unit. In the first case,

71 +29./6 103 + 42,./6
I+ /6 5
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is not even an integer and hence not a unit. In the second case.

-7 9./6
&_zw_zo\@
I+ /6

is an integer and thus may be a unit. [We will see immediately from the
definition of primes that if one prime in Q(\/E) divides another prime. the
quotient must be a unit.] To see for sure, we look at

N(49 — 20,/6) = 492 — 6-20% = |
and hence 49 — 20./6 is a unit. In like manner

71 +29./6
j_v_=49+20\@
-1+ /6

is also a unit. (Incidentally, this division need not be performed: if the
numerator and denominator are multiplied by — 1. then the division to be
done involves dividing the conjugates of the earlier division and hence, by
Theorem 8.3, the answer is the conjugate of the earlier answer.] Therefore.
since (49 + 20,/6)(49 — 20,/6) = 1.

S5=(1+/6(—1+./6)
= [(1 + /6)(49 — 20./6)][(—1 + /6)(49 + 20,/6)]
= (=71 + 29./6)(71 + 29./6),

and indeed the first factorization of 5 can be turned into the second (except
for order) merely by inserting the proper unit factors. Clearly this is much
harder to tell when there are units other than 41 available, unless of course
the reader is willing to use an “‘obvious” (but not yet proved) theorem on
unique factorization for Q(VF6) analogous to Theorem 8.9 for Q. And. in
view of this last example, is such a theorem really obvious?

We are now ready to consider factoring the nonzero, nonunit integers of
Q(ﬁ) into primes. We first note that if a is an integer, N(a) = O implies
o« = 0, and [N(a)] = 1 implies « is a unit. Thus an integer « is nonzero and
a nonunit if and only if |[N(a)] > 2. This fact will be useful to remember.

Definition. An integer 7 in Q(\/E) which is neither zero nor a unit is
called a prime in Q(\/;i) if for every decomposition of 7 into a product of
two integers, say = = af, either o or B is a unit.? To distinguish the primes

2 In this chapter, we will have no occasion to refer to the number 3.14159 . .. which does
not belong to any quadratic field. The letter = is the Greek letter corresponding to
p and it is standard practice to use it to denote a prime.
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of Q(/d) from the primes of Q(+2, +3, +5, +7,...) we will now call the
primes of Q rational primes. A nonzero, nonunit, nonprime integer of
Q(\/E) is called composite. In other words, a composite number is the
product of two nonzero, nonunit integers of Q(\/J).

It is very important to distinguish between “prime” and “‘rational prime.”’
A rational prime is not necessarily a prime in Q(\/c?). In fact, we have just
seen such an example. We had the factorization

5=(1+/6)(—1+ /6
and N(1 + VF()) = N(-1+ VFG) = —5, so that neither (1 + \/(7)) nor
(=1 + VFG) are units and hence the rational prime 5 is not a prime in Q(\/a).
The following theorem will enable the reader to distinguish many primes
(but not all) at a glance.

Theorem 8.12. If « is an integer in Q(\/E) and N(«) is a rational prime,
then « is a prime.

Proof. Since N(x) is a rational prime, a is not zero or a unit. Suppose
o = fy, where § and y are integers in Q(ﬂ). Then

N(a) = N(BN(y),

where N(f) and N(y) are rational integers. Thus by the definition of a rational
prime, one of N(f) and N(y) is a rational unit. The rational units are + 1, and
thus either N(f) or N(y) is + 1. Hence either §§ or y is a unit and therefore, by
definition, « is a prime. A

For example, N[(3 + ,/ —163)/2] = 43 and thus (3 + ./ —163)/2 is a
prime in Q(,/ —163); N(—1 + \/6) = —5and thus —1 + \/6 is a prime in
Q(\/6); N[(11 + 2,/ —1)/5] = 5 but (11 + 2,/ —1)/5 is not an integer and
hence not a prime.

This is also a good spot to give an example of a prime whose norm is not
a rational prime. We will show that 7 is a prime in Q(VF()) in spite of the fact
that N(7) = 49is not a rational prime. Suppose that 7 is not a prime in Q(\/g).
Then there are integers « and f§ in Q(\/E) with 7 = aff and neither « nor j
being a unit. As a result, [N(«)| > 2, IN(f)| > 2 and since

IN(@)| - IN(B) = IN()N(B) = IN(7)| = 49,
with |[N(«)| and |N(B)| being positive rational integers, we must have
IN()| = IN(B) = 7.

To show that 7 is a prime in Q(\ﬁ), it thus suffices to show that there are no
integers in Q(VF6) of norm +7. Let y be an integer in Q(\,F6); then
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y = a + b,/6, where a and b are in Z. Suppose N(y) = +7. Then
“4) a’> —6b* = +7.

Modulo 7 this equation reads

(5) a®> + b? =a* — 6b* = +7 = 0(mod 7).

By Theorem 3.30, it follows from (5) that a = b = O(mod 7). Thus 7|a, 7|b,
49|a?,49|b* and hence 49|(a®> — 6b?). This is a contradiction since a> — 6b* =
+ 7. As a result, there are no (rational) integral solutions to equation (4), and
hence there are no integers in Q(ﬁ) of norm +7. Therefore, 7 is a prime in

Q(,/6).

We have one remaining concept left to generalize to Q(Vg).

Definition. If o and f are nonzero integers in Q(ﬂ) such that a = fe,
where ¢ is a unit, then o is said to be an associate of 3. In other words, a is
an associate of f§ if and only if /B is a unit.

Under this definition, any integer is an associate of itself. The main properties
of associates are given in the following theorem.

Theorem 8.13. If « and f§ are integers in Q(\/E), then a is an associate of §
if and only if B is an associate of « (and then we can say that « and f§ are
associates or associated). Also o and f§ are associates if and only if «|f and
Blo. If « and B are associates and y|«, then y|f and if «|J, then f|o. If « is a
prime, then every associate of « is a prime; if o is a composite, then every
associate of a is composite.

Proof. If ¢ is a unit, then 1/¢ is also a unit. Thus if x = e, then f = a(1/e).
Therefore, by definition, if o is an associate of f, then f is an associate of a.
Likewise if § is an associate of «, then « is an associate of f. If the integers
o and B are associates, then there is a unit ¢ such that « = feand g = a(1/¢).
Since ¢ and 1/¢ are units and hence integers, la and «|f by the definition of
divisibility. On the other hand, if «|f and f|«, then by definition, f = a¢ and
o = B with ¢ and J being integers. Therefore ¢6 = (8/x)(«/f) = 1| and thus
¢ and ¢ are units. Hence o and f are associates. If « and f are associates and
y|at, then since «|f, it follows from Theorem 8.8 that y|S. If « and g are associ-
ates, so that f|a and «|d, then, by Theorem 8.8, f8|0.

Theorem 8.10 shows us that all the associates of units are units and hence
no associate of a nonunit is a unit. Suppose that « and f are nonzero, nonunit
associated integers in Q(ﬂ). Then « is either prime or composite, and the
same holds for . We will show that both are prime or both are composite.
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Suppose that one is prime and one composite ; since it makes no difference,
let « be prime and f be composite. Then we may write § = yJ, where neither
y nor J is a unit. Since « and f are associates, there is a unit ¢ such that o« = fe.
Thus a« = (y)(d¢). Now y is a nonunit. Also (d¢) is an associate of a nonunit
and hence, as we have just noted, is itself a nonunit. Thus we have factored «
into two nonunits, which contradicts the assumption that « is prime. Hence
o and f are both prime or both composite, as was to be shown. A

We conclude this section by showing that factorization into primes is
possible (incidentally, there are systems where factorization into primes is
not possible) and we save the problem of unique factorization for the next
section.

Theorem 8.14. If o, , a5, .., &, are nonzero integers in Q(\/g) and
o= 040y 0y with n > log,(|N(a))),
then at least one of the numbers «, ..., «, is a unit. It follows that if « is

not a unit, then it can be represented as a product of a finite number of

primes in Q(\/E ).

Proof. Suppose none of the o;’s are units. Then for each j in the range
I <j < n, we have IN(«;)] = 2. Thus

IN(o)] = IN(at1)N(er) - - - N(og,)

= INC)l - IN(og)] - -+ - INGet )|
>2.2.....2
=2"

We now look at the logarithms (to the base 2) of both sides of the inequality,
IN(x)] > 2", and see that log,(|N(a)|) > log,(2") = n. This contradicts the fact
that n > log,(|N(«)|) and hence at least one of the numbers a,,...,a, is a
unit.

Now suppose « is a nonzero, nonunit integer in Q(\/E). We will show
that « can be written as a product of one or more primes. If « is a prime, we
are done. If o is composite, then we can set & = o, f8;, where neither a; nor
B, are units. If ; and B, are primes, we are done. If «; and 8, are not both
primes, then one of them is composite and we can assume that a; and f,
are named so that 8, is composite. Then f§; = a,f,, where a, and f3, are
nonunits. Thus o = o;a, 8, gives a as a product of three nonunits. If o, ,a,
and f8, are primes, we are done; if not, one of them is composite and, by
renaming the numbers, we may assume that 8, is composite. Then 8, = 38,
where o3 and B are nonunit integers. Thus o = o, 500383 gives « as a product
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of four nonunits. We continue this way as long as at least one of the factors
is composite. At the nth step, we get

(6) o =00ty 0y 1By

with none of the numbers on the right-hand side being units. For some
n < log,(IN(«)|) this process gives o;,%;,...,a,-, and f,_, all primes. If
not, the process is repeated until we reach an n > log,(|N(«)|). But then
there are n factors on the right, and the first half of our theorem says that at
least one of the factors on the right is a unit. The process outlined above, if
carried n steps, would have given all nonunits on the right. Thus the factoring
process must have ended with an earlier n and, when it ends, it gives a
representation of a as a finite product of primes. A

We have actually proved more than the second half of the theorem. We
have shown that if we start with o and factor it into two nonunits, and if we
keep factoring any composite numbers that appear into two nonunits, that
after a maximum of log,(|N(«)|) factorizations (no matter how we proceeded),
we will have o represented as a product of primes.

EXERCISES

1. Show that it is impossible to make a definition of positive and negative in
Q(\/TI) that satisfies the three properties listed on page 271. Do this by
showing that since « # 0 implies « or —a is positive, then a? is always
positive. Use this to show that both | and — I are positive.

2. Prove Theorem 8.9 by using Theorem 2.9 and the facts that the absolute
value of a nonzero rational integer is a positive rational integer and the
absolute value of a product is the product of the absolute values.

3. Which of the following numbers are units:

24 /719 + 231 /=71. *2\/;3, 39 +25ﬁ_ 13 +43\/ﬁ?

4. Prove that if the product of two integers in Q(ﬂ) is a unit, then each
is a unit.

5. If =y and n, are primes in Q(ﬁ) and 7,|n,. show that =, and =, are
associates.

6. Show that each of the following numbers are primes in Q(,/—5):
342/-531+2/-5

7. Factor the number 33 + | ]\/—7 into primes in Q(,/ —7). [Note:
—7 = 1(mod 4).]

8. Show that 2 is the product of two associated primes in Q(\/g). Show
also that 3 is the product of two associated primes in Q(\/B).
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9. Factor the number \/14 into the product of two primes in Q(V/]_4).

10. Show that if a and b are both odd rational integers, then either 4/(a + b)
or 4|(a — b). Use this to help you show that if @ and b are both odd
rational integers, then either

1+ =7\|{a+by/=7 I+ =7\|[a—=by/ -7
2 2 or 2 2
(Hint: Perform the divisions.)

11. Suppose « and f are integers in Q(V/cj). Prove that if N(a) = N(f) = 1.
then o| 8. Prove or give a counterexample to the more general conjecture
that if N(&) = N(f). then «|f5.

12. Show that there is no integer in Q(\ﬁ) of norm 3. Show that in spite of

this, 3 is not a prime in Q(\ﬁ
13. Suppose ¢ is a unit in Q(,/d) and |/ is an integer in Q(,/d). Show that

& is a unit.

8.4. Unique Factorization and Euclidean Domains

The discussion in the previous section leading up to Theorem 8.9 shows
what form a unique factorization theorem for Q(\/Zi) should take.

Definition. Suppose Q(\/a) has the following property: If « is any non-
zero, nonunit integer in Q(\/E) and we have the two factorizations

o= EM M,y - T,, o = gmymy - - T,

where sand ¢’ areunitsand n,,..., m,, T}, ..., T, are primes not necessarily
distinct. then r = s and the primes Ty T, Ty can be given new sub-
scripts in such a way that n; and 7 are associates for j = 1.2,....r. Then
we say that the set of mtegers of Q \/_) is a unique factorlzatlon domain
(UFD for short).

Other authors say that Q(\/;l ) has the unique factorization property and still
others say Q(\/a) is a simple field. The word ““‘domain’’ (short for “‘integral
domain’) in the above definition is a technical word which refers to a set of
numbers which satisfies all the field axioms of Appendix C except possibly
axiom 9, which is replaced by a less restrictive axiom on cancellation ; thus
sums, differences, and products of numbers of the set are in the set, but
quotients are not necessarily in the set. The technical meaning of the word
“domain” is unimportant here. Unique factorization has been used time
and again in the last six chapters. We temporarily delay consideration of
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whether or not the integers of Q(\/E) do form a UFD and prove some
analogues of some of the most applicable theorems of the second chapter.

Theorem 8.15. The integers of Q(\/E) form a UFD if and only if Q(\/E)
has the following property: If nlaf8, where n is a prime and o and f§ are
integers in Q(\/E), then 7|a or 7|f.

Proof. Suppose first that the integers of Q(\/E) form a UFD and then
suppose that n|af, where = is a prime and « and f are integers in Q(ﬁ).
By definition of z|af3, there is an integer y such that aff = ny. By Theorem
8.14, there are primes 7,, 7,,..., 7, and a unit ¢ in Q(\/a) such that

Y= EMTy T,

and then
aff = enmym, - - M,

is a factorization of ff into primes. Likewise, there are primes
Tseee s Ty Ty ey Ty
and units &,, &, such that

o0 =g T p=¢mi---m

"
s

so that
aff = (egx)ny - mmy - 7.

The number «ff is not a unit since it is divisible by the prime 7, but « may be a
unit, § may be a unit (but not both « and f are units) and y may be a unit.
This is the interpretation to be given either r = 0, s = 0, or n = 0 and is the
reason for using the units ¢,, ¢,, and ¢; for example, if y is a unit, we let
n=0and y = ¢;if y is not a unit, then n > 1 and we may take ¢ = 1 if we
wish. We now have the two factorizations of the nonunit «ff into primes:

i ”

oc[f = EnAM, W, = (8182)7[/1 R ik SRR 4

By the definition of a UFD, one of the primes on the right-hand side is an
associate of = and hence divisible by n (the quotient being a unit). If one of
the n"’s is divisible by =, then, by Theorem 8.8, x| ; if one of the n”’s is divis-
ible by =, then 7|f. Thus = divides either « or f (and possibly both).

Now we suppose that Q(ﬂ) has the property that if n|af3, where 7 is a
prime and « and f§ are integers in Q(ﬂ), then 7|a or 7|f. Suppose « is a
nonunit integer in Q(\/E) and

7) o= EM My T, = EM Ty Ty
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where ¢ and ¢ are units and =n,,n,,...,7,,7},..., 7, are primes. Either
r < sors < r, and since it makes no difference, we will let r < s. We now
show that one of the n'’s is an associate of 7. Since n,|o, and hence all
associates of a, we see that

my|(my - e )7

Thus either n,|(n} - - - 7, _ ;) or my|7,. If |7, then =,/n, is a unit, since other-
wise 7; would be composite, and therefore n; is an associate of n,. If =} is
not an associate of mn,, then n|(n} --- n,_,)n,_;. In like manner, if, in ad-
dition to not being an associate of 7, 7, is not an associate of n,_,, then
7, |(ny -+ - 3)m,_,. We continue in this way until we reach the point that
either 7, is an associate of one of the primes n5,n5,...,n, or n,|n}, and in
the latter case, 7| and =, are associates. Thus, as was to be shown, one of the
7”’s is an associate of 7, and by renumbering the n"’s, we may assume that
7y and 7, are associates. Thus 7y = &7, where ¢ is a unit, and hence it
follows from equation (7) that

(8) &My -+ M, = (8’81)7[’2 e 7[;,

where ¢'g; is also a unit.

We now repeat the above process with 7, instead of n; and we find that
one of the primes 75,..., 7, is an associate of 7, and, by renumbering the
7”’s, we may assume that n, and 7, are associates. Thus 75 = ¢,7,, where ¢,
is a unit and hence it follows from equation (8) that

£y W, = (£'e,65)Ty -« + T,

where ¢'¢,¢, 1s a unit. We repeat this whole process with 75 and then =,
and so on until we at last come to the point that 7} is an associate of =; for
each jin therange 1 <j<r — 1and

(9) &n, = (8/6182"'8,._1)%;"'77:;,

where (¢, - - - &, ) is a unit. The number on the left of (9) is a prime and hence
the number on the right of (9) is also. The number on the right of (9) is com-

posite for s > r and therefore s = r. Hence ¢n, = ¢'n,, @, = ¢/¢”"n,, and
¢/¢” is a unit. Thus =, is an associate of «,. This shows that the integers of

Q(/d) form a UFD. A
One frequently uses Theorem 8.15 to justify the following statement. If
®y,...,0a,are integers in a UFD and 7 is a prime such that 7ja, - - - «,, then

nlot; for some j in the range 1 < j < n. Theorem 8.15 really is only this state-
ment for n = 2, but the statement for general n follows from this in the same
way that we showed in the proof of Theorem 8.15 that n; and = were as-
sociated for some j. It will also be useful to prove an analogue of Theorem 2.12.
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Theorem 8.16. Suppose that Q(ﬂ) has the unique factorization property.
If &, B, and y are integers and ¢ is a unit in Q(\/fi) such that o and f have
no common integral factors other than units and aff = ¢y", where n is a
positive rational integer, then there are units ¢ and ¢” and integers 0 and (
in Q(\/;i) such that « = ¢'6"and f§ = ¢"("

Proof. 1If y is a unit, then «f is a unit and hence both « and f are units.
In this case, the theorem is trivial: We put ¢ =a, " =8, 6=(=1. If
y = 0, then one of « and f is 0; since anything divides 0, the only way that
units divide « and f is that the other of « and f is a unit; the theorem is
trivial in this case also, with one of § and { being 0 and the other 1. Thus we
may assume that y is not zero and not a unit. We can therefore set

y=mny e,

where 7, ..., n, are primes some of which may be associates. It is sufficient
to show that « is a unit times an nth power, the proof for f is identical.

If o is a unit, then set ¢ = « and 6 = 1. Thus we shall assume that a is not
a unit; it is also not zero, since y # 0. Hence we can also break a up into a
product of primes, say

o= My T
and then
(10) Ty - = eninl - wh.
The unique factorization property says that 7} is an associate of one of the
n;’s and they can be renumbered so that 7} is an associate of 7,;. Now if any
associate of m; divides f3, then m,|f$ and then 7|f so that x| divides both «

and . By hypothesis, this cannot happen. Thus 7, or its associates must
show up n times among the primes 7}, ..., 7, which can be renumbered so

that =}, n5,..., w, are associates of ;. This also means that s > n. Hence
there are units ¢, ¢,,. .., &, such that

Ty = My, MWy = E3My,..., Ty = €T
and thus

s ro_ . n
Ty T, = (8185 - - g7

If's = n, then we are finished, since the left-hand side of the above equation is
then . If s > n, then we divide both sides of (10) by =} and get

(1 (6162 - 6y Ty y -+ TR = EMGTY - L.
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We now repeat the above process. By the unique factorization property,
one of the n;’s is an associate of 7, , ;, and they can be renumbered so that =,
is an associate of 7,, ;. No associate of 7, divides f, since then n, ., also
divides § as well as «. Thus 7, or its associates must show up » times among
the primes 7, . ,,..., n; and these may be renumbered so that 7, ,,..., 75,
are associates of 7, . It follows from this that s > 2n. It also follows that there
are units ¢,, ¢, .. ., &5, such that

, ,
Tnt1 = En+1M2s. o5 Moy = E3,702
and hence
’ ’ _ n
Tyt My = (Epp 1 €275,

If s = 2n, then o = (g,&, - - - €,,)(m;7,)" and we are done; if s > 2n, then we
divide both sides of (11) by n} and repeat the process a third time. Since
there are a finite number of primes in the factorization of «, the repetitions
of this process must eventually come to an end; when we have finally gone
through this process the last time (say on the kth repetition), we will have
found s = kn and we will have renumbered the n"’s and the #’s and found
units &, . .., &, such that

o =TTy Ty = (81827 ) (M4 Ty -+ )"
This is the form required by the theorem with
€ = €163 Exps 0 =T My T A

There is one more theorem which will be useful very soon; its proof does
not depend on the unique factorization property in Q(\/E).

Theorem 8.17. Let a and b be rational integers not both zero, and let
(a,b) = c. If « is an integer in Q(1/d) such that @la and ofb, then ¢fc. In
particular, if @ and b are relatively prime [as defined in Chapter 2, we have
not made a definition of relatively prime in Q(\/E)], then the only common
divisors of a and b in Q(,/d) are units.

Proof. If (a,b) = c, then by Theorem 2.2, there are rational integers r and s
such that ar + bs = c. By Theorem 8.8, if «/a and o/, then «|(ar + bs), in
other words, «fc. If a and b are relatively prime, then ¢ = | and hence alc
implies that « is a unit. A

It may be useful before going on to give an example of the application of
these theorems. We will use them in an attempt to find all rational integer
solutions to the equation

(12) X2 + 47 = 3.
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Some of these theorems depend on unique factorization and this is something
we have not yet shown. Thus for the duration of this example, we make the
assumption that the set of integers of Q(,/ —47) is a UFD. Before going over
to Q(\/ —47), it is useful to establish that (x,47) = 1. Since 47 is a rational
prime, either (x,47) = 1 or (x,47) = 47. In the latter case, 47|x and then
47|(x® + 47) or 47|y® and hence 47|y. But then 47%x2, 47|y (47> even
divides y?) and therefore 47%|(y> — x?) or 47%47. This is false and hence
(x,47) = 1. We consider two separate cases. In the first case we assume x is
odd, and in the second case we assume x is even.
If x is odd, then y is even and hence we have

3
(x + /—4N)(x — /—47) = 8(%)

y 3
)
Since x is odd, y is even,and —47 = 1(mod 4), it follows that (x + ./ —47)/2,
(x —/ —47)/2, and y/2 are all integers in Q(,/ — 47). We pause to show that
2 is a prime in Q(,/ —47); it will follow easily from this that equation (13)
is impossible if x is odd. If 2 is not a prime, then 2 = «ff with neither « nor
being a unit. Thus

or

x_m)zz

(13) (x + —47} v

2

N()N(f) = N(2) = 4,

and since norms are positive in complex quadratic fields and since N(x) = 1
or N(f) = 1 implies o« or f§ is a unit, we must have

N(x) = N(p) = 2.

If « = (a + b/ —47)/2 with a and b both odd or both even numbers in Z,
then
2 4+ 472
2 =N(@) = a” +4/b”
4
or
a’ + 47b = 8.
This is impossible, since if b # 0, then the left side is too big and, if b = 0,

then a = i\/g i1s not a rational integer. Thus there are no integers in
Q(/—47) of norm 2 and hence 2 is a prime in Q(,/ —47). It follows from
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equation (13) that

) x4+ /4N (x —/—47
2 2
and hence, by Theorem 8.15, either
47 — /=47
) )

Thus either (x + ./ —47)/4 is an integer or (x — ./ —47)/4 is an integer. But
this is patently false, since these numbers are of the form

x 1 - x 1
§+§,/—47 5—5/—47

2 ’ 2

and x/2 and + §are not even both integers, let alone both being odd or even.
Hence there are no solutions to (12) with x odd.

In the second case, we assume that x is even and it follows that y is odd.
Our equation is then

(14) (x + /=4D(x —/—47) = )

We pause to show that (x + /—47) and (x — / —47) have no common
factors in Q(,/ —47) other than units. We will then apply Theorem 8.16. If

o(x + / —47) and a|(x — / —47), then
dlix + /=47 + (x — /=47,  d(x + / —4D(x — /—47).

In other words,

al2x,  al(x® + 47).
Since x?> + 47 is odd, any rational divisor of (x* + 47) is odd. Thus
d = (2x,x? 4+ 47) is odd. Thus, since d|2x and (d,2) = 1, d|x. But d|(x? + 47)

and hence d|[(x? + 47) — x2], or d|47. Since d|x and d|47, and since we have
seen that (x,47) = 1, we see thatd = 1; that is,

(2x,x2 +47) = 1.

Therefore, by Theorem 8.17, if af(x + / —47) and of(x — / —47), then « is
a unit. It follows from this, equation (14), and Theorem 8.16 that there is a
unit ¢ and integer o such that

x + /—47 = e’
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The units of Q(/ —47) are +1:ife = 1, then
x4+ /=47 = o3,
and ife = —1, then

X+ —4 = (~).

Hence in this instance, x + ./ —47 actually is a cube and we may set
+ b/ —47\3
oy [,

where a and b are rational integers, both odd or both even. (It frequently
happens that one can get rid of the unit that arises from Theorem 8.16, but
it also often happens that one cannot get rid of it, particularly when d > 0.)
If we multiply out the right-hand side of the above and collect terms, we see

that
8x + 8,/ —47 = (a®> — 141ab?) + (3a*h — 47b%)/ —47
and thus, by Theorem 8.1,
8x = a® — 141ab?,
8 = 3a’b — 47b* = b(3a> — 47b?).
The second of these equations is momentarily the most important. If a and

b are both odd, then (b,8) = 1 and thus 8|(3a2 — 47b2). But this contradicts
the fact that for a and b both odd,

32 — 472 =31 — 47-1 = 4(mod 8).
Hence a and b are both even, say a = 2r and b = 2s, and thus

x4+ /=47 = (r + s/ =47,

x =r®— 141rs?,

I = s(3r? — 47s%).

Hence s|1 and thuss = +1.Ifs = —1,then | = —(3r2 — 47)and 3r> = 46,
which is impossible since 3446. Thus s = | and then 1 = 3r2 — 47, r% = 16,
r = +4. As a result,

x = r(r? — 141s) = +4(—125) = +500.
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We could find y from this directly by means of equation (12), but there is a
less computational way. The reason that we never used Theorem 8.16 to set

(x — /—47) = ¢, is that when we know what happens to x + /—47,
we then know what happens to x — ./ —47 by conjugation. In this case,

x +/—47 = (r + s,/ —47)% and thus
3
x—/=4T=(x+ /=4 =(r+s/-47) = (r+ s\/Tw)
= (r — s,/ —47)

As a result,

= (x+/—4N(x — /—4T) = [(r + s/ —4N)(r — 5/ 4]

= (r? + 47s%)%,

and since a real number has only one real cube root,
y =r? + 47s% = 63.

Thus we have found that the only solutions to equation (12) are x = 500,
y = 63and x = —500, y = 63. This is a difficult example, but it would have
been far more difficult to find these solutions without using Q(,/ —47).
There is a fly in the ointment, however. We seem to have missed the solutions
x = +13 and y = 6. The first reaction must be that there is an error in the
proof, but this is not true. Well, then, there must be somewhere that we made
an unwarranted assumption. There was an assumption made, namely that
Q(/ —47) has the unique factorization property. But surely it could not be
this! Or could it? Let us see. The solution x = 13, y = 6 comes under the
heading of case 1 (x is odd). If we put this solution into equation (13), then

we see that
(134—«/—4 )(13 — 1/—47} _9.33

2

which is true, and indeed this is an equation involving integers, as was
claimed. By the definition of divisibility,

| 3+\/’47)(n—\/—7).

2
We have shown that 2 is a prime in Q(\/ 47) But still, (13 + ./ —47)/4
and (13 — ;/ 47)/4 are not integers and hence 2 does not divide either
(13 + \/; 47)/2 or {13 — ./ —47)/2. Thus we have found an actual instance
in which a prime divides a product of two integers although it divides neither
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integer separately! As shown in Theorem 8.15, this is a property that is
equivalent to unique factorization, and hence Q(/ —47) does not have the
unique factorization property!

Perhaps this disaster is due to a poor definition of integer. For instance,
perhaps one of the numbers (13 + ./ —47)/4 ought to be an integer. Un-
fortunately, this leads to too many difficulties to be of any value. Another,
more subtle, way out of the troubles arising above would be that since 2
does not divide either of the numbers (13 + ./ —47)/2, perhaps 2 should not
be a prime. This is more in the spirit of what was actually done to restore
unique factorization to Q(,/ —47). We shall say a little more about this in
Section 8.6.

Now that we have seen that Q(,/ —47) does not have the unique factoriza-
tion property, it may well be asked if any Q(\/E) has the unique factorization
property. The reader, having just seen the “obvious” totally destroyed,
cannot be blamed for being pessimistic, but fortunately there are quite a few
values of d such that Q(Vg) has the unique factorization property. We
proved the unique factorization theorem for the positive rational integers
by means of the Euclidean algorithm. A generalization of this algorithm
enables one to do the same thing for several different quadratic fields [we
will see shortly that Q(\/tl) is such a field]. In honor of Euclid, the fields
for which this generalization works are called Euclidean fields.

Definition. A quadratic field, Q(Vg), is called a Euclidean field if it has
the following property: Given igtegers o and f in Q(\/;J) with 8 # 0,
there are integers y and J in Q(,/d) such that

a=7yf+9d, NG <IN

(If d < 0, then the absolute-value signs can be dispensed with, since
norms are then nonnegative.)

In Euclidean fields we may develop an algorithm for finding the “‘greatest”
common divisor; this in turn can be used to prove the unique factorization
property. The proofs are all similar to those of Chapter 2.

Theorem 8.18. If Q(V/E) is a Euclidean field and « and f are integers in
Q(\/;i), not both zero, then there is an integer  in Q(\/li) such that

1. dla and 4|B.

2. If yla and y|p, then y|d.
An integer ¢’ has the above two properties if and only if it is an associate
of 4. Further, if an integer é has the properties 1 and 2, then it is a linear
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combination of a and f, in other words, there exist integers ¢ and # in

Q(ﬂ) such that
3.6 =af + fBn.

Proof. Since « and f are not both zero, we may assume that f# # 0. By
the definition of a Euclidean field, there are integers v, and 8, such that

o=y + By INBN > INBL

If B is zero, we stop here. If #; # 0, then thereare integers y, and f3, such that
B = 7B + B, IN(BI > IN(B).
If 3, is zero, we stop here. Otherwise there are integers y5 and f; such that

B = vif2 + B3, IN(f2)l > IN(B;)l.

We continue this process as long as we do not get some 3, = 0. In this
way, we get a sequence of integers f, i, 85, ...such that [N(f)| > |N(S,) >
IN(f3,) > ---and the numbers |N(f3;) are rational integers which are greater
than or equal to 0. A sequence of decreasing nonnegative rational integers
must be a finite sequence. As a result, there is a last f§; in the sequence, say
B.. If B, # 0, then there would be a f8,, ; and hence 8, = 0. Thus we have a
sequence of equations

a=y8+ B
B =7h1 + B

B =7v3B2 + B;

ﬁn*B = ’y"~1ﬂn’ 2 + ﬁn*l
ﬁn-Z = ’ynﬂnfl + 0.

The number f,_; will be the § in the theorem. By the last equation,
Bn-1lB.-2: by the equation before it, f§,_,|f,-3; by the previous equation,
Bu-1lBs-4: and so on. We finally get up to the second of these equations
with f8,_ |82 and B,_,|B: and hence B,_ |, and then by the first equation
Bn_1la. This is property 1 of the theorem. Again, f,-1 = fu-3 — Vu-1fu-2
and thus

ﬁn*l = ﬁn—} - ’))n—l(ﬁnvzt - yn—zﬁn—l)
= _‘yn—l.Bn-4 + (1 + ’yn—l'yan)ﬁn*Z&
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is a linear combination of 8, _, and , _ ;. We proceed up the ladder until we
finally reach the top, at which point we get

.Bn—l = O(C + ﬁ’?

for some integers { and x. Hence any divisor of « and f also divides f,_,,
and this is property 2 of the theorem. It is clear that any associate of 8,
has properties 1 and 2. Further, if 6" also has these properties, then by using
property 2 for both ,-, and ¢', 6'8,-, and f,_,|6". Hence by Theorem
8.13, 6" and B,_ are associates. If ¢ is a unit, then

efu_1 = alel) + Plen),

and hence any associate of f8,_, can be written in the form of property 3
of the theorem. By what we have just shown, this means that any § with
properties 1 and 2 also has property 3. A

Theorem 8.19. A Euclidean quadratic field has the unique factorization
property.

Proof. Suppose Q(\/E) is Euclidean and let njaf}, where 7 is a prime and «
and f are integers in Q(\/Zi). We will show that either 7o or 7| and then use
Theorem 8.15. Suppose that nya. Then no associate of = divides a. Also any
divisor of = is either an associate of 7 or a unit. These two facts together show
that a common divisor of @ and = must be a unit. Since any unit divides 1,
we see that the number 1 has the first two properties of the number § of
Theorem 8.18, namely 1|a, 1|7, and if y|a and y|x (and hence y is a unit), then
y|1. Therefore, by Theorem 8.18, there exist integers { and # such that

ol + 1y =1
Therefore,

(aB) + npn =B

and since n|af3, n|(¢ff{ + nPn). In other words, n|S. Thus either njoa or #|f
and therefore, by Theorem 8.15, Q(\/a) has the unique factorization
property. A

Now is a good time to give some examples of Euclidean fields.

Theorem 8.20. If d = —11, =7, —3, —2, —1, 2, 3, 5, then Q(\/E) is
Euclidean.
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Proof. We will split the theorem up into two parts: in the first part, we
take those d # 1(mod 4), in the second part, we take those d = 1(mod 4).
We now assume that d is either —2, —1, 2, or 3. Let « and f be integers in
Q(\/:I) such that § # 0. Let o/ = x + y\/g, where x and y are rational
but not necessarily integers. Since any rational number is between two
consecutive integers and within § of the nearest integer, there are rational
integers r and s such that [x — | < %,|y — 5| < }. Let

y=r+s/d, 8= Bllx =)+ (y—s)/d]

so that
o= B(x + y/d) = By + .

Since r and s are rational integers, y is an integer and, since 6 = o — f3y, 6
is an integer. Also

IN@) = IN(B) - IN[(x — r) + (v — /d]l = IN(B) - |[(x — r)* — d(y — 57]
and here we have
lx = r? —dly =1 <|x = > +|=dlly - s> <@’ +3-(3)° =1L
The only time there could possibly be equality is when |x — r| = |y — 5| = §
and d = 3 and then |(x — r)2 —d(y — s)?| = |4 — 3-4 =34 < 1. Therefore,
we always have
[(x — r? —d(y —s)? < 1.
Thus
IN@) = IN(B) -1(x = r)* —d(y — 5)°| <INB)-1=N(p).

Hence Q(ﬁ ) is Euclidean.

Now suppose that d is either — 11, —7, —3, or 5. Let « and f§ be integers in
Q(\/E) with f # 0. Put a/f = x + y\/d, where x and y are rational. The
number 2y is between consecutive rational integers and the nearest integer
to 2y is within of 2y ; that is, there is a rational integer ssuch that|2y — s| < %
and thus

{ _5| !
y=5sg

Similarly, there is a rational integer r within 3 of x — (s/2) and thus

sy <1
X =3 r<s
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Lety =r + s[(1 + \/)/2] which is an integer by the corollary to Theorem
8.5, and let & = B{[x — r — (s/2)] + [y — (s/2)\/d}. Then

o= Blx + y/d) = By + 6,

so that, in particular, 6 = o — fy is also an integer. Also

IN@) = IN) - |[x — r = (s/2]* — dly — (s/2))°]

and here
(x—r—%)2 d(y—; ’ < x—r—52+’d| y——
<3 3 <
Thus
IN@) < IN(B)
and Q(\/a) is Euclidean. A

There are other Euclidean fields. Surprisingly enough, the problem of
determining all the Euclidean fields is quite difficult, and it is only in recent
times that they have been completely determined. We present the result here
for the reader’s edification ; the proof is beyond the scope of this text.

Theorem 8.21. Q(ﬂ) is Euclidean if and only if d is one of the twenty-
oneintegers —11, —7, —3, -2, —1,2,3,5,6,7,11,13,17,19, 21,29, 33, 37,
41, 57,and 73.

It is relatively easy to show that a particular field is or is not Euclidean
[although it was once mistakenly thought that Q(ﬁ) was Euclidean].
The great difficulty in this theorem is to provide bounds for d outside of
which no field can possibly be Euclidean. When d < 0, the problem is
actually quite easy; we have shown that the five fields listed are Euclidean in
Theorem 8.20. The fact that there are no other Euclidean fields with d < O is
the subject of Problem 8 at the end of the section. When d > 0, things are
much harder; the difficult part was settled in 1950 by H. Davenport, who
showed that if d > 16384(= 2!%), then Q(\/_) is not Euclidean. After this,
there remained only finitely many (several thousand!) individual fields to
be checked out. This was done in the same year ; Theorem 8.21 was announced
in 1950 by Chatland and Davenport.
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Amazingly enough, the twenty-one Euclidean fields of Theorem 8.21 are
not the only quadratic fields with the unique factorization property. We
cannot list them all here because they are not yet all known ; in fact, it is not
even known if there are infinitely many such fields. However, in the case of
the complex quadratic fields, the problem has just been solved. We state the
result without proof.

Theorem 8.22. Ifd < 0, then Q(\/a) has the unique factorization property
if and only if d is one of the nine numbers —1, —2, —3, =7, —11, —19,
—43, —67,and —163.

This theorem has a long and honorable history. It can be found stated in
other terminology as a special case of a conjecture made by Gauss in his
famous work, Disquisitiones Arithmeticae (Written in Latin but now available
in English translation). As late as 1934, it was not known whether or not
there were infinitely many complex quadratic fields with the unique factoriza-
tion property, although it was shown in 1933 that the only such fields with
d in the range
—1>d>-5-10°

were the nine given in Theorem 8.22. In 1934 Heilbronn and Linfoot proved
the remarkable theorem that there are at most ten such fields. Thus the
situation was that nine complex quadratic fields with UFD’s were known
and there may have been a tenth but definitely not an eleventh. By 1966, the
bounds had been improved to where it was known that there are only nine
such fields in the range

(15) —1>d> — 109000000

(still only a finite range ; there are infinitely many d’s outside it). Finally, at
the end of 1966, the problem was settled ; in fact, it was essentially settled by
two different people using two different methods at the same time.

The whole problem is essentially to find a negative number, d,, for which
one could prove that ifd < d, then Q(\/d) does not have the unique factor-
ization property. If d, turns out to be in the range (15), then Theorem 8.22
would be completely proved. If d, turns out to be outside the range (15),
then it would still be necessary to check the finitely many d’s between d, and
— 109000000 'H M. Stark did this and found the value d, = — 200, thereby
proving Theorem 8.22. At the same time, A. Baker found a completely
different method for calculating a number d,, but thus far no one has
actually calculated Baker’s value of d,.3 The papers of Heilbronn and

3 It now looks as though Baker’s method will lead to a value of dy & —10°°°, which is
safely in (15).
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Linfoot, Stark, and Baker all made use of the theory of functions of a complex
variable whereby knowledge about integers is gotten from such continuous
processes as differentiation and integration.

The problem of which real quadratic fields have the unique factorization
property is still wide open. Although most number theorists conjecture that
there are infinitely many such fields, even this has not yet been established.
We content ourselves here with a partial result given without proof.

Theorem 8.23. There are exactly 38 real quadratic fields, Q(\/é), having
the unique factorization property with d in the range 2 < d < 100. These
are given by

d=23,56,711,13,14,17,19,21, 22,23, 29, 31, 33, 37,
38,41, 43,46,47,53,57,59,61,62,67,69, 71,73, 77,
83, 86, 89,93, 94, 97.

Incidentally, there are 60 real quadratic fields with 2 < d < 100.

In spite of the great difficulty of the proof of Theorem 8.22, the part having
todo withd # 1(mod 4) is quite easy and will be given here. In fact, the same
method of proof can be made to provide further motivation for our definition
of an integer in Q(\/d) when d = 1(mod 4). A more natural definition of an
integer would seemingly be that it should be a number of the form a + b\/E,
where a and b are in Z. This is indeed what the integers on(\/E) are when
d # 1(mod 4); why not simplify things by letting this be the definition
always? The answer is that under this definition, there would never be unique
factorization when d = 1(mod 4)! Under our definition, we at least have
unique factorization sometimes (and possibly for infinitely many fields).
Before proving all this, it is convenient to give a definition.

Definition. Let Z[\/E] denote the set of numbers of the form a + b\/c—l,
where a and b are rational integers.

The numbers on[ﬁ] have the property that sums, differences, and products
of such numbers are again in Z[\/E]. If « and f are in Z[\/E] and a # 0,
then we say o|f in Z[/d] if f/a is in Z[,/d]. For example, 2/(1 + /5) in
Q(\/g) but not in Z[\/g]. The norm of a number of Z[\/c?] is a rational
integer. We may define a unit in Z[\/E] to be a number in Z[\/Zi] which
divides 1 in Z[\/E]. Here also, a number on[\/g] is a unit if and only if its
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norm is + 1. We make definitions similar to those made earlier for primes
and associates in Z[\/glj. Again, there are infinitely many units in Z[\/Zi] if
d > 0 and again any nonzero, nonunit number of Z[\/-a_'] may be factored
into a finite product of primes in Z[\/;I]. The proofs of all these facts are
exactly the same as given before; in fact, the earlier proofs were given for
Z[\/c_l{ when d # 1(mod 4). We define Z[\/g] to be a unique factorization
domain (UFD) if factorization into primes is unique up to order and associ-
ates. Theorem 8.15 and its proof are valid for Z[\/E]; Theorem 8.15 will be
crucial in what follows. We first state a preliminary theorem which will
yield our desired results.

Theorem 8.24. IfZ[\/;i] isa UFD, then 2 is not a prime in Z[\/gl].

Proof. Either d or (d — 1) is even and hence 2|d(d — 1). Since
d + Jd)d — Jd)=d* —d =dd — 1),

we see that
2d + J/d)d — /d).

But in Z[/d], 24(d + /d) and 24(d — \/d), since neither (d/2) + },/d nor
d/2) — %\/21 isin Z[\/&J. Thus 2 divides a product of two numbers in Z[\/ci],
although 2 divides neither of the numbers individually. By Theorem 8.15,

if Z[,/d] is a UFD, then 2 is not a prime. A

Theorem 8.25. If d < 0, then Z[./d] is a UFD if and only ifd = — 1 or
d = —2.[Therefore,ifd < 0andd # 1(mod 4), then Q(\/H)has the unique
factorization property if and only ifd = — 1 or —2.] Ifd = I(mod 4), then
Z[./d] is never a UFD.

Proof. We will show that if d < —3 or if d = 1(mod 4), then 2 is a prime
in Z[\/Zi], and then we will use Theorem 8.24. We have already shown that
Z[\/ﬁ—T] and Z[\/T2] are UFD’s. So when considering d < 0, we may
restrict our attention to those d < —3. Suppose that 2 is not a prime in
Z[\/J]. Then there are numbers « and f in Z[\/Zi] such that

2 = ap, IN(2)| > 1, IN(A) > 1.

Therefore, N(2)N(B) = 4 and since |[N(«) and |[N(f)| are rational integers
greater than one,

IN@)| = INBI = 2.
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Thus if 2 is not a prime in Z[\/a], then there is a number

o =a+ by/d (aand bin Z),
such that

(16) N(a) = a? — db?> = +2.
Ifd < —3and b # 0, then
a* —dh? =a*+ (—dh*=>20+3-1> +2,
while if b = 0, then
a* —db? =a? # +2

when a is in Z. Thus when d < —3, there are no numbers in Z[\/c—l] of norm
+2,and hence 2 is a prime in Z[./d]. Therefore, by Theorem 8.24,ifd < -3,
then Z[\/c—l] is not a UFD.

Now suppose that d = 1{mod 4). Modulo 4, equation (16) reduces to

a’> — b? = a%* — db? = +2 = 2(mod 4).

But the squares (mod 4) are 0 and 1, and therefore a®> — b? is congruent to
either — 1, 0, or 1(mod 4). Thus the congruence

a®> — b* = 2(mod 4)

has no solutions in rational integers and therefore equation (16) is impossible.
Hence2isa primein Z[\/E] and, by Theorem 8.24, Z[\/d] isnotaUFD. A

EXERCISES

1. Use the factorizations 6 =2-3=(1 + ./—5)(1 — /—5) to show
directly that Q(,/ —5) does not have the unique factorization property.

2. Use congruences (mod 5) to show that there is no integer in Q(\ﬂO) of
norm =+ 2. Show as a result that 2 is a prime in Q(m) and then show
that Q(\/IO) does not have the unique factorization property.

3. Show directly that Q(m) does not have the unique factorization
property by considering the factorizations

6=2-3=(4+ /10 - /10).

4. Do the factorizations 14 = 2-7 = (217 + 56,/15) (62 — 16,/15) show
that Q(\/IS) does not have the unique factorization property?
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5. Show that 21 has two essentially different factorizations into primes in
Q/—3).

6. Prove that Q(\/13) is Euclidean. -

7. Find the ‘“‘greatest common divisor” of —25+ 47\/—1 and
34 + 32\/—“1 by means of the generalized Euclidean algorithm used in
the proof of Theorem 8.18.

8 Usex=1+./d[d< —5d3# l(mod 4], « = (1 + /d)/2 [d < —15,
d = 1(mod 4)], f = 2 to show that Q(./d) is not Euclidean. ]

9. Suppose 5/d. Show that 2 is a prime in Q(\/d). Conclude that Q(\/gi)
does not have the unique factorization property ifd # 1(mod 4) and 5|d.

10. In the proof of Theorem 8.24, we had the equality

dd — 1) =(d — Jd)d + \/d).

Why do not these two different factorizations of d*> — d show that Z[\/E]
is not a UFD?
11. We have seen that

(13+F)(‘3_£/_—47) —2.33 =54

()

where 2 is a prime in Q(,/—47). Show that 2,3,(13 + \/—47)/2, and
(13 — /—47)/2 are all primes in Q(,/ —47), no two of which are associ-
ates. Thus we have presented two different factorizations of 54 into

primes in Q(\/—747).

8.5. Applications of Quadratic Fields to Diophantine Equations

We have already seen one example of such an application in Section 8.4
when we examined the equation

x2 + 47 =3

That example serves as a model of the procedure to be followed when we
have unique factorization: it also shows that one can sometimes find solu-
tions by assuming unique factorization even when we do not actually have it.
In this section, we give two more examples using Q(\/— 1). Here we have
unique factorization in Z[i], where we write ./ —1 = i.

Our first example will be to give and justify the argument sketched in
Section 8.1 for finding primitive Pythagorean triples. Let

X242 =22 x>0, y >0, z2>0, (x,y,2) = 1.
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The condition (x,y,z) = | may be replaced by the condition (x,y) = 1: this
is because if d|x and d|y, then d|z. As was shown in Section 5.3, one of x and y
is even, the other odd; also z is odd. The above equation may be written

(17) (x + yi)(x — yi) = 22,

Our first task is to show that (x + yi) and (x — yi) have no common
factors in Z[i] other than units. Suppose

o(x + yi), af(x — yi).
Then
o[(x + yi) + (x — iy)] or o2x
and
o[ —i(x + iy) + i(x — iy)] or of2y.

Therefore by Theorem 8.17, of(2x,2y) and thus |2, since (2x,2y) = 2(x,y) = 2.
Since 2 = —i(l + i), where 1 + i is a prime by Theorem 8.12, and since
Z[i] is a UFD, the divisors of 2 fall into three groups: 2 and its associates,
1 + iand its associates, and units. Thus it suffices to show that neither 2 nor
(1 + i)divide both (x + iy)and (x — iy). In fact, since (1 + i)|2, it is sufficient
to show that (1 + i) does not divide both x + iy and x — iy. If (1 + i)
divides both (x + iy)and (x — iy), then (I + i)|(x + iy)(x — iy)or (I + i)|z%
But

ZZ 2 ZZ

1+i 2 2"
which is not in Z[i] since z2 is odd. Hence the only divisors of both x + iy
and x — iy in Z[i] are units.

We can now apply Theorem 8.16 to equation (17). The result is that there
is a unit ¢ and an integer o such that

X + iy = .
The units of Z[i] are +1 and +i. Further, since
(= Da? = (Miw)?, (=i = (i)(in)?,

we may restrict ourselves to two cases:
Case 1. x + iy = a?.
Case 2. x + iy = ia?.
We take case 1 first. Put « = u + iv and then

X+ iy =(u+iv)? =@u®— 0v?) + Quo)i
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Therefore,

x = u? — v? y = 2uv.

In this case x — iy = (x + iy) = («%) = (@)% and so
22 = a}(@)? = (ad)? = (u? + v?)?%,
whence
z=u?+ v?

the positive root being taken since z > 0.

In case 2, we write « = u — vi. [This is in the general form (integer of Z) +
i(integer of Z) it was written this way just to help the final answer look more
familiar.] Then

X + iy = i(u — vi)? = Quv) + (u? — v3)i,

and, as a result,
x =2uv, y=u?~ 2%
Here again,
z=u?+ 02

Thus case 1 corresponds to x being odd and y even, while case 2 corresponds
to x being even and y odd. The remaining restrictions x > 0, y > 0, and
(x,y) = 1 lead to u? > v?, u and v have the same sign, and (u,v) = 1, u and v
not both odd. Since o? = (—a)?, we could have even assumed that u > 0
and then v > 0 also. Thus we have been led to the result of Theorem 5.2. We
showed in the proof of Theorem 5.2 that the above restrictions on u and v
always give primitive triangles; we will not repeat this here.

It will be useful to know more about the primes of Q(i) before considering
our next example.

Theorem 8.26. Let p be a positive rational prime. If p = 3(mod 4), then
pis a prime in Q(i). If p = 2 or if p = 1(mod 4), then p is not a prime in
Q(i) and, in fact, there is a prime = in Q(i) such that N(n) = p. Further, if ©
is a prime in Q(i), then either n is an associate of a rational prime = 3(mod 4)
or N(n) is a rational prime = 1{mod 4) or N(n) = 2.

Proof. We first take the case of p = 3(mod 4). If p is not a prime in Q(i),
then there exist nonunit integers a and f§ such that aff = p. Thus

N(@N(B) = N(p) = p?,
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and since norms are nonnegative in Q(i), N(o) > 1, N(f) > 1 so that
N(2) = N(f) = p.
If o = a + bi, then a and b are rational integers and
a?> + b? = N(a) = p.
Therefore,
a? + b = 0(mod p),

and, by Theorem 3.30 this means that a = b = 0(mod p). Hence p|a, p|b, and
thus p?|(a® + b?). But this is impossible since a’> + b? = p, and therefore p
is a prime in Q(i).

The case of p = 2 is simple since

N(I +i)=2

and, by Theorem 8.12, 1 + iisa prime in Q(i). We now consider the remaining
case, p = 1(mod 4). By Theorem 3.29, there is a rational integer a such that

a? + 1 = 0(mod p).
Hence there is an integer b such that
a* + 1 = pb,
or
(a + i)(a — i) = pb.

If p is a prime, then since Z[i] is a UFD, either p|(a + i) or p|(a — i). But this
is impossible since neither (a/p) + (1/p)i nor (a/p) — (1/p)i are integers.
Therefore, p is not a prime in Q(i) and hence there are nonunit integers m,
and n, such that =, 7, = p. Therefore,

N(m)N(n,) = p?
and since N(r;) > 1, N(n,) > 1, we must have
N(my) = N(n,) = p.

By Theorem 8.12, both n; and =, are primes in Q(i).

We now prove the converse-—that every prime in Q(i) is an associate of
one of the three types given above. Let  be a prime in Q(i). Then N(=) is a
positive rational integer greater than 1 and is therefore a product of rational
primes,

it = N(n) = p1p; - - Pu>
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where py, p,,...,p, are rational primes. Thus 7n|p,p, - - - p, and, since Z[i] is
a UFD, n|p; for some j. If p; = 3(mod 4), then p; is a prime in Q(i) and thus
p;/m is a unit and = is an associate of p;. If p; # 3(mod 4), then p; is not a
prime and as we have seen earlier, N(n) = p;. A

We now use the previous theorem to help us settle the problem of what
rational integers can be written as the sum of two squares (we allow one of
the squares to be 0 so that 4 = 22 + 0? is acceptable).

Theorem 8.27. Let n be a fixed positive rational integer. The Diophantine
equation x? + y? = n with unknowns x and y has a solution in rational
integers if and only if n can be written in the form n = m2k, where m and k
are positive rational integers and k has no positive rational prime divisors
= 3(mod 4). (Thus, for example, 45 is the sum of two squares while 27 is
not.)

Proof. Suppose n = m*k, where m and k are positive integers such that
if p is a positive prime dividing k, then p # 3(mod4). If k = 1, then
n=m?+ 0% If k > 1, then we may set

k= pip2--pr,
where each p;is a prime either equal to 2 or = 1(mod 4). Hence by Theorem
8.26, there are primes 7y, m,, ..., 7, in Q(i) such that for each j in the range
1<j<r,
N(n;) = p;.
Let

a+ bi=mnn, -m,.
Then
a® + b? = N(a + bi)
N(m)N(7,)N(7) - - - N(m,)

= m2P1P2 o Dr
= m*k

:n’

I

and hence the equation x?> + y? = n has solutions.
Conversely, suppose that there are rational integers a and b such that
a* + b*=nor

N(a + bi) = n.
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Ifa + biisa unit, then n = 1, which can be put in the form 12 - 1 demanded
by the theorem. If a + bi is not a unit, then we can factor a + bi into a
product of primes,

C_l+bi=TIITI2...TE,.

By Theorem 8.26, we can assume (after renumbering the 7’s if necessary)
that n,, m,,..., n, are associates of rational primes p,, p,,..., p, all con-
gruent to 3(mod 4), while n ., 74 5,...,n, have norms pgi 1, psi2,...5Dr
which are rational primes either equal to 2 or congruent to 1(mod 4). Let

m=pipy--Ps, K =PpsiiPs+2-"Drs

then we see that

n = N(a + bi)
= N(m)N(n3) - - - N(mN(ms 4 )N(7s4 ) - - - N(m,)

= pip3-  PiPsi1Ps+2 Py
= m?k.

Further, the prime divisors of k are either 2 or = 1{mod 4) and thus no prime
congruent to 3(mod 4) divides k. A

It is an immediate corollary to Theorem 8.27 that 2 and every rational
prime = 1(mod 4) can be broken up into the sum of two squares, and no
prime = 3(mod 4) can be split up into the sum of two squares.

EXERCISES
1. Find a nontrivial infinite family of solutions to the equation
x> +y? =23
(By trivial, we mean something whereby you take a solution such as
x =2,y = 11,z = 5and then give the infinite family 243, 1143, 5a3).
2. Solve the equation x? + 2 = y3.
*3. Solve the equation x? + 4 = y3.
4. Solve the equation x2 + 11 = y3.
5. In the second part of the proof of Theorem 8.27, we had

a+ bi=mnn, -7,

What happens in the proofif all the n’s are associates of rational primes
(sothat s = r)? What happens in the proofif none of the n’s are associates
of rational primes (so that s = 0)?
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6. Find all solutions to the equation
x% 4+ y? =222

7. It can be shown that if p is an odd prime, then the congruence
x2 = —2(mod p) has a solution if p = 1 or 3(mod 8) and does not have
a solution if p = 5 or 7(mod 8). Use this fact to show that an odd prime p
can be written in the form a2 + 2b? if and only if p = 1 or 3(mod 8).

8. Suppose n cannot be written as the sum of two integral squares. Show
that the equation x? + y? = n, where x and y are merely rational, is
still impossible.

9. Can ,/665 be the hypotenuse of a right triangle with integral legs”?

10. Show that if = is a prime in Q(i) such that N(=) is a rational prime, then
n and 7 are associates if and only if N(n) = 2.

8.6. Historical Comments

A large part of algebraic number theory is due to attempts to solve
one equation,

As early as Euler’s time, people were “‘solving” Diophantine equations
such as

x2+2=)3

by using quadratic fields. However, no one wondered about unique factoriza-
tion. Indeed, rigorous proofs as we know them today were largely unknown
200 years ago. In this sense, Gauss was one of the first really modern
mathematicians. It was Gauss who showed that Z[J?l] isa UFD, and in
fact it was he who invented the generalization of the Euclidean algorithm
presented in Section 8.4. It is in honor of this achievement that the integers
of Q(\/i 1) are called the Gaussian integers.

Thus it was that in the 1840s, the concept of unique factorization was
recognized, but it was still fairly well believed that it would automatically
happen. In 1843, Kummer (1810-1893) believed, incorrectly, that he had
settled Fermat’s Last Theorem. Kummer used fields gotten from the rationals
by adding pthroots of unity to Q (where pisan odd prime). Let p be a primitive
pth root of unity (p? = 1 but p" # 1 if 1 < n < p). Let Q(p) denote the set
of all numbers of the form

Ao + ayp + axp? + -+ a,_2p" %,
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where ao,a,,...,a,_, are rational numbers. Such a number is called an
integer of Q(p) if ag, ay, ..., a,_, are rational integers. Kummer knew that
sums, differences, products, and quotients of numbers in Q(p) are again in
Q(p) and that sums, differences, and products of integers in Q(p) are in-
tegers in Q(p). He also knew that in Q(p), the equation

xP 4+ yP = P
could be factored as

(x + V(x4 py)x + p?y)---(x + pP~ly) = 2~

He then proceeded to show that this equation has no solution with x, y, z
being nonzero rational integers. Unfortunately, Kummer’s proof needed the
fact that the integers of Q(p) have the unique factorization property, and this
is not always true.* When Kummer realized this, he set about finding a way
of restoring unique factorization to Q(p).

We have seen earlier that Z[,/ — 7] does not have the unique factorization
property. But when we also agree toleta + b\/— 7 be an integer when a and
b are both halves of odd rational integers, then the integers of Q(./—7)
do have the unique factorization property. This suggests the idea of creating
more integers in Q(p) so as to restore unique factorization. This is what
Kummer did except that his new integers were not in the original field
Q(p). Kummer’s new integers, called ideal numbers, are of the form

\’/ao +a;p+ -+ a,-p"7 %

where ag,a;,...,a,-, are rational integers and r is a positive rational
integer. The number ris not allowed to be just anything, but rather is restric-
ted to certain admissible values according to the choice of

a=ap+ ap+ -+ a,_,p°7 %

It turns out that there is an integer A, called the class number of the field,
which depends only on the given field and is such that for any given «, all
admissible values of r divide &. When Q(p) has the unique factorization
property, the value r = | is clearly all that is needed to ‘“‘restore’ unique
factorization. This is reflected in the fact that the class number, h, equals 1
if and only if Q(p) has the unique factorization property.

When Kummer returned to Fermat’s last theorem, he found that he
could settle the problem for more values of p than before but still not for all p.
He found a proof that holds for all p which do not divide A, the class number

41t is true for p = 3, 5,7, 11, 13, 17, 19 but fails for p = 23. There are infinitely many p
for which unique factorization fails.
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of Q(p). If pyh, p is called a regular prime while if p|h, p is called an irregular
prime. The only irregular primes less than 100 are p = 37, 59, 67.° Special
methods have been devised for particular irregular primes, and this is how
the present result that Fermat’s last theorem is true for all p from 3 to 4001
has been obtained.

Although Kummer did not extend his results to other fields, his results
are extendable. As an example, the class number of the field Q( /j) is 5.
We saw in Section 8.4 that although 2 is a prime in Q(f 47) and

13+ /-47\(13 - /47 ,

(18) — =237

2 2

2 does not divide either factor on the left. In fact, (18) gives two different
factorizations of 54 into primes in Q(/—47) (see problem 11, Section
8.4). But considered in terms of ideal numbers, none of the numbers 2, 3,
(13 + \/—47)/2, and (13 — \/—47)/2 are primes, and in fact they factor
into prime ideal numbers as follows:

2_\794“/—47 o — /—47
Vo2 Vo2

3= Y14+ /=47 14 -
l3i\@: _ 9+ V2 _ﬂ.(\5/14_ /Z47)3,

2

lj’-_2“ V=4 5?_ 7\5_47,(\5/144_ /_4’))3_

(Interpret these as both sides to the fifth power are equal.) In terms of ideal
numbers, both sides of (18) give the same factorization of 54:

5 /—_a7 5o _ /_
54:\/§+V2 47./9 V2 47-(5/14+ V4D (14 -/ —47)%.

3 Thus, even though Q(p) does not have the unique factorization property when p = 23,
Kummer’s results settle Fermat’s last theorem for p = 23 anyway.
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Thus it is that unique factorization is restored to Q(Vl—ﬁ) by introducing
new numbers of the form \S/Q, where « is in Q(\/Z 47). Not all o are used

in obtaining these new numbers, for example, \75 is not allowed to be used.
Just how we determine which are the chosen a’s and how we determine the
class number unfortunately cannot be included here.

Dedekind (1831-1916) was the first to define ideals for all algebraic field
extensions of the rationals. His definition is completely different from
Kummer’s, and it takes a considerable amount of work to show that they are
equivalent. The Dedekind approach is the one that is used in modern
algebra and is the one most likely to be seen by the reader elsewhere.

EXERCISES
1. Show that when p = 3, the Q(p) of this section is nothing more than

Q/-3).
2. When p = 5, show that the sum, difference, and product of two numbers
in Q(p) is again in Q(p). (Hint: p°> = 1 and
pP’—1 0
p—1 p—1

prH+pi+pi+p+ 1= 0)
3. It can be shown that any nonzero member of Q(p), say «, satisfies an
equation of the form

ao" +a, "+ +a+ag =0,

where a,,a,_1,...,ap are integers and ¢y # 0. Assuming that sums and
products of numbers in Q(p) are also in Q(p), divide both sides of the
above equation by au, and show that 1/« is also in Q(p). If f# is in Q(p),
show that f/a is in Q(p).

4. In Q(\/TS) we have the two factorizations of 21 into primes (see problem
5, Section 8.4)

20=3.7=@+ . /~-54 - /-5).

In terms of ideal numbers, 3, 7, 4 + /-5, and 4 — ./ —5 can all be
factored. The class number of Q(,/ —5)is 2, and thus we expect that these
numbers can be put in the form \/& \//-3’ where o and f8 are in Q4 T5).
In fact,

3=J-2+/-5-J-2- /-5,
7=2+3/-5/2-3/-5.
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Show that4 + . /—5and 4 — \/TS may be written as a product of the
same ideal numbers and that both factorizations of 21 above are simply

YRRV Sy N/ Sy S S WS

except for the order of the factors.

MISCELLANEOUS PROBLEMS

1. Suppose that Q(\/a) has the unique factorization property and
d = 1(mod 8). Show that

2“1 +2\/3

o

although 2 divides neither factor. Thus 2 is not a prime in Q(ﬂ).
Show that if n is a prime divisor of 2 in Q(\/c?), then 7 is of the form
(a + b\/a_l)/Z where aand bare both odd. Show thatif e and fare both odd,
then either 7 or 7 divides (¢ + f\/g)/Z. Use this to show that any prime
in Q(\/c—i) which does not divide 2 is in Z[\ﬂl]. Thus, in this case, the
lack of unique factorization in Z[\/E] is due entirely to the number 2.

2. Show thatifd > O, there is no such thing as the smallest positive integer
in Q(\/d).

3. Show that if d > 0 and ¢ = a + b\/d is a unit Q(,/d) (where a and b
may be halves of odd rational integers) and ¢ > 1, then a > 0, b > 0.
(Hint: Look at |¢£].) Use this to show that there is a smallest unit greater
than 1 in Q(\/ d). This unit is called the fundamental unit of the field and
is denoted by ¢;. Show that every unit of Q(\/E) is of the form +¢&f,
where nis in Z.

4 Leta=a+ b\/;i and let M, be a matrix with rational entries,

_(abd
b oal

Show that a(l,\/a) = (l,ﬂ)Ma and that M, is uniquely determined by
this equation. Use this to prove that M,,, = M, + M;, M, = M M,
(it follows that M,M; = M;M,). Show that N(x) = detM,. Let
f(x) = det{M, — xI),so that f(x) is a quadratic polynomial with rational
coefficients, say f(x) = ex? + fx + g. Show that f(x) = 0 and use the
correspondence between o and M, to show that

eM2 + fM, + gl = (eDM?2 + (fI)M, +gl =0
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(the zero matrix). It is possible to study a certain set, S, of 2 x 2 matrices
(the set of all M,) in place of Q(Vg) since S and Q(\/E) have the same
properties and there is a correspondence between the matrices of S and
the numbers of Q(d) which is preserved under addition and multiplica-
tion.

. Use |N(mym, - -~ m,)| + 1 to show that Q(\/a) has infinitely many primes.

6. Show that every integer of Q(./—3) has an associate in Z[./—3].

This is interesting because the integers of Q(./ —3) form a UFD while

Z[./—3]isnota UFD.
Suppose that Q(\/c—I) has the property that if o and f§ are integers in

Q(\/ci) with no common nonunit divisors, then there are integers 7
and éin Q(ﬂ) such thatay + 6 = 1. Prove that Q(\/a) has the unique
factorization property. The converse is also true, but the proof is con-

siderably more difficult.

Problems 8-10 are related.
8 Let a =x + y[(1 + \/&)/2], where x and y are in Q(\/c?). Show that

10.

N(®) = x2 4+ xy + [(1 — d)/4]y%. Suppose thatd < 0 and d = 1(mod 4).
Prove thatifaisanintegerin Q(ﬂ), anotrational, then N(a) > (1 — d)/4.

. Letd < 0,d = 1(mod 4). Show thatifQ(\/;i) has the unique factorization

property, then —d is a positive rational prime. Do not use any of the
unproved theorems in Section 8.4. (Hints: Let —d = ab, where a > 1,
b > 1, and show that \/Elab, although ﬂ,}’a, \/;i*b. Use problem 8 to
show that in spite of this, \/c_i is a prime in Q(\/c—l). Note that 3,7, 11 are
primes and if d < —15, then [(1 — d)/4]*> > —d.)

Let d <0, d = 1(mod 4), and suppose that (\/3) has the unique
factorization property. Let o = x + y[(1 + \/%)/2] be an integer in
Q(/d), (x,y) = 1, y # 0. Show that if N(x) < [(1 — d)/4]?, then N(x)
is a rational prime. (Hint : Use problem 8.) The special case ofd < — 15,
x = —1, y=2 is problem 9. The special case of y =1 says that
x2 4+ x+ [(1 —d)/4] is a prime for 0 < x < [(1 —d)/4] — 1. This
special case was first given in 1913 by Rabinovitch, who proved the
converse, that if x> + x + [(1 — d)/4]is a prime for 0 < x < [(1 — d)/4]
—1, then Q(\/a) has the unique factorization property. Whend = — 163,
this gives the polynomial x? + x + 41 mentioned in Section 1.1.

Problems 11-22 are related.

11.

Suppose that Q(\/;J) has the unique factorization property. Show that
if p is an odd rational prime such that the congruence

x? = d(mod p)
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has solutions, then p is not a prime in Q(\/Zi), and, in fact, there is a
prime n such that N(n) = +p. Where does your proof use the fact that
p is odd? Show that if p is a rational prime such that the congruence

x% = d(mod p)

has no solutions, then p is a prime in Q(\/ci). Does this last statement
hold without the unique factorization property?
Let p be an odd prime and «a an integer such that pya. If the congruence

x2 = a(mod p)

has solutions, then we say that a is a square (mod p); otherwise, we say
that a is a nonsquare (mod p). Show that the product of two squares
(mod p) is a square (mod p), the product of a square (mod p) and a non-
square (mod p) is a nonsquare (mod p), and the product of two non-
squares (mod p) is a square (mod p). (Hint . Look at a primitive root of p
and its powers.)

Show that if the congruence

x? = —2(mod p)

has a solution, where p is an odd rational prime, then there are rational
integers « and b such that

a? + 2b* = p.
Prove that this last equation is impossible if p = 5,7(mod 8). Show as a
result that the congruence equation

x2 = 2(mod p)

is solvable if p = 7(mod 8) and is not solvable if p = 5(mod 8).

Suppose that Q(\/;J) has the unique factorization property where p is a
rational prime = 3(mod 4). Show that there are rational integers a and b
such that

a® — pb? = +2,
7(mod 8) and — 2 if p = 3(mod 8).

and in fact the right side is +2if p
Conclude that the equation

x% = 2(mod p)

is solvable if p = 7(mod 8) and is not solvable if p = 3(mod 8). Note that
when p = 7(mod 8), the result here agrees with the result of problem 13
except that here there is an extra (and in view of problem 13, unnecessary)
restriction on p.
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Suppose that Q(\/;) has the unique factorization property where p is a
rational prime = 1(mod 8). Show that
\/13)

5

1 —
2

although 2 divides neither factor and hence show that 2 is not a prime
in Q(\/[_)). Show that there are integers a and b such that

a’> — pb? = +8
and use this to show that the equation
x2 = 2(mod p)

has solutions. Note that this was also proved in miscellaneous exercise
16 of Chapter 3 for all p = 1(mod 8).
Suppose that p and q are rational primes, p = 3(mod 4), and that the
congruence

x2 = p(mod q)

is solvable. Show that if Q(\/E) has the unique factorization property,
then there are rational integers a and b such that

q if g = 1(mod 4),
a’? — pb? = {
—q if ¢ = 3(mod 4)
and use this to show that the congruence
x2 = g(mod p)

is solvable if ¢ = 1(mod 4) and insolvable if g = 3(mod 4).
Suppose that p and g are both rational primes = 3(mod 4) and the
congruence

x2 = p(mod q)

isinsolvable. Show thatif Q(,/ — p) has the unique factorization property,
then there are rational integers a and b such that

a’ + pb? = 4q.
Use this to show that the congruence
x? = g(mod p)

is solvable. The unique factorization condition here is rather severe ; by
Theorem 8.22, p is restricted to one of the seven primes 3,7, 11, 19, 43, 67,
163.
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18. Suppose that p and g are rational primes, p = 3(mod 4), g = 3(mod 8),
and the congruence

x? = p(mod q)

is insolvable. Show that ifQ(ﬂ) and Q(\/ZT'J) have the unique factoriza-
tion property, then there are rational integers a and b such that

a’> — 2pb? =g
and hence the congruence

x? = g(mod p)
is solvable.
19. Suppose that p and g are odd rational primes, p = 1(mod 4), and that
the congruence

x? = p(mod q)

is solvable. Show that if Q(\/l_)) has the unique factorization property,
then there are rational integers a and b such that

a? — pb? = +4q.
Use this to show that the congruence

x? = g(mod p)
is solvable.

In problems 13-15 we have shown that if p is an odd prime, then the congru-
ence
x? = 2(mod p)

is solvable if p = 1,7(mod 8) and insolvable if p = 3,5(mod 8), provided
certain side conditions on unique factorization are met. These side conditions
are actually unnecessary. In problems 16-19 we have shown that if p and q
are odd primes, then the congruences

x* = p(mod q),  y* = g(mod p)

are either both solvable or both insolvable unless p = q = 3(mod 4), in which
case one congruence is solvable and the other insolvable, provided certain side
conditions on unique factorization are met. Again, the side conditions are
unnecessary ; the italicized statement is true for all odd primes. This was
first proved by Gauss and is known as the law of quadratic reciprocity.
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Let d = pyp,---p,, where py,p,,...,p, are distinct rational primes,
n > 2, and p; = I(mod 4), p, is odd. Let g be a prime, g = 1(mod 8),
which is a nonsquare (modp;), j = 1,2, and is a square (mod p)),
j =3,...,n.(Itcan be shown that a prime q with these properties exists,
see problem 22.) Use the law of quadratic reciprocity to show that the
congruence

x? = d(mod q)

is solvable. [If some p; = 2, then the result quoted above on the congru-
ence x2 = 2(mod q) should be used.] Show that if Q(ﬂ) has the unique
factorization property, then [whether or not d = I(mod 4)] there are
rational integers a and b such that

a* —db* = +4q.

Use this to show that the congruence
x* = q(mod p,)

is solvable. But this contradicts the definition of g, and hence Q(\/Z)
does not have the unique factorization property.

Let d = 2p, where p is a rational prime = 1(mod 4). Let g be a prime
= 5(mod 8) such that g is a nonsquare (mod p). Use the law of quadratic
reciprocity to show that the congruence

x2 = 2p(mod q)

is solvable. Use this to show that if Q(\/c?) has the unique factorization
property, then there are rational integers a and b such that

a? — 2pb? = +q.

Show that this is impossible (mod p) and hence Q(\/c}) does not have
the unique factorization property. Problems 20 and 21 combined show
that if Q(ﬂ) has the unique factorization property, d > 0, then either
d is a rational prime = 1(mod 4) or d has no rational prime divisors
= I(mod 4). Since Q(ﬁ) and Q(\/Z_l) have the unique factorization
property, it cannot be shown that d must always be a prime, but it can
be shown that d is either a prime or a product of two primes.
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Suppose that p,,p;,...,p, are distinct odd rational primes and
ag,dy,...,q,are rational integers such that

(ap.8) = (ay.py) = -+ = (a,,p,) = 1.
Show that there are infinitely many integers g such that
q = ag(mod 8), q = a,(mod py),...,q = a,(mod p,)
and if g, is one such integer, then all solutions are given by
4=4qo+t-8ppy---p, (tinZ)

Show that (g0, 8p1p2 - - - p») = 1. A theorem of Dirichlet (1805-1859) can
now be used to show that infinitely many of the g are rational primes.
Dirichlet showed in two memoirs dated 1837 and 1840 that if (a,d) = 1,
d # 0, then for infinitely many n, a + dn is a prime. Although certain
special cases suchasa = d = | are simple, the general result is extremely
difficult. By picking a, = 1, a; a nonsquare (mod p;),j = 1,2, and a; a
square (mod p;), j = 3,...,n, we have the primes q of problem 20. A
similar application is possible to problem 21.

Show that if x, y, and z are rational integers such that

x2+3y2 =23 (xy) =1, 3xx.
then there are rational integers a and b such that
a’ + 3b* =z

The result of problem 6 should be useful. Euler used this in his proof of
Fermat's last theorem for third powers, but it is now generally thought
that Euler did not prove this fact.
Suppose that d > 0. For any given positive integer n, show that Q(\/ﬁ)
has infinitely many units of the form a + bﬁ, where nl|b.
Let d and e be rational integers other than 0 and 1 having no square
factors other than one. Suppose there is an integer « in Q(\/ e) such that
N(x) = d.
Show that ifQ(\/c?)FhaS the unique factorization property, then there is
an integer 5 in Q(,/d) such that
N(p) = e.
Thus if Q(\/d) and Q(ﬁ) both have the unique factorization property,
then either both of the equations

N(x) = d, o an integer in Q(\/;),
N() = e, f an integer in Q(ﬁ),
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in the unknowns « and S have solutions or neither has a solution.
Note that N(18 + 7\/5) = 79. Show that there is no integer f§ in Q(f)
such that N(f) = 5, and use problem 25 to show that Q(,/79) does not
have the unique factorization property. Note that if the fundamental unit
of Q(\/_ ) were larger, there would be more special instances to check
out, and thus, in some sense, unique factorization is more likely to occur
with large fundamental units (see bibliography).

Suppose that d > 0 and ¢, is the fundamental unit of Q( f) (see Prob-
lem 3). Use Problem 25 to show that if d has no prime divisors = 3(mod 4)
and Q(\/;i) has the unique factorization property, then N(g) = —1.
Find the fundamental unit of Q(\/ﬁ) and show that it has norm 1
[therefore Q(\/g) does not have the unique factorization property].
This shows that the unique factorization hypothesis cannot be completely
eliminated ; unfortunately, we have seen in Problems 20 and 21 that it
requires d to be a prime.

We have seen in Problem 27 that if p is a positive rational prime, p = 2
or p = I(mod 4), and Q(\fp) has the unique factorization property,
then the fundamental unit of Q(\/p) has norm — 1. It follows from this
problem that the same result is true even if Q(\/;) does not have the
unique factorization property. Suppose that x and y are positive rational
integers, x> — py? = 1. Show that (x + 1, y) = 2a, where a is in Z. Set

ol

so that m is in Z. Show that m = (x + 1)/(2a®). Show that m|(x + 1)/(2a)
and m|p[y/(2a)]* and hence either m = 1 or m = p. In the latter case,
pl(x + 1)/(2a) and

x+1
m =

y 2

2a

2 x + 1
2ap

Put all this together to show that the Fermat-Pell equation
2 — py* = —1 has solutions.
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TWO-DIMENSIONAL VECTORS

Definition. A two-dimensional vector V' is an ordered pair of numbers,
V = (a,b). The number a is called the first (or x) coordinate of V and b is
called the second (or y) coordinate of V.

In order to be useful, we wish to combine vectors; in this book, we will need
only to know how to add vectors and multiply them by constants.

Definition. If V; = (a,,b,)and V, = (a,,b,) are vectors, then we define the
vector V; + V, to be

Vi +Vy =(ay + az,by + by),
and if k is a real number, we define the vector kV, = V k to be

kV, = Vik = (ka, kb,).

With these definitions, many of the rules of arithmetic are also true for
vectors.

Theorem A.1. If V;, V,, V5 are vectors and k,, k, are real numbers, then

Wi+ V=V, + 1V,
i+ W)+ Va=V, +(V, + V3),
k(Vi + Vy) =k Vy + k Vs,
ki(kaVy) = (kiky)Vy.

317
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Proof. Let V, = (a;,b)) for i = 1,2,3. We know that the corresponding
theorems are true for real numbers and thus

i+ Vo=(ay +ay,by +by)=(a, +a,b, +b))=V, + Vi,
(Vi + Vo) + V3 =(a; +a,,by + by) +(a3,b;) = (a; +a; +as, by + by + by)
=(ay,by) + (ax + a3, b, + b3) =V, + (V, + 13),
ki(Vi + V3) = ky(a; + a,,b; + by) = (kyay + kyay,kiby + kiby)

= (kyaykiby) + (kyaz.kiby) = ki Vi + ki V3,

ki(ko Vi) = kykyay koby) = (kykaay kikyby) = (kiky)Vy. A

It is because of Theorem A.1 that we may write something like
Vl + V2 + V3 or klkZV

without ambiguity. For example, while one person may interpret V; + V, + V5
as (V; + V,) + V; (that is, he first adds V; and V, and then adds V; to the
sum) and another may interpret V; + V, + Vyas (V3 + V,) + Vi, they will
both get the same result. In this example, we have

M+ +V=V+W+V=V+T+WVN=V+V+N

by the first two parts of Theorem A.1. There are other conceivable ambiguities
that fortunately are not ambiguities at all. For example, we may desire to
simplify ¥V + V + V + V + V by writing it in the more compact form, 5V.
But 5V already has the meaning of multiplying each coordmate of V by 5.
Fortunately, V + V + V + V + V also is the vector each of whose coordin-
ates is five times the corresponding coordinate of V. In general, multiplication
of a vector by a positive integer corresponds to that vector being added to
itself several times.

Definition. We define the zero vector to be O = (0,0).
Clearly, O + V = V + O and OV = O for all vectors V.

Definition. If V = (a,b), we define —V tobe —V = (—a,—b).
Thus V+ (=V)=0and —(-V)=1V.

Definition. If V; and V, are vectors, we define V; — V, to be

N=—rn="V+ (V)
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Thus if V; = (a;,b;), then V; — V, = (a; — a,,by — b,). Our definition of
subtraction of vectors also enables us to transpose vectors from one side of
an equation to another by merely changing sign:

If Vl + Vz == V3, then Vl = V3 - V2.

There is another possible ambiguity in the notation — V. The vectors — V
and (— 1)V have different definitions, but fortunately these definitions are
such that

—V=(=1V.

It is possible to give a geometrical interpretation of addition of vectors
and multiplication of vectors by constants. If the vector V = (a,b), then we
may represent V in the XY plane by the point (a,b) (Figure A.1). If V # 0,
then there is a line L passing through V and O and for all k, the point repre-
senting kV is on L. In fact, if k > 0, then the point representing kV is on the
same side of O as V and k times the distance from O as V. If k = — 1, then
kV = — Vis directly opposite V from O (and the same distance from O as V).
If k < 0, then since kV = |k|(— V), we see that kV is on the opposite side of
O from V and |k| times as far away from O as V. These statements are all
easily proved by means of similar triangles. A few examples are illustrated
in Figure A.1.

(2a, 2b)

Figure A.1. Shown are V = (a,b), 2V, —V,and -4V
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In Figure A.2, we see the geometrical interpretation of addition and sub-
traction of two nonzero vectors. If the point A represents the vector (a,b)
and Brepresents (c,d) and E represents (a,b) + (c,d), then OAEB s a parallelo-
gram. This fact is known as the parallelogram rule for addition of vectors.
It is most easily proved by introducing the auxiliary points C = (¢,0) and
D = (a + ¢, b). Then OC is parallel to AD (both are horizontal) and OC and
AD are equal in length. Likewise, BC||ED and BC = ED in length. Also

/ OCB =/ ADE (= 90°)

and thus AOCB =~ AADE. Since the sides of these congruent right triangles
are parallel, so are the hypotenuses, OBJ| AE, and since the triangles are
congruent, OB = AE. Thus two opposite sides of quadrilateral OAEB are
parallel and equal in length and hence OAEB is a parallelogram. We may
represent the difference of two vectors V; — V, geometrically by using the
parallelogram rule for adding V; and — V,. Thusin Figure A.2, if F represents
—(a,b) and OBGF is a parallelogram, then G represents (c.d) — (a,b).

EXERCISES

1. Let V, =(2,3), V, =(—12), V5 =(-3,—1), V, = (7,—8). What are the
coordinates of the following?
@ Vi+ Vs d) [(=3Vs+ V) +TV,] =V,
(b) 2V, = 1, () —2(Va— V) + V13-3
(€) (Ve —3V3) + (V) — V)

2. Use Theorem A.1 to show that for all vectors Vv, V,, V3, V,,

(TVa = 3V3) + (V, — Vo) = [(=3V3 + Vi) + TVl — V).

(a+c.b+4d

(¢ —a,d —b)

(a,b) (a + ¢, b)

Figure A.2.
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3. Show for all vectors V and constants k that (—k)V = —(kV).

4. In Figure A.3, the XY plane has been partitioned into congruent
parallelograms. Let 4 and B be the points representing the vectors A
and B. Which points represent the following?

(a) 24 (€) A + 2B (i) 44 — 3B
(b) 4B (f) B- A (i) —24 + 3B
(©) —24 (g) B — 24 (k) —4 — B

(dA+B (h) 34 + 2B () —24 — 2B

Figure A.3.
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TWO BY TWO MATRICES

Definition. An m x n matrix (of real numbers) is an array of mn real
numbers in a rectangle of m rows and n columns.

For example,
7.1 37 2 )
m), (1,3), ,
w (T (7
arel x 1,1 x 2,2 x 1,and 2 x 2 matrices, respectively.
Definition. If 4 and B are two m x n matrices, then we define A + B
to be the m x n matrix whose entries are the sums of the corresponding

entries of 4 and B.

For example,
(1,4) + (=3,7) = (—2,11),

(1 5) ( 2 - 1) (3 4)
+ = :
7 2 -1 3 6 5
Definition. If 4 is an m x n matrix and k a real number, then we define

kA = Ak to be the m x n matrix whose entries are k times the corres-
ponding entries of A.

For example,
3(1,4) = (1,4)- 3 = (3,12),

LT R R R

322
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Note that addition and multiplication by real numbers of 1 x 2 matrices
is exactly the same as addition and multiplication by real numbers of two-
dimensional vectors. Thus two-dimensional vectors and their arithmetic
(as developed in Appendix A) are a special case of the arithmetic of matrices.
As an analogue of Theorem A.1, we have the following theorem (its proof is
exactly the same as that of Theorem A.1 and is left to the reader).

Theorem B.1. If 4,, A,, A; are m x n matrices and k, and k, are real
numbers, then
Ay + A, = A, + Ay,
(A; + Ay) + A3 = Ay + (A, + A3),
(ky + k2)Ay = kiA; + kyAy,
ki(kyA)) = (kiky)A,.

Because of Theorem B.1, there is no ambiguity to an expression such as
44, 4+ 34, + A5 + SA,;

no matter how these matrices are combined, the result will be the same in the
end.

Definition. The zero m x n matrix is the m x n matrix all of whose
entries are 0. If 4 is an m x n matrix, we define — A to be the m x n
matrix whose entries are minus the corresponding entries of A [and thus
—A = (—1)A]. If Bis also an m x n matrix, we define the matrix A — B
tobe A + (—B).

Theorem B.2. If A, B,C are m x n matrices and O is the zero m x n
matrix, then

A+0=0+ A=A,
A—A=0;
if A+ B=C,then A =C — B.
Proof. The first two parts are immediate consequences of the definitions.

The third part is also clear, but we give here a proof using the first two parts
of the theorem and Theorem B.1. If

A+ B=C,
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then
A=A+0=A+B—-B=(A+B)—B=C—-B A

The proof of the third part of Theorem B.2 shows what is really involved
in transposing something from one side of an equation to the other. After
Theorems B.1 and B.2, we see that addition and subtraction of matrices and
multiplication of matrices by real numbers follow the same rules of arithmetic
as the real numbers themselves. This is not true of multiplication of matrices,
to which we now turn; however, multiplication of matrices will obey enough
of the usual laws of arithmetic to be exceedingly useful.

Definition. We define the product of two 2 x 2 matrices to be a 2 x 2
matrix as follows:

(a b
c d
We define the productofa | x 2and a2 x 2 matrix (in that order) to be a
1 x 2 matrix as follows:

e f
g h

ae + bg af + bh
ce +dg of +dh|

(a,b)

e f )
= (ae + bg, af + bh).
g h

The second definition is merely the top half of the first definition. In each
definition, the element of the ith row and jth column of the product is found
from the ith row of the first matrix and jth column of the second matrix;
in fact, it is the product of the first entries in the ith row of the first matrix
and jth column of the second matrix plus the product of the second entries
in the ith row of the first matrix and jth column of the second matrix. For
example, the entry in the first row and second column of the product is found
fromthe first row of the first matrix, (a,b), and the second column of the second

matrix, (h , by multiplying the first entries, af, and adding the product

of the second entries, bh, thereby getting af + bh. The reader should remem-
ber to always move horizontally in the first matrix (from left to right) and
vertically in the second matrix (from top to bottom).

It is possible to give a general definition along these lines of the product
of an m x n matrix and an n x p matrix (the product being an m x p
matrix), but such generality is unnecessary in this book and further, the
computational proofs given below for 2 x 2 matrix products would be
quite impossible for 100 x 100 matrix products. We first give two examples.
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We see that

1
(2,3)( 4) = (8,10),

2

while

(1 —1)23
T

is not even defined. Further,

bl =6
S| N e P |

Thus if 4 and B are matrices and AB is defined, BA may not be defined and,
even if BA is defined, BA and AB are not necessarily the same. Thus one of
the fundamental laws of multiplication fails to hold for matrices. However,
the failure of this particular law is actually only a minor nuisance, it simply
means that we must pay attention to the order in which things are written.
The really important laws of multiplication remain valid for matrices.

while

Theorem B.3. If A and A, are either both 2 x 2 matrices or both 1 x 2
matrices, and if B and C are 2 x 2 matrices, then

(AB)C = A(BC),
ABB + C) = AB + AC,
(A+ A)B = AB + A,B

(where all the above products are defined).

Proof. The first part of the theorem is the messiest of the three parts; we
prove itfor 4 beinga 2 x 2 matrix, this being twice as messy as the case that
Aisal x 2 matrix. The other case of the first part and the last two parts of
the theorem are left to the reader as exercises. Let

N .
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Then
(AB)C — [(a b)(e f]c _ ae + bg af‘+bh) i j)
c dl\g h ce +dg of +dhl\k I
aei + bgi + afk + bhk aej + bgj + afl + bhl
" \cei + dgi + cfk + dhk cej + dgj + cfl + dhl]’
while

[(e f)(i j):|_(a b)(ei+fk ej + fl
ABO=A, w1\ 1] T Ve al\gi v mk g+ m

aei + afk + bgi + bhk aej + afl + bgj + bhl)
cei + ¢fk + dgi + dhk  cej + cfl + dgj + dhl]’

Thus by direct computation,
(AB)C = A(BC).

The other parts to the theorem may be handled similarly. A

Because of the first part of Theorem B.3, there is no ambiguity in an ex-
pression such as ABCD, as long as we remember to multiply only adjacent
matrices (and in the order given). Thus, for example, if one person interprets
ABCD as [A(BC)]D and another interprets ABCD as A[B(CD)], then after
the multiplying is over, they will both get the same result. This is because

[A(BC)]D = A[(BC)D] = A[B(CD)].

On the other hand, we cannot interpret ABCD as [(AC)B]D, since this in-
volves changing the'order of B and C. However, we may put a real number
into a product wherever we wish: If A is eithera 1 x 2 or 2 x 2 matrix, B
is a 2 x 2 matrix, k a real number, then

k(AB) = (kA)B = (Ak)B = A(kB).

Let us give an example of Theorem B.3 in action. Suppose we wish to
solve the two equations

13x 4+ 3y = 1,

(N
S5x4+y=2

(13 5) (—;
A= ., B=
31 3

for x and y. Let
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Since

13 5
(A = (x,y) 3 1) = (13x + 3y, 5x +y),

equation (1) may be put in the form
(2) (x,y)A = (1,2).

Thus the solutions to (1) have (x,y)4 and (1,2) being the same matrix, and
therefore

3) [(x.y)4]B = (1,2)B;

in other words, we have just multiplied (2) by B, putting B on the right-hand
side in each case since order matters. Now

-3 %)_F -2l

B

(4) (1,2)B = (1,2)(

and, by Theorem B.3,

]

13 s\[-41 3
[(x,)A]B = (x,y)[AB] = (x.y) s 1s
31UV 5 —F

= (x,y)
(5) = (x,)).
When we combine (3), (4), and (5), we see that

5 =21
(X,y)= (§~ T)’

10)
0 1

so that
x=3 y=-%

is the solution to (1). Without Theorem B.3, we could not have done this.
However, we still are faced with the problem of finding B.

Definition. Let / denote the 2 x 2 identity matrix,

= )
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If
a b
A:( ) with ad — bc # 0,
c d
then we define a matrix A~ !, called A inverse, by
d —b
ad — bc ad — bc 1 ( d _b)

—C a zad_bc

ATt =

—C a

ad — bc ad — bc
Note that 47! is not defined for all 2 x 2 matrices.

Theorem B.4. If Aisa 2 x 2 matrix, then
Al = 1A = A,
If Visa 1 x 2 matrix,
Vi=1V.
If Aisa 2 x 2 matrix and A~ ! is defined, then
A A = A4 = ].

The proof consists of performing the multiplications and is left to the reader.
In the preceding example, to solve for x and y, we wish to somehow “‘divide”
both sides of (2) by A. The method of dividing by A4 is to multiply by 4!
(which in the previous example is the matrix B). In order that 4 and A~!
cancel each other (that is, multiply out to I), they must be adjacent to each
other, and this says that we must multiply equation (2) through by 47!
on the right-hand side. It is very important to note that 4 and A~ ! will not
in general cancel each other unless they are adjacent. For example, in genera!

ABA~' # B.

(For certain choices of A4 and B, namely those 4 and B such that AB = BA,
equality holds; the point is equality does not always hold.)
There are two other properties of 2 x 2 matrices that we use in the book.

Definition. Let
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Then we define the determinant of 4 to be
det A = ad — bc.
In terms of determinants, we have defined A~ ! only for those A with
det A # 0.
Theorem B.5. If A and B are 2 x 2 matrices, then
det(AB) = (det A)(det B).
The proof of Theorem B.5 is also straightforward and is left to the reader.
Since det I = 1, we see that
(det A)(det A ') = det(AA ') = det I = |
and thus
1
detA~! = det A"
We may also use Theorem B.5 to show the futility of trying to define 4!
when det 4 = 0. Suppose det 4 = 0 and
(6) AB = IL.

Then
0 = 0-det B = (det A)(det B) = det(4B) = det I = 1,

which is a contradiction. Thus there is no matrix B such that (6) holds.

Definition. 1f
a b

¢ d

then we define a matrix A’, called 4 transpose, as
a ¢
e
b d
Theorem B.6. If 4 and B are 2 x 2 matrices, then
(AB) = B'A’

’

(note the change in order).

The proof again consists of multiplying both sides out and is left to the
exercises.
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EXERCISES
1. Let

S N R R

Find (a) 4B, (b) BA, (¢) AC, (d) B + C.
(e) Use (a)and (c) to find AB + AC.
(f) Use(d) to find A(B + C).
(g) Verify that (4B)C = A(BC).
(h) Verify that [A(BC)]D = A[B(CD)].
2. Find A~ 'and ABA~"', where A and B are given in problem 1.

-1
and use this to solve the equation

3
3. Find
4

(x,y)

ﬂ-@—%
4 3 777

2 -1
4. Find g 2) and use this to solve the equation

(X,y) = (7,28)

8§ -2

Find det A4, det B, det(4B),det(BA), where A and Bare given in problem 1.
Verify Theorem B.6 for the matrices 4 and B of problem 1.

Prove the first part of Theorem B.3 when A isa 1 x 2 matrix.

Prove the second part of Theorem B.3.

Prove Theorem B.4.

Prove Theorem B.5.

Prove Theorem B.6.

— oY XN W

—
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Appendix C

FIELDS

Definition. Let F be a collection of objects which can be combined by
two operations which we call plus (+) and times (- ). We say that Fis a
field if the following postulates (1-9) are all satisfied.

. Uniqueness. If a and b are in F, then there is a unique object which is

equal to a + b and there is a unique object which is equal to a - b.

. Closure. Ifaand b arein F,thena + band a-barein F.
. Commutative laws. If a and b are in F, then

a+b=>b+aq, a-b=">b-a

. Associative laws. If a, b, and ¢ are in F, then

a+b)+c=a+(®b+o), (a-by-c=a-(b-c).

. Distributive law. If a, b, and c are in F, then

a-b+c)y=(a-b)+ (a-o).

. Zero element. F contains an element O such that for all a in F,

a+0=a.

. Unity. F contains an element 1 # 0 such that for all g in F,

a-1 =a

. Additive inverse. If a is in F, then there is an element x of F such that

a+x=0.

. Multiplicative inverse. If a is in F, a # 0, then there is an element x of F

such that
ax = 1.

331
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From these postulates, we derive virtually all the laws of ordinary arithmetic.
In particular, postulates 8 and 9 form the basis for subtraction and division
in F.

Familiar examples of fields are the set of all rational numbers, Q, the set
of all real numbers, R, and the set of all complex numbers, C. Other examples
of fields are given by arithmetic (mod p), where p is a prime, the quadratic
fields, Q(\/(;), of Chapter 8, and the set of four elements, {0,1,2,8}, considered
in problem 5, page 140. Examples of arithmetical systems that we have
considered in this book that are not fields are given by arithmetic (mod n),
where n is composite and the set of all 2 x 2 matrices. Arithmetic (mod n)
satisfies all the postulates except for postulate 9. The arithmetic of 2 x 2
matrices satisfies all the postulates except the multiplication part of postulate
3 and postulate 9.

The great advantage of dealing with the abstract concept of a field lies
with the fact that any theorem proved on the basis of postulates 1 through 9
is automatically satisfied by all fields. For example, one can prove that if
ag # 0,a,,a,,...,qa,are in a field F, then the equation

apx"+ax"" '+ .- 4+a,=0

has at most n different solutions in F. The reader has probably seen this
statement for Q, R, and C in high school ; we proved it for arithmetic (mod p)
in Section 3.6. The proofs are virtually identical ; in dealing with fields, we
simply prove the theorem once and we are done with it.

As another example, one can show thatifa, # 0,4, a, are in a field F and
the equation

(1) a0x2 +a,x +a; = 0

has no solutions in F, then there is a bigger field, F(«), such that every element
of Fisin F(a), o satisfies (1), and every element of F(a) may be written uniquely
in the form

b + co,

where b and ¢ are in F. When F = Q, this is how we created Q(ﬁ) in
Chapter 8. When F = R, this is how the set of all complex numbers was
created, equation (1) then being

x2+1=0.

When F is the set of two elements {0,1} with arithmetic (mod 2), and equation
(1) is

X2+ x+1=0,
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we get the field of four elements {0,1,a,} on page 140. In each of these cases,
F(a) is a field and thus all the usual laws of arithmetic will continue to hold.
This one theorem on abstract fields thus justifies the creation of all three of
the fields, Q(ﬁ), C, and {0,1,2,5}, and guarantees that the standard arith-
metic laws continue to hold in these new creations. We can even create

something like Q(ﬂ) (\/5) or {0,1,0,8} (y), where
2 4+79+a=0.

The concrete approach would force us to examine each of these new sets
and verify their arithmetic properties; the abstract approach has already
taken care of these details in the one theorem above.
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from 1to 10 006 721, Washington, D.C., Carnegie Institution,
No. 165, 1914, and Factor Tables for the First Ten Millions,
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n = 906 180 359 was found by R. S. Lehman, On Liouville’s
Function, Math. Computation 14 (1960), pp. 311-320.
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The first example of a pseudoprime was given by Sarrus,
Ann. Math. 9 (1818-1919), p. 320, his example being 341.
Since then many other examples have been given. A paper
by D. H. Lehmer, On the Converse of Fermat’s Theorem I1,
Amer. Math. Monthly 56 (1949), pp. 300-309, lists all those
pseudoprimes between 10% and 2 - 108 whose smallest prime
factor is greater than 313. Lehmer’s paper gives references
to other tables. Lehmer’s earlier paper with the same title,
Amer. Math. Monthly 43 (1936), pp. 347-354, was written
before the advent of the electronic computer and illustrates
the methods of performing difficult calculations by hand.
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pp. 5-13.
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the first to analyze the uniform step method from the point
of view of congruence equations; see his article, On the
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Trans. Amer. Math. Soc. 31 (1929), pp. 529-551.
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The result for the first case of Fermat’s last theorem is that
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Last Theorem, Bull. Amer. Math. Soc. 47 (1941), pp. 139-142.
The result for the second case of Fermat’s last theorem is
that of J. L. Selfridge, C. A. Nicol, and H. S. Vandiver, Proof
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Than 4002, Proc. Natl. Acad. Sci.(U.S.)41(1955), pp. 970-973.
The result of Lander and Parkin was announced in the Bull.
Amer. Math. Soc. 72 (1966), p. 1079.

The result of K. F. Roth is given in his paper, Rational
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(1955), pp. 1-20 and 168. The first effective improvement of
Liouville’s theorem is due to A. Baker, Contributions to the
Theory of Diophantine Equations, Phil. Trans. Roy. Soc.
London A263 (1968), pp. 173-208. Baker shows how to
calculate a value of d such that

n

p S o(log @) 1/K
5 o€

o — =2
q q

Here «x is a fixed number > n + 1 and § depends on « as
well as a. This result still does not enable us to calculate a
value of & when 0 < n, but it is sufficient to deal with certain
types of Diophantine equations effectively.

Baker’s result on V3/§ does not seem to extend to the general
algebraic number. It may be found in his paper, Rational
Approximations to ﬁ and Other Algebraic Numbers,
Quart. J. Math. 15 (1964), pp. 375-383.

Geometrical interpretations of continued fractions and even
some of the theorems have occurred in the past. The closest
approach to this chapter that I have seen may be found in
the early sections of the book by F. Klein and A. Sommerfeld,
Ausgewdhlte Kapitel der Zahlentheorie 1 Goéttingen, 1896
(see especially pp. 46-47).

There are now two very extensive tables of continued
fraction expansions of | /d. The first is that of Wilhelm Patz,
Tafel der Regelmissigen Kettenbriiche und 1hrer Vollstindi-
gen Quotienten fiir die Quadratwurzeln aus den Natiirlichen
Zahlen von 1-10000, Berlin, Akademie-Verlag, 1955. The
second is that of R. Kortum and G. McNiel, A Table of
Periodic Continued Fractions, Sunnyvale, Calif., Lockheed
Missiles and Space Division, 1961. The Kortum and McNiel
tables also include those d in the range 1 to 10 000. In addi-
tion, the Kortum and McNiel tables include the smallest
solution to the Fermat—Pell equation : this information is
not given in the Patz tables.

Davenport’s result that there are no Euclidean quadratic
fields with d > 2'* appeared in Proc. London Math. Soc. (2)
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53 (1951), pp. 65-82, and Chatland and Davenport’s paper
appeared in the Can. J. Math. 2 (1950), pp. 289-296.

The Heilbronn and Linfoot paper appeared in the Quart. J.
Math. Oxford 5 (1934), pp. 293-301. For the Stark and
Baker results, see H. M. Stark, A Complete Determination
of the Complex Quadratic Fields of Class-Number One,
Mich. Math. J. 14 (1967), pp. 1-27, and A. Baker, Linear
Forms in the Logarithms of Algebraic Numbers, Mathe-
matica 13 (1966), pp. 204-216.

Problem 26: The vague feeling that unique factorization is
more likely with large fundamental units has been sub-
stantiated by C. L. Siegel, who showed that the fundamental
units of fields with unique factorization are larger than those
of fields without unique factorization. The precise statement
of his result is that if ¢¢(d) is the fundamental unit of Q(\/E)
and h(d) the class number of Q(ﬂ) [h(d) is a positive integer
and equals 1 if and only ifQ(\/E) has the unique factorization
property], then

. In[h(d) In gy(d)]
] - T —
dLn; In \/c-i

Siegel’s paper appeared in Acta Arithmetica 1 (1935),
pp. 83-86.

1.
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Table 1. Greek Alphabet
A a Alpha N v Nu
B B Beta = 4 Xi
r ¥ Gamma (0} 0 Omicron
A d Delta I n Pi
E € Epsilon P P Rho
Z { Zeta b o Sigma
H n Eta T T Tau
© 0 Theta T v Upsilon
I L lota o ¢, ¢  Phi
K K Kappa X b4 Chi
A A Lambda b d v Psi
M u Mu Q %) Omega

Table 2. Primes Less Than 500 and Their Smallest Positive Primitive Roots

2

p g r g 14 g p g p
2 1 71 7 167 5 271 6 389
3 2 73 5 173 2 271 5 397
5 2 79 3 179 2 281 3 401
7 3 83 2 181 2 283 3 409

11 2 89 3 191 19 293 2 419

13 2 97 5 193 5 307 5 421

17 3 101 2 197 2 311 17 431

19 2 103 5 199 3 313 10 433

23 5 107 2 211 2 317 2 439

29 2 109 6 223 3 331 3 443

31 3 113 3 227 2 337 10 449

37 2 127 3 229 6 347 2 457

41 6 131 2 233 3 349 2 461

43 3 137 3 239 7 353 3 463

47 5 139 2 241 7 359 7 467

53 2 149 2 251 6 367 6 479

59 2 151 6 257 3 373 2 487

61 2 157 5 263 5 379 2 491

67 2 163 2 269 2 383 5 499

oQ

3]

—
N WWR WRNW W OBVLB DN RN—=Wun

—_

@ p stands for prime and g stands for the smallest positive primitive root of p.
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Table 3. Continued Fraction Expansions of\/Efor d < 100 (and Not a Square)

VC:(IQ V53 = (13,113,184

V3 =12y 54 = (72,1,6,1,2.14)
V3= Qa V55 =(722214>

Vo = Q2 2 Vsie:azm

V1= QLLI& V37 = (LLIALLI4

J8 = (2, > \/58:<7,11111114>
JI0 = (36 V59 = (711,272,114
\/ﬁ=<z3> /60 = (712,114

V12 = (3.2, VOl = (71,43,122134,1,14>
J13 = GLLLL6Y J62 = (1.16,1,14)

V14 = <3g 6 V8 = (1.L14)

VI5 = 316) V65 = (8,16

/‘z A48 V66 = (88,16
18 = (448> V67 = (8,52,11.71.12.516)
JI19 = <4,gy,1 28> \/@ = (84,16
\h0=< 2 \//6_:<8331413316>
V2h=<4 12118) V[_0=<821212l62

J22 = (4124218 JIL = (822,17,122.16)
J23 = <4,g,1,3> J72 = (82,16)
J24 = (4,18 U713 = 8.L1,551,1,16)
26 = {5105 V74 = 8.1,L11,16)
J27 = (5.510) J75 = BLLLI6Y
28 = (5323,10) \/%=<81211545,1,12,1,16>
329 = (52112105 J7T7 = (8,1,3,23,1,16)

/30 = (5210 S8 = (8.14,1,16>
\ﬁ = (511353.1.1.10> J79 = 817.1.16)

31

V2= SLLLI® /80 = 8 L16)
V33 = (5,12,1,105 82 = (9,18
\C= (514,110 V8 = 99,18
V35 = (5.L,10Y /84 = (96,18
V3T = (612> /85 = (94,1,1.4,18)
38 = 6,6,12) V86 = (93L1181,1,13,18)
39 = 64,12) V87 = (9318
J40 = (63,12) /88 = (O2,LL1218)
J4 = (62212) 89 = (92,332.18)
V42 = (6212 /90 = (9.2,18)

43 = C6LIAISIAITI2) Vﬁ=<9,115151118>
J44 = (6 L LI21ILT.12) J92 = (9.1,1242,1,1,18>
\/g= 6,12221,12> \cTz OIT11464,1,1,1,18>
J46 = (613,112621131.12) J9%4 = (9.123,1,1,5,18.1,51.132.1.18)
/4 = (6,1,51.12> 95 = (9,1 2,1,18>
\/_=<6L_> 96 = (9.13,1,18>
V50 = (7.14y. \/9_7=<9,15111,1,1,1,51,1s>
51 = (171 2 V98 = (9.18,1,18>
52 = (14121414 J99 = 9,118




ANSWERS TO SELECTED EXERCISES

Section 1.2. 3: One is the smallest positive integer so that there are no integers between
Oand 1. 5: +1, £2. +3, +4, +6, +£12.6: +1, +2, +3, +4, £6, +12.

Section 2.1. 2: (a) 7; (b) 26; (c) 1. There are other correct solutions to problems 3-7
but the Euclidean algorithm leads to those given. 3: 6-37 — 13-17 = 1. 4:
4.703 -7-399=19.5:r=171,s= —148. 6: r = — 101, s = 67. 7: r = 3892,
s = —1659. 8: No. 11: No.

Section 2.2, 1:11.2:3-11.3:2-7-7.4:2-3.5-11. 5: 1009. 6: 1. 7: None of these
numbers can be a prime. See also miscellaneous exercise 7. 14: 24. 15: 2-3-5,
2-3-7,2-5-7,3-5-7. There are naturally other examples.

Section 2.3. 5: No,d, = 1 and d, = 11 work fine.

Section 2.4. 3:1210 and 1184, respectively. 4: 14 288, 15472, 14 536, 14 264, and 12 496,
respectively. 6: 60. 7: 180, 234, 362, or 369.

Section25. 1:x=1+2t,y=—-1-3t.2:x=1+4+2t,y=1+31.3.:x=20+ 14¢,
y=-24—17t.4: x= —3+4t, y=—9 + 11t. 5: None. 6: x = 2860 + 503,
y=—=2280—-401t. 7: x= =3+ 7t,y = —10+ 231, t > 1. 8: None. 9: (x.,y) =
(4.85), (51.46), (98.7). 10: x =4, y = 5. 11: 4H + 5B will do. 12: 40 gallon and 78
half-gallon containers. 13: d = $3550. The students’ answer is unique.

Section 3.1. 1: True, true, false. 3: The first and second are true. 4:a = 6. 5: a = 70.
10:17.

Section 3.2. 3:4. 13: x2 + y2 = 0, 1 or 2 (mod 4) (but never 3). 15: Hint: 5* = 23(mod

17). 32: 2.
Section3.3. 1: x =3(mod 7). 2: x = 10(mod 45). 3: x = 46(mod 87). 4: None. 5:
x=4mod7). 6: x=1mod4). 7: x = —1(mod 12). 8: x = 151(mod 414). 9:

x = —1I(mod35). 10: x =13(mod55). 11: x=1(mod7), y= 2(m0d 7. 12:
x = 4mod 13), y = O(mod 13). 13: x = 2(mod 11), y = 3(mod 11), z (mod 11).
14: (xy) = (5.0). (6:1), 02, (13). (24), (3.5), (4.6) (mod 7). 15: (x) = (0:6), (11),
(24), (3.7), (42). (5.5), (60). (7.3) (mod 8). 17- (x.y) = (2.1). (23}, (2.5). (5.1), (5.3), (5.5)
(mod 6). 18 none. 19: (x,y) = (1,2), (5,10), (9,6) (mod 12). 20: 1, 211, 421, 631, and
841.21:990 away. 22: 9. Note that casting out nines does not distinguish between 0
and 9.

Section 3.4. 1: {1.3,79,11,13,17,19}, $(20) = 8. 2: {1,7,11,13,17,19,23,29}, $(30) = 8.
3:n = 6 and n = 8 illustrate both possibilities. 7: n = 6 and n = 561 work.

Section 3.5. 1:8, 16, 36, 300, and 320.7: x = 6. 8: x = 12.9: 143.
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Section 3.6. 1:(x — 1)(x — 2).2:(x — 2)2x + 1).3:(x — 5)(x + 5). 4:(x — 4)(x + 4).
5:(x— 1I)(x —2)(x—3). 6: (x — 1) 7:no. 11: ‘j;ij = O(mod p) for p > 2.
12: 322 Y21 ij = Omod p) for p > 3. 13: x = 1,3(mod 5). 14: none. 15: x =
+2, +7(mod 15). 16: x = 3,4 (mod 8). 17: x = 3(mod 11).

Section 3.7. 1: No.2:One. 9: x = +8, + 18 (mod 65). 12: x = + 1(mod 14).

Section4.1. 1:Firstrow: 7,0, 5;second row:2,4, 6; third row: 3, 8, 1; filled and magic.
2: Magic but not filled. 3: Filled and magic. 4: Filled but not magic. 5: Neither.
6: Filled and magic. 7:a=5b=3,c= —-3,d= -2, e=1, f=2.9: No. 10:
[n(n* — 1)/2]. 11: No.

Section 4.2. 1: 9,1, —81, —2,472. 2: 4. 5: Filled and magic. 6: Filled and magic. 7:
Column magic. 8: Magic. 9: Filled and magic. 12: a=4,b=5,c=1,d=1,
e=4, f=5.

Section 4.3. 1: Magic, magic in the negative diagonals, symmetric. 2: Filled, column
magic. 3: Filled, magic, magic in the negative diagonals, symmetric. 4: Nothing
whatsoever. 5: Filled, magic in the negative diagonals, symmetric.6: xo = (n + 1)/2,
YVo=n10:n=3,n=19,n=57.12:r + t

Section 5.1. 1: x =y = 2. 2: No solutions. 3: x =3, y=2.4:x= +1,y=0.

Section 5.2. 3: There are no solutions. This can be decided (mod 3) and (mod 4). 4: No
solutions. This can be decided (mod 3) and (mod 8). 5: x = y = z = 0. This can be
decided (mod 3). 6: x = y = z = 0. This can be decided (mod 5), (mod 8), (mod 13).
7: No solutions. 8: x = y = z = 0. 9: No solutions. 10: No solutions.

Section 5.3. 1: x = |du® — 2v?)|, y = 2duv, w = du® + 2v?), u>0, v>0, d> 0.
2: x = |dl(u® — 3v2)2], y = duv, z = d[(u® + 30v*)/2], u > 0,v>0,d > 0, d even
if u and v are not both odd. 3: x = |d[(#? — pv?)/2]|, y = duv, z = d[(u® + pv?)/2],
u>0,v>0d>0,deven if uand v are not both odd. 4: x = 2(u? — v?), y = 4uv,
z = u? + v? (or the same thing with x and y interchanged), u > v > 0, (u,v) = 1,
one of u and v is even and the other odd. 7: x = d|(u® — dv3)/2|, y = duv, z =
dl(u® + dv?)/2], whereeitherd = 2,u > 0,v > 0,(u,0) = l,uoddord = 1,u > v >
0, (u,v) = 1, u odd, v odd.

Section 6.1. 3:1/9.4: 1/37. 5: 1343/4950. 7: 1.

Section 6.2. 1 : Irrational and rational, respectively.

Section 7.1. 3: (1,1), (1,2), (2,3).

Section 7.2. 5: Vo = (L,1), V; =(1,2), V, =(2,3), V3 =(3,5), V, = (58), V5 = (8,13),
aGg=a,=a,=ay=a,=as=1. 6: Vo=(11), ¥V, =(123), V=057, V5=
(12,17), ap=1, a; =a, =ay;=2. 7: Vo=(L1), V,=(18), ap=1, a, = 7.
8:Vy = (1,0), V, = (LI, V, = (43), Vs = (17,13), a0 = 0,a, = 1,a, = 3, a5 = 4.

Section7.3. 1:(22.2,1,5), Vo = (1,2), V; = 2,5). V; = (5,12), V3 = (1,17), V, = (40,97).
2: Ty = (L1100 30 <1L2) 40 (2,1,1,1,4). 5:193/71. 8: 196/185. 10(b): 0/1,
1/3, 3/10, 28/93, 59/196. 11: p,/q, = 3/4, ps/qs = 228/293.

Section 7.4. 4:(127,16) already has a vertical distance to the line less than .001. 7: (1,15),
(5,76), (151,2295), (760,11 551). 8: (1,22), (2,45), (5,112), (112,2509).

Section 7.6. 2: 2 + /7. 3: J115. 4: (17 + /3)/13. 5: 2 — /2. 6: (13 — /2/7. 7:
(325 + 2./39)/247. 8: (2 — /2)/4. 9: (3 — /3)/24. 10: (21 — ./2)/8. Note also
that o = (2,2,4,3,223,5>. 11: {1,3,1). 12: (2,4225,1,1,55. 13: (88,12). 14:
<(7,11,2,1,2,1,2,10). 15: <0,1,1,8,1,18>. 16: {n,2n/k,2n>, and k|2n is sufficient.

Section 7.7. 1: x =95, y=2; x=49, y=20. 2: x=10, y = 3; x =199, y = 60.
3ix=24y=5;x=1151,y =240.4:x =15,y = 4;x = 449,y = 120.5: x = 9,
y=4;x=161,y=726:x=70,y = 13.7:x =99,y = 13.8:x = 1068, y = 125.
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9:x =4005y =389.10: x = 5604, y = 569. 11: x =3,y = 1;x> — 10y2 = — 1.
12:x =182,y = 25;x2 - 53y2 = —1.13:x = 24335,y = 3588; x% — 46y = 1.
14:x =57y = 5 x2 —130y? = — 1. 15 x =682,y =061:x2— 125/ = —1.

Section 8.1. 1:x = u? — 2v% y = 2uv, z = u? + 202,

Section 8.2. 13 9+ /7, 1 —~ 2./=7, 10, 9 + 15/=7)/2 O + 15/ =7)/6 [
SV/?7)/2], 10 + /= 108)/4, (3 +2/6)/1 — J6). 2: 3 -2 /-2 1 — V/_\z,
3:7,24,25; 117,44,125; 33,56,65; 16,63,65.

Section8.3. 3:(7 + /53)/2,(39 + 5/61)27:2 + /=12 - /=-Dl(—1 - /=7
2111 - V/:—7)/2]3. 9: 4+ ﬂ)(—? + Zﬂ). Other factorizations can be
converted to this one with the aid of approprlale units.

Section84. 5:3-7=(1+2/-501 —2/=95).7:7 + 13i.

Section 8.5, 1: One such famllylsglvcn byx—u = 3uw?, y = 3utv — vdz=u? + 0%
2:x= 15 y=233: x—+,y—2x +11)—54x—+4y=3;x=
+58, v=156: x = +du?® — 2uv — v?), y = +du® + 2uv — v?), z = +du® +

v?) (or the same thing with x and y interchanged).
Appendix A. 1:(a) (—1,2); (b ) (5,4); (c) (61,—52); (d) (61,—52); (e) (—19,19). 4: (a) E;
(b) G (C) 13, (d) Fs; (e) Fo; () Hs; (g 14,(h) Dy: (1) Cy;5 (j) I (k) Hss (1) 1y

Appendix B. 1. (@ 06 4)()(—17 4) (d)(s'z)
(] . ca N C N N
ppendix 1 -3 14 —33 58 —13 —6 6
o7 10) tf)(_” 10) @ both sid (—42 6) ) both
] 5 €s = 5 0
Dl o571 —36 57 —36) & OO ST g g

_ 192 162 =1 -2 T8 -6

sides = .20 AT = , ABA™!' = )

_727 6l 3 1 76 25

3 o (=2 -3 .

La oG =08—ma k| L) = (DS 160606,

0 —1
6: Both sides = ( )
6 -23
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ab,ayb
(ab)
d(n), a(n)

d|n

aI = b(mod n), a Z b(inod n)
é(n)

f(x) = g(x)(poly mod n)
Sf(x) = g(x)(mod n)

ord,(a)

16
36
38

51
78
86
87
98
112
120
164
188
196
198
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(1,12)

AH’ Mﬂ* y’l

Al

d (for Section 7.7)
{XgyX1s-rep
Q.Z,Q(/d)

d (for Chapter 8)
o

N(o)

B

UF]?_

Z[/d]

Q(p)

det 4, A’

>

203
206
226
233
239
249
258
260
261
263
270
281
296
305
329
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Above a line, 181

Additive questions, 3

Algebraic number, 172

Algebraic number theory, 258, 305
Amicable numbers, 43

Answers to selected exercises, 341

Approximation by rationals, 8, 187, 209

Arithmetic (mod n), 59

Ascent, proof by, 158, 160

Associates, 272, 278, 297

B

Baker, A., 180, 295, 296, 337, 338

Banachiewicz, 109, 336

Base n, 125, 129, 177

Beeger, N G W H., 336

Below a line, 181

Bibliography, 334

Bose, R C., 139, 336

C

Casting out elevens, 63
nines, 62
ninety nines, 65

one thousand and ones, 65



Cell, 118

Chatland, 294, 338

Chinese remainder theorem, 72
Class number, 306

Column magic, 130

Complete residue system, 58
Completely multiplicative function, 37
Complex quadratic field, 259
Composite, 2, 277
Congruence, 51

equations, 66, 74
Congruent, 51

as polynomials, 86
Conjugate, 261

complex, 261

Continued fraction, 181, 202

algorithm, 185, 187, 202

periodic, 206, 226

Convergent, 195

D
Davenport, H., 294, 337, 338

Dedekind, J W R., 308

Detfining equation, 262

Degree (mod n) of a polynomial, 93
Descent, proof by, 155
Determinant of a matrix, 329

Diabolic square, 133




sum, 133

Diophantine equations, 4, 145, 177, 257, 299

linear, 44
Diophantus, 4, 145
Dirichlet, 315
Divides, 1, 270, 296

Division algorithm, 11

E

Eratosthenes, sieve of, 14

Euclid, 13, 20, 42, 43, 290

Euclidean algorithm, 16, 20, 206
field, 290

Euler, L., 2, 6, 8, 50, 78, 80, 109, 110, 138, 139, 146, 305, 315




Euler's theorem, 80

¢ function, 77, 78, 82

F
Factorization into primes, 12, 279

Fermat, P., 2,5, 6, 109, 111, 145-148, 155, 156, 163, 336

Fermat numbers, F, 2, 108, 336

Fermat-Pell equation, 147, 149, 239, 253, 275, 316, 337

Fermat's last theorem, 5, 145, 146, 163, 305-307, 315, 336

Fermat's theorem, 80

Field, 140, 258, 305, 331

quadratic, 259
Filled square, 122

First quadrant, 181

Frenicle, 147
Fundamental theorem of algebra, 172
theorem of arithmetic, 26, 28

unit, 309

G
Gauss, C. F., 3, 6,51, 64, 78, 105, 106, 172, 295, 305, 313

Gaussian integer, 305

Gelfond, 179

Goldbach conjecture, 5, 335
Greatest common divisor, 16, 24

integer functions, 120

Greco-Latin square, 139

H
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Hadamard, J., 3
Haselgrove, 7, 335
Heilbronn, H., 295, 338

I

Ideal numbers, 306

Identity matrix, 327

Imaginary quadratic field, 259
Infinite continued fraction, 203

Integer, 1, 2635, 306

Gaussian, 305

quadratic, 265

rational, 265

Inverse of a matrix, 328

Irrational number, 34, 164, 170

Irregular prime, 307

K
Kanold, H. J., 335

Klein, F., 337

Kortum, R., 337

Kummer, E., 305-308

L
Lagrange, J. L., 233

Lander, L. J., 146, 336

Lattice, 210
Law of quadratic reciprocity, 313
Least common multiple, 48

Legendre, 2



Lehman, R. S., 7, 335

Lehmer, D. H., 81, 335, 336

Lehmer, D. N., 2, 118, 335, 336

Lehmer, Emma, 336
Length of the period, of a continued fraction, 240

of a decimal expansion, 164

Linfoot, E. H., 295, 296, 338

Liouville, J., 172, 176, 335

Liouville's theorem, 172, 337

Loubére, De la, 10, 118, 119, 137

Loubére method, 10, 123

Lucas, 336

M

Magic in the columns, 130

negative diagonals, 133

positive diagonals, 133

rows, 130

Magic square, 118, 130

sum, 118, 130

Matrix, 322

McClintock. 138, 336

McNiel, G., 337

Mersenne, 111

numbers, M , 111

Mobius function, p(n), 112

inversion formula, 113

Modular arithmetic, 59



Multiplicative functions, 36, 37

properties of integers, 1

N

Negative diagonal, 133

Newton, 1., 146

Nicol, C. A., 336

Nonsquare (mod p), 311
Norm, 263

of a matrix, 233

0
Order (mod n), 98

Over a line, 181



P
Pairwise relatively prime, 25

Parker, E. T., 139, 336

Parkin, T. R., 146, 336

Partial quotients, a , 188, 198

Patz, W., 337

Pell's equation, 149

Perfect number, 42, 335

Period of a decimal expansion, 164

Periodic continued fractions, 206, 226

decimal expansions, 165

Pipping, 5, 335

Points closest to a line, 185, 214

Polya conjecture, 7, 335

Positive diagonal, 132

Poussin, de la Vallée, 3

Prime, 2, 42, 276, 297
rational, 277
relatively, 21

Prime number theorem, 3

Primitive root, 97, 98, 108, 168

of unity, 98, 105, 305

Primitive triangle (triplet), 151, 258

Pseudoprime, 81, 109, 111, 335

Purely periodic decimal expansions, 167

Pythagoras, 43

Pythagorean triple, 4, 151, 299
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Q
Quadratic field, 257, 259

complex or imaginary, 259
real, 259
Quadratic integer, 265

Quadratic reciprocity law, 313

R

Rabinovitch, 310

Rational integer, 265

number, 49, 164
Real quadratic field, 259
Reduced residue system, 77
Regular prime, 307

square, 138
Relatively prime, 21

pairwise, 25
Residues, complete system of, 58

reduced system of, 77

Roth, K. F., 176, 177, 180, 336

Row magic, 130

S

Sarrus, 335

Schneider, 179

Selfridge, J. L., 336

Set of points closest to a line, 185, 214

Shrikhande, S. S., 139, 336
Siegel, C. L., 176, 177, 338




Sierpinski, W., 111, 336

Sieve of Eratosthenes, 14
Simple field, 281

Slope, 181

Sommerfeld, A., 337

Square (mod p), 311
Stark, H. M., 295, 296, 338

Storer, T., 55

Symmetric square, 135

sum, 135

T
Tables, 339

Tarry, G., 138

Thue, A., 176,177, 179, 180

Totient function of Euler, 78

Transcendental number, 172, 179

Transpose of a matrix, 329

Two-dimensional vector, 317

U

Under a line, 181

Uniform step method, 118, 121

Unique (mod n), 66

Unique factorization domain (UFD), 281, 297
property, 281, 306
theorem, 28, 272

Unit, 272, 273, 296

fundamental, 309




v
Vandiver, H. S., 336
Vector, 186, 317

Vertical distance from a line, 214

W
Wallis, J., 146148
Well-ordering principle, 11

Wilson's theorem, 96

Z
Zero matrix, 323

vector, 318
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